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Abstract

Rhythmic stimulation can be applied to modulate neuronal oscillations. Such

‘entrainment’ is optimized when stimulation frequency is individually cali-

brated based on magneto/encephalography markers. It remains unknown how

consistent such individual markers are across days/sessions, within a session,

or across cognitive states, hemispheres and estimation methods, especially in a

realistic, practical, lab setting. We here estimated individual alpha frequency

(IAF) repeatedly from short electroencephalography (EEG) measurements at

rest or during an attention task (cognitive state), using single parieto-occipital

electrodes in 24 participants on 4 days (between-sessions), with multiple

measurements over an hour on 1 day (within-session). First, we introduce an

algorithm to automatically reject power spectra without a sufficiently clear

peak to ensure unbiased IAF estimations. Then we estimated IAF via the

traditional ‘maximum’ method and a ‘Gaussian fit’ method. IAF was reliable

within- and between-sessions for both cognitive states and hemispheres,

though task-IAF estimates tended to be more variable. Overall, the ‘Gaussian
fit’ method was more reliable than the ‘maximum’ method. Furthermore, we
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evaluated how far from an approximated ‘true’ task-related IAF the selected

‘stimulation frequency’ was, when calibrating this frequency based on a short

rest-EEG, a short task-EEG, or simply selecting 10 Hz for all participants. For

the ‘maximum’ method, rest-EEG calibration was best, followed by task-EEG,

and then 10 Hz. For the ‘Gaussian fit’ method, rest-EEG and task-EEG-based

calibration were similarly accurate, and better than 10 Hz. These results lead

to concrete recommendations about valid, and automated, estimation of

individual oscillation markers in experimental and clinical settings.
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consistency, electroencephalography (EEG), individual alpha frequency (IAF), intra-class
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1 | INTRODUCTION

The investigation of neuronal oscillations in the human
brain has progressed beyond merely correlational
M/electroencephalography (EEG) research. Different
approaches have been developed to explicitly modulate
neuronal oscillations in specific frequency bands, in both
research and clinical settings. For instance, rhythmic
visual stimulation at alpha frequency has been used to
enhance (or ‘entrain’) neuronal oscillations and thereby
influence visual perception (Chota & VanRullen, 2019; de
Graaf et al., 2013; Mathewson et al., 2010; Mathewson,
Prudhomme, et al., 2012b; Ronconi et al., 2018; Spaak
et al., 2014; Wiesman & Wilson, 2019). More direct
neuromodulation methods include magnetic and electric
non-invasive brain stimulation (NIBS) (Antal &
Paulus, 2013; Hallett, 2000). Both repetitive transcranial
magnetic stimulation (rTMS) and transcranial alternating
current stimulation (tACS) have been employed to estab-
lish causal links between alpha oscillations and cognitive
processing (Herrmann et al., 2013, 2016; Ruhnau
et al., 2016; Thut et al., 2011). For instance, 10-Hz tACS to
parieto-occipital cortex could increase the power of neuro-
nal alpha oscillations (Helfrich et al., 2014), and bias
response times in an endogenous attention task
(Schuhmann et al., 2019). Such findings support a causal
role for parietal alpha oscillations in visuospatial attention.

The alpha band is generally considered to contain fre-
quencies between �7 and 13 Hz (Berger, 1929, 1933) and
has been linked to a large number of cognitive functions
(Clayton et al., 2018), including learning (Freyer
et al., 2013; Mathewson, Basak, et al., 2012a; Sigala
et al., 2014), memory (Bonnefond & Jensen, 2012; Jensen
et al., 2002; Klimesch, 1999), and visuospatial attention
(Gallotto et al., 2020; Sauseng et al., 2005; Worden
et al., 2000). Importantly, there are substantial differences
in the peak alpha frequency across individuals

(Klimesch, 1999). These inter-individual differences in
individual alpha frequency (IAF) are related to general
cognitive abilities (Dickinson et al., 2018; Grandy,
Werkle-Bergner, Chicherio, Lövdén, et al., 2013a), lan-
guage processing (Bornkessel et al., 2004) and memory
(Cross et al., 2020; Moran et al., 2010), and can in part be
explained by genetic variations (Bodenmann et al., 2009;
Smit et al., 2005, 2006; Van Beijsterveldt & Van
Baal, 2002). Differences in IAF can furthermore drive
aspects of visual perception, as exemplified by an
association between IAF and the temporal resolution of
the double flash illusion (Samaha & Postle, 2015).

These findings are especially relevant for rhythmic
stimulation studies, since stimulation might most effec-
tively induce modulatory effects if delivered at individu-
ally calibrated frequencies (Stecher & Herrmann, 2018).
Indeed, it was recently shown that a leftward visuospatial
attention bias resulted from tACS at IAF, but not tACS at
IAF �2 Hz (Kemmerer et al., 2020). Increasingly,
neuromodulation studies make use of individually cali-
brated stimulation protocols, for instance by using IAF
instead of a fixed (e.g., 10 Hz) frequency (Fresnoza
et al., 2018; Kasten et al., 2016, 2020; Vossen et al., 2015;
Zaehle et al., 2010). This approach also has clinical
relevance, since it was recently shown that deviations
between IAF and the stimulation frequency predict
NIBS treatment outcome for depression patients
(Corlier et al., 2019; Roelofs et al., 2020). Moreover,
although we focus on IAF as an example, these con-
siderations apply to other frequency bands as well,
including individual gamma (Baltus et al., 2018), beta
(Schilberg et al., 2018) and theta (Reinhart &
Nguyen, 2019) frequency.

Thus, for both research and clinical applications, it is
beneficial to tailor rhythmic stimulation protocols to indi-
vidual participants or patients. Typically, stimulation pro-
tocols are based on quick frequency analysis of short
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EEG measurements, often recorded from only one or a
few electrodes. Different approaches exist to determine
individual peaks (e.g., IAF) from a power spectrum
(Goljahani et al., 2012). Most widely reported is the
‘maximum’ method, in which a peak is determined by
simply selecting the frequency with the highest power
within a pre-defined (e.g., alpha) frequency range
(Kemmerer et al., 2020; Koch et al., 2008; Petersén &
Eeg-Olofsson, 1971; Schuhmann et al., 2019; Smit
et al., 2006). Another possibility might be called the
‘Gaussian fit’ method, which involves fitting a Gaussian
curve to the power spectrum within a restricted
(e.g., alpha) frequency range. A peak frequency
(e.g., IAF) is then estimated by finding the centre param-
eter of the fitted Gaussian curve (Dickinson et al., 2018;
Haegens et al., 2014; van Albada & Robinson, 2013).
Aside from peak frequency, this method also allows esti-
mation of peak width.

It remains unknown to what extent IAF estimates can
be used to reliably calibrate rhythmic stimulation proto-
cols across days, or cognitive states. Simply stated, if one
estimates IAF from a posterior electrode after 3 min of
resting-state EEG, how likely is that IAF to be (in)correct
in general? How likely is it to be (in)correct an hour later,
or in the second session next week? How representative is
it for IAF during a cognitive task of interest? Though IAF
is often assumed to be stationary, a recent study reported
a decrease in peak alpha frequency during 1 h of visual
task performance (Benwell et al., 2019). The change was
small on average, but individual effects reached as high
as 2 Hz. While previous studies established that alpha
peak frequency at rest reflects, in principle, a stable trait
(Gasser et al., 1985; Grandy, Werkle-Bergner, Chicherio,
Schmiedek, et al., 2013b; Kondacs & Szab�o, 1999; Näpflin
et al., 2008; Salinsky et al., 1991), we here systematically
chart IAF based on realistic, practical (i.e., short and con-
strained) lab settings.

Before the consistency of IAF estimates can be inves-
tigated, another concern should be addressed. Specifi-
cally, sometimes the power spectrum does not show any
clear peak, especially when based on M/EEG data mea-
sured during cognitive task performance. Researchers or
clinicians are then forced to subjectively decide to either
accept or reject the result that a peak estimation method
delivers. Going forward, it would be helpful to develop
tools that algorithmically accept or reject power spectra,
for instance prompting lab technicians, clinicians or
experimenters, to perform a new M/EEG measurement.
Or, in the current context, to prevent bias in the IAF esti-
mation procedures and subsequent statistical analyses, by
only including power spectra that show a sufficiently
clear peak. To this end, we developed an algorithm to
automatically reject EEG power spectra that do not

contain a clear alpha peak. Based on accepted power
spectra, we could then explicitly evaluate the consistency
of repeated estimations of IAF (and IAF peak width)
across estimation methods, days and cognitive states.

We performed short, repeated EEG measurements in
24 participants on four separate days, in the left and right
hemisphere, during eyes closed resting state and during
an endogenous visuospatial attention task (Posner, 1980;
Posner et al., 1980). In one session, we performed these
measurements repeatedly across approximately 1 h. IAF
was estimated for each participant, time point, hemi-
sphere, and cognitive state, using the ‘maximum’ method
and the ‘Gaussian fit’ method. Our experimental aims
were threefold. First, we investigated to what extent the
‘maximum’ and ‘Gaussian fit’ methods led to similar
IAF estimations. Second, we assessed how consistent
repeated IAF estimates were within and between ses-
sions, for both hemispheres, cognitive states, and estima-
tion methods. Third, we investigated whether there is an
advantage of measuring EEG instead of simply using a
standard (i.e., 10 Hz) frequency, and whether resting-
state EEG calibration is sufficient, or even better, for
estimating the relevant individual frequency during task
performance than an estimation based on EEG collected
during performance of that same task.

2 | MATERIALS AND METHODS

2.1 | Participants

Twenty-four healthy volunteers participated in this
experiment (11 male, ages 19–34). All participants were
right-handed and had (corrected-to-)normal vision. Com-
pensation was provided in the form of participation
credits or vouchers. The experiment was approved by the
Ethical Review Committee Psychology and Neuroscience
at Maastricht University.

2.2 | Project overview

The current data stem from a large project on brain stim-
ulation. In that project, we stimulated participants’ left
parietal cortex with four different tACS protocols on sep-
arate days. Prior to any tACS, EEG baseline data were
collected during eyes closed resting state and during
visuospatial attention task performance from two
parieto-occipital electrodes (see below for details). Since
potential brain stimulation effects are outside the scope
of the current paper, none of the data reported here were
assessed after active tACS. Instead, the included data
were measured pre-tACS in four different sessions, and at
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different time points during an extended (placebo tACS)
session (see Figure 1a). This allowed the dedicated evalu-
ation of the consistency of IAF and IAF width
(in supporting information S3) between sessions (prior to
any brain stimulation) and within a session (repeated
estimation at regular intervals within the extended ses-
sion, across approximately 1 h; see Figure 1a)), relative to
the consistency across participants.

In terms of the repeated EEG task/rest baseline mea-
surements, all four sessions were identical, session order
was fully counterbalanced across participants, and there
was a minimum of 2 days between sessions. Upon

entering the lab, participants were screened for tACS
contraindications and provided written informed con-
sent. We then prepared the tACS and EEG electrodes, as
well as calibrating an eyetracker. These preparations took
approximately 1 h altogether.

2.3 | Stimuli and task

In each session, participants performed an endogenous
attention task (see Figure 1b) (Posner, 1980; Posner
et al., 1980). Stimuli were presented using MATLAB (The

F I GURE 1 Experimental design. (a) Experimental procedure and included electroencephalography (EEG) data. Indicated times are in

seconds. EEG data were collected for 3-min rest and �5-min task in four sessions on separate days. In one more extended session (lowest

section), after the initial measurement, EEG data were collected six times for 1.5-min rest and 1.5-min task, spaced 5-min apart. During

these 5 min (striped segments), participants were under the (false) impression of receiving tACS; these data were excluded and never

analyzed. Consecutive 1.5-min blocks were combined to yield again 3-min data (brackets), meaning that there were five repeated

measurements for both rest and task. (b) Endogenous attention task. After a randomly jittered fixation period, an endogenous cue was

presented. Cues were valid (pointing towards the upcoming target), neutral (pointing to both sides), or invalid (pointing away from the

upcoming target). A target grating was presented in the left or right hemifield 500 ms after the cue disappeared. White dashed circles

indicate possible target locations and were not actually shown on the screen. Participants responded as quickly and as accurately as possible

whether the target grating was rotated (counter-)clockwise. The target disappeared once a response was given or when 1200 ms had elapsed.

In half of the trials, distractors with random orientation, frequency, and (drifting) phase were presented bilaterally from target onset until

target offset. (c) tACS and EEG set-up. A tACS ring electrode was centred on P3. EEG electrodes were placed on PO3 and PO4, with the

ground electrode on Fz and reference electrodes over both mastoids. Note that no tACS was applied before or during any of the data

collected and reported in this paper
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MathWorks, Inc., Natick, Massachusetts, United States)
and Psychophysics Toolbox (Brainard, 1997) on a
gamma-corrected 24 inch monitor with a 60-Hz refresh
rate and a resolution of 1920 � 1,080 pixels. Participants
continuously fixated on a black dot of .2 degrees visual
angle (DVA) presented in the centre of a grey screen with
a background luminance of 125 cd/m2. Their heads were
stabilized using a chin rest that was positioned 60 cm
away from the computer screen. Eyetracking was per-
formed to assess fixation stability. After a randomly
jittered fixation period (300–1300 ms), an endogenous
cue was presented for 100 ms. The cue was either valid
(two arrows pointing in the direction of the upcoming
target), neutral (one arrow pointing to the left and the
other to the right), or invalid (pointing away from
the upcoming target) at a ratio of 3:1:1. After a cue-to-
target interval of 600 ms, a target stimulus with a diame-
ter of 3.5 DVA was presented at 7 DVA eccentricity on
either the left or the right side of the screen. Target stim-
uli were sinusoidal gratings of .8 Michelson contrast
(MC), rotated either 45 DVA clockwise or counter-clock-
wise, with random spatial frequency and phase. Partici-
pants performed a two-alternative forced choice (2AFC)
task for each target grating. More specifically, they indi-
cated as quickly and as accurately as possible the orienta-
tion of the target, pressing with their right hand either
the left arrow button or the right arrow button for
counter-clockwise and clockwise oriented gratings,
respectively. The target grating disappeared once the par-
ticipant responded or when 1200 ms had passed without
a response. In half of the trials, only the target grating
was presented. In the other half of the trials, distractors
were displayed bilaterally at target onset until target off-
set. Distractors were displayed around the target loca-
tions and had a random orientation, phase and spatial
frequency. Distractor contrast was .8 MC and a drift
speed of 4 Hz was used to make the distractors appear to
move in space, thereby make them more salient. Average
trial duration was 2100 ms. The pre- and post-
measurement each contained 120 attention task trials,
while the main measurement contained 960 trials divided
equally over the six blocks.

2.4 | Electroencephalography

EEG data were recorded with 5000-Hz sampling
frequency and a hardware band-pass filter of .1–1000 Hz
using BrainVision Recorder (BrainVision LLC,
Morrisville, North Carolina, United States) and a
BrainAmp DC amplifier (BrainProducts, GmbH,
Gilching, Germany). Reference electrodes were placed
over A1 and A2 and the ground electrode was placed over

Fz. The two electrodes of interest were placed over PO3
(within the tACS ring electrode) and PO4 (see Figure 1c).
EEG electrodes were filled with conductive gel (OneStep
Cleargel) and impedances were kept below 5 kΩ (ground
and reference electrodes) or 10 kΩ (electrodes of inter-
est). Note that the participants’ skin could not be pre-
pared as thoroughly as in conventional EEG studies due
to the presence of the tACS electrode. In the current con-
text this is a valuable aspect of our data, given that the
goal was to assess individual EEG markers in realistic,
practically constrained lab settings, representative of con-
ditions in rhythmic stimulation experiments often relying
on such EEG measurements and IAF estimation.

2.5 | Analyses

Data were analyzed using MATLAB version 2019a,
FieldTrip Toolbox (Oostenveld et al., 2011), Python 3.0
and IBM SPSS Statistics for Windows, version 24 (IBM
Corp., Armonk, N.Y., USA). As mentioned above, the
current paper only includes EEG data that do not contain
any tACS effects (see Figure 1).

2.5.1 | Preprocessing

EEG files with data from electrodes PO3 and PO4 were
loaded and cut into 5-s epochs. The main blocks of the
extended session included 90-sec data segments (see
Figure 1). In order to have sufficiently long data seg-
ments, these 90-s data segments were grouped together to
yield 180-s data segments for task and rest (thus, blocks
1 and 2, blocks 3 and 4, and blocks 5 and 6 were grouped
together). Epochs were sorted into task and rest epochs
for each of the five time points in the extended session,
or single time point in the other sessions. Note that ‘task’
data segments were either 290 s long (initial measure-
ment in all four sessions, and the final measurement in
the extended session) or 180 s long (the middle three
measurements in the extended session), and ‘rest’ data
segments were always 180 s long. Per electrode, we
removed epochs with extreme signal variance relative to
signal variance in other epochs, based on the inter-
quartile range (>Q3 + 1.5 x IQR criterion) (as in de Graaf
et al., 2017). Power at frequencies 1–49 Hz was deter-
mined by calculating FFTs using Hanning tapers, sepa-
rately for every time point and each cognitive state (task
versus rest). Epochs were zero-padded to 10 s to reach a
frequency resolution of .1 Hz and power values were log-
transformed (Smulders et al., 2018). We then estimated
the 1/f component in each power spectrum by fitting a
first-order polynomial to the log-transformed power and
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log-transformed frequency axis values (since the log–log-
transformed EEG spectrum is approximately linear; Le
Van Quyen et al., 2003; Nikulin & Brismar, 2004). We
then subtracted this linear fit from each power spectrum.
Lastly, we decreased the influence of noise in the power
spectra by spectral smoothing them using a Savitzky–
Golay filter (SGF frame width: 27, which corresponds to
a frequency span of 2.7 Hz, polynomial degree 5) based
on parameters suggested by (Corcoran et al., 2018).

2.5.2 | Power spectrum rejection algorithm

To answer any research questions related to individual
alpha peaks, it is important to exclude those power spec-
tra that do not contain an obvious alpha peak. This could
in principle be done by visually inspecting power spectra
and manually rejecting those cases without a clear peak.
From informal conversations, it seems that ‘subjective
peak-picking’ is indeed common practice. However,
given the large amount of power spectra in our study

(768 in total, from 24 participants in 2 cognitive states
and 2 hemispheres at 8 time points), we instead tried to
develop an algorithm for power spectrum rejection. In
this algorithm, the MATLAB ‘findpeaks’ function was
used to detect the highest peak within the 7- to 13-Hz
alpha range (settings: sort peaks in descending order,
number of peaks 1, with default settings: minimum peak
height -Inf, minimum peak prominence 0, threshold 0).
We selected the power spectrum surrounding that
highest peak (�5 Hz), and then cut out the frequencies
directly surrounding the peak (�1 Hz) while including
the peak value itself (see Figure 2a). Then, we z-scored
the selected portion (i.e., 83 values) of the power spec-
trum, and assessed the resulting z-score of the peak. If
the z-score of the detected peak was small, this would
indicate that the detected peak did not clearly stand out
from surrounding values and might therefore not be reg-
arded as a sufficiently convincing (‘real’) peak.

In our case, if the z-scored power at the detected peak
frequency was below 1.75, that power spectrum was
rejected as not containing an alpha peak, and not

F I GURE 2 Power spectrum rejection and individual alpha frequency (IAF) estimation. (a) Power spectrum rejection algorithm. The

1/f-removed and spectrally smoothed power spectrum is shown in black. The vertical blue line shows the largest peak as detected by the

MATLAB ‘findpeaks’ function. We selected the power spectrum in the range peak �5 Hz (blue area), cut out the frequencies directly

surrounding the peak (�1 Hz, grey area), and z-scored the selected portion of the power spectrum. If the z-score of the detected peak was

below 1.75, the power spectrum was rejected. (b) Representative examples of accepted and rejected power spectra. Vertical blue lines

indicate the largest peak as detected by the MATLAB ‘findpeaks’ function. An accepted power spectrum is shown in black, while rejected

power spectra are shown in red. (c) ‘Maximum’ versus ‘Gaussian fit’ method. An example power spectrum is shown in black. The red

vertical line is the IAF value as determined by the ‘maximum’ method. The blue vertical line shows the IAF value as determined by the

‘Gaussian fit’ method, and the blue curve shows the fitted Gaussian curve. This power spectrum with two peaks provides an example where

the ‘maximum’ and the ‘Gaussian fit’ methods result in different IAF values
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included in further analyses. Figure 2b shows examples
of accepted and rejected power spectra. Ultimately, our
parameters for this ‘filtering algorithm’ were subjective,
that is, the selected frequency windows and z-score cut-
off were tweaked based on visual inspection of accepted
versus rejected power spectra for different parameter sets.
Likely, other datasets might be better served by other
parameters or even other procedures. But since uncer-
tainty about whether or not a power spectrum contains a
‘convincing peak’ are somewhat common, especially
when it comes to IAF during task performance, or peaks
in other frequency bands, it is interesting that we did find
a fully automatic algorithm that worked satisfactorily.
Such automatic ‘rejection’ tools might help lab
technicians or clinical practitioners decide to accept an
individual EEG marker, or rather repeat a measurement
to possibly obtain a better result. In our case, parameters
were fixed such that the algorithm was relatively strict, in
the sense that ambiguous power spectra (i.e., those
in which it was not entirely clear whether a peak was
present) were rejected. This was to avoid that spurious
IAFs, based on unclear peaks, might contaminate our
analyses. Still, only few power spectra were rejected
(50 in total (�6.5%), task data: 41 (�10.5%) and rest data:
9 (�2%)). More details on our rejection algorithm, includ-
ing more examples of accepted/rejected power spectra,
can be found in supporting information S1.

2.5.3 | Two methods for estimating
individual alpha frequency

Two different methods were used to determine the IAF
(see Figure 2c). The ‘maximum’ method involved finding
the frequency with maximum power in the alpha band
(7–13 Hz) using the ‘findpeaks’ MATLAB function
(i.e., largest local maximum; Kemmerer et al., 2020;
Wolfgang Klimesch et al., 2003; Zaehle et al., 2010). The
‘Gaussian fit’ method involved fitting a Gaussian curve
to the alpha band-limited power spectra (frequencies 7–
13 Hz) (Haegens et al., 2014; van Albada &
Robinson, 2013) and extracting the centre frequency of
that fit. The ‘Gaussian fit’ method allows an estimation
of both the location and the width of the IAF peak by
using the centre and standard deviation parameters of
the Gaussian fit, respectively (Gauch & Chase, 1974). We
thus had three dependent variables of interest: IAF as
determined by the ‘maximum’ method, IAF as deter-
mined by the ‘Gaussian fit’ method, and IAF peak width
based on the standard deviation parameter from the
fitted Gaussian. Note that analyses on IAF peak width
are reported in supporting information S3; in the main
text we focus on IAF. We specifically aimed to investigate

the consistency of these different IAF estimates. From a
methodological perspective, potential within-subject out-
lier values are thus of relevance and should not be
excluded from the analyses. We therefore did not assess
whether within-subject outlier values were present in our
data. There were no outlier participants (as defined by a
mean score more than 3 standard deviations away from
the mean across participants) for any of the dependent
variables.

2.5.4 | Directly comparing the ‘maximum’
and ‘Gaussian fit’ methods

One of our experimental aims was to assess whether the
IAF values obtained by the ‘maximum’ method differed
from those obtained by the ‘Gaussian fit’ method. To this
aim, we performed simple linear regression analyses and
paired t tests.

2.5.5 | Consistency of individual alpha
frequency estimates

Another experimental aim was to investigate the reliabil-
ity of IAF estimates within and between sessions, for
both estimation methods, cognitive states, and hemi-
spheres. To this aim, test–retest reliability was quantified
by calculating intra-class correlation coefficients (ICC)
(Bravo & Potvin, 1991; Espenhahn et al., 2017; Koo &
Li, 2016; McCusker et al., 2020). To assess reliability on a
shorter (within-session) timescale, we compared the IAF
estimates of the five time points within the extended ses-
sion. To assess reliability on a longer (between-session)
timescale, we compared the IAF estimates from the ini-
tial measurements of the four sessions. F tests were used
to assess whether ICC’s were significantly greater than
.75 (indicating good reliability; Koo & Li, 2016). Note that
the ICC calculation procedure inherently excludes partic-
ipants with at least one missing value. Ten participants
were excluded, leaving 14 participants for the ICC calcu-
lations (one participant had missing values due to a
corrupted EEG file, the other nine participants had miss-
ing values since some power spectra did not contain a
clear alpha peak and were thus rejected). Furthermore,
we report within- and between-subject standard devia-
tions to quantify the variability in IAF estimates. Single-
subject data and mixed-model analyses are reported in
supporting information S2.

In standard practice, IAF is often based on one EEG
measurement at the start of a session. It would be useful
to see how far subsequent IAF estimations fall from this
initial estimation. Per participant, we assessed such
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deviations of repeated IAF estimations from their initial
estimate. We constructed distributions of these deviations
to allow easy visual evaluation of the proportion of IAF
estimates that fell within a certain distance (in hertz)
from the initial estimate, separately for both cognitive
states (rest and task).

2.6 | Comparing three ways determining
‘stimulation frequency’

In most experiments, the goal of frequency calibration is
to determine a stimulation frequency to use during a clin-
ical protocol or an experimental task. For the latter, if the
goal is to ‘entrain’ the task-relevant oscillations, presum-
ably the target stimulation frequency should be the peak
frequency during task. This might suggest that the logical
approach is to determine IAF during a short task-EEG
block. On the other hand, since alpha peaks are most vis-
ible at rest and with eyes closed, it makes sense to deter-
mine IAF at rest. A third option is just to stimulate
everyone at 10 Hz and forego calibration altogether.

Here, we were curious to see how closely the rest-
EEG IAF, and simply 10 Hz, would approximate the
‘true’ individual frequency of interest, which was the
IAF during our cognitive task. Would a short task-EEG-
based IAF better approach that ‘true’ IAF than the com-
monly used rest-EEG-based IAF? We compared three
ways of estimating the ‘true’ IAF during our task:
(1) using the same 10-Hz frequency for every participant
(i.e., no individual calibration), (2) using the ‘standard
practice IAF’, based on an eyes-closed resting state EEG
measurement at the start of a session and (3) using the
‘standard practice IAF’ based on a task EEG measure-
ment at the start of a session.

