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Conservative and radiative dynamics in classical relativistic scattering and bound systems
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As recent work continues to demonstrate, the study of relativistic scattering processes leads to valuable insights
and computational tools applicable to the relativistic bound-orbit two-body problem. This is particularly relevant
in the post-Minkowskian approach to the gravitational two-body problem, where the field has only recently
reached a full description of certain physical observables for scattering orbits, including radiative effects, at
the third post-Minkowskian (3PM) order. As an historically instructive simpler example, we consider here the
analogous problem in electromagnetism in flat spacetime. We compute the changes in linear momentum of each
particle and the total radiated linear momentum, in the relativistic classical scattering of two point-charges, at
sixth order in the charges (analogous to 3PM order in gravity). We accomplish this here via direct iteration of
the classical equations of motion, while making comparisons where possible to results from quantum scattering
amplitudes, with the aim of contributing to the elucidation of conceptual issues and scalability on both sides.
We also discuss further extensions to radiative quantities of recently established relations, which analytically
continue certain observables from the scattering regime to the regime of bound orbits, applicable for both the

electromagnetic and gravitational cases.
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I. INTRODUCTION

The dawn of gravitational-wave astronomy [1-5] and the
promise of more sensitive future detectors [6—8] have renewed
interest in varied approaches to solving the two-body problem
in general relativity (GR). In particular, much recent work
has focused on importing advanced tools from quantum field
theory to treat classical scattering of massive bodies in the
post-Minkowskian (PM) regime, with large impact param-
eters, but unconstrained speeds. Knowledge gained in this
regime may also be used to develop a better understanding
of inspiraling bound systems, with the aim of constructing
more precise waveform models for detection and analysis of
gravitational waves from compact binaries.

Alongside gravitational scattering, there is significant in-
terest in (and overlap with) analogous but simpler problems in
Yang-Mills theories, including the Abelian case, electromag-
netism, in flat spacetime. In spite of the lesser nonlinearity,
making calculations more easily tractable, scattering prob-
lems in gauge theories still share many of the same technical
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difficulties encountered in gravity, and thus can serve as in-
structive toy models. A further reason for this interest stems
from the study of double-copy relations between gauge and
gravity theories [9-12] and their uses in accomplishing gravity
calculations with simpler gauge-theory building blocks.

A significant milestone in the gravitational case has been
the recent completion of the calculation of the relativistic
impulse (net change in momentum) of each body, in the
scattering of two spinless massive bodies, at the third post-
Minkowskian (3PM) order. Following important works such
as Refs. [13—15], which established connections between scat-
tering amplitudes and classical dynamics at the 2PM level,
the study of the 3PM level began in Refs. [16,17], which
determined the conservative sector of the 3PM dynamics by
matching to amplitudes computed via modern on-shell tech-
niques, such as generalized unitarity [18-20] and the double
copy [10-12], employing the effective-field-theory match-
ing procedure set up in Ref. [15]. These results have been
confirmed using various complementary methods [21-24],
including calculations based on classical worldlines instead of
quantum fields [22]. The resultant 3PM conservative contri-
bution to the scattering angle function presented a puzzle [25]
in that it did not have a well-behaved high-energy limit, and
did not smoothly connect to previous results for scattering of
massless particles first derived in Ref. [26] and more recently
confirmed in Refs. [27-29].

The resolution of this tension was first suggested in
Ref. [29], which demonstrated, in the case of N =8 su-
pergravity at two-loop order, the importance of including
radiative effects in order to obtain a well-behaved ultrarel-
ativistic limit. Subsequently, in the case of GR, Ref. [30]
showed that a smooth high-energy limit (and a match to the
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massless results from Ref. [26] in that limit) is restored by
including the radiative contribution to the scattering angle
in addition to the conservative one, with the former being
determined (via a relation derived in [31]) by the total ra-
diated angular momentum at 2PM order. As we will detail
below, the complete (conservative plus radiative) 3PM im-
pulses are determined by the complete 3PM scattering angle
along with the total linear (energy-)momentum radiated away
in gravitational waves, first appearing at 3PM order. This
last missing piece, the radiated momentum, was calculated in
Ref. [32], by employing the formalism of Ref. [33] (KMOC)
for computing classical observables from on-shell amplitudes.
Finally, Ref. [34] also used the KMOC formalism to directly
compute the impulses through 3PM order, thereby confirming
and combining all the results mentioned above. In further
confirmation, the radiative contributions to the 3PM impulse
have been reproduced by a classical variation of constants
method in Ref. [35], and the full 3PM scattering angle has
been reproduced by a complementary quantum double-copy
method in Ref. [36]. Meanwhile, the analysis of the 4PM level
has been initiated in Refs. [37,38].

