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Abstract

A widely used design principle for metabolic engineering of microorganisms aims to

introduce interventions that enforce growth-coupled product synthesis such that the

product of interest becomes a (mandatory) by-product of growth. However, different

variants and partially contradicting notions of growth-coupled production (GCP) exist.

Herein, we propose an ontology for the different degrees of GCP and clarify their rela-

tionships. Ordered by coupling degree, we distinguish four major classes: potentially,

weakly, and directionally growth-coupled production (pGCP, wGCP, dGCP) as well as

substrate-uptake coupled production (SUCP). We then extend the framework of Min-

imal Cut Sets (MCS), previously used to compute dGCP and SUCP strain designs, to

allow inclusion of implicit optimality constraints, a feature required to compute pGCP

and wGCP designs. This extension closes the gap between MCS-based and bilevel-

based strain design approaches and enables computation (and comparison) of designs

for all GCP classes within a single framework. By computing GCP strain designs for a

range of products, we illustrate the hierarchical relationships between the different

coupling degrees.We find that feasibility of coupling is not affected by the chosenGCP

degree and that strongest coupling (SUCP) requires often only one or two more inter-

ventions than wGCP and dGCP. Finally, we show that the principle of coupling can be

generalized to couple product synthesis with other cellular functions than growth, for

example, with net ATP formation. Thiswork provides important theoretical results and

algorithmic developments and a unified terminology for computational strain design

based on GCP.
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F IGURE 1 Characteristic production envelopes or yield spaces of different computational methods for growth-coupled strain design. (A)
Typical production envelopes of biased (bilevel) optimization techniques. In the worst case, the original methodOptKnock (orange) may contain
flux vectors with no product synthesis at maximal growth rate, which is avoided by successors of OptKnock (blue). (B) Typical yield space of a strain
design computedwithMCS, demanding aminimumproduct yield for all flux states. (C) Production envelope of a strain designwith a fixedminimum
ratio of product synthesis and growth rate. rBM: growth rate; rP: product synthesis rate; YP/S: product yield; YBM/S: biomass yield

1 INTRODUCTION

Metabolic engineering aims to harness and improve the production

capabilities ofmicrobial organisms and toprime them for theuse in bio-

production processes.Wild typemicrobes usually tune their metabolic

activities to grow at the highest rate possible. This goal conflicts with

the engineering goal of increased product synthesis. It is therefore

often desirable to hardwire a dependence between growth and prod-

uct synthesis through suitable gene knockouts or overexpressions and

make the product of interest a mandatory by-product of growth.[1–8]

Strains inwhich growth is coupledwith product synthesis exhibit expo-

nential formation of both biomass and product. The potential of this

powerful design principle could be demonstrated in several successful

metabolic engineering studies.[4,9–15] Finding the metabolic interven-

tions that enforce growth-coupled product synthesis is also a common

goal of many computational strain design methods.[16,17] Recently, it

has been shown that, in principle, almost all small metabolites in five

major production organisms can be coupled with growth by suitable

knockout strategies.[8]

Different degrees or types of growth-coupled production (GCP)

have been used in the strain design algorithms developed in the past.

The first computational method for growth-coupled strain design was

OptKnock.[1] One important motivation of the OptKnock method was

that growth-coupled strain design canbe combinedwith adaptive labo-

ratory evolution strategies to evolve constructed strains towards their

growth-maximal phenotype and, thus, also towards maximal product

synthesis.[18] With that, it was considered to be sufficient to demand

GCP only for the growth-optimal flux states, while flux distributions

with sub-optimal growth can be disregarded. OptKnock implemented

this idea through a nested (bilevel) maximization approach, which

generates strain designs with a potential for product synthesis at

maximal growth. However, OptKnock strain design does not guarantee

the exploitation of that production potential and solutions may exist

where maximal growth is also possible without any product synthesis

due to the presence of alternate optimal solutions (orange area in

Figure 1A). Such properties can be best analyzed in the production

envelope ((PE), also called growth-product phase plane or biomass-

vs.-product tradeoff plot), a projection of all steady-state flux vectors

of the (designed) metabolic network on their growth rate (rBM) and

product synthesis rate (rP).[16,19] OptKnock served as a starting point

for the development of various related methods.[2,3,6,20–25] Common

to many successors of OptKnock is that they explicitly enforce some

minimum product synthesis at all growth-maximal flux states while

GCP for suboptimal growth rates is, as in OptKnock, usually not

demanded (Figure 1A; blue area). Hence, the coupling of growth

with product synthesis is in most cases still only a local property

and does not include the entirety of possible growth rates. Because

these bilevel optimization approaches assume that maximal growth

rates are attained by the mutant strains (possibly after adaptive

laboratory evolution), they are sometimes called “biased” strain design

methods.[16]

Alternative approaches developed by Trinh and co-

workers[10,24,26,27] as well as the framework of Minimal Cut Set

(MCS),[28,29] sought to establish a more rigid coupling (also called

‘strong coupling’) by enforcing a certain minimum product yield in all

(non-zero) flux states. The two-dimensional biomass-product-yield

spaces of such designed strains have typically a shape as shown in

Figure 1B. In contrast to the PE, the biomass-product-yield space

(in the following also called production yield space (PYS)) maps all

feasible steady state flux solutions of the strain to biomass yield (YBM/S)

and product yield (YP/S). Although, this stronger notion of GCP is

commonly used in the context of MCS[28,30] or for the construction

of modular cells,[24,31] it seems to demand more than necessary

because production is also enforced in metabolic states without

growth. The relationships between computed bilevel and the strongly

growth-coupled strain designs have not been studied so far.

An intermediate variant of GCP with a coupling strength lying

between the classical bilevel and the strong coupling approach can

be defined by demanding a minimum ratio of product synthesis rate

and growth rate. The flux spaces of the corresponding strain designs

appear as areas in the PE that are entirely above a line with a certain

slope (Figure 1C). This definition of GCP was proposed in few theoret-

ical works, partially under different names[6,32,33]; however, so far, it

has not been used in any application and deserves further attention.

To characterize the different types and strengths of GCP

approaches, many studies introduced attributes such asweak,[6,7,24,32]
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maximal,[1] holistic,[32] tight,[26,27] directional,[6] partial and full,[16] or

strong coupling.[7,24,32] However, this resulted in partially inconsistent

or imprecise terminology in the literature, caused by parallel develop-

ments or by employing different mathematical approaches and their

respective referencepoints (e.g., PE vs. yield space, bilevel optimization

vs. MCS etc.). Moreover, some definitions are not conclusive enough

to characterize or/and distinguish different types of coupling. For

example, the PE shown in Figure 1C may also be exhibited by a strain

that has the stronger coupling degree depicted in Figure 1B, hence,

Figure 1C alone is not sufficient to distinguish these two coupling

types.

One goal of this study is to systematize and unify the different def-

initions of (the degree of) GCP to obtain one consistent ontology. We

distinguish four major types of coupling based on unambiguous def-

initions and show that the MCS framework can be used to compute

straindesigns for all four couplingdegrees. Inparticular,wewill present

extensions of the MCS approach that now also enable the computa-

tion of classical bilevel strain designs viaMCS by incorporating implicit

constraints for growth-rateoptimality.We thencompare straindesigns

computed for 12 (native and heterologous) products in Escherichia coli

for all four coupling types regarding the number of required interven-

tions and computation time. Finally, we also discuss a generalization

of GCP towards ATP-coupled product synthesis, which is relevant for

other metabolic engineering strategies.

2 METHODS

2.1 Definition of four coupling degrees

The key property of GCP is the dependence of cellular growth on the

synthesis of a product of interest.Wepropose four different degrees of

this relationship, which are summarized in Figure 2 and detailed below.

The first coupling degree is called potentially growth-coupled prod-

uct synthesis (pGCP) and occurs when there is potential for product

synthesis at growth-maximal flux states. Using @ as abbreviation for

“at”, we express this condition by

r
max@rmax

BM
P > 0. (1)

pGCP formulates the mildest condition of all coupling degrees, and

OptKnock is the most popular method for computing pGCP strains

designs. In contrast to theother three couplingdegrees to follow, pGCP

does not ensure a strict dependency between growth and production.

However, it indicates that product synthesis does not oppose to the

biological objective of growthmaximization.

Clearly, definition (1) is only meaningful if there is at least one flux

vector with a non-zero growth rate, and in the following we assume

that this is always fulfilled in the system under study. Figure 2 provides

examples of interventions that induce the respective coupling degrees

in a givenexamplenetwork. For this network,weassume that substrate

uptake is the only reaction with an upper bound for its flux and that

P is our desired product. Biomass is here represented by an essential

biomass precursor BM. In this network, pGCP can be induced through

a single knockout: removing the reaction fromA toBMensures that the

pathway with BM-optimal but product-free operation is inactive. Two

alternative pathwayswithmaximal growth rates remain, one has P and

the otherQ as by-product. It is possible to shift metabolic flux between

both pathways and produce the product P or Q, without a decrease in

themaximum attainable growth rate.

Generally, whether a certain growth-coupling degree is prevalent

in a metabolic network or not can be tested through simple flux opti-

mizations (flux balance analysis (FBA)[34]) and yield optimizations[33]

or, alternatively, inferred graphically from the PE and PYS as shown

in Figure 2. Regarding pGCP, its presence can be tested via FBA by

first maximizing the growth rate followed by a second maximization of

the production rate with the growth rate constrained at its maximum.

pGCP is present when the production rate in the second optimization

takes a strictly positive value. In the PE, for pGCP it is required that

there is at least one point with maximal growth rate that lies above

the x-axis. In our example, we have a vertical line at maximal growth

starting from the x-axis (zero production of P) (Figure 2), indicating

that maximal growth may coincide with simultaneous production but

that alternative routeswithmaximalBMsynthesis butwithout produc-

tion of P do exist. Importantly, despite the fact that, in the example, the

PYS for pGCP shows the same characteristic shape as the PE, poten-

tial coupling cannot generally be deduced from the PYS because flux

stateswithmaximal growth ratemaynot exhibitmaximal biomass yield

(which is at the rightmost position in the PYS).[33] A mismatch occurs

when the capacity of pathways with optimal biomass yield is reached

due to inhomogeneous constraints (such as a maximal oxygen uptake

rate) and suboptimal pathways become active to attain the maximal

growth rate. This happens, for example, when overflow metabolism

occurs as a consequence of proteome allocation constraints.[35]

Next, if the dependence of growthonproduction is present in all flux

stateswithmaximal growth rate, thenwecall itweakly growth-coupled

production (wGCP).We express this condition with

r
min@rmax

BM
P > 0. (2)

An example of a wGCP design strategy in the toy network is also

shown in Figure 2. After the additional knockout of the reaction

converting E to F, the only pathway left to offer the highest growth rate

would run via E to BM, and this pathway produces P as byproduct as

desired. The presence of wGCP in a network can be tested via FBA by

first maximizing the growth rate and subsequently minimizing the pro-

duction rate, with the growth rate constrained at its maximum. If the

latter minimization returns a strictly positive value, wGCP is present.

Alternatively, wGCP can also be directly inferred from the PE: there

must be an edge or a corner atmaximal growth that does not touch the

x-axis). As for pGCP, wGCP cannot generally be deduced from the PYS.

Theoretically, as an alternative definition for weak coupling, one could

demand some minimum product yield at maximum biomass yield,

however, this bears multiple disadvantages. In particular, adaptive lab-

oratory evolution favors strains that strive for themaximal growth rate

instead of biomass yield. Furthermore, using a yield-based definition



4 of 17 SCHNEIDER ET AL.

F
IG

U
R
E
2

O
ve
rv
ie
w
o
ft
h
e
fo
u
r
d
if
fe
re
n
t
d
eg
re
es

o
fg
ro
w
th
-c
o
u
p
le
d
p
ro
d
u
ct
sy
n
th
es
is
.T
h
e
re
d
cr
o
ss
es

in
d
ic
at
e
su
it
ab

le
se
ts
o
fk
n
o
ck
o
u
ts
th
at

in
d
u
ce

co
u
p
lin

g
b
et
w
ee
n
b
io
m
as
s
(h
er
e

re
p
re
se
n
te
d
by

th
e
b
io
m
as
s
p
re
cu
rs
o
r
B
M
)a
n
d
p
ro
d
u
ct
(P
)s
yn

th
es
is
w
it
h
th
e
re
sp
ec
ti
ve

co
u
p
lin

g
d
eg
re
e.
P
ro
d
u
ct
io
n
en

ve
lo
p
es

an
d
yi
el
d
sp
ac
es

ar
e
sh
o
w
n
fo
r
th
e
ex
am

p
le
n
et
w
o
rk
—
w
it
h
an
d

w
it
h
o
u
t
as
su
m
p
ti
o
n
o
fa

m
in
im

u
m
A
T
P
m
ai
n
te
n
an
ce

d
em

an
d
co
n
st
ra
in
t
(i
m
p
ly
in
g
a
m
et
ab

o
lic

b
as
el
in
e
ac
ti
vi
ty
).
r S
:s
u
b
st
ra
te

u
p
ta
ke

ra
te
;r

P
:p
ro
d
u
ct
sy
n
th
es
is
ra
te
;r

B
M
:b
io
m
as
s
p
ro
d
u
ct
io
n

(g
ro
w
th
)r
at
e;
r A

T
P
M
:r
at
e
o
fA

T
P
co
n
su
m
ed

fo
r
m
ai
n
te
n
an
ce



SCHNEIDER ET AL. 5 of 17

may significantly complicate classical bilevel-based strain design

approaches. A rate-based definition of wGCP is hence preferable.

There is a multitude of optimization methods developed for strain

design for wGCP. These variants typically rely on bilevel optimization

approaches, but differ in the optimization of certain aspects under

weak coupling. For example, RobustKnock maximizes the lower bound

of the product synthesis rate at the state of maximum growth,[3]

which was alternatively achieved by using the OptKnock formula-

tion with a tilted objective function.[2] More recent approaches, like

OptORF variants[6] or OptCouple,[25] allow also the definition of a

broader range of growth rates for which growth-coupling is enforced.

In particular, OptCouple searches for interventions to maximize the

distance between (a) the maximal growth rate with guaranteed pro-

duction and (b) the maximal growth rate where product synthesis is

not guaranteed.[25] However, despite their specific features, all these

methods compute strain designs that share the minimal property of

wGCP as defined in Equation (2).

As the third class of growth-coupling strength, we define direction-

ally growth-coupled production (dGCP) to be present when growth

implies product synthesis for any positive growth rate. Formally, this

means

Ymin
P∕BM =

(
rP
rBM

)
min

> 0, (3)

that is, the “yield” of product per biomass, or, more precisely, the ratio

of product and biomass synthesis rates, must be strictly positive. By

definition, this ratio only exists (and is thus only relevant) for flux

vectors with non-zero growth rate, and we therefore demand again

that at least one flux vector with a non-zero growth rate exists. In the

toy network, in addition to the knockouts of the pathways from A to

BM and from E to F enforcing weak coupling, the pathway via F to

BM also needs to be blocked. It has a reduced growth yield and might

therefore not be relevant under optimal growth, but directional

coupling demands that this pathway is also blocked as it allows growth

without product synthesis. dGCP in a network can be ascertained

by minimizing the ratio (“yield”) of production and growth rate (such

as yield minimization or maximization requires linear-fractional

programming[33]). If the optimal value is greater than zero, dGCP is

present. Likewise, dGCP can also be inferred graphically from the

PE or PYS. In both representations, the entire flux space must be

located above a diagonal line that may cross the x-axis only in the

point of origin. The slope of this line is theminimum amount of product

synthesized per amount of produced biomass. The term “directional

coupling” as defined in flux coupling analysis[36]–[38] designates this

coupling type and was therefore also used by Tervo and Reed (2014)

in the context of strain design. In contrast, the terms full and partial

coupling introduced in flux coupling analysis describe only special

cases of the general directional coupling (see Figure 3). Potential and

weak coupling as defined herein would be regarded as uncoupled in

flux coupling analysis because the dependence between growth and

product is only a local property.

We call the fourth and strongest type of coupling substrate-uptake-

coupled production (SUCP), which demands that product synthesis

F IGURE 3 Different coupling types as defined in flux coupling
analysis (cf. Burgard et al. 2004). Directional GCP requires a strictly
positive ratio of rP and rBM in all flux vectors. 𝛼 =

rp
rBM

> 0 defines the

minimum of this ratio and thus the slope of the outer black line

occurs in all flux states where substrate is taken up. This can be

expressed as

Ymin
P∕S =

(
rP
rS

)
min

> 0, (4)

simply demanding that the yield of product per substrate is guaranteed

to be above zero. In reality, this means that product synthesis occurs in

all (non-zero) flux states, including those without growth. Even though

the growth rate does not appear in condition (4), onemay regard SUCP

as GCP provided that growth is feasible: growth obviously requires

substrate uptake, which in turn implies product synthesis due to (4).

This is also the reason why SUCP has sometimes been called “strong

growth coupling”,[7,8,24,31,32] however, we would like to refrain from

this term to make clear that the SUCP condition (4) as such does not

require growth. In fact, condition (4) guarantees a minimum product

yield even without growth and an SUCP strain design could also be

used for two-stage processes with no or only little growth during the

production phase (where growth is blocked, for example, by a genetic

switch or nitrogen starvation; such a design approach has been called

“non-growth production” in Garcia and Trinh (2019)[24).

To achieve SUCP in the toy network, the route from substrate S to

byproduct Q needs to be blocked in addition to the three knockouts of

the dGCP as this pathway has a product (P) yield of zero (Figure 2). In

the remaining network, all possible steady-state flux distributions will

now definitely produce some P. Similar to directional growth-coupling,

presence of SUCP can be confirmed through a product yield minimiza-

tion. Accordingly, in the PYS, the entire flux space is located above a

non-zero product yield threshold and does not touch the horizontal

axis (corresponding to a product yield of zero) at any point. Impor-

tantly, as shown by the example in Figure 2, the PE under SUCP may

have the same shape as under dGCP and is thus alone not conclusive

whether SUCP is present. However, apart from the PYS, SUCP can also
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TABLE 1 Mapping definitions of GCP used in previous studies to the four coupling degrees introduced in this work

Reference

Potentially

growth-coupled

production (pGCP)

Weakly growth-coupled

production (wGCP)

Directionally

growth-coupled

production (dGCP)

Substrate-uptake-coupled

production (SUCP)

[1] OptKnock/Maximally

coupled objectives

- - -

[42] - - - Full coupling/obligatory

coupling

[3] OptKnock Obligatory byproduct of

biomass formation

- -

[2] OptKnock/non-unique

phenotype

Coupling Full coupling -

[6] - Weak coupling Directional coupling -

[16] OptKnock/No (effective)

growth-coupling

Partial coupling Full coupling Full coupling

[7] - Weak coupling - Strong coupling

[24,31] - Weak coupling (wGCP) - Strong coupling

[32] OptKnock Weak coupling Holistic coupling Strong coupling

[41] - Weak coupling (MCSw) - MCSf, MCSe

be identified in the two-dimensional projection where the axes repre-

sent substrate uptake rate (instead of growth rate used in the PE) and

product synthesis rate. In this phase plane, in terms of flux coupling

analysis, SUCP generally occurs as partial instead of directional cou-

pling between rP and rS (Figure 2; cf. with Figure 3) because the latter

would imply that substrate-independent production was possible. Fur-

thermore, if a model carries a baselinemetabolism that requires amin-

imum substrate uptake (e.g., due to some non-growth-associated ATP

maintenance, often imposed in metabolic models), this, in turn, results

in aminimum production rate (see Figure 2, last row).

As shown in the next section, the four criteria (1–4) can be formu-

lated with tighter constraints demanding that the product synthesis

rates in (1) and (2), or the product-per-biomass yield (3), or the

product-per-substrate yield (4) must not fall below a certain non-zero

threshold. This is indeed often used in the problem setups of strain

design methods, likewise, constraints, for example, for a minimal

possible growth rate, are often added. However, with the most relaxed

versions (1–4), a clear hierarchical dependency exists between the

different degrees of GCP: a network showing wGCP automatically

fulfills the criterion for pGCP; if dGCP is present then the criteria

of wGCP and pGCP are also naturally fulfilled, while a strain with

SUCP satisfies the criteria of the other three types of GCP. In this

regard, the actual GCP type of a concrete network (or strain) design

is determined by the strongest of the four conditions (1–4), that is

fulfilled in the network. For, example, a wGCP strain design fulfills the

wGCP condition (2) but not the dGCP condition (3). Furthermore, it

may happen that strain design solutions may exist for a weaker (e.g.,

wGCP) but not for a stronger (e.g., dGCP, SUCP) coupling type. In the

opposite direction, this hierarchy also implies that methods computing

strain designs for wGCP may, for instance, also return solutions that

enforce dGCP or even SUCP. These hierarchical relationships will be

further discussed in the Results section.

Since previous studies used different notions and terminology in the

context of growth-coupled product synthesis, in Table 1, we sought to

semantically map these previously used terms to the definitions intro-

duced herein.Most of the previousworks distinguished only twomajor

types of GCP. As one exception, Alter and Ebert (2019) considered

three different degrees of coupling (weak, holistic, strong) which are

related with our definitions of wGCP, dGCP and SUCP, respectively.

However, their definitions require the unnecessary assumption of a

metabolic baseline flux andarepurely basedon thePE,which, as shown

for dGCP and SUCP, can be ambiguous.

It should be noted that the four terms potentially/weakly/

directionally GCP and substrate-uptake-coupled production describe

properties that are either present or absent in a given (or designed)

metabolic networkmodel. However, the coupling terms themselves do

not qualify as a benchmark for the actual production performance. For

example, strains with directional GCP are not per se better production

hosts than strains with weak GCP, nor vice versa. For assessing the

suitability and production potential of designed strains, different

measures can be used.[2,25,39-41]

2.2 Using the MCS framework to compute strain
designs for all four coupling degrees

The vast majority of constraint-based metabolic design algorithms

use growth-coupled product synthesis as the underlying design prin-

ciple. However, so far, there is no single computational framework that

allows the computation of intervention strategies for all four types of

coupling strengths in genome-scale networks. As already mentioned

in the introduction section, bilevel (biased) optimization approaches

naturally focus on (different variants of) pGCP and wGCP designs

whileMCS-related straindesign calculationspredominantlydemanded
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SUCP. Surprisingly, explicit computation of dGCP, as amediumcoupling

strength, has rarely been considered with the exception of two purely

theoretical studies.[6,43] In the following, we will explain how the MCS

framework can be used to computemetabolic designs for all four types

of coupling. This will require an extension of the current MCS problem

formulation to also allow computation of pGCP and wGCP designs in

large-scale networks.

A detailed introduction to the theory of MCS can be found in

literature[28,29,40,44-46] and in the Supplementary Text. For the calcu-

lation of MCS, it is fundamental to define a set of undesired (target)

behaviors and (optionally) a set of desired (protected) behaviors.

Both are specified through sets of linear inequalities. An MCS is then

defined as a minimal (irreducible) set of interventions that block all

undesired and preserve at least some desired behaviors. Interventions

are typically reaction or gene knockouts, but reaction/gene additions

or overexpression[47] can also be considered.[48] Initially, MCS were

calculated from a given set of undesired and desired elementary

modes. In fact, this approach allows the computation of metabolic

designs for all four coupling types by selecting appropriate sets of

desired and undesired elementary modes (e.g., wGCP and SUCP were

computed in[29]). However, this approach becomes quickly infeasible

in large-scale networks where elementary modes cannot be fully

enumerated. Therefore, duality-based approaches have been devel-

oped allowing the computation of shortest MCS also in genome-scale

networks in one step via mixed integer linear programming (MILP),

without computation of elementary modes in a preprocessing step.[28]

An introduction to the dual computation of MCS can be found in the

Supplementary Text. Again, as a common principle for MCS-based

methods, desired and undesired (target) behaviors must be specified,

which, for the dual approach, is done in the form of linear inequalities.

The computation of MCS for growth-coupled design requires the

proper translation of the demands of a particular GCP type into linear

inequality systems that describe the desired and undesired flux states.

For the case of SUCP, the undesired flux states are straightforward

to describe. According to Equation (4), the MCS need to block all flux

solutions that have a positive substrate uptake rate but a zero product

synthesis rate, that is, a zero product yield:

rP
rS

= 0, (5)

The yield term (4) is actually non-linear and is only defined for

strictly positive substrate uptake. To integrate this constraint in the

MCS framework, it needs to be linearized via the two relations

rP = 0 (6)

rS > 0. (7)

Strict inequalities as in (7) cannotbeused in linearprogramming, and

so we replace (7) with:

rS ≥ 𝜀, (8)

with a sufficiently small number ε > 0 as a lower threshold for rS. Due

to numerical tolerances used by most solvers, too small numbers for ε
should be avoided, otherwise theMCS algorithmwill seek to also elim-

inate flux vectors of zero substrate uptake and no production. Impor-

tantly, if a metabolic network has some basal activity (e.g., due to a

non-zero ATP maintenance demand), Equations (7) and (8) are auto-

matically fulfilled and can be dropped, hence, only Equation (6) would

remain.

Aswas alreadymentionedbefore, stronger constraints for the prod-

uct yield are often demanded by specifying a minimum product yield

thresholdYTarget
P∕S > 0 for the right-hand side in Equation (4). In this case,

Equation (5) would read

rP
rS

≤ YTarget
P∕S , (9)

which, under the constraint (8), can be safely rewritten to

rP − YTarget
P∕S rS ≤ 0. (10)

As desired (protected) region for SUCP, we demand that growth

with a given threshold for a (desired) minimal growth rate should be

possible:

rBM ≥ rDesiredBM . (11)

By demanding Equation (11) we do not need to explicitly demand

the fulfillment of Equation (4) because the computedMCSwill anyway

ensure that all flux vectors with zero product yield (as defined by

Equations (6) and (8)) will be blocked, hence, if there remains a feasible

flux vector obeying (11), it will automatically satisfy Equation (4). To

summarize, as also graphically illustrated in Figure 4, an MCS problem

for enforcing SUCP is defined by the undesired flux vectors described

by Equation (6) (or (10)) and (8) and the desired flux vectors specified

by (11).

The procedure for directional GCP is analogous to SUCP. According

to condition (3), for dGCP all flux states with growth but zero product

synthesis must be blocked. Equations (5) and (7) now translate to:

rP = 0 (12)

rBM ≥ 𝜀. (13)

As a more general version, we can again replace (12) with a thresh-

old for the “product-per-biomass yield”:

rP − YTarget
P∕BM rBM ≤ 0. (14)

For the protected flux states, we can again use (11).

We may proceed in the same way to formulate the undesired space

so as toobtainMCS forweakGCPusing the coupling condition inEqua-

tion (2). Desired flux vectors can again be defined by (11). For the tar-

get flux vectors, analogous to SUCP and dGCP, Equation (2) can be
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F IGURE 4 TheMCS approach can be used to compute strain designs for all four coupling types by specifying suitable desired and undesired
flux regions. For the computation ofMCS strain designs inducing pGCP andwGCP, growth optimality in the desired/target regions is implicitly
demanded in the optimization problems (see also Supplementary Text). Exemplary wild type flux spaces are outlined with a dashed black line,
desired flux spaces are shown in green, target flux spaces in red, and the designed flux spaces (after implementing theMCS) in dark blue. The upper
row shows the case withminimal coupling requirements and the lower row themost general case with arbitrary thresholds for rDesiredP (pGCP),

rTargetP (wGCP), YTarget
BM∕S (dGCP), and Y

Target
P∕S (SUCP). Note that all inequalities with a strict smaller sign (e.g., rP > 0) will be approximated by non-strict

inequalities (e.g., rP ≥ ε) for theMCS computation

translated to the following two inequalities

rP = 0 (15)

rBM = rmax
BM , (16)

to demand that all flux vectors need to be blocked that have no

production at maximal growth. The problem here is that rmaxBM depends

implicitly on the knockouts yet to be identified by the MCS algo-

rithm and can thus not be defined a priori. In the Supplementary Text,

we show how LP duality theory can be used to translate constraint
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(16) into a (single-level) optimality constraint in the MCS computation

framework.

The same approach finds application in the MCS setup for poten-

tially GCP (see Supplementary Text). As a peculiarity, pGCP does not

require the formulation of undesired behavior and only needs specifi-

cation of a desired behavior. For this, we complement constraint (11)

with the following two inequalities:

rP > 0 (17)

rBM = rmaxBM (18)

The optimality constraint (18) can again be resolved by duality the-

ory and the strict inequality in (17) be approximated with a sufficiently

small number ε> 0:

rP ≥ 𝜀. (19)

With the implicit integration of optimality constraints, all four cou-

pling types can now be handled with the MCS framework as summa-

rized in Figure 4 (for the simple conditions (1–4) aswell as for themore

general case with arbitrary thresholds for production rates and yields).

In the Results section, we will make use of this scheme to compute

and compareMCS for the four different coupling strengths in relevant

application examples. The parameters used in each MCS computation

are shown in Supplementary Table S1.

2.3 Implementation, scripts, and models used for
the example calculations

Themodels and scripts used in this work are provided atGitHub: https:

//github.com/klamt-lab/MCS_growth-coupling. The scripts require the

recent version of CellNetAnalyzer[30,49] (2021.1), a freely available

MATLAB toolbox. The new features for using MCS with implicit opti-

mality constraints have been integrated in API functions. The genome-

scale MCS computations were performed with MATLAB 2020b and

IBM ILOG CPLEX 12.10 on single nodes of a high-performance cluster

with two 8-core Intel Xeon Skylake Silver 4110 and 192 GB memory

per node.

3 RESULTS

We used the MCS framework to generate and compare exemplary

knockout-based strain designs for all four defined coupling types

(pGCP, wGCP, dGCP, and SUCP). With these calculations, we aim to

demonstrate the nested hierarchy of strain designs with increasing

coupling strength and to validate the newly developed MCS approach

for computingwGCP and pGCP strain designs.We also assesswhether

using weaker coupling strengths (pGCP, wGCP or even dGCP) pays off

in termsof number of required interventions and the computation time

compared to the strongest variant SUCP. Finally, we show how the the-

ory and variants of GCP can be generalized to other types of coupling

strategies, for example, ATP-coupled product synthesis.

3.1 Comparing strain designs for GCP of ethanol
for all coupling strengths

In the first computation, we used an E. coli coremodel and enumerated

gene MCS for GCP of ethanol for all four coupling degrees. The core

model was derived from the genome-scale model iML1515[50] anal-

ogous to EColiCore2 derived from iJO1366[51] (reactions and species

are listed in Table S2). The respective MCS problems were set up as

described in the previous section using the most relaxed formulations

(upper row in Figure 4). In order to compute comparable sets of MCS,

we used identical thresholds for the demanded minimum growth rate

(rDesiredBM ≥ 0.05 h−1) in the desired regions. In thisway,MCS for the four

coupling types are expected to exhibit the aforementionednestedhier-

archy. In addition to gene-knockouts, the MCS were allowed to block

oxygen supply as an intervention. We considered two scenarios (cf.

also Figure 2): scenario (A), where a minimum ATP demand (rATPM ≥

6.86 mmol g−1CDWh−1) for non-growth associated maintenance (NGAM)

processes was included (which is standard in most models), and sce-

nario (B) without aminimumNGAMdemand for ATP (rATPM ≥ 0).

For simplicity, Figure 5 shows the results for theMCSup to size 3 for

both scenarios. The chosen representation highlights the hierarchical

relationships between the MCS for the different coupling types. This

hierarchy implies, for example, that anMCS computed for pGCPmight

simultaneously fulfill the requirements for the stronger coupling types

wGCP, dGCP, or SUCP. Likewise, an MCS for wGCPmay also be a valid

MCS enforcing dGCP and SUCP and an MCS computed for dGCP may

also ensure SUCP. On the other hand, if, for example, an MCS calcu-

lated forwGCPdoesnot implydGCP (orSUCP) then itmightbeextend-

able, with additional knockouts to obtain a valid dGCPMCS. Yet, in the

reverse direction, every MCS for dGCP can be inherited from at least

onewGCPMCS, that is, it is either identical to or a superset (with addi-

tional knockouts) of an MCS found for wGCP. The same hierarchical

relationship holds for any pair of coupling degrees. For example, wGCP

and pGCP for ethanol synthesis can be established in both scenarios by

blocking only the oxygen supply, while for dGCP and SUCP additional

knockouts are needed. In fact, with at least one additional knockout

(e.g., ldhA, the lactate dehydrogenase gene), it is possible to extend the

pGCP- and wGCP-related MCS (O2) to an dGCPMCS (O2, ldhA) (note

that net CO2 uptakewas not allowed in themodel, otherwise fumarate

reduction needs also to be blocked). In turn, such an dGCPMCS might

also be a valid SUCPMCS (as is the case for (O2, ldhA)) and if not, then

it might be extendable to an SUCP MCS. For example, in the scenario

with zero ATP maintenance demand (Figure 4B), the dGCP MCS (O2,

atpS) is not sufficient for SUCP, but it can be extended with a knockout

of the glucose PTS (via the genes of ptsI or ptsH) to reach SUCP. Inter-

estingly, these two SUCPMCSdo not exist in scenario (A) because here

knocking out the PTS would reduce the maximal growth rate below

the given minimum threshold due to the posed ATP NGAM demand in

scenario (A). For the same reason, there are several dGCP MCS with

https://github.com/klamt-lab/MCS_growth-coupling
https://github.com/klamt-lab/MCS_growth-coupling
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F IGURE 5 Summary of all geneMCS up to size 3 for growth-coupled production of ethanol in ametabolic coremodel of E. coli generated from
two different scenarios. (A) with and (B) without aminimumNGAMATP demand. Each black dot represents anMCS, the numbers indicate the size
of theMCS and the lines the hierarchical relationships between theMCS of the different coupling degrees. Tables S3 and S4 list all MCS and their
characteristics

two knockouts in scenario (B) which are not applicable for scenario (A).

This demonstrates that the specified minimum ATP NGAM demand in

metabolic models has a significant effect on the MCS and thus needs

careful consideration.

Except for the single case described above, we found that all other

dGCP MCS are also valid SUCP MCS in both scenarios. In contrast,

not a single pGCP or wGCP MCS was a valid dGCP or even SUCP

MCS. Moreover, there is one MCS valid for pGCP and wGCP (atpS,

nuo, pnt), which is not extendable to an MCS for dGCP, thus occurring

as ‘‘dead end’’ in Figures 5A and 5B. Likewise, a number of MCS with

three knockouts exist for pGCP that do not reappear, neither identi-

cally nor as supersets, for stricter coupling types. There are three pos-

sible reasons why supersets of suchMCSmay not be found as solution

for stricter coupling. First, supersets may exist, but with a higher cardi-

nality than allowed in theMCS enumeration. Second, knockouts, which

would increase the coupling strength, might be prohibited in the com-

putation, as is the case for spontaneous reactions. Lastly, an MCS for

stronger coupling may simply not exist due to the network topology

and constraints, for example, when a reaction with a strictly positive

lowerbounded rate, likeATPmaintenance, cannotbe coupledwithpro-

duction.

3.2 Genome-scale calculations for selected
products

Next, we applied the extended MCS framework to compute realis-

tic growth-coupled strain designs in a genome-scale model of E. coli

(iML1515[50]) for several relevant target products. The goal was to

compare the number of required interventions and the computa-

tional effort to determine strain designs for the four different coupling

degrees.We considered the production of 12 different (native and het-

erologous) products. For heterologous products, the required path-

ways were added to the model (detailed pathways listed in the Table

S5). In contrast to the calculations in the previous chapter, where the

strain design just had to exclude zero production, we here demanded

higher minimum production thresholds, since predominantly poorly

performing strain designs are typically found when using low produc-

tion minima.[25,52] We used a reference production rate rP,ref to define

the respective target region for each coupling degree. rP,ref was deter-

mined as 20% of themaximum possible production when the wild type

strain, extended with heterologous pathways if applicable, grows at

20% of its maximal growth rate. For pGCP we demanded that this ref-

erence production rate (rP,ref) would be attainable together with the

maximum growth rate of the MCS strain. For wGCP we defined the

undesired fluxes as those with production inferior to the threshold rP
≤ rP,ref at maximum growth rate. For dGCP we demanded a minimum

ratio of growth and production rate by targeting all fluxes below the

threshold
rP
rBM

≤
rP,ref

0.2 rBM,max (WT)
. Finally, in the case of SUCP we targeted

fluxes with
rP
rS

≤
rP,ref
rS,max

. In all setups, we additionally specified a desired

region to guarantee that found strain designs still allow for growth

rates greater than 0.05 h–1. For the NGAM demand of ATP we used

rATPM ≥ 6.86 mmol g−1CDWh−1.Theparameters for each computation are

listed in Table S1.

In contrast to the full enumeration used in the E. coli core model

above, we applied the following two procedures for finding singleMCS,

which are also available in CellNetAnalyzer: In the first computation

we aimed to find (quickly) just a single MCS, without the necessity

to obtain the MCS with the smallest number of knockouts (Table 2),

while in the second procedure we searched for an MCS with a low

(ideally minimum number) of knockouts (Table 3). We emphasize that

the performance of these calculations depends on many factors, such

as choice of the MILP solver (here CPLEX) and its parameters. Hence,

the presented results of the computations provide a small sample

that only exposes tendencies. To at least reduce dependency of the

results on the chosen seed, we performed 12 runs in the first scenario
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TABLE 2 MCS strain designs for the growth-coupled (pGCP, wGCP, dGCP, SUCP) production of 12 different products with arbitrary number of
knockouts

pGCP wGCP dGCP SUCP

Product av. size suc/tot av. runt. av. size suc/tot av. runt. av. size suc/tot av. runt. av. size suc/tot av. runt.

Ethanol 1.0 12/12 4min 1.0 12/12 4min 2.6 11/12 4min 4.3 12/12 4min

Lysine 13.0 2/12 10min - 0/12 timeout 13.0 1/12 9min 25.1 8/12 14min

Glutamate 4.5 12/12 4min 7.0 4/12 5min 12.0 1/12 7min 17.3 8/12 6min

Isobutanol (h) 7.2 10/12 5min 4.9 7/12 8min 7.3 6/12 13min 10.1 12/12 4min

1,4-Butanediol (h) 5.4 9/12 18min 4.5 4/12 4min 10.8 5/12 4min 8.3 12/12 5min

2,3-Butanediol (h) 6.3 12/12 4min 7.2 10/12 8min 8.9 7/12 19min 8.4 12/12 4min

Itaconic acid (h) 5.6 12/12 4min 9.0 3/12 9min 9.9 8/12 10min 12.8 12/12 4min

Isoprene (h) 12.1 9/12 14min 11.3 3/12 41min 10.7 3/12 13min 19.9 8/12 11min

Butane (h) 6.5 10/12 11min 6.3 4/12 7min 11.0 4/12 5min 24.0 3/12 14min

Methacrylic acid (h) 8.2 12/12 4min 12.0 5/12 7min 10.3 3/12 5min 10.6 12/12 6min

Resveratrol (h) 8.5 11/12 10min 9.0 2/12 60min 14.2 5/12 22min 18.8 6/12 8min

Bisabolene (h) 10.9 8/12 20min 10.9 7/12 26min 11.8 5/12 4min 12.6 11/12 10min

Mean (all rows except

lysine)

6.9 10.6/12 9min 7.6 5.5/12 16min 10.5 5.3/12 10min 13.4 9.8/12 7min

In these calculations, we aimed to find just a single MCS, without the necessity to obtain the smallest one. For each combination of product and growth-

coupling degree, 12 computations were started with different seeds and with a time limit of 2 h each (details for each run are shown in Table S6). The last

row contains the mean values over all scenarios except for lysine where a meaningful comparison is not possible because noMCS could be found for wGCP.

ComputedMCS are shown in Table S7.

Abbreviations: av. size, average number of knockouts per MCS; suc/tot, number of successful computations (that returned an MCS) per total runs; av. runt,

average runtime of successful computations; (h), next to product namemarks heterologous products

with a runtime limit of 2 h and six runs in the second procedure with

a limit of 4 h (all with identical solver parameters but starting the

computation from different seeds) for each combination of product

and growth-coupling degree to obtain averaged values for runtime and

MCS size (Tables 2 and3). The code thatwas used for the computations

is available on GitHub (see Implementation section).

We first analyze the data for the procedure that quickly searches for

any MCS (without the necessity to find one with the smallest cardinal-

ity; (Table 2)). With the exception of lysine under wGCP, at least one

MCS for all combinations of products and coupling degrees could be

found. However, a more differentiated view can be obtained by look-

ing at the number of successful runs (finishing before the timeout of

2 h) among the 12 different seeds for each product. For every coupling

degree, we can find products, where at least one run did not succeed.

Furthermore, it can be seen that the mildest (pGCP) and the strongest

(SUCP) coupling degree have the highest success rates. For the runs

that were successful we can see that, in average, SUCPwas the fastest

followed by pGCP and dGCP (similar) and with wGCP being the slow-

est. Finally, the computations also show a hierarchy in the sense that

the average size of the MCS increases with coupling strengths, how-

ever, it should be noted that this is not necessarily the case since min-

imum cardinality for the MCS computations was here not demanded

and there are indeed cases where the MCS of a stronger coupling

degree have lower average size.

When searching for MCS with low (ideally minimum) cardinality

shown in Table 3, we can see that only in relatively few cases MCS

with guaranteedminimumnumber of knockouts could be found. Amin-

imum solution could be found for all coupling degrees for the prod-

ucts ethanol, isobutanol, 1,4-butanediol and 2,3-butanediol. pGCP and

SUCP show again a slightly better performance regarding successful

finishing full minimization. On the other hand, dGCP and SUCP cal-

culations were the only ones that could find for each product at least

one MCS with (relatively) low number of interventions (e.g., pGCP

and wGCP did not find solutions for lysine, wGCP furthermore missed

resveratrol). However, pGCP was the fastest in cases where it finished

the computation. wGCP and dGCP again had a higher number of time-

outs (unsuccessful runs). In cases where the minimumMCS was found

themonotone increase inMCS sizewith stronger coupling degrees can

again be observed (but notice the larger MCS for isoprene for pGCP

andwGCP (6) compared todGCP (5)whichoccurs because the fullmin-

imization could not be finished in those cases).

3.3 Generalization of coupled product synthesis:
From growth-coupled to ATP-coupled production

So far, we focused on GCP of a target metabolite, the most common

principle for strain design. In the following, we will show that this cou-

pling principle can be generalized to other biological functions than

growth. One relevant example is to couple ATP synthesis with product

formation. Such a coupling might be particularly relevant for the idea

of enforced ATP wasting as a metabolic engineering strategy, which
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TABLE 3 MCS strain designs for the growth-coupled (pGCP, wGCP, dGCP, SUCP) production of 12 different products withminimum number
of knockouts

pGCP wGCP dGCP SUCP

Product m. size

opt/suc/

tot av. runt. m. size

opt/suc/

tot av. runt. m. size

opt/suc/

tot av. runt. m. size

opt/suc/

tot av. runt.

Ethanol 1 6/6/6 4min 1 6/6/6 4min 2 6/6/6 5min 3 6/6/6 5min

Lysine - 0/0/6 timeout - 0/0/6 timeout 11 0/4/6 timeout 11 0/6/6 timeout

Glutamate 3 6/6/6 38min 7 0/1/6 timeout 8 0/2/6 timeout 8 0/6/6 timeout

Isobutanol (h) 2 6/6/6 6min 4 1/2/6 3 h 4 2/2/6 3 h 5 2/6/6 4 h

1,4-Butanediol (h) 2 6/6/6 7min 2 6/6/6 7min 4 6/6/6 2 h 5 3/6/6 3 h

2,3-Butanediol (h) 3 6/6/6 31min 4 1/2/6 86min 4 2/6/6 77min 4 6/6/6 30min

Itaconic acid (h) 3 6/6/6 14min 7 0/1/6 timeout 8 0/3/6 timeout 8 0/6/6 timeout

Isoprene (h) 6 0/4/6 timeout 6 0/2/6 timeout 5 0/5/6 timeout 7 0/6/6 timeout

Butane (h) 5 0/5/6 timeout 5 0/1/6 timeout 5 0/6/6 timeout 5 2/6/6 4 h

Methacrylic acid (h) 3 6/6/6 33min 6 0/2/6 timeout 6 0/5/6 timeout 6 0/6/6 timeout

Resveratrol (h) - 0/0/6 timeout 7 0/2/6 timeout 8 0/4/6 timeout 8 0/6/6 timeout

Bisabolene (h) 6 0/4/6 timeout 5 0/5/6 timeout 6 0/6/6 timeout 7 0/6/6 timeout

Mean (all rows

except lysine and

resveratrol)

3.4 4.2/5.5/6 4.7 1.4/2.8/6 5.2 1.6/4.7/6 5.8 1.9/6/6

In these calculations, we aimed to find a singleMCSwith a low number of knockouts (ideally with the minimum number of knockouts). For each combination

of product and growth-coupling strength, six computations were startedwith different seeds andwith a time limit of 4 h each (details for each run are shown

in Table S8). The last row contains themean values of all scenarios except lysine and resveratrol, for which pGCP (andwGCP)MCS could not be found. Due to

the large number of timeouts, the runtimes are not considered. ComputedMCS are shown in Table S9.

Abbreviations: m. size, minimum size of all found MCS (smallest MCS); opt/suc/tot, number of computations that returned the smallest MCS/number of

computations that returned an MCS without guaranteeing for minimality/total runs; av. runt, average runtime of computations with assured smallest MCS;

(h), next to product namemarks heterologous products.

received increased attention in recent literature.[53–60] The idea is

that introduction of an ATPwasting mechanism, such as artificial futile

cycles[53,55,57] or, more directly, via the ATP-hydrolyzing F1-portion of

the ATPase,[59-61] may boost substrate uptake and product synthesis

if ATP production is coupled with the synthesis of the target metabo-

lite. This could be particularly relevant for improving the performance

of two-stage processes.[43]

It is now straightforward to consider the same four coupling

strengths as for GCP. Potentially ATP-coupled production (pACP)

would demand that product synthesis is possible under maximal ATP

production.Weakly ATP-coupled production (wACP)means that prod-

uct synthesis is mandatory under maximal ATP production. Direction-

allyATP-coupledproduction requires product synthesiswheneverATP

is synthesized and substrate-uptake-coupled production again implies

product formationwhenever substrate is taken up. Formeaningful def-

initions, we would demand in all four cases that ATP production is fea-

sible in the network (similar to growth in the growth-coupled case).

ATP-coupled strain designs can then be calculated in an analogousway

to growth-coupled strain designs, for example, via MCS, by replacing

terms with the growth rate with terms for ATP production. Net ATP

production (and consumption) canbe simulatedvia theNGAMreaction

(rATPM) included inmost models.

While this generalization can directly be applied, as it could be for

coupling any other flux with product formation, the case of ATP syn-

thesis requires special attention.While the consideration of pGCP and

wGCP is meaningful in the context of (laboratory) evolution, it is less

reasonable to assume that the cell strives to maximize ATP synthesis

for non-growth-associated processes. For this reason, we will not fur-

ther consider pACPandwACP. Second, under the premise that feasibil-

ity of growth and net ATP synthesis is ensured, the definition of SUCP

is identical for growth- and ATP coupling as it implies product synthe-

sis when substrate is taken up, which is a requirement for growth and

ATP synthesis. This has some important consequences. In particular,

the existence of SUCP-like growth-coupled strain designs proven for a

wide range of products and production hosts[8] now also implies wide

feasibility of ATP-coupled strain designs under SUCP because a min-

imum ATP maintenance constraint for the rATPM reaction was used in

these calculations.

For the reasons given above we need not consider pACP, wACP,

and SUCP for ATP-coupled product synthesis and focus now on direc-

tional ACP. Generally, since ATP is required for growth, dACP implies

almost alwaysdGCP.Only in “pathological” examples, growthmayabol-

ish ATP-coupled product synthesis. This can only happen if growth

consumes ATP and the product (or a product precursor) in the same

fixed ratio as both are generated. Such a case is extremely unlikely.

We did not observe this in our computation examples, and we there-

fore assume in the following that dGCP is present in a strain whenever

dACP is. However, the other way around does not necessarily hold.
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F IGURE 6 Comparison ofMCS for dGCP, for dACP, and for SUCP for ethanol synthesis in the iML1515 coremodel. In all cases, no NGAMwas
demanded. TheMCS of size 2 and 3 for dGCP are identical with those from Figure 5B. ATP-coupled production takes an intermediate position
between dGCP and SUCP. All SUCP-MCS also have dACP, which in turn have dGCP. SomeMCS for dGCP are not ATP-coupled. In these cases,
production is forced through alternativemechanisms

For example, an dGCP strain might be established because a target

metabolite becomes, by suitable interventions, a necessary byproduct

of a biosynthetic pathway andmust then be excreted. This strainwould

not show dACP. Here we can again distinguish the two cases with and

without a given demand of ATP for NGAM. Importantly, if the NGAM

demand is not zero, all resulting strain designs computed for dACPwill

also fulfill the condition of SUCP: then, aminimumamount of substrate

must be taken up to produce the demanded amount of ATP and since

dACP demands some product synthesis whenever ATP is synthesized,

dACP implies product synthesis whenever substrate is taken up. We

can therefore concentrate on the case for dACP without a minimum

NGAMdemand.

For a comparison with the respective dGCP and SUCP strains, we

fully enumeratedMCS up to the size of 4 in the coremodel of iML1515

for dACP of ethanol by E. coli. In analogy to the Equations (12) and (13)

used for dGCP, the target system for dACP reads

rP = 0 (20)

rATPM ≥ 𝜀 (21)

andwe also demanded feasibility of growth (Equation (11)).

The results of these computations are shown in Figure 6 and indi-

cate that dACP takes an intermediate role within the (hierarchical)

tree of MCS connecting dGCP with SUCP strain designs: all MCS for

SUCP imply dACP which in turn implies dGCP. With the explanations

given above, this was to be expected, first, because SUCP with feasi-

ble growth and net ATP formation implies both dACP and dGCP and,

second, because directional coupling of ATP synthesis with ethanol
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formation should also (directionally) couple growth with ethanol pro-

duction since ATP is required for growth. In the reverse direction,

Figure 6 suggests that many dGCP strategies are induced by direc-

tional coupling of ATP synthesis with ethanol formation, and that some

dACP strategies in turn even fulfill SUCP. An example of an MCS that

is valid for all strategies is to block supply of oxygen and to knock-

out the pathway to the alternative fermentation product lactate. How-

ever, There are some MCS for dGCP that are not valid dACP strate-

gies (e.g., fourth MCS and last MCS in Figure 6) indicating that the

mechanism of growth-coupling induced by these MCS must be ATP-

independent. For example, as suggested by other studies, branching

points in themetabolism, knownas anchor reactions,may serve as suit-

able targets to make a compound a mandatory by-product of essential

biomass precursors.[32,62] The fourth dGCP MCS in Figure 6 is a par-

ticularly interesting case as this MCS can be extended to (direction-

ally) couple both biomass and ATP synthesis with product formation

and that some (but not all) of these dACP strategies directly support

SUCP.

4 DISCUSSION

Coupling growth with product synthesis is the most common design

principle used in computational strain design for metabolic engineer-

ing. In this study, we reviewed and systematized the existing notions

resulting in four unambiguous classes. All existing methods for com-

puting growth-coupled strategies can be assigned to one of these four

categories. We based each coupling type on simple mathematical def-

initions implying a clear hierarchical order, such that a strain design

strategy for a stronger coupling type automatically implies all weaker

ones. Simple constraint-based modeling techniques such as FBA, PEs,

and yield spaces can be used to test whether coupling of a certain type

is present in a given network (design).

We clarified how the framework of MCS can be employed to com-

pute strain design for each of the four classes. While the formulation

of specific MCS problems to find dGCP and SUCP strain designs is

straightforward (and has, for the case of SUCP, been used in previous

work) strategies for pGCP and wGCP could so far not be computed

with MCS. We therefore extended the existing MCS framework with

implicit constraints for the maximal growth rate, so that product syn-

thesis can now be demanded for the special case of optimal growth.

This extension closes the gap between MCS-based and bilevel-based

strain design approaches. The new optimality constraint feature for

(reaction or gene) MCSwas also implemented in CellNetAnalyzer and is

compatiblewithmost other recentMCSdevelopments, suchas thedef-

inition of multiple target and desired regions as well as substrate and

heterologous pathway additions.[48]

We illustrated the hierarchical dependency of the four coupling

types by exemplarily computing and analyzingMCS for GCP of ethanol

in E. coli. The results confirmed that an MCS found for a demanded

stronger coupling degree is always a superset of (or identical to) at

least one MCS computed for weaker coupling. In the reverse direc-

tion, searching for MCS of a weaker coupling type (e.g., dGCP) may

deliver strain design strategies that are also valid for stronger cou-

pling (e.g., SUCP). If a valid MCS found for a given coupling type (e.g.,

dGCP) does not imply even stronger coupling (e.g., SUCP), then itmight

be extensible to an MCS of stronger coupling by adding further inter-

ventions. In a second computation, we used MCS to compute realistic

gene-knockout strategies that prime E. coli for the production for 12

native and heterologous products, again using all four coupling types.

We found that in most cases where MCS with a minimum number

of cuts could be found, demanding weaker coupling strengths may be

beneficial in terms of required interventions, especially when compar-

ing pGCP against the other three coupling strengths. However, much

less is saved (typically only one or two interventions) when compar-

ing the smallest number of interventions in wGCP and dGCP against

SUCP (see last row in Table 3). Moreover, although the respective runs

always depend on the problem setup and the chosen solver (param-

eters) and seeds, we noted a tendency that computing the respec-

tive MCS for pGCP and SUCP had higher success rates compared to

wGCP and dGCP and was also faster (in case of SUCP at least when

searching for any MCS; Table 2). For wGCP, this can be explained by

the fact that the strain design optimization problem has the largest

size of all coupling degrees (see Supplementary Text). Also, we did not

encounter any case where a solution for the weakest coupling degree

(pGCP) existed but not for the strongest (SUCP). This confirms results

of a recent study showing that SUCP strain designs exist for almost all

potential products (metabolites) in five important production hosts.[8]

Altogether, from the perspective of computability, pGCP and SUCP

seem to be preferable, however, since pGCP cannot guarantee prod-

uct synthesis (even not at optimal growth) this could be an argument

for favoring SUCP strategies. Generally, we recommend assessing the

feasibility of each coupling type by computing (single) smallest or even

random MCS before searching for an MCS with minimum number of

interventions.

As a last methodological development, we showed how product

synthesis can be coupled to other biological functions than growth

and that the notion of coupling strengths as introduced herein for

growth coupling can be naturally generalized for those cases. As a rel-

evant example for metabolic engineering, especially in the context of

enforced ATP wasting strategies, we discussed the design principle

of ACP. Since ATP synthesis is directly relevant for growth, there are

several relationships between growth-coupled and ATP-coupled strain

designs. In particular, intervention strategies inducing strongly ATP-

coupled product synthesis imply practically in all cases also dGCPwhile

the converse is not necessarily true.
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