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Abstract. Traveling localized spots represent an important class of self-
organized two-dimensional patterns in reaction-diffusion systems. We study open-
loop control intended to guide a stable spot along a desired trajectory with
desired velocity. Simultaneously, the spot’s concentration profile does not change
under control. For a given protocol of motion, we first express the control signal
analytically in terms of the Goldstone modes and the propagation velocity of the
uncontrolled spot. Thus, detailed information about the underlying nonlinear
reaction kinetics is unnecessary. Then, we confirm the optimality of this solution
by demonstrating numerically its equivalence to the solution of a regularized,
optimal control problem. To solve the latter, the analytical expressions for the
control are excellent initial guesses speeding-up substantially the otherwise time-
consuming calculations.
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1. Introduction

Localized spots, sometimes referred to as auto-solitons [1], dissipative solitons [2],
or bumps [3], are a subclass of traveling waves that spontaneously evolve in two-
dimensional (2D) dissipative nonlinear systems far from thermodynamic equilibrium.
In a co-moving reference frame, spots are stationary solutions to coupled nonlinear
partial differential equations (PDE), such as reaction-diffusion (RD) or neural field
equations, for example. The characteristic length and time scales of the spots,
i.e., their wave profile, propagation velocity, etc., are selected by the experimental
conditions or the parameters of the model.

Experimentally, localized spots have been observed as current filaments in gas-
discharge [4], as bright intensity spots in nonlinear optics and laser physics [5],
as moving localized regions of increased concentration in chemical reactions [6],
or coverage of adsorbed species in heterogeneous catalysis [7]. Further examples
include temperature spots in fixed-bed catalytic reactors [8], actin conformation in
dictyostelium discoideum [9], neural activity in head-direction cells [10], vegetation
patterns [11], and many others.

Although control of self-organized patterns attracted considerable attention over
the last decades, compare [12, 13] and references therein, it is still a challenging
problem in applied nonlinear science. Often, one distinguishes between open-loop,
closed-loop, and optimal control.
Open-loop control is independent of the instantaneous state of the system. As a
consequence, it is inherently susceptible to perturbations in the initial conditions as
well as to parameter uncertainty. Thus, detailed knowledge of the system’s dynamics
and in-depth stability analysis are pre-conditions for reliable open-loop schemes.
Typical examples of open-loop control are space-time dependent external forcing
[14, 15] or control by imposed geometric constraints [16, 17].
On the other hand, in closed-loop or feedback control, the controlled state
is permanently monitored to adjust the control signal accordingly [18, 19, 20].
Particularly, time-delayed feedback can induce pattern forming instabilities in addition
to the pattern to be controlled [21].
Optimal control reformulates control problems in terms of the minimization of a cost
functional [22, 23]. The cost functional measures the distance in function space
between a desired target state and the actual controlled state of the system. If a
control signal is the unique solution to an optimal control problem, then no other
control, be it open- or closed-loop, will be able to enforce a controlled state closer
to the target state. Conditions for sufficiency and uniqueness of optimal control are
discussed extensively in the mathematical literature [24, 25, 26]. Optimal control
of self-organized patterns requires complete knowledge of the PDEs governing the
system’s evolution in time and space. Numerical solutions to optimal control of PDEs
often base on computationally expensive iterative algorithms restricted to relatively
small spatial domains and short time intervals. Clearly, the convergence to the target
state sensitively depends on an appropriate initial guess for the control signal.

For traveling wave patterns, a general control task is position control aimed at
guiding the pattern according to a given protocol of motion (POM), i.e., moving it
with desired velocity along a desired trajectory through a spatial domain. In some
technical applications like catalytic reactors, it is necessary to avoid the collision of
high-temperature spots with the reactor walls or their pinning at heterogeneities of
the catalyst’s support to maintain operational safety [8]. Another example of open-
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loop position control is the enhancement of the CO2 production rate during the low-
pressure catalytic oxidation of CO on Pt(110) single crystal surfaces by dragging of
reaction pulses and fronts using a focused laser beam with speeds differing from their
natural propagation velocity in the absence of control [27, 28]. In a photosensitive
Belousov-Zhabotinsky (BZ) medium, periodic variations of the applied light intensity
forces a spiral wave tip to describe a wide range of hypocycloidal and epicycloidal
trajectories [29, 30]. In optical bistable media like dye-doped liquid crystals and Kerr
cavities, interface dynamics can be controlled by spatially inhomogeneous forcing [31].
Position control of traveling wave patterns can be tackled by feedback control as well.
For example, the spiral wave core in a photosensitive BZ medium was steered around
obstacles using feedback signals obtained from wave activity measured at a point
detector, from tangential crossing of wavefronts with detector lines, or a spatially
extended control domain [14, 32, 33]. Two feedback loops were used to stabilize and
guide unstable traveling wave segments along pre-given trajectories [34]. Furthermore,
feedback-mediated control loops were employed to stabilize plane waves undergoing
transversal instabilities [35].

Recently, we proposed an open-loop control that acts solely via the Goldstone
modes of wave patterns [36] and provides analytical expressions for the amplitude of
the control signal to be applied; it is coined Goldstone mode control. We demonstrated
that this control is able to accelerate or decelerate 1D traveling front and pulse
solutions to RD equations [36, 37, 38] without changing their spatial profile. The
stability of the control loop with respect to small changes in the initial conditions was
discussed in [39]. Goldstone mode control also applies to move the core of a spiral
wave at desired velocity along a pre-given trajectory through a 2D spatial domain,
or to shape iso-concentration lines of 2D traveling pulses [40]. Interestingly enough,
the control turned out to be equivalent to the solution of an appropriately formulated
optimal control problem [36, 41].

In this paper, we extend Goldstone mode control to spatially localized moving
spots. We introduce a three-component RD model supporting stable traveling
spot solutions in section 2 and derive analytical expressions for position and
orientation control of traveling spots in the fully-actuated case in section 3.1. The
corresponding optimal control problem with an objective functional involving a
Tikhonov regularization term is formulated explicitly in section 3.2. Here, we discuss
the relation between Goldstone mode control derived in section 3.1 and the solutions
to the optimal control problem. In section 4, after a brief description of the numerical
methods being used, we discuss examples for fully-actuated position and orientation
control of spots in subsection 4.1 and 4.2, respectively, as well as for under-actuated
position control by a single control signal 4.3. Finally, we conclude the results in
section 5.

2. Three-component spot model

Throughout this work, we consider the following three-component RD system
exhibiting immobile and traveling stable spot solutions in 2D [2, 42, 43]
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(a) (b)

Figure 1. Activator distribution u of a rotational symmetric, resting (a) and an
axis-symmetric, traveling spot solution (b) to (1). Parameters κ1 = −5.0, τ = 2
in (a) and κ1 = −6.92, τ = 48 in (b); remaining parameters are taken from set 1
in table 1. In both panels, identical domain size and limits for the colormap are
used.

∂tu(r, t) =Du∆u+ κ2 u− u3 − κ3v − κ4w + κ1, (1a)

τ∂tv(r, t) =Dv∆v + u− v, (1b)

θ∂tw(r, t) =Dw∆w + u− w, r ∈ Ω. (1c)

Here, ∆ = ∂2
x +∂2

y represents the Laplacian in Cartesian coordinates, r is the position

vector in the spatial domain Ω, r = (x, y)T ∈ Ω ⊂ R2, and t indicates time. Du, Dv,
and Dw denote the diffusion coefficients of components u, v, and w while τ and θ set
the time scales for the v and w kinetics, respectively. Beside spots, the model (1) is
capable to support peanut patterns [44], breathing solitons [45], and jumping oscillons
[46], for example.

The three-component RD system (1) was first introduced by Purwins and co-
workers to model the dynamics of current filaments in planar gas-discharge [2]. In
this context, activator u and inhibitor v represent the current density and the voltage
drop over the high-ohmic electrode, respectively. The second inhibitor w is linked
to the surface charge, and the additive bifurcation parameter κ1 is related to the
supply voltage. Replacing the constant additive parameter in (1) by a space-dependent
quantity κ1(r) breaks the translation and the rotation Euclidean symmetries of the
equations. The interaction of traveling spots with different types of parameter
heterogeneities in 1D and 2D has been studied in detail by many authors, see [44]
and references therein. Penetration, rebound, annihilation, oscillation, as well as
stationary or oscillatory pinning of spots were observed. Figure 2 illustrates different
outcomes of the interaction between a traveling spot and a localized circular defect
formed by a finite jump δk1 = κhet

1 −κback
1 from a background value κback

1 and a higher
value κhet

1 inside the circular heterogeneity. Additionally, other scenarios of spot-defect
interaction have been found like repeated creation of spots inside the heterogeneity
as well as spots orbiting both inside and outside of the defect’s boundary. If the
activator describes the temperature in a catalytic packed-bed reactor, resting hot
spots [47] or those pinned to local heterogeneities can damage the catalyst support.
In particular, collision of hot spots with the reactor walls must be prevented for safety
reasons. Consequently, guidance of a traveling spot with given velocity along a desired
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Figure 2. Traveling spot interacting with a circular defect shown in light blue.
(a) Splitting and different regimes of transmission or nucleation of new spots [SI
video1]. Parameter set 1 in table 1 with κback1 = −6.92. (b) Trapping, reflection,
transmission, and nucleation of new spots. Parameter set 2 in table 1 with κback1 =
−7.30. Shown are snapshots of the activator distribution obtained by numerical
simulations of (1) on a rectangular spatial domain of size Ω = [0, 1)× [−0.25, 0.25)
with periodic boundary conditions. Simulations were performed using ETD2; for
details please see supplementary information S1.

trajectory through a bounded spatial domain might be particular challenge in chemical
engineering applications.

3. Controlling position and orientation of traveling spots

3.1. Analytical expression for control amplitudes in position control

Let us consider a controlled RD system according to

∂tU(r, t)− D∆U(r, t)−R(U(r, t)) = Bf(r, t). (2a)

Here, U(r, t) = (u1(r, t), . . . , un(r, t))T is the vector of n ∈ N state components
defined in the two-dimensional spatial domain Ω ⊂ R2 with r = (x, y)T .
Assuming an isotropic medium, the n × n matrix of diffusion coefficients D
is diagonal and constant, D = diag(D1, . . . , Dn). The vector R(U) =
(R1(U), . . . , Rn(U))T describes the reaction kinetics of the components. In general,
Ri(U) are nonlinear functions of the state. For the RD system (1), U, D,
and R are given by U = (u, v, w)T , D = diag(Du, Dv/τ,Dw/θ), and R =(
κ2 u− u3 − κ3v − κ4w + κ1, (u− v)/τ, (u− w)/θ

)T
, respectively. Equation (2a)

must be supplemented with an initial condition

U(r, t0) = U0(r), (2b)
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and appropriate boundary conditions. We consider a rectangular domain Ω =
(xa, xb] × (ya, yb] with periodic boundary conditions such that U as well as its
derivatives in the direction normal to the boundary are periodic,

U(xa, y, t) = U(xb, y, t),
∂l

∂lx
U(xa, y, t) =

∂l

∂lx
U(xb, y, t),

U(x, ya, t) = U(x, yb, t),
∂l

∂ly
U(x, ya, t) =

∂l

∂ly
U(x, yb, t), l ≥ 1.

(2c)

The space-time dependent control signals f(r, t) = (f1(r, t), . . . , fm(r, t))T , m ∈ N, on
the right hand side of (2a) are assumed to act for all times t everywhere within Ω.