Another strategy to solve the scattering problem in a
way that includes both conservative and radiative dynam-
ics is direct iteration of the classical equations of motion,
in the situation where one lets two particles (representing
compact bodies) perform a fly-by with a large impact pa-
rameter. One then constructs the particles’ worldlines as
expansions in the coupling strength, in the weak field (large
impact parameter, small deflection) regime, with the zeroth-
order worldlines given by uniform (straight-line) motion.
The field equations and the equations of motion are then
solved iteratively, informing each other to the required or-
der. Any radiative/dissipative effects are included at each
order by employing retarded boundary conditions (for fields)
and using a regularization technique to evaluate the ef-
fect of each particle’s field on itself. Historically, this route
was followed in Ref. [39] where the impulse was calcu-
lated for both electromagnetism (EM) and GR up to 2nd
order.

Here we push this method to the 3rd order in the EM
case. In addition to including radiative effects, another advan-
tage of the classical method is that it is relatively simple to
automate the iteration to go to higher orders with the only
potential challenge being computation of one-dimensional
integrals. This may be useful for efficiently computing scat-
tering observables, which can then be used for subsequently
understanding bound orbits. It would also be highly interest-
ing to connect this efficient classical iteration to perturbative
scattering-amplitude calculations, for instance by expressing
amplitudes using the so-called worldline quantum field theory
[40,41]. Furthermore, the classical method is also perhaps the
simplest to justify, being most closely related to the actual sit-
uation of classical scattering of compact objects, and it gives
detailed information about the time-dependent worldlines at
each order as another benefit.

Having in hand results for the scattering problem, we
investigate the possibility of mapping observables from un-
bound to bound orbits via analytic continuation, following
Refs. [42,43], where the basis of the mapping procedure
was explained and used to relate the scattering angle for

FIG. 1. Classical scattering of two charged particles in the COM
frame. We denote with eq; and eq, the electric charges, where we
introduce the factor e to keep track of the order of calculation since
we will be solving the scattering problem in a weak-field/coupling
expansion. We denote with m;, m, the masses, p* is the initial
spatial momentum in the COM frame, and ~/—b? = |b| is the impact
parameter. Finally, x is the scattering angle and K* is the radiated
momentum.

unbound orbits to the periastron advance angle for bound or-
bits. An analogous map between energy losses was presented
in Ref. [44], and was subsequently verified from the results
of Ref. [32] for the radiated linear momentum in the GR case.
Here we provide a general relation between observables (satis-
fying certain criteria) for bound and unbound orbits following
the method given in Ref. [42], and we explicitly relate angular-
momentum losses between bound and unbound orbits. We
verify the map between energy losses using the expression
for leading order radiated momentum in EM derived earlier,
and we use the map between angular-momentum losses to
uncover an error in the expression for angular-momentum
losses for 1 post-Newtonian (PN) unbound orbits in GR given
in Ref. [45]. We also comment on the scope of using these
relations in computing resummed expressions for observables
in the bound case.

Section I A summarizes our results for EM scattering while
comparing them to analogous results for the GR case ob-
tained elsewhere, and Sec. I B summarizes our investigations
of unbound-to-bound continuation.

A. Anatomy of relativistic scattering to 3rd order

For both the EM and GR cases, the net results of a two-
body scattering encounter can be expressed as functions of
the asymptotic incoming state at past infinity, where inter-
actions are perturbatively negligible, with the two bodies
moving uniformly on straight-line trajectories in (asymptot-
ically) Minkowski spacetime. We identify the initial state
with the zeroth-order state in our perturbative expansion. It is
specified by the initial momenta p| = mu} and py = myub’,
where m, are the rest masses and /' are the 4-velocities with
ug = 1, and by the initial impact parameter vector b* (pointing
2 — 1) orthogonally separating the two initial uniform-motion
worldlines. A typical scattering event has been illustrated in
Fig. 1(a). The initial relative velocity v, the corresponding
Lorentz factor y, and the initial total energy E in the center-
of-momentum (COM) frame (frame of reference in which the
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spatial components of total momentum is 0) are defined by

y = I pi-p
V1 =02 mimy

E* = (p1 + p2)* = mi +m3 + 2mmyy,

(1.1

where here and in the rest of the paper, we use ¢ = 1 and
employ dot products and squares as in flat spacetime, and the
(4, —, —, —) metric signature. The COM frame has velocity
(p1 + p2)*/E. The “relative momentum” p*, giving (minus)
the spatial momentum of body 1 (body 2) in the COM frame,
and its magnitude |p| are given by

niny
=7 [(ma + myy)uy — (my + myy )b ],
minpyv

E

w

(1.2)
Ipl =

The magnitude of the initial COM-frame total angular mo-
mentum is J = |p||b|.