For this analysis, we needed an approximation of the
actual, ‘true’, task IAF for every participant. Any one
short task-EEG might not yield this IAF sufficiently accu-
rately, so we approximated the ‘true’ task IAF by taking
the median IAF from all repeated task measurements of
both hemispheres. We then calculated deviations between
the three frequency calibration approaches (10 Hz, rest-
IAF, task-IAF) and this ‘true’ task-IAF, and constructed
probability distributions showing, across participants, how
close these approaches brought us to the approximated
‘true’ IAF (i.e., the optimal target frequency for rhythmic
stimulation). In order to prevent a bias (i.e., spuriously
lower variability) in the comparison between standard
practice task IAF and the ‘true’ task IAF, for that particu-
lar probability distribution, the calculation of the ‘true’
IAF excluded that standard practice task IAF measure-
ment (although this did not appreciably change the
resulting kernel density distributions or conclusions).

3 | RESULTS

Below, we report the results regarding our three experi-
mental aims. First, we directly compare IAF values as
obtained with the ‘maximum’ versus ‘Gaussian fit’
method. Second, we assess the consistency of IAF esti-
mates. Finally, we investigate how much different
approaches to determining a ‘stimulation frequency’
deviate from the optimal target frequency for rhythmic
stimulation (i.e., the ‘true’ task-IAF for each participant).

3.1 | Do the ‘maximum’ and ‘Gaussian
fit’ methods lead to similar individual
alpha frequency outcomes?

Linear regression analyses and paired samples t-tests
showed that the ‘maximum’ and ‘Gaussian fit’ methods
mostly led to highly similar IAF values. We assessed this
for IAF values as determined during ‘standard practice’
(based on a single, predefined EEG measurement at the
start of a session, at rest [standard practice rest IAF] or
during task [standard practice task IAF]). We also
assessed this for approximated ‘true’ rest- and task-IAF
values (approximated by the median of all rest-EEG or
task-EEG measurements) (see Figure 3).

The standard practice rest IAF did not significantly
differ between the ‘maximum’ or ‘Gaussian fit’ methods
(t[23] = .20, p = .84), nor did the ‘true’ rest IAF (t[23]
= .43, p = .67). Also for the task-EEG, standard practice
task IAF for the ‘maximum’ method (M = 10.49,
SD = .98) was not significantly different compared to the
‘Gaussian fit’ method (M = 10.41, SD = 1.01) (t[23]
= 1.87, p = .07, two-tailed, uncorrected), neither was
‘true’ task IAF (‘maximum’ method: M = 10.51,
SD = 1.00; ‘Gaussian fit’ method: M = 10.36, SD = .91;
t[23] = 1.96, p = .06, two-sided uncorrected). Thus, even
with uncorrected p-values there are no significant
differences, and any descriptive differences in IAFs
resulting from both methods are, for practical intents and
purposes, negligibly small. We thus conclude that the
‘maximum’ and ‘Gaussian fit’ methods, on the whole,
yield the same IAFs. The question then becomes how
consistently they yield those IAFs across measurements,
days, and cognitive states.

The mean IAF was approximately 10.4-Hz across cog-
nitive states and hemispheres, for both the ‘maximum’
method (see Table 1) and the ‘Gaussian fit’ method (see
Table 2). This value is close to the standard 10 Hz that is
often used in rhythmic stimulation research (de Graaf
et al., 2020; Helfrich et al., 2014; Hopfinger et al., 2017;
Schuhmann et al., 2019). Interestingly, both methods
showed a significant effect of ‘cognitive state’, with IAF
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values during task being higher than those during rest
(‘maximum’ method: M = 10.52 versus M = 10.31,
SE = .047, p < .001; ‘Gaussian fit’ method: M = 10.33

versus M = 10.28, SE = .021, p = .014; for a complete
overview of mixed model analyses, see supporting infor-
mation S2). This finding is in line with previous studies

F I GURE 3 Directly comparing results from the ‘maximum’ and ‘Gaussian fit’ methods. The uppermost panels compare the standard

practice rest individual alpha frequency (IAF) (left) and standard practice (task) IAF values resulting from the maximum method with those

from the Gaussian method. The lowermost panels compare the “true” (median) rest IAF (left) and the ‘true’ (median) task IAF (right)

values between the two methods. Black lines indicate the diagonals (i.e., no difference between maximum and Gaussian method results), red

lines indicate least-square regression results. Every dot represents data from one participant

TAB L E 1 Descriptive statistics for the IAF values as determined by the ‘maximum’ method

Mean Min Max SDwp_ws SDwp_bs SD_bp

Rest, left 10.28 8.10 12.60 0.47 0.29 0.99

Rest, right 10.35 8.00 12.40 0.33 0.25 0.98

Task, left 10.42 7.10 12.90 0.38 0.55 1.04

Task, right 10.49 8.30 12.90 0.42 0.44 0.92

Note: Mean, minimum, maximum and standard deviations of individual alpha frequency (IAF) values are shown per cognitive state and hemisphere.

‘SDwp_ws’ refers to standard deviations within-participants, within-session. ‘SDwp_bs’ refers to standard deviations within-participants, between-sessions.
‘SD_bp’ refers to standard deviations between participants.
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showing that IAF values can increase with task demands
(Angelakis et al., 2004; Babu Henry Samuel et al., 2018;
Gray & Emmanouil, 2020; Haegens et al., 2014;
Hülsdünker et al., 2016). The fact that task IAF can be
significantly different from resting state IAF might sug-
gest that it is best to always calibrate a stimulation fre-
quency based on task-EEG. However, the difference in
IAF between cognitive states is very small
(i.e., .05–.20 Hz). In practical situations, one can reason-
ably ask whether a resting-state EEG IAF might still be
the better choice for individual calibration, if it can
be estimated more reliably than a task-EEG IAF. This is
an empirical question we address below.

3.2 | How consistent are repeated
individual alpha frequency estimations?

Above, we concluded that the ‘maximum’ and ‘Gaussian
fit’ approaches to IAF determination yielded, on the
whole, the same results. Moreover, differences between
IAFs from task and rest EEG, in the current ‘practical’
context, were perhaps consistent but also very small. The
question then is; how consistent are those IAFs obtained
from short EEG measurements?

Overall, repeated IAF values seemed stable between
sessions and within a session, for both estimation
methods, cognitive states, and hemispheres (for single-
subject data see Figures S4 and S5). There were some par-
ticipants with inconsistent estimates, and occasional indi-
vidual measurements with a seemingly incorrect result
(showing as a single, strongly deviating point). As in pre-
vious studies, there was substantial variation across indi-
viduals, with a standard deviation of approximately 1 Hz
between participants (Haegens et al., 2014;
W. Klimesch, 1997). Importantly, IAF values were more
consistent (i.e., showed lower standard deviations) within
individuals compared to between individuals, even more
so for the ‘Gaussian fit’ method (Table 2) compared to
the ‘maximum’ method (Table 1).