The constant n×m matrix B determines which components are directly affected
by the control signals. A system with strictly less independent control signals than
components, m < n, is underactuated. For m = n and B invertible, the system
is fully actuated. In what follows, we focus on fully actuated systems and set B
equal to the identity matrix 1. The limiting case of single component control, i.e.,
Bf(r, t) ∝ (f1(r, t), 0, . . . , 0)T , we consider in subsection 4.3.

The partial differential equations (2a) describe the evolution of the components
U(r, t) in the presence of spatio-temporal perturbations f(r, t) that break the
translation and rotation invariance of the unperturbed equations. In this
interpretation, the response of the unperturbed solution to a given small input f
can be calculated perturbatively, see Ref. [48, 49, 50], and the SI.

In this paper, following [36], for given desired spot dynamics, we perceive (2a)
as a conditional equation for the perturbations which now are considered as control
inputs. The goal of the control f is to enforce a state U to follow a given desired
distribution Ud(r, t) = (u1,d(r, t), . . . , un,d(r, t))

T
as closely as possible everywhere in

the spatial domain Ω and for all times 0 ≤ t ≤ T . We call a desired distribution Ud

exactly realizable if there exists a control f such that the controlled state U equals Ud

everywhere in the space-time cylinder Q = Ω× [0, T ].
Inserting Ud for U in (2a) yields for the control

f(r, t) = B−1{∂tUd(r, t)− D∆Ud(r, t)−R(Ud(r, t))}. (3)

For Ud to be exactly realizable, three more conditions must be satisfied: First, the
initial condition for the controlled state, (2b), must coincide with the initial state of
the desired distribution, U(r, 0) = Ud(r, 0). Second, all boundary conditions for the
desired distribution Ud have to comply with the boundary conditions for U, (2c).
Third, Ud must be sufficiently smooth in the space-time cylinder Q = Ω× [0, T ] such
that the derivatives ∂tUd and ∆Ud are continuous.

Next, we formulate the control goal for spot solutions to the uncontrolled RD
equations(2). These solutions propagate with constant velocity v0 = (vx0 , v

y
0 )T and

wave profile Uc through the spatial domain. In a co-moving frame of reference,
ξ = (ξx, ξy)T ≡ r− v0t, Uc satisfies the equation

0 =D∆ξUc (ξ) + v0 · ∇ξUc (ξ) + R(Uc (ξ)), (4)

where, ∇ξ = (∂ξx , ∂ξy )T and ∆ξ = ∂2
ξx

+ ∂2
ξy

denote the component-wise gradient

and Laplacian, respectively. We emphasize that resting localized spots, v0 = 0, are
rotationally-symmetric solutions while traveling localized spots are axis-symmetric
with the symmetry axis directed tangentially to the trajectory of motion, cf. figure 1(a)
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Figure 3. Position and orientation of the spot Ud (r, t) as defined in (5). (a)
Wave profile of the activator distribution, Uc(ξ), centered in the co-moving and
co-rotating frame of reference at ξ = (0, 0)T . (b) Counter-clockwise rotation of
Uc(ξ) according to the desired orientation Φϕ(t). (c) Shift of the rotated solution
in virtue of the translational protocol of motion Φ(t) = (Φx(t),Φy(t))T .

and (b), respectively. We characterize the current position of a spot by the x- and
y-coordinates of the maximum value of the activator concentration along its symmetry
axis at a given time, Φ(t) = (Φx(t),Φy(t))T , and its orientation by the angle Φϕ(t)
between the spot’s symmetry axis and the x-axis, compare figure 3.

A distribution following a prescribed POM Ξ(t) = (Φ(t),Φϕ(t))T , while
simultaneously preserving the profile of the uncontrolled spot Uc, reads

Ud(r, t) = Uc(A(−Φϕ(t)) (r−Φ(t))). (5)

Here, A(α) = [ cos(α),− sin(α); sin(α), cos(α) ] is the clockwise rotation matrix in 2D.
For the desired distribution (5) to be exactly realizable, the initial condition must be
a spot solution of the form U(r, t0) = Uc(A(−φ0) (r− r0)), which yields for the initial
values of the POM Φ(t0) = r0 and Φϕ(t0) = φ0, respectively. Inserting the desired
distribution (5) into the general control solution (3) leads to

f(r, t) =
[
−
(
Az(−Φϕ(t)) Ξ̇(t)

)
· ∇̃ξUc(ξ)− D∆ξUc(ξ)−R(Uc(ξ))

]
ξ=

¯ξ(t)
, (6)

with ξ̄(t) = A(−Φϕ(t)) (r−Φ(t)). For the sake of a compact notation, we introduced

the differential operator ∇̃ξ = (∂ξx , ∂ξy , ∂ϕ)T with the angular derivative ∂ϕ =

−ξy∂ξx + ξx∂ξy . The dot denotes the derivative with respect to time t, and Az(α)
is the clockwise rotation matrix around the z-axes in 3D, Az(α) = diag(A(α), 1).
Using equation (4) for the uncontrolled spot profile, we end up with the expression

fGold(r, t) =

vx0vy0
0

− Az (−Φϕ(t))

Φ̇x(t)

Φ̇y(t)

Φ̇ϕ(t)

 · ∇̃ξ
Uc(ξ)

∣∣∣∣∣
ξ=

¯ξ(t)

(7)

for our Goldstone mode control.
Remarkably, any reference to the nonlinear functions R drops out from the result

(7). This is of great advantage in all applications where the details of the underlying
reaction kinetics R are largely unknown or difficult to identify. Once propagation
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velocity v0 and wave profile Uc of the uncontrolled spot are measured with an accuracy
sufficient to calculate the Goldstone modes ∂ξxUc, ∂ξyUc, and ∂ϕUc, the control
signals can be computed in advance for the complete time interval [0, T ]. Consequently,
in contrast to feedback control, a continuous recording of the system is not required.

One notices that (7) equals the sum of Goldstone modes with time-dependent
prefactors, fGold(r, t) = P1(t) ∂ξxUc(ξ) + P2(t) ∂ξyUc(ξ) + P3(t) ∂ϕUc(ξ). The
Goldstone modes are the right eigenvectors to the linear stability operator L of (4)

L = D∆ξ + v0 · ∇ξ +DR(Uc (ξ)), (8)

to the eigenvalue zero. They are associated with the translational and rotational
invariance of equation (2a) in R2 for f(r, t) = 0. Clearly, the prefactors’ magnitudes
are proportional to the difference between the intrinsic velocity, v0, and the current
prescribed spot velocity projected onto the x- and y-axes. If the prescribed POM Ξ(t)
coincides with the spot’s natural motion, then all prefactors vanish identically and
fGold disappears everywhere in Q. Importantly, the control signal is localized around
the spot position and vanishes far from it because the spatial derivatives of its profile
decay sufficiently fast, lim‖ξ‖→∞∇ξUc = 0.

Alongside with these advantages, limitations in the applicability of Goldstone
mode control (7) exist as well. For instance, the magnitude of the applied control
may locally attain values that are unfeasible to realize physically because fGold is
proportional to the slope of the controlled wave profile Uc. The stability of the control
scheme depends sensitively on how precise the Goldstone modes can be calculated.
Further, the complete spatial domain Ω accessible by the spot has to be available
for the control as well. Additionally, as already mentioned above, fGold cannot be
applied to desired trajectories Ud which do not comply with initial as well as boundary
conditions or which are non-smooth. While all these cases cannot be treated within
the analytical approach proposed here, optimal control can deal with many of these
complications.

3.2. Optimal control

An optimal control minimizes a so-called objective functional J defined as a non-
negative tracking-type functional

J(U, f) =
1

2

3∑
i=1

 T∫
0

∫
Ω

(ui − ui,d)2
dr dt + ν

T∫
0

∫
Ω

f2
i dr dt

. (9)

U satisfies the controlled state equation associated to f with respect to given initial
and boundary condition, cf. equations (2). The first term appearing in J measures
the distance between the actual and the desired solution U and Ud up to the terminal
time T in an L2(Q)-sense. In the second, so-called Tikhonov regularization term, a
small but finite, positive value ν guarantees the existence of an optimal control fopt

that minimizes the objective functional J (9) for Ω ⊂ Rq, q = 1, 2, 3, see Ref. [51].
For exactly realizable desired states, U = Ud, the solution to (3) equals the

solution to the unregularized optimal control problem for ν = 0. If Ud is not exactly
realizable, the controlled state U must be obtained as part of the solution to the
optimal control problem. The minimization of J must be performed with respect
to state U and control f . Expressing U in terms of S(f), where S : f 7→ U is the
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solution operator to (2) in Q, justifies the definition of a reduced objective functional
J(f) := J(S(f), f). In order to minimize J(f), its first directional derivative with
respect to f has to equal zero in all directions h; yielding the necessary optimality
conditions T∫

0

∫
Ω

((S(fopt))−Ud) · (S′(fopt)h) dr dt + ν

T∫
0

∫
Ω

fopt · h dr dt

 = 0 ∀h. (10)

The state U is constrained to satisfy the controlled state equation together with given
initial and boundary conditions, cf. equations (2). Similar as in ordinary minimization
problems, a constrained minimization can be transformed to an unconstrained one
by introducing Lagrange multipliers P(r, t) = (p1(r, t), . . . , pn(r, t))T , also called the
adjoint state. By means of the latter, (10) can be reformulated

T∫
0

∫
Ω

(P + ν fopt) · h dr dt = 0 ∀h, (11)

whereby the adjoint state is the solution of the adjoint equation

− ∂tP(r, t)− D∆P(r, t)−DRT (Uopt(r, t))P(r, t) = Uopt −Ud in Q, (12)

subject to terminal condition P(·, T ) = 0 in Ω and periodic boundary conditions in
∂Ω. Here, DRT denotes the transposed Jacobian matrix of R with respect to U. It
is rather obvious that the condition (11) is equivalent to the condition

P + ν fopt = 0. (13)

This is nothing more than the well-known condition that, in a minimum, the gradient
of the function to be minimized is zero.

Due to the mixed initial and terminal conditions for U and P it is rarely possible
to find numerical solutions to optimal control by a direct integration method. To
reduce numerical costs, we employ Model Predictive Control and divide our optimal
control problem in subproblems with a 4 time-step small time-horizon [41]. Thereby,
each subproblem is solved with a gradient-type method. Details on the iteration
scheme are discussed in the supplementary information (SI), paragraph S1.

4. Examples

In the following, we discuss three examples for position control of traveling spot
solutions to the three-component RD model (1). Mainly, we compare Goldstone
mode control fGold with optimal control fopt. If not stated otherwise, the state
equation (2a) and the adjoint equation (12) are solved on a squared domain
Ω = (−0.5, 0.5]× (−0.5, 0.5] with periodic boundary conditions (2c) both in x and
y. The domain size is sufficiently large to avoid self-interaction of the spots in the
periodic simulation domain. Without loss of generality, we fix the spots’ direction
of motion to coincide with the x-axis, i.e., vx0 6= 0 and vy0 = 0. Any numerical
simulation of equation (2a) is initialized with the profile Uc of the uncontrolled spot.
This profile and the corresponding natural velocity v0 are obtained by solving the
nonlinear eigenvalue problem (4) with adequate accuracy. Further details on the used
numerical methods, the spatial and temporal resolution, and the initial conditions are
presented in the SI, S1.
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Du Dv Dw τ κ1 vx0
set 1 1.0 · 10−4 1.86 · 10−4 9.6 · 10−3 48.0 -6.92 2.599 · 10−3

set 2 [44] 0.9 · 10−4 1.00 · 10−3 1.0 · 10−2 40.0 -7.30 1.776 · 10−3

Table 1. Parameter values used in the numerical simulations. The parameters
θ = 1, κ2 = 2, κ3 = 1, and κ4 = 8.5 are the same for set 1 and set 2.

4.1. Translational position control of spots

In our first example, we aim to shift the spot’s position along a Lissajous curve without
controlling its orientation, i.e., the spot’s symmetry axis is kept frozen to the x-axis.
Thus, the POM Ξ(t) = (Φx(t),Φy(t),Φϕ(t))

T
is given by

Φx(t) = r sin(4π t/T )), Φy(t) = r sin(6π t/T )), and Φϕ(t) = 0, (14)

with radius r = 0.2 and protocol duration T = 200. The video [SI video1] shows
the complete dynamics of all three state components U as well as fGold and fopt. In
figure 4(a), we depict the time evolution of the activator distribution u(r, t) under
the action of the control fGold shown in figure 4(b). One observes that the spot
follows the desired trajectory indicated by the dashed line. The orientation of its
symmetry axis remains fixed while the control signal realigns at any instants of time.
Indeed, in the absence of orientation control, Φϕ(t) = 0, fGold can be expressed
by the projection of ∇Uc onto the tangential vector to the Lissajous curve T(t),

fGold(r, t) =
[(
vx0 − Φ̇x(t)

)
∂ξxUc (ξ(t))− Φ̇y(t)∂ξyUc (ξ(t))

]
∝ T(t) · ∇Uc, with

ξ(t) = r−Φ(t). Obviously, the control is localized at the current spot position Φ(t) and
vanishes far away from it. Despite that the average speed v̄ = Lcurve/T ≈ 6vx0 along
the studied Lissajous curve (14) with arc length Lcurve is almost five times larger than
the propagation velocity of the uncontrolled spot, the magnitude of fu,Gold is of the
same order as the local reaction terms (1). The control signals applied to the inhibitors
v and w are one and two magnitudes smaller [SI video1] than the activator’s control,
respectively.

On the scale of [SI video1], there is no distinguishable difference between fGold and
fopt. Both are always localized close to the current spot position, and their magnitudes

change proportional to |Φ̇(t)|. For a quantitative comparison, we compute the relative
errors between fu,Gold and fu,opt measured by the L1(Ω)-norm

‖h(t)‖L1(Ω) =

∫
Ω

|h (r, t) |dr . (15)

Here, |h (r, t) | indicates the absolute value of h at position r and time t.
In figure 4(c), we depict solely the normalized error for the first half of the protocol

because it starts to repeat after T/2, Φy(t) = −Φy(t+T/2). The relative error between
fu,Gold and optimal control fu,opt (solid line) is satisfactory and ranges between 2% and
8%. As reported in S1 of the SI, the limiting error is dominated by the time step chosen
in the implicit Euler-scheme. Albeit the scheme is A-stable, the error at a specific time
t is of the order of O(dt). Consequently, we observe that ‖fu,Gold(t)− fu,opt(t)‖L1(Ω)

is bounded from above by dt; dt = 0.1 in the studied example.
The dashed line in figure 4(c) shows the relative error between the activator

distribution obtained by Goldstone mode control and the one calculated under
optimal control, ‖uGold(t) − uopt(t)‖L1(Ω)/‖uGold(t)‖L1(Ω). At any time, this error
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Figure 4. Position control along the Lissajous curve (14), see [SI video1]. (a)
Snapshots of the activator distribution u(r, t) obtained from numerical simulation
of (1)-(2a) with control fGold, (7), at time moments t = {10, 50, 90, 130, 170, 200}.
(b) Control fu,Gold(r, t) at the same instants of time. In (a) and (b), the dark
dashed line indicates the Lissajous curve and the decreasing transparency marks
consecutive time moments. (c) Temporal behavior of the relative L1(Ω) error
(15) between fu,Gold (7), and optimal activator control signals fu,opt (9) during
t ∈ [0, T/2]. We select set 1 in table 1 for the parameters to (1) and set the
Tikhonov parameter to ν = 10−7.

is less than 10−3, i.e., both controlled states agree remarkably well, despite that
‖fu,Gold(t) − fu,opt(t)‖L1(Ω) is of the order 10−1. Additionally, the relative errors
between the desired distribution Ud and the state solutions UGold and Uopt are less
than 10−7 in both cases (not shown explicitly). This confirms that the Goldstone mode
control (7), within numerical accuracy, is indeed the solution to the corresponding
unregularized optimal control problem. Similar conclusions had been obtained in our
previous study of position control of front solutions in one spatial dimension, see [41].

The gradient-type method, used to solve the optimal control problem, relies on an
initial guess for the control signal. The closer the starting guess is to the final solution,
the fewer iteration steps are necessary to converge for most established optimization
methods. Starting every iteration with an initial zero control, it takes on average
n̄iter ' 23 iterations per time step for position control along the Lissajous curve
(14). Using the control solution of the previously solved subproblem as initial guess
reduces the average number of iterations to n̄iter ' 14. Taking advantage of the
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similarity between fGold and fopt, see figure 4(c), the computational costs reduce even
further. The most substantial computational speed-up is obtained by initiating every
optimization subproblem with (3). Then, the iteration stops on average after the first
step, n̄iter ' 1.