The perturbations of the worldlines due to EM or GR inter-
actions can be computed by iteratively solving the relevant
field equations and equations of motion, working perturba-
tively in Newton’s constant G in the GR case, or in ¢? in
the EM case, where e is an order-counting parameter such
that the two charges are eq; and eq,. We work in Gaussian
units in the EM case. While we use G and ¢* as formal ex-
pansion parameters, the true dimensionless quantities, which
we assume to be small, are essentially the leading terms in
the scattering angles in Egs. (1.4) and (1.5) below; our funda-
mental assumption is that the scattering particles’ trajectories
are small perturbations of straight-line inertial motion. All
quantities of interest (impulse, radiated energy and angular
momentum) can be obtained from the perturbed worldlines
computed to the relevant order.

The impulses up to 2nd order for both the EM and GR
cases were first computed by Westpfahl in Ref. [39]. Through
this order, no net 4-momentum is radiated away, so the im-
pulses on the two bodies are equal and opposite, Aph =
—Ap!'. They are given in terms of the COM-frame scattering
angle x by

bll
Apf = Iplsin x4 (cos x = D+ O, G, (13)

in each case, where the second-order scattering angles are

28 q1q2E netqlgSME ]
- - +0@), (14
HEM mumyyv?|bl  2mimiy2v?|b|? (), (1.4
2GEQ2y* —1) 3nG*ME(5y*—1) ,
T - +O(G).
How V2U2|b| 4]/2U2|b|2 (GY)
(1.5)

Here, M = m; 4+ m; is the sum of rest masses.

While there is no radiation of linear momentum up to the
2nd order, the dynamics is not purely conservative at these
orders, as there is a loss of angular momentum, which is
encoded in the second-order trajectories. We compute this
directly from the trajectories for the EM case in Sec. III B,
finding the radiated angular momentum (minus the change in

the particles’ orbital angular momentum) in the COM frame
to be

64‘]%51% 6
Jrad EM = 2 Iem(v) + O(e®), (1.6)
E|b|
qi/mi  qa/mo 2 2arctanhv
)i — (/2 2 2T
e () 3)/(612/”12 %/ml) AT y2v?
(1.7)
The analogous result for GR,
G*mPm2(2y? — 1
Jrad,GrR = 2 ! 2(“;'/ )IGR(U) + O(G?), (1.3)
16 2 203v% — 1
Igr(V) = ——+ = + 26v - 1) )arctanh v, (1.9)
3 v2 v3

was derived in Ref. [30] by directly computing the total angu-
lar momentum radiated away in the gravitational field. Note
that both results feature a factor of the “rapidity,” arctanh v =
arccosh y = 2 arcsinh \/(y — 1)/2. Also note that Jy,4 gr 1S
always positive, so that the orbital angular momentum always
decreases in magnitude, while Jy,q gy is positive for opposite-
sign charges (attraction) but can be negative for same-sign
charges (repulsion), so that the orbital angular momentum can
increase in magnitude in the latter case.

At the 3rd order, in both the EM and GR cases, linear
momentum is radiated away as well. The impulse on body
1 (with results for body 2 obtained by exchanging identities,
1 <> 2) can be written in both cases as follows:

Aplf = Aplll,crms + ApllL,rad’ (110)
. b+
Ap}lL.cons = |plsin XCOHSm + (c0S Xcons — l)p“, (1.11)
K- 175) " b*
AP g = (4 —yul) +1plma s (1.12)

(yv)? |b|

where x.ons 1S the conservative part of the scattering angle,
Xrad 18 the radiative part of the scattering angle, and K* is the
radiated momentum. In Sec. IIT A, we argue for this structure
based on general grounds, and also confirm it explicitly by
directly computing the full impulse from the 3rd order force
in the EM case.

For the conservative scattering angles, we have xcons =
XV +x@ + x84+ O(G, ), where the first- and second-
order parts are given in Eq. (1.4). At the 3rd order in the EM
case, as we compute below, we have

3)
Xcons,EM
eéq?ng[(m% + m%)(4y2 —6) — dmimyy (y? — 3v2)]
3mim3ySv|b|?

(1.13)

This matches the result derived from potential-region integra-
tion of the two-loop amplitