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In this work we combine quantum renormalization group approaches with deep artificial neural
networks for the description of the real-time evolution in strongly disordered quantum matter. We
find that this allows us to accurately compute the long-time coherent dynamics of large, many-
body localized systems in non-perturbative regimes including the effects of many-body resonances.
Concretely, we use this approach to describe the spatiotemporal buildup of many-body localized
spin glass order in random Ising chains. We observe a fundamental difference to a non-interacting
Anderson insulating Ising chain, where the order only develops over a finite spatial range. We further
apply the approach to strongly disordered two-dimensional Ising models highlighting that our method
can be used also for the description of the real-time dynamics of nonergodic quantum matter in a
general context.

Introduction. The understanding of emergent behavior
in quantum many-body systems is largely based on the dis-
covery of effective descriptions of analytically unsolvable
models [1]. An essential toolkit to find the former con-
stitute renormalization group (RG) methods. They are
traditionally applied on systems in thermal equilibrium,
thereby explaining many collective phenomena including
structured phases, phase transitions, critical scaling and
universality. In the past decade, real-space RGs have
been developed that aim to explain analogues of these
well-known phenomena also in systems where a thermo-
dynamic treatment breaks down due to strong quenched
disorder [2–10].

Whereas real-space RGs successfully operate in the sta-
tionary setting at the level of individual eigenstates [11–
16], reaching a quantitative description of the dynamical
properties of quantum many-body systems appears even
more challenging. So far, coherent dynamics of quantum
matter far from equilibrium has been mostly simulated
using tensor networks methods [17–19] or exact diag-
onalization [20, 21] with recent developments targeting
dynamical descriptions in terms of machine learning meth-
ods by utilizing Restricted Boltzmann Machines (RBM)
[22] or, more general, Artificial Neural Networks (ANN)
[22–24]. Still, accessing quantitatively the long-time dy-
namics for large quantum many-body systems, especially
in spatial dimensions beyond one, represents a major
challenge [25–27].

In this work, we show how ANNs can be utilized in
a different way for numerically exactly time-integrating
effective descriptions of generically interacting systems,
generated by RG methods. As a concrete example, we
explore the temporal build-up of MBL spin-glass order
out of a simple polarized state for a large, disordered spin
chain, see Fig. 1b, among other long-time dynamics in
1D- and 2D-lattices. We begin by formulating a prototyp-
ical strong-disorder RG (SDRG) for spin-1/2 systems of
arbitrary spatial dimension and map its transformations
into the time-domain. As a result, we obtain a quantum

Figure 1. (a) Illustration of a random quantum circuit built
up from local unitary RG-transformations. In the course
of the RG, long-distance and higher-order couplings emerge.
Adding time-dependence leads to a further broadening with
increasing time. (b) Spatiotemporal build-up of MBL spin-
glass order in a random quantum Ising chain with 64 lattice
sites after quenching a paramagnetic initial condition into the
symmetry-broken phase at J = 5h, J(x) = h/5. Dashed lines
indicate emergence of light-cones except for the non-interacting
case, J(x) = 0, where the order stops developing at a finite
distance. The numerical data is obtained from an average over
25 disorder realizations.

circuit, see Fig. 1a, as an effective description of the time-
evolution operator. Hereafter, we show that this circuit
can be encoded efficiently into deep ANNs associated with
typical initial conditions for quantum real-time dynamics.
This allows us to quantitatively represent time-evolved
many-body quantum states not only at short but also long
times. We note that our method avoids a discretization
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of time but relies on a renormalized Hamiltonian that is
assumed to effectively describe the relevant physics up to
some finite but nevertheless long time scale.

The scheme we introduce in the following can be applied
for any generic, but strongly disordered, spin-1/2 system.
Concretely, we will apply it to a paradigmatic interacting
disordered quantum Ising model [28] of the form

H =
∑
〈ij〉

Jijσ
z
i σ

z
j + J

(x)
ij σ

x
i σ

x
j +

∑
i

hiσ
x
j , (1)

with next-neighbor couplings Jij ∈ [−J, J ] and local mag-
netic fields hi ∈ [−h, h] drawn randomly from uniform
distributions. We use periodic boundary conditions. For
the 1D case we also add random transverse couplings

J
(x)
ij ∈ [−J (x), J (x)] to obtain a generic and interacting

model.
Solving the time evolution. Before describing the uti-

lized renormalization procedure and the training of the
ANN in detail, let us start by outlining the general scheme
for solving quantum real-time evolution utilizing strong-
disorder RGs. Such an RG generates a sequence of local
unitary transformations Uk in order to iteratively obtain a
simplified effective description of the considered quantum
many-body system. In the time domain, we will show that
this leads to the following representation of time-evolved
quantum many-body states:

|ψ(t)〉QC = e−iH
(n)
0 t U1(t) · · ·Un(t) |ψ0〉 , (2)

where a time-dependence is added to the RG-trans-
formations Uk through a generalized interaction picture,
see the derivation below. The above equation maps quan-
tum dynamics onto a quantum circuit generated by the
local unitaries Uk(t). As we assume that the effective

description in terms of the final Hamiltonian H
(n)
0 after

the end of the RG procedure can be solved exactly, the
complexity of the quantum circuit emerges solely uni-
taries Uk(t). We find that such quantum circuits can
become a non-perturbative object, as the spatial support
of the Uk(t) typically grows over time developing long-
distance and higher-order couplings with large overlaps,
see Fig 1a. A central contribution of this work is to
outline a numerically exact scheme to encode |ψ(t)〉QC
and therefore the RG transformation itself into an ANN
using machine-learning techniques. The numerical learn-
ing effort in obtaining |ψ(t)〉QC , as well as its memory
requirement, scales at most quadratically with system
size while being independent on the targeted time t or
the spatial dimension.

Dynamical strong-disorder Renormalization Group. In
principle, quantum circuits such as in Eq. (2) can be
generated using a variety of standard SDRGs. In the
following we introduce a variant of a SDRG, which as we
find improves the quantitative accuracy of the resulting
scheme.

As other SDRGs, the dynamical variant we introduce is
based on a local separation of energy scales. Consequently,
at the beginning of each iteration k we pick the strongest
coupling, also called ”fast mode”, whose corresponding
term in the Hamiltonian we call H0. For the first itera-
tion this could be either a spin interaction Jij , J

(x)
ij , or

transverse field hi, see the Hamiltonian in Eq. (1). Those
terms in the Hamiltonian which are not commuting with
H0 we denote by V . These can be eliminated perturba-
tively using a Schrieffer-Wolff transformation (SWT) [29]
by applying a unitary transformation Wk = eSk on the
Hamiltonian with a generator Sk satisfying [H0, Sk] = V

and S†k = −Sk [12], at the expense of the renormalization
H0 7→ H0 + [Sk, V ]/2. In general, this modifies existing
couplings and leads to the generation of new terms in the
Hamiltonian. After the SWT the fast mode is decoupled
from the remainder and can then be faithfully removed
from the system as a second-order local integral of motion
(LIOM) [10, 30, 31]. After n such iterations, an unper-

turbed Hamiltonian H
(n)
0 is obtained, formed by the set

of LIOMs.

The newly generated couplings after each iteration are,
of course, not known a-priori, especially if the SDRG is
designed regardless of details of the model like range of
interaction, dimensionality etc. We approach this problem
by represent at each stage of the RG the Hamiltonian as
a sum of arbitrary Pauli-strings σα1

l1
. . . σαMlM with a real

coefficient λl1,...,lM each. Certainly, this approach can
entail a costly handling of numerous generated higher-
order couplings, see below, but it opens the possibility
to take into account many-body resonances, which are
neglected using earlier SDRGs [11, 32] and related, so-
called flow equation approaches [27, 33, 34].

In addition the accuracy of the RG can be further in-
creased by splitting the SWT into infinitesimal unitary
transformations, closely resembling in spirit the flow equa-
tion framework. This turns out to be particularly helpful
in the vicinity of a critical point, h ≈ J here for the 1D
model, where the SWT is least controlled and in order
to capture many-body resonances to an arbitrary degree.
For a detailed presentation of the technical details, see
the appendix. To control the exponential number of cou-
plings {Vi} generated during the RG, we first neglect
those terms where |Vi| � t∗−1 which are much smaller
than the inverse of the targeted time scale t∗ say, as
they do not influence physics up to t∗. Secondly, we per-
form the continuous renormalization only w.r.t. those
Vi whose relative magnitude lies above a fixed threshold,
|Vi|/|H0| > ε� 1. Therefore we have a tradeoff, that is
controlled by ε, between exactness and total number of
couplings within the RG-generators Sk and the renormal-

ized Hamiltonian H
(n)
0 . In our computations, ε typically

ranges from 10−4 . . . 10−2, depending on the closeness
to the critical point, h ≈ J , or the ergodic transition,
J (x) ≈ J . Later we will present a quantitative analysis of
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our RG w.r.t. the dynamics of local observables.
Time-dependent unitaries. To derive the time-

dependence of Uk(t) we express the time-evolution opera-
tor in the renormalized basis, which yields

e−iHt = eS
†
1 · · · eS

†
ne−iH

(n)
0 teSn · · · eS1

= e−iH
(n)
0 teS

†
1(t) · · · eS

†
n(t)eSn · · · eS1 .

(3)

We achieve a much more robust learning of the ANN upon
successively commuting each factor eSk to the left until

its counterpart eS
†
k(t) is reached. Identifying Uk(t) =

eS̃
†
k(t)eS̃k gives then the desired form as in (2). Here,

S̃k denotes the total application of all rotations from
eSl , l < k on Sk, see the appendix for details.

Training the artificial neural network. Utilizing ANNs
as a variational ansatz for many-body wavefunctions has
seen an active development recently [22, 35] becoming
competitive with or partially even superior to other
state-of-the-art methods. [23, 36, 37]. In contrast to
the commonly used time-dependent variational principle
(TDVP), we introduce another way of training an
ANN.As such, the scattering operators U1(t), . . . , Un(t)
are consecutively used during n iterations to train
the network. As the Uk(t) are still local operators
with a finite support in real space, we perform for
each iteration k a supervised learning procedure to
find the set of complex network parameters W̃(k)

that minimize the Fubini-Study metrics, given by
L[W̃(k)] = acos

(
| 〈ψW̃(k) |Uk(t) |ψW(k)〉 |2

)
. whereas

|ψW〉 =
∑
{~s} exp[HANN(W, ~s)] |~s〉 refers to a quantum

state defined by the output of an ANN and {~s} denotes
the set of all spin configurations ~s = (s1, s2, . . .), si = ±1.
Notice that we assume always properly normalized
wave functions. The network HANN(W, ~s) can be
considered as a deep extension of a complex-valued
RBM with up to three hidden layers, see the appendix
for details. After convergence, the ”learned” solution
W̃(k) is passed to the next iteration as W(k+1). To
complete the learning procedure, we write L[W̃(k)] at the
k-th iteration, while omitting the index, as L[W̃(k)] =∑
{~s} |ψ(~s)|2ψ̃∗(~s)[ψ∗(~s)]−1Uloc(~s, t), Uloc(~s, t) =

[〈~s|ψW〉]−1 〈~s|U(t) |ψW〉 , with ψ(~s) = 〈~s|ψW〉 and
Uloc(~s, t) being the equivalent of the local energy known
from TDVP methods. We access the above sum with a
Markov chain Monte-Carlo (MCMC) algorithm which,
as we can confirm, is sign-problem free in all our
computations. In the same way, we calculate the gradient
∂L/∂W̃i with the backpropagation algorithm and pass
the result to a stochastic gradient-descent optimizer
referred to as PADAM [38].

Benchmarking. In order to quantify the overall accuracy
of our approach we first benchmark the RG-component
and the machine learning part individually. For the former
task, we calculate Eq. (2) for small system sizes exactly
using a matrix representation of the quantum circuit. Fig.

Figure 2. (a) Comparing the dynamics of the transverse
magnetization to exact diagonalization, averaged over lattice
sites and 250 disorder realizations, with and without treatment
of many-body resonances. Here, L = 12, h = {4, 1, 1/4}J from

top to bottom, and J(x) = J/8. (b) Lower bound F ∗ on the
many-body overlap of the trained ANN-state with the state
given by an hypothetical, exact application of the quantum
circuit. System parameters are the same as in Fig. 1b in the
interacting case. Different sizes of ANNs are compared, where
M refers to the number of hidden units in each layer. Shaded
areas indicate uncertainties due to a finite disorder ensemble
of 25 realizations. The result from a cumulant expansion of
the quantum circuit is shown for comparison. (c) The same
overlap on a 12 × 12 lattice for two different external field
strengths.

2 shows a comparison of the local magnetization with the
result obtained from exact diagonalization for a system of
L = 12 spins. The plot reveals that the accuracy of the
dynamics depends crucially on the inclusion of many-body
resonances, which is tuned by the only free RG-parameter
ε, see above. For practical purposes, we set ε indirectly by
imposing a maximum total number n of couplings within
all RG-generators Sk. Here, n = 3(10)L corresponds to
the label of excluded (included) many-body resonances
and matches (exceeds) the number of original couplings.
Already for n = 10L we observe a very good agreement
even for the longest times. Importantly, the result can be
systematically improved by increasing n.

Next, let us benchmark the training of the ANN. For
this purpose we ideally would like to check the overlap
F = | 〈ψW(n)(t)|ψQC(t)〉 | of the final ANN-state to the
one obtained from an exact application of the quantum
circuit, which is impossible for large system sizes. Nev-
ertheless, we can offer a lower bound F ∗ =

∏
k F
∗
k < F

where F ∗k = | 〈ψW(k+1)(t)|U (k)(t) |ψW(k)(t)〉 | denotes the
partial overlaps measured at the end of each iteration k,
which are a by-product of the training procedure. We plot
F ∗ in Fig. 2 as a function of time for 1D- and 2D-lattices.
It shows a high, macroscopic overlap even for large sys-
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Figure 3. Quench dynamics for the transverse magnetization
and large system sizes averaged over lattice sites and 25 dis-
order realizations. (a) Quench into the MBL-SG phase at

h = J/4, J(x) = J/8 for various system sizes. (b) 12 × 12
lattice at very small and very large external field strengths.

tem sizes and a systematic improvement on adding more
units and hidden layers to the ANN. From this finding
we conclude that the quantum circuit can be applied
essentially numerically exactly on the ANN. For compari-
son, we also plot the result of a perturbative treatment

|ψQC(t)〉 ≈ e−iH
(n)
0 t

∑
~s

∏
k exp (〈~s|Sk − Sk(t) |ψ0〉) |~s〉,

i.e. a cumulant expansion of the quantum circuit, that
neglects (higher-order) commutators between different Sk.
It shows a rapid decay and thus confirms the circuit’s
non-perturbative nature. In the appendix we show further
benchmarks of the whole framework for a large integrable
system.

Numerics. As an application of our framework we
now explore non-equilibrium dynamics involving global
quenches that has been difficult to access so far in the
large system size and long-time limit. It is known from
previous RG-studies that a symmetry-broken state will
keep a non-zero Edwards-Anderson order parameter in the
long-time limit starting from symmetry-broken states if
the system is in the MBL-spin glass (MBL-SG) phase [32].
Here, we aim to address the build-up of spatiotemporal
order starting from a Z2-symmetric state upon quenching
into the MBL-SG phase. We detect the spatiotemporal
dynamics of the MBL-SG order via [39],

χij(t) =

4∑
ν=1

p
(ν)
ij (t)

〈
%
(ν)
ij (t)

∣∣∣σzi σzj ∣∣∣%(ν)ij (t)
〉2
, (4)

where %ij denotes the reduced density matrix of two lattice
sites i, j, while ν enumerates its four eigenvectors |%ij〉(ν)

and eigenvalues (probabilities) p
(ν)
ij . Fixing a distance

|i − j| we average χij(t) across all associated pairs and

disorder realizations. This quantity can be interpreted as
a local version of the Edwards-Anderson order parameter,
which is otherwise mostly used to detect MBL-SG order
in a static context, but which doesn’t exhibit a natural
extension to the dynamical regime considered here.

Figure 1b shows χd(t) both for an interacting MBL
(J (x) = h/5) and a non-interacting Anderson localized
(J (x) = 0) case for a 1D chain of 64 spins. At short
times tJ≤̃J/J (x) = 25, an almost identical light-cone for
the buildup of MBL-SG correlations is visible, which ap-
pears consistent with a logarithmic growth. On longer
time scales we observe a fundamental difference between
the Anderson and MBL cases. For the non-interacting
Anderson-localized limit the growth of MBL-SG order
stops, while for J (x) > 0 a second light-cone arises at
a timescale that we estimate as ∼ 1/J (x). Interestingly,
we find that all light-cones do not become more open
as we quench deeper into the MBL-SG phase but rather
the more close we quench to the critical point. This
behavior is reminiscent of the l-bit picture, where LI-
OMs become more extended on approaching criticality.
We will draw a connection to this picture below. As ex-
pected, a quench within the MBL-PM phase does not
show any SG-order. Right at criticality, J = h, even
without interaction, we find that the order becomes gen-
uinely long-range as it decays algebraically with distance
within the light-cone. For the interacting case, inside the
SG-phase, we observe an exponential decay with distance,
but having an essential difference to the non-interacting
case: the order at any fixed distance does not saturate,
but increases strictly monotonically for all observed times
within the light-cones. This is a drastic non-perturbative
effect of the interacting model. It is particularly obvious
for next-neighboring spins, see Fig.1b). The important
question whether this growing will eventually lead to a
finite plateau for |i−j| → ∞ requires access to even much
later times, which we currently cannot access.

When initializing the system in a symmetry-broken
state, as studied in previous works, the stability of MBL-
SG order originates from the large overlap with the LI-
OMs. The mechanism for the build-up of long-range
order from symmetric states as targeted in this work is
of fundamentally different origin, as the initial state is
oriented orthogonal to the LIOMs. Here, it is essential
to generate long-distance quantum correlations between
LIOMs. This is not possible in the Anderson localized
limit because the LIOMs are independent, as we also
see from our results in Fig. 1. Only in the interacting
MBL limit the MBL-SG order can develop. Quantum
correlations between two lattice sites i and j can emerge
on a time scale [J (x)]−1e|i−j|/ξ where ξ denotes a typical
localization length. Consequently, at a given time t MBL-
SG order can be generated over distances d ∼ ξ log[J (x)t]
explaining the appearance of the logarithmic light-cone
in Fig. 1.

As a closing point, we now turn briefly to quantum
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many-body dynamics in two dimensions. Whether a
nonergodic phase due to strong disorder exists there has
remained an outstanding challenge [40]. Its difficulty
originates from the percolation of many-body resonances
[41, 42]. We find that at least for sufficiently small or large
external fields, the latter can be effectively captured using
our framework up to an unprecedented long timescale. Fig.
3b shows the temporal evolution of the local magnetization
in a quadratic, rectangular lattice, using essentially the
same quench protocol as above. In contrast to the glassy
dynamics of a chain, see Fig. 3a, the lattice exhibits a
rapid decay of magnetization at h� J , consistent with
thermalization. On the other hand, for h � J a stable
non-thermal plateau is reached. Our result therefore
numerically confirms a presumed quasi-localization [41,
42] in the disordered 2D transverse-field Ising model at
infinite temperature.

Conclusion. We have demonstrated how many-body
quantum dynamics can be simulated for generic spin-1/2
systems up to exponentially long times given that suffi-
ciently strong disorder breaks ergodicity at least up to
the targeted timescale. Importantly, this includes an un-
biased treatment of many-body resonances, which allowed
us to obtain quantitative results in general and to go
beyond one-dimensional systems. We could show that our
proposed framework does not fundamentally rely on any
specific details of the model and scales up to systems sizes
far beyond of what is possible with exact diagonalization.
This opens up for broad investigations e.g. of non-thermal
behavior and quantum aging dynamics in higher dimen-
sions [43, 44], long-range interacting systems [45–47] or
localization in lattice gauge theories [48]. Since this work
has shown that deep ANNs are able to apply the proposed
quantum circuit numerically exact, the ansatz could also
be well suited for random unitary circuit models e.g. to
study operator spreading [49] [50] [51] or measurement
induced localization transitions [52] [53].
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Comparison to exact solution at large scale

For the one-dimensional and non-interacting case of
J (x) = 0, χ|i−j|(t) is exactly solvable by means of conven-
tional free-fermion techniques [54, 55] after performing a
Jordan-Wigner transformation [56]. We take this exact
solution to compare our numerical result obtained from
the prescribed framework at large system sizes, see Fig.
4. It shows an excellent agreement at the full range of

timescales.

Figure 4. Comparison of spin-glass order computed with RG
and ANN (dashed) to the exact solution (solid) for the non-
interacting Ising chain for L = 64, J = 5, h = 1, at various
distances d.

Structure of the artificial neural network

We use a complex-valued feed forward network tak-
ing a spin-configuration ~s as input layer and returning
the activation of a single output unit as HANN(W, ~s) =
log[ψW(~s)]. In between those, there are one or more
hidden layers, each passing the previous, weighted and
biased activations W (ν)~v(ν−1) + ~b(ν) through a non-

linear activation function f(z) to the next layer, v
(ν)
j =

f
(∑

iW
(ν)
ij v

(ν−1)
i + b

(ν)
j

)
. Building upon the original

ansatz in terms of an RBM [22], we take the complex
log cosh(z) as a natural choice for the activation function
in all hidden layers. In the special case of a single hidden
layer, both formulations are in fact equivalent,

|ψW〉 =
∑
{~s,~h}

e~a·~s+
~b·~h+~s·W ·~h |~s〉 , ~h = (h2, h2, . . .), hi = ±1

=
∑
{~s}

e~a·~s+
∑
j log cosh[θj(~s)] |~s〉 , θj(~s) =

∑
i

Wijsi + bj ,

(5)

which justifies our choice, although we note that a for-
mal way of deriving an optimal f(z) does not exist in

machine learning. In the above definition, W = (~a,~b,W )
summarizes all network parameters.

Unfortunately, however, by using f(z) = log cosh(z)
we frequently observe the occurrence of numerical in-
stabilities during training, caused by two poles located
at ±iπ/2. These instabilities are triggered whenever z
comes close to those poles. This manifests itself in sudden
jumps of L[W̃(k)], which can ultimately make convergence
impossible. To fix this problem, we use an approxima-
tion f̃(z) ≈ log cosh(z) that ”smooths” the poles while
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preserving the asymptotic behavior:

log cosh(z) = − log(2) + z + log
(
1 + e−2z

)
(6)

≈ − log(2) + z +
P2(z)

Q4(z)
=: g̃(z). (7)

Here, a Padé-(2, 4) expansion is done in the second line.
The four poles of g̃(z) are all located within Re(z) < 0,
so we choose

f̃(z) =

{
g̃(z), Re(z) ≥ 0

g̃(−z), Re(z) < 0
(8)

to avoid the poles and make f̃(z) an even function like
log cosh(z). If f̃(z) is used, no more instabilities occur.

Continuous renormalization

As already mentioned in the main text, a SWT with
a generator S fulfilling [H0, S] = V allows to separate
H̃0 up to second order. We refer to [12] for a formal
way to obtain S. Here we recall that H0 represents a
single coupling of arbitrary type, e.g. σxi or σzi σ

y
j σ

y
kσ

z
l .

Although the SWT can be extended to any order, there is
a subtlety which far more limits the overall accuracy than
its order which is the following. We refer to couplings
H ′0 which commute with H0 but still produce new, non-
commuting couplings V ′ under the SWT of any order:

[H ′0, H0] = 0, [eSH ′0e
S† , H0] = [H̃ ′0 + V ′, H0] 6= 0. (9)

These new couplings V ′ need to be damped in subse-
quent SWTs before H̃0 is removed, unless they can be
considered as irrelevant for specific models [32]. Since
we aim for a general framework and quantitative dynam-
ics, our strategy is to keep all emerging couplings while
performing a continuous unitary transformation (CUT),
whereupon H̃0 is removed. To formalize this procedure,
we define a continuous scale λ ∈ [0,∞), where for λ→∞,
H̃0 = H0(λ → ∞) commutes with all other couplings,
very much like in the flow equation method [33]. Thereby,
like in first order SWT, we require the generator to satisfy

[H0(λ), S(λ)] =
∑

|Vi(λ)|
|H0(λ)|>ε

Vi(λ), (10)

but only w.r.t. those non-commuting couplings Vi(λ),
whose relative magnitude lies above a threshold ε � 1.
The CUT itself is given by

d

dλ
H(λ) = [S(λ), H(λ)],

H(λ) = H0(λ) +H ′0(λ) + V (λ),
(11)

which, under the condition of Eq. (10), converges to

H(λ→∞) = H̃0 + H̃ ′0 +
∑

|Ṽi|/|H̃0|<ε

Ṽi. (12)

By tuning the threshold ε, the number of new couplings
emerging during the CUT can be controlled without the
technical need to restrict their type, i.e. the associated
Pauli-string, by any means. In the limit of ε → 0, the
separation of H̃0 becomes exact.

From the CUT we numerically construct a finite se-
quence of SW-generators (S1, S2, . . .). The chained se-
quences of all RG-steps form the total sequence of {Sk}
referred to in the main text. Its length can be further
optimized by merging commuting consecutive elements.

Local rotations of RG-generators

Our definition of time-dependent unitaries Uk(t) =

eS̃
†
k(t)eS̃k requires RG-generators Sk to be successively

rotated into the frame of all previous ones,

S̃k = eS
†
1 · · · eS

†
k−1Ske

Sk−1 · · · eS1 , (13)

as shown in the main text. Like the Hamiltonian, we repre-
sent all Sk as sums of Pauli-strings but with an imaginary
coefficient each, to ensure S†k = −Sk. In the following, we
refer to each element of these sums as coupling. While in
general Eq. (13) generates exponentially many couplings,
we empirically find that those being smaller than the
threshold ε can be neglected after each rotation. Such a
repetitive cropping does not alter expectation values of
local observables at arbitrary times, up to a sub-leading
correction, see below. We attribute this observation to a
relatively low overlap among respective Sl. However, we
strongly emphasize that this would not hold if the genera-
tors were replaced by Ul(t), i.e. the quantum circuit itself.
For intermediate to long times, all Ul(t) have an extended
spatial support implying a high overlap among them, as
illustrated in Fig. 1a. This quickly leads to an explosion
of non-negligible couplings during successive rotations as
we confirm in numerical experiments and by the rapid
decay of a cumulant expansion approach as shown in Fig.
2b. Instead, these higher-order and long-distant couplings
can be numerically exactly captured using a deep ANN,
which is a central result of the present work.

As a sub-leading correction we impose the Frobenius
norm of an original generator Sl to the associated cropped
generator S′l ,

S̄′l =
||Sl||F
||S′l ||F

S′l , S′l =
∑
|S(i)
l |>ε

S
(i)
l , (14)

where S
(i)
l denotes a coupling within Sl.
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