4.1.1. Stability of position control Any open-loop controls is sensitive against
perturbations of the initial conditions, data uncertainty, or numerical roundoff errors.
To test the stability of our Goldstone mode control for position control fGold, we
accelerate or decelerate a single spot from its initial, intrinsic velocity v0 to a final
velocity v1 using a translational POM Ξ(t) = (Φ, 0)

T
with velocity

Φ̇i(t) =


vi0, t < 0,
1
2

(
(vi0 + vi1) + (vi0 − vi1) cos (πt/Ti)

)
, 0 ≤ t ≤ Ti,

vi1, t > Ti,

(16)

for i ∈ {x, y}. Note that both the protocol’s velocity Φ̇(t) and acceleration Φ̈(t) are
continuous functions within the interval [0, Ti]. Ti denotes the duration of the protocol.
The maximum acceleration π

(
v1
i − v0

i

)
/(2Ti) is proportional to the prescribed velocity

difference v1
i − v0

i and inversely proportional to Ti.
A sketch of the protocol is depicted in figure 5(b). Since the proposed control

scheme is an open-loop control, deviations between the current spot position Φcurr(t)
and the POM Φ(t) will grow unbounded in time if the difference between them
exceeds a critical value [39]. A specific protocol is called stable and marked
by green boxes in figure 5 if and only if the Euclidean distance is bounded as
‖Φcurr(t) − Φ(t)‖ < L/2 for all times t ∈ [0, tend]. Otherwise, it is called unstable
(red boxes). Note that a protocol is also considered to be unstable if the control leads
to the nucleation of additional spots. In order to make the results comparable for
different protocol durations, we adjust the terminal simulation time tend according to
tend = max

(
10 tdrift, Ti + 10L/|vi1|

)
with drift time tdrift = L/vx0 . We stress that all

simulation results presented in figure 5 have been computed for sufficiently long time
intervals and do not alter upon an increase of the total simulation time.

Figure 5(a) depicts the numerically evaluated region of stable position control
(green boxes) in x-direction as a function of the ratio of terminal spot velocity vx1 to
the initial one vx0 and the ratio of the control duration Tx to the drift time tdrift. The
translational POM in y-direction is set to zero, Φy(t) = 0. As expected, the numerical
algorithm is stable in the absence of control, vx1/v

x
0 = 1. Further, it turns out that

the control scheme is mostly stable for rapid, Tx � tdrift, to moderately slow POMs,
Tx . 10 tdrift, regardless of the velocity change, |vx1 −vx0 |. The stability regions exhibit
an asymmetry with respect to the sign of the velocity change. Weakly accelerating
protocols, 1 < vx1/v

x
0 . 2, are unstable (red colored region) while decelerating ones,

vx1 < vx0 , are always stable for Tx . 10 tdrift. This finding is in agreement with [39].
The instability for vx0 < vx1 . 2vx0 is caused by an undesired rotation of the spot
induced by numerical truncation errors. These accumulate during the simulation and
eventually result in an asymmetric perturbation (with respect to y) acting on the
spot pattern. Once the spot starts to rotate and eventually drifts away from the
centerline y = 0, the proposed open-loop control fGold can neither respond nor correct
the undesired rotation. The impact of the numerical truncation error becomes more
pronounced with growing protocol’s duration Tx and results in a broad unstable region
for long protocols, Tx > 10 tdrift.
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Figure 5. Numerically evaluated region of stability for position control fGold.
Stability (green regions) and instability (red regions) is demonstrated for an
accelerating and decelerating POM (16) which changes the propagation velocity
of a single spot from v0 to the final value v1 during Ti, i = {x, y}, see panel (b).
In panel (a), the spot is exclusively accelerated or decelerated along its intrinsic
direction of motion. In panel (c), the spot’s propagation velocity perpendicular to
the intrinsic one is controlled, vx1 = vx0 and vy1 6= 0. The controlled spot dynamics
(1) is simulated on a (−0.35, 0.35]× (−0.35, 0.35] domain with periodic boundary
conditions using ETD2, cf. SI S1. The system parameters are taken from set 1 in
table 1 and thus the drift time is given by tdrift = L/vx0 ≈ 273.
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The situation changes if one aims to move the spot pattern perpendicular to
its intrinsic direction of propagation, here in y-direction. In figure 5(c), we keep
the motion in x unchanged, Φx(t) = vx0 t, and accelerate the spot according to (16)
along the y-direction. Because the controlled spot solution is symmetric with respect
to the centerline y = 0, position control in y might be inherently unstable [39].
One notices immediately that regions with unstable position control are much larger
compared to figure 5(a). Nevertheless, the control is stable for weak acceleration,
vy1 ' 0.1vx0 , independent of the protocol’s duration. Increasing the terminal velocity
further, Goldstone mode control starts to fail. Once a certain deviation between
the current spots’ position and the proposed POM is attained, the pattern cannot
follow the applied control anymore and starts to move freely. With further growing
terminal velocity vy1 , the control’s magnitude increases as well and thus successful
position control can be re-stabilized. Longer protocols Ty result in an accumulating
of numerical truncation errors.

4.1.2. Orientation control with speed adjustment In the previous paragraph, we’ve
demonstrated that the stability of position control can be enhanced if in any current
position of the spot its symmetry axis, given by Φϕ(t), points tangentially to the
direction of motion. Therefore, in our next example, we propose to shift the spot
pattern along a circular trajectory by simultaneously controlling its orientation

Φx(t) = r sin (Φϕ(t)) , Φy(t) = −r cos (Φϕ(t)) , Φϕ(t) = 2πt/T. (17)

Here, r denotes the radius of the circle and T the protocol’s duration. For experimental
realization compare [28], for example.

In figure 6, we present the temporal evolution of the activator distribution u (a)
controlled by fGold (b). In line with the POM, the spot always keeps its symmetry axis
at the tangent to the desired trajectory of motion. The control fGold remains localized
and is dominated by the translational Goldstone mode ∂ξxUc due to the acceleration
along Ξ(t) (17); the average speed is v̄ ' 2.4vx0 . Notably, the maximum value of the
control magnitude is half as strong compared to position control without adjusting
the orientation, Φϕ(t) = 0 (not explicitly shown). In panel (c), the temporal behavior
of the relative error ‖fu,Gold(t) − fu,opt(t)‖L1(Ω)/‖fu,Gold(t)‖L1(Ω) measured by the
L1 (Ω) norm is shown (solid line). They are large compared to pure position control
along a Lissajous curve, cf. figure 4. Stronger deviations are caused by interpolation
errors arising during numerical rotation of spot patterns by Φϕ(t). The relative error
attains a maximum at Φϕ(t) = m 45◦, m odd. At these angles, the distance between
the nodes of the rotated grid and the underlying one is the largest, viz., dx/

√
2, and,

hence, numerical interpolation errors become significant. Contrarily, the relative error
minimizes at Φϕ(t) = m 90◦, m ∈ Z, at which both grids coincide. Remarkable, the
normalized error ‖uGold(t) − uopt(t)‖L1(Ω)/‖uGold(t)‖L1(Ω) (dashed line), is still less
than 10−3 at any instants of time despite that the deviation of the associated controls
rises up to ∼ 25%.

4.2. Orientation control

If the uncontrolled spot propagates at non-zero velocity v0 6= 0, the simplest way to
navigate it through a spatial domain is to control exclusively its current orientation
Φϕ(t). If so, the translational components of the POM Ξ(t) are determined by

Φ̇x(t) = vx0 cos (Φϕ(t)) , Φ̇y(t) = vx0 sin (Φϕ(t)) . (18)
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Figure 6. Position control along a circular desired distribution (17) with radius
r = 0.2 and duration time T = 200; cf. [SI video4]. (a) Snapshots of the activator
distribution u(r, t) at time moments t = {30, 75, 120, 165, 200}. (b) Control
fu,Gold(r, t) at the same instants of time. In (a) and (b), the dark dashed line
indicates the POM and the decreasing transparency marks consecutive moments.
(c) Temporal behavior of the relative L1(Ω) error (15) between expression (3),
fu,Gold (7), and optimal activator control signals fu,opt (9) during t ∈ [0, T/2].
We select set 1 in table 1 for the kinetic parameters to (1) and Tikhonov parameter
is set to ν = 10−7.

Clearly, one loses the possibility to control separately the x- and y-position of the
pattern by limiting the speed to ‖Φ̇(t)‖ = vx0 . Inserting (18) into (7), the translational
Goldstone modes drop out and we obtain

fGold(r, t) = −Φ̇ϕ(t)∂ϕUc(A(−Φϕ(t)) (r−Φ(t))). (19)

Now, we pick up the problem formulated in section 2, namely, how to prevent pinning
of a spot at a local heterogeneity in the domain. The heterogeneity is viewed as
circular region where the parameter κ1 jumps from a background value κback

1 , ∀r /∈ Ω◦
to a defect value κhet

1 , ∀r ∈ Ω◦ whereby Ω◦ = {(x, y) ∈ R2 : (x+R)2 + y2 < R2} with
radius R = 0.05. The orientational POM for avoiding the heterogeneity is set to

Φϕ(t) =
π

4
sin

(
2πt

T

)
, (20)
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Figure 7. Orientation control to avoid collision with circular heterogeneity
[SI video5]. Snapshots of the activator u (a) controlled by fGold (b), (19), at
different instants of time t = {100, 250, 400}. The controlled spot dynamics
is simulated on a (−0.5, 0.5] × (−0.25, 0.25] domain with periodic boundary
conditions using ETD2. We use the parameter set 2 in table 1. The circular
defect with radius R = 0.05 is modeled by a jump in κ1 from its background
value of κback1 = −7.30 to the value inside the heterogeneity κhet1 = −7.50.

with duration T = Lx/v
x
0 . Note that the corresponding prescribed positions

(Φx(t),Φy(t))
T

have to be calculated numerically.
In figure 7, we present the temporal evolution of the activator distribution u in

panel (a) and the corresponding control signal fu,Gold in panel (b). The prescribed
translational POM is indicated by the dashed lines. At first glance, the control
signal possesses a more complicated shape and its magnitude is significantly reduced,
|fu,Gold| . 10−3, as compared to |fu,Gold| . 100 and |fu,Gold| . 10−1 in the previous
examples, cf. figure 4 and figure 6. Thus, orientation control is less invasive than
position control. In return, we lose the ability for fast intervention into spot dynamics
as well as for mayor increase in the speed of the spot. Additionally, orientation control
is much more susceptible to fail. The small control magnitudes are too weak to
suppress the impact of numerical round-off errors which may result in undesired spot
rotation, cf. section 4.1.1. Caused by the small propagation velocity, the duration T
of the POM grows as compared to position control, see section 4.1, and therefore the
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Figure 8. Position control by a single control signal acting on u, f singGold =

(f singu,Gold, 0, 0)T , along the Lissajous curve (14), see [SI video6]. (a) Time evolution

of activator distribution u at time moments t = {10, 50, 90, 130, 170, 200}. The
decreasing transparency marks consecutive instants of time. (b) Distribution
of the inhibitor v at t = 180. (c) Temporal behavior of the relative error as
measured by the L1(Ω) norm (15), between the numerically obtained states U
and the desired distribution Ud during t ∈ [0, T/2]. We use parameter set 1 in
table 1 for the calculations.

probability of failure increases as well.

4.3. Position control by a single control signal

So far, we have discussed examples of fully actuated systems for which the number of
state components equals the number of independent control signals. If the coupling
matrix B is not invertible, expression (7) for fGold cannot be used. The question
arises how to extend our approach to underactuated systems [36, 52]. In the following
example we assume a control acting on the activator u only while inhibitors v and
w remain uncontrolled, i.e., fv,Gold(r, t) = fw,Gold(r, t) = 0. Control via an inhibitor
has been discussed in detail for the Hodgkin-Huxley model and the three-component
Oregonator model for photosensitive BZ reaction, compare supplemental information
to [36].
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To derive an expression for fu,Gold(r, t), we start with the fully actuated system

∂tu(r, t) =Du∆u+ κ2 u− u3 − κ3v − κ4w + κ1 + fu, (21a)

τ∂tv(r, t) =Dv∆v + u− v + fv, (21b)

θ∂tw(r, t) =Dw∆w + u− w + fw. (21c)

Equations (21b)-(21c) are linear, inhomogeneous PDEs with initial conditions
v(r, t0) = v0(r) and w(r, t0) = w0(r), respectively. Their solutions can be written
as

ṽ(r, t) = K0
v ◦ v0 +

1

τ
Kv ◦ (u+ fv) , w̃(r, t) = K0

w ◦ w0 +
1

θ
Kw ◦ (u+ fw) , (22)

where K0
i and Ki, i ∈ {v, w}, are integral operators involving Green’s functions to the

homogeneous equations corresponding to (21b)-(21c) with associated initial conditions
and to the inhomogeneous equations with zero initial conditions. Plugging (22) into
(21a) gives

∂tu(r, t) =Du∆u+ κ2 u− u3 − κ3

[
K0
v ◦ v0 +

1

τ
Kv ◦ u

]
− κ4

[
K0
w ◦ w0 +

1

θ
Kw ◦ u

]
+ κ1

+ fu −
κ3

τ
Kv ◦ fv −

κ4

θ
Kw ◦ fw. (23)

From the last line of (23) we identify the expression for fu,Gold(r, t) to be

f sing
u,Gold (r, t) = fu,Gold (r, t)− κ3

τ
Kv ◦ fv,Gold −

κ4

θ
Kw ◦ fw,Gold, (24)

whereby the component of fGold are determined by (7).
As an example for position control by a single control signal, we guide a spot along
the Lissajous curve given by (14) with radius r = 0.2 and protocol duration T = 200.
The spot’s orientation Φϕ(t) = 0 remains uncontrolled. The relative errors between
desired and controlled states are shown in figure 8(c). All states are obtained from

numerical simulation of (1)-(2a) with control f sing
Gold = (f sing

u,Gold, 0, 0)T given by (24).

The relative error for the activator u (solid line) is less than 10−3 at any time t
and thus the controlled activator pattern agrees satisfactorily well with the desired
distribution. This finding is corroborated by snapshots of u at different instants of
time in figure 8(a). In contrast to the activator, the profile of the inhibitor v is not
preserved under control but deformed considerably, see figure 8(b). In particular, an
elongated region of activity becomes apparent along the Lissajous curve due to time
scale separation in the RDS (1). The concentration of the slow inhibitor v, produced
in the wake of the activator, decays exponentially to the rest state on a time scale
τ = 48 ≈ T/4. Consequently, the relative error of v (dashed line) attains relatively
large values of the order 10−2. On the other hand, the fast inhibitor w and the activator
u vary on the same characteristic time scale as θ = 1 was chosen in the considered
example. Thus, we expect only small changes in both profiles in the presence of the
control. In fact, the values of the relative error for w turn out to be less than 10−4

which is even one magnitude smaller than the relative error of u, cf. the dash-dotted
line in figure 8(c).
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5. Conclusion

Localized traveling patterns are ubiquitous in spatially extended nonlinear systems
driven far from thermodynamic equilibrium. These structures are often coined
dissipative solitons or shortly spots and have been observed in various chemical, chemo-
mechanical, electrical or neural systems. Hence, to control the position, orientation
and velocity of a traveling spot is a key challenge.

Exploiting the translational and rotational symmetries of the governing equations,
we’ve demonstrated that the control signal, which one has to apply to solve these tasks,
is constituted by the Goldstone modes with time dependent prefactors. Intriguingly,
for the latter analytic expressions have been derived. To deduce the control signal
– coined Goldstone mode control – for a given protocol of motion, it is adequate to
measure the spot’s profile and the corresponding propagation velocity with sufficient
accuracy. In particular, Goldstone mode control is realized by external spatio-temporal
forcing, i.e., it is an open-loop control. Contrary to closed-loop or feedback control,
continuous monitoring of the system is not required. On the downside, as any
open-loop control, the method is sensitive to perturbations. Therefore, the range of
applicability has been checked by a stability analysis. Most importantly, our approach
requires no detailed knowledge about the underlying reaction kinetics as opposed to
standard open-loop control. Although the control signal is invasive, it is designed to
preserve simultaneously the shape of the controlled pattern.

Remarkably, in all examples considered so far, Goldstone mode control is, within
numerical accuracy, equal to solutions of an equivalent, non-regularized optimal
control problem. Consequently, our control turns out to be optimal, i.e., no other
control enforces the system closer to the desired target state according to the protocol
of motion. Furthermore, these control signals have been proven to be excellent
initial conditions for regularized optimal control problems; achieving a substantial
computational speed-up. Generally, Goldstone mode control approach might serve as
consistency check for numerical optimal control algorithms as well. We emphasize that
optimal control is not only computationally demanding but requires full knowledge
of the nonlinear kinetics. On the other hand, the scope of optimal control can be
extended in many ways like sparse control or for inequality conditions for the control
amplitudes’ upper and lower bounds [24, 41].

Due to the underlying symmetry considerations, Goldstone mode control is widely
applicable. Already, the method have been successfully used to guide traveling
interfaces and excitation pulses in 1D [36, 41] and spiral waves [41] as well as to shape
iso-concentration lines of traveling wave patterns [40] in 2D. Recently, we successfully
applied Goldstone mode control to spot solutions of neural field equations [53] that
phenomenologically describe the dynamics of synaptically coupled neurons [54].
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