Intra-class correlation coefficients (ICCs) offer a
quantification of such test–retest reliability (Koo &

Li, 2016). Here, ICCs were significantly greater than .75
across cognitive states and hemispheres, indicating good
reliability (p’s < .05) (see Figure 4). This was the case for
both reliability within-session and between-sessions, and
the ICC values we found are in line with previous results
(Gudmundsson et al., 2007; Ip et al., 2018; Põld
et al., 2020).

Notably, test–retest reliability was higher for IAF
values as obtained with the ‘Gaussian fit’ method com-
pared to the ‘maximum’ method. Since alpha power gets
suppressed with visual stimulation and task performance,
it can become more difficult to detect an IAF in these
conditions (Barry et al., 2007; Yamagishi et al., 2008).
One might therefore expect that reliability decreases
when IAF is measured during task as compared to rest.
In our data, this might indeed have been the case for the
reliability between sessions, as evidenced by the lower
ICC’s for task compared to rest data. As mentioned
above, if the actual IAF from resting state and task state
EEG differ only marginally, as well as between the ‘maxi-
mum’ and ‘Gaussian fit’ methods, a difference in reliabil-
ity of the estimate itself might strongly impact the
decision to base individual calibration on either a resting
or task state EEG, using ‘maximum’ or ‘Gaussian fit’
approaches. From Figure 4, it seems that, for the current
dataset, a ‘Gaussian fit’ estimation approach on resting-
state EEG is a good option for IAF calibration.

ICC provides a useful ‘summary measure’ of the reli-
ability of an estimate. For practical purposes, we might
still want to evaluate how different a deviating measure-
ment actually is. Typically, in rhythmic stimulation stud-
ies, IAF is measured once and used throughout the
experiment (Cecere et al., 2015; Kemmerer et al., 2020;
Mioni et al., 2020; Ronconi et al., 2018, 2020).
We therefore compared all repeated IAF measurements
with this ‘standard practice’ IAF value, to assess its rep-
resentativeness for subsequent sessions (between-session
analysis, left column of plots in Figures 5 and 6),
or subsequent time points within the same session
(within-session analysis, right column of plots in
Figures 5 and 6). We also quantified these same
deviations of repeated IAF measurements during

TAB L E 2 Descriptive statistics for the IAF values as determined by the ‘Gaussian’ fit method

Mean Min Max SDwp_ws SDwp_bs SD_bp

Rest, left 10.29 8.49 12.64 .16 .20 .96

Rest, right 10.31 8.49 12.26 .15 .18 .94

Task, left 10.30 8.49 12.42 .15 .24 .90

Task, right 10.32 8.49 12.19 .14 .25 .88

Note: Mean, minimum, maximum and standard deviations of individual alpha frequency (IAF) values are shown per cognitive state and hemisphere.

‘SDwp_ws’ refers to standard deviations within-participants, within-session. ‘SDwp_bs’ refers to standard deviations within-participants, between-sessions.
‘SD_bp’ refers to standard deviations between participants.
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attention task, from the standard practice IAF obtained
with resting-state EEG (second row of plots in Figures 5
and 6). And for comparison, even though this seems less

common in practice, the deviations of these repeated
task-EEG IAFs from an initial task-EEG IAF (third row
of plots in Figures 5 and 6). This allows intuitive

F I GURE 4 Test–retest reliability of IAF estimates. Left panel: Intra-class correlation coefficients (ICC) based on IAF values as

estimated by the ‘maximum’ method. ICC’s (dots) are plotted along with 95% confidence intervals (lines), separately per cognitive state (rest

versus task), hemisphere (left versus right) and time interval (within- versus between-sessions). Right panel: Same, but based on IAF values

as estimated by the ‘Gaussian fit’ method

F I GURE 5 Deviations between individual alpha frequency (IAF) values as estimated by the ‘maximum’ method and standard practice

IAF. The upper row compares repeated IAF rest measurements for all subjects and both hemispheres to the standard practice rest IAF value.

For each subject, the standard practice rest IAF was calculated by averaging the IAF values from the left and right hemisphere, of the initial

measurement rest data of the extended session. The middle row compares repeated IAF task measurements for all subjects and both

hemispheres to the standard practice rest IAF value. The lowest row compares repeated IAF task measurements for all subjects and both

hemispheres to the standard practice task IAF value. For each subject, the standard practice task IAF was calculated by averaging the IAF

values from the left and right hemisphere, of the initial measurement task data of the extended session. The left column includes repeated

measurements taken during the initial measurements of the four different sessions (between-session comparison). The right column includes

repeated measurements taken during the five time points of the extended session (within-session comparison). Black vertical lines indicate

zero deviation. M = median, SD = standard deviation
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assessment of how acceptable the standard practice IAF
estimation results are, to determine, on a case by case
basis, whether the range of possible deviations would
concern us.

Such ‘deviation distributions’ may provide additional
information. For instance, any systematic change in peak
frequency across cognitive states would be reflected in a
horizontal shift of these deviation distributions between
the task-rest IAFs relative to the rest-rest IAFs. Or, if the
deviation distributions for task-task IAFs are much
narrower than the distributions for task-rest IAFs, this
would suggest that task-EEG IAF estimations would be
more reliable to calibrate rhythmic stimulation protocols
to, than estimates of IAF based on resting state EEG as is
often done. In these analyses, for every participant, their
‘standard practice’ IAF value was calculated by averaging
the IAF values from the left and right hemisphere from
the initial measurement in the extended session, sepa-
rately per cognitive state. Averaging across hemispheres
was possible, since ‘hemisphere’ did not affect IAF

estimations (see linear mixed model results in supporting
information S2).

For the ‘maximum’ method, repeated IAF rest
measurements generally stayed within 1 Hz from the
standard practice rest IAF (see Figure 5, row 1). This
shows good correspondence of repeated IAF rest mea-
surements over time. There seems to be some bias and
higher variability for repeated task measurements when
comparing them to the standard practice rest IAF
(Figure 5, row 2), but also when comparing them to the
standard practice task IAF (Figure 5, row 3). Repeated
task measurements thus seem to be less consistent in
general, which was summarized by the lower ICC’s dur-
ing task as compared to rest (see Figure 4, left panel).
Deviation histograms for IAF values as obtained with the
‘Gaussian fit’ method are shown in Figure 6. Conclusions
were similar, but variability in general is lower than for
the ‘maximum’ method, as summarized by the higher
ICC’s for the ‘Gaussian fit’ as compared to the ‘maxi-
mum’ method in Figure 4. In sum, repeated rest IAF

F I GURE 6 Deviations between repeated IAF measurements as estimated by the ‘Gaussian fit’ method and standard practice IAF. The

upper row compares repeated IAF rest measurements for all subjects and both hemispheres to the standard practice rest IAF value. For each

subject, the standard practice rest IAF was calculated by averaging the IAF values from the left and right hemisphere, of the initial

measurement rest data of the extended session. The middle row compares repeated IAF task measurements for all subjects and both

hemispheres to the standard practice rest IAF value. The lowest row compares repeated IAF task measurements for all subjects and both

hemispheres to the standard practice task IAF value. For each subject, the standard practice task IAF was calculated by averaging the IAF

values from the left and right hemisphere, of the initial measurement task data of the extended session. The between-session comparisons

(left column) include data from the initial measurements of the four sessions and the within-session comparisons (right column) include

data from the five time points in the extended session. Black vertical lines indicate zero deviation. M = median, SD = standard deviation
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measurements seem more consistent within participants
than repeated task IAF measurements, and the ‘Gaussian
fit’ method generally shows more consistent results than
the ‘maximum’ method.

3.3 | How best to determine the
rhythmic stimulation frequency?

Having quantified and visualized the consistency of
repeated estimations of IAF at rest and during task, we
can now ask explicitly: what should a researcher/
clinician do? In the common scenario, one would prefer
to rhythmically stimulate at the individual peak fre-
quency relevant to a certain cognitive state/task. In our
example dataset, that means that the goal would be to
stimulate at the ‘true’ task IAF. In practice, a researcher
has three options for choosing the stimulation frequency:
(1) a single frequency used for all participants without
M/EEG calibration, (2) an individual frequency based on
a short resting-state M/EEG measurement, or (3) an indi-
vidual frequency based on an M/EEG measurement dur-
ing task. In our example, these options translate to
(1) 10 Hz for every participant, (2) the standard practice
rest IAF and (3) the standard practice task IAF. How
closely does the result of each of these three options
match the target frequency, namely, the ‘true’ IAF dur-
ing task? We evaluated this across participants and visu-
alize the results in the form of probability curves,
showing per procedure the proportion of participants

falling within a certain distance (in Hertz) from the ‘true’
task IAF (see Figure 7). This, ultimately, is the most rele-
vant information when it comes to estimating the ‘suc-
cess’ of, for instance, an experiment relying on
entrainment of that ‘true’ IAF.

For every participant, we calculated the deviation of
the three stimulation frequencies (10 Hz, standard prac-
tice rest IAF, standard practice task IAF) to the approxi-
mated ‘true’ task IAF for both the ‘maximum’ and the
‘Gaussian fit’ method (see ‘Analyses’ section). For both
methods, the standard practice rest IAF was more accu-
rate (more often close to the target ‘true’ IAF frequency)
than simply using 10 Hz (see Figure 7). This validates the
common practice of basing stimulation frequency on a
short resting state M/EEG.

Interestingly, in our dataset for our cognitive task,
there was a difference between the ‘maximum’ method
and the ‘Gaussian fit’ method in terms of how accurately
a short task-EEG measurement could estimate the ‘true’
task IAF. For the ‘maximum’ method, though there was
a small advantage of basing the stimulation frequency on
task-IAF instead of using 10 Hz, the IAF as estimated
from rest-EEG was much more accurate (as evidenced by
the greater/narrower peak in the probability curve).
Instead, for the ‘Gaussian fit’ method, the IAF as esti-
mated from rest-EEG and task-EEG were (nearly) equally
accurate in estimating the true task IAF. This could be
related to the fact that the ‘Gaussian fit’ method can
more consistently estimate IAF when power spectra are
noisy due to alpha desynchronization (i.e., during task

F I GURE 7 Kernel density plots comparing three different methods for estimating the true task IAF. Left panel: For every subject, we

calculated the deviation between their true (median) task IAF and three different reference values: 10 Hz (red), their standard practice

(“SP”) rest IAF (blue), and their standard practice task IAF (green), estimated by the ‘maximum’ method. For the comparison with 10 Hz

and SP rest, the true task IAF was calculated by taking the median of all repeated task measurements. For the comparison with SP task, the

true task IAF was calculated by taking the median of all repeated task measurements except that SP measurement. Kernel density plots were

constructed for each of these deviation distributions. Right panel: Same as in the left panel, but for the IAF values as estimated by the

‘Gaussian fit’ method
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performance) (Corcoran et al., 2018). In the Discussion,
we outline the practical considerations and recommenda-
tions that follow from these results.

4 | DISCUSSION

In this paper, we aimed to systematically assess the con-
sistency of individual alpha EEG markers on a shorter
(within-day) and longer (between-day) timescale, for two
cognitive states (eyes closed resting state versus visuospa-
tial attention task performance), estimation methods
(‘maximum’ versus ‘Gaussian fit’) and hemispheres. We
furthermore developed an algorithm to automatically
reject power spectra without a clear peak. Results showed
that both estimation methods yielded equivalent IAF esti-
mates. Moreover, IAFs were significantly, but only very
slightly, different (higher) during an attention task as
compared to eyes-closed resting state. We found that IAF
was overall reliable, but that the ‘Gaussian fit’ method
yielded more reliable estimates. We also concluded that,
by and large, practical 3-min EEG segments from single
electrodes were sufficient to obtain these IAFs, and
finally that—given these constraints and our particular
attention task—a resting-state EEG more often yielded
an adequate IAF than task-state EEG for the widely used
‘maximum’ method of IAF determination.

We first investigated whether the ‘maximum’ and
‘Gaussian fit’ estimation methods led to similar IAF
values. This is important, because if the methods overall
yield the same result, the decision to use one or the other
can be based wholly on how reliably each method yields
that result. IAF values did not significantly differ between
the two estimation methods for rest-EEG data, or for
task-EEG data. Though the effect was minimal, both esti-
mation methods led to slightly higher IAF values for
task-EEG data compared to rest-EEG data, as in previous
studies showing that IAF can increase with mental effort
or task demands (Angelakis et al., 2004; Babu Henry
Samuel et al., 2018; Gray & Emmanouil, 2020; Haegens
et al., 2014; Hülsdünker et al., 2016) and even physical
effort (Gutmann et al., 2015). Another study may or may
not be in line with this, since they found decreased IAF
over 1 h of visual task performance, while mental effort
might have either decreased (i.e., task learning or prac-
tice effects) or increased (i.e., fatigue) (Benwell
et al., 2019). Taken together, we conclude that, for our
data, the ‘maximum’ and ‘Gaussian fit’ methods pro-
vided equivalent IAF estimates.

After confirming this, we set out to quantify the con-
sistency of repeated IAF estimates. Test–retest reliability
of IAF was significant within- and between-sessions, for
all cognitive states, hemispheres, and estimation methods.

Repeated rest IAF estimations mostly fell within 1 Hz of
the standard practice rest IAF for the ‘maximum’
method, and within .5 Hz for the ‘Gaussian fit’ method.
These results confirm that IAF values can differ across
individuals, but are generally stable within an individual
over time (Grandy, Werkle-Bergner, Chicherio,
Schmiedek, et al., 2013b). Notably, the ‘Gaussian fit’
method led to more reliable results than the ‘maximum’
method, especially for data measured during task. This
could be due to the fact that alpha power is suppressed
during task performance, thereby making it more difficult
to reliably detect an alpha peak (Yamagishi et al., 2008).
It seems that the ‘Gaussian fit’ method is less vulnerable
to this (Corcoran et al., 2018; Haegens et al., 2014). Of
note, the ‘Gaussian fit’ method yields a different IAF than
the ‘maximum’ method if the power spectrum is strongly
skewed, or if there are multiple alpha peaks in the power
spectrum (Corcoran et al., 2018; Haegens et al., 2014).
The ‘Gaussian fit’ method can be used to separately esti-
mate those peaks when alpha sub-bands are of interest
(Doppelmayr et al., 1998; Klimesch et al., 1997). The latter
is related to the idea of multiple coexisting alpha oscilla-
tors in the human brain (Benwell et al., 2019; Sokoliuk
et al., 2019), possibly becoming more or less dominant
depending on current task demands (Doppelmayr
et al., 1998; Elshafei et al., 2018; Klimesch et al., 1997;
Lobier et al., 2018; Shackman et al., 2010).

In rhythmic stimulation studies, IAF values are often
measured during rest and applied during task
(Kemmerer et al., 2020; Mioni et al., 2020; Ronconi
et al., 2018, 2020). In many cases, it is desirable that the
frequency of rhythmic stimulation is optimized to match
the individual peak frequency relevant to the task of
interest. We showed that using a standard 10-Hz fre-
quency for all participants to estimate this ‘true’ task IAF
was suboptimal, which is thus not recommended if close
matching of stimulation frequency to individual task-
relevant frequency is the goal. Variability decreased con-
siderably when using a resting state EEG measurement,
validating this common practice. Interestingly, only the
‘Gaussian fit’ method led to similarly consistent results
when using a task EEG measurement. For the ‘maxi-
mum’ method, a task EEG measurement was better than
using 10 Hz, but not as consistent as a rest EEG measure-
ment. In our data, a resting-state EEG measurement
using the ‘Gaussian fit’ method led to the most consistent
results, and this approach is thus recommended. But
future studies with other tasks and other frequencies of
interest might aim to confirm this result. Similarly, based
on our data, if only a task-EEG measurement is available,
or required, we would recommend to use the ‘Gaussian
fit’ method, but again future work should assess this for
other tasks and frequencies.
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There are several limitations to our current explora-
tions. First of all, power spectra obtained from task-EEG
data were more likely to be rejected for inclusion in our
analyses due to alpha desynchronization (Yamagishi
et al., 2008). For experiments that require an EEG mea-
surement during task to obtain an individual peak fre-
quency, this might make it more difficult to obtain a
result. Note that this did not have a large influence in our
experiment. Although more task data were rejected com-
pared to rest data, only a small number of power spectra
was rejected overall. Secondly, the current study was lim-
ited to 24 participants, included only one cognitive task,
and focused on the alpha band. We should therefore be
careful not to overgeneralize our results, and in the
future aim to replicate them in a different and larger
sample with a variety of cognitive tasks for different fre-
quency bands. Moreover, IAF values during task were
calculated by taking into account the EEG signal
throughout visuospatial attention task performance,
independently of specific task events such as the appear-
ance of cues and targets. There are different ways of esti-
mating the IAF during task performance, which might
prove to be more reliable. For instance, perhaps IAF
values based on the cue-target interval EEG signal consti-
tute a better estimate of the task-relevant IAF. It would
furthermore be worthwhile to assess how consistent IAF
values are when based on an eyes open resting state mea-
surement, here our resting state EEG was with eyes
closed. It is also noteworthy to mention that our research
questions are applicable to those rhythmic stimulation
studies that aim to enhance the intrinsic peak frequency
(i.e., when deviations between the stimulation
frequency and the individual peak frequency should be
avoided). There are also rhythmic stimulation studies
with another aim, namely, to purposefully use a stimula-
tion frequency that deviates from the dominant fre-
quency, so as to speed up or slow down neuronal
oscillations (Cecere et al., 2015). Another potential limita-
tion is that the standard practice task measurement was
longer (290 s) than the standard practice rest measure-
ment (180 s). Lastly, of course we cannot actually know
the ‘true’ IAF values, but we can only approximate them
by taking the median of the repeated measurements. In
our view, these limitations are important to be aware of,
but do not invalidate our core results.

Our findings are of interest for personalizing rhyth-
mic stimulation protocols using individual oscillation
markers, or more generally for linking such markers to
specific cognitive processes. Applications can cover a
broad range of domains such as visual perception
(Samaha & Postle, 2015), attention (Kemmerer
et al., 2020), memory (Cross et al., 2020), language com-
prehension (Bornkessel et al., 2004), somatosensory

processing (Craddock et al., 2019; Gundlach et al., 2016,
2017) and cross-modal perception (Cecere et al., 2015;
Keil & Senkowski, 2017; Migliorati et al., 2019). Our
results are furthermore relevant in clinical settings, for
instance, in neurofeedback training (Arns et al., 2012;
Bazanova & Aftanas, 2010; Nan et al., 2012) but also for
individualizing NIBS treatment for depression (Corlier
et al., 2019; Garnaat et al., 2019; Leuchter et al., 2017;
Roelofs et al., 2020), chronic pain (Ahn et al., 2019;
Arendsen et al., 2018; de Vries et al., 2013; Furman
et al., 2018) and schizophrenia (Jin et al., 2005, 2012).

5 | CONCLUSION

Rhythmic stimulation protocols can be optimized by cali-
brating the stimulation frequency based on individual
M/EEG markers, such as IAF. When estimating such
markers using peak detection methods, power spectra
that do not contain a clear peak should first be rejected.
IAF could be reliably estimated from short EEG measure-
ments, and a ‘Gaussian fit’ method was more reliable
than the traditional ‘maximum’ method. When selecting
the optimal rhythmic stimulation target frequency, sim-
ply using a standard frequency for all participants does
not seem to be a good approach if the goal is to closely
match the task-relevant frequency. Instead, using a short
resting-state EEG measurement led to more consistent
results, validating a very common practice. A short EEG
measurement during task performance led to similarly
consistent results for the ‘Gaussian fit’ method, but less
so for the ‘maximum’ method. Taken together, when cal-
ibrating rhythmic stimulation parameters to individual
EEG markers, based on the current dataset we recom-
mend a resting-state EEG measurement, along with the
‘Gaussian fit’ approach. In future work, similar analyses
might be applied to other tasks and frequency ranges.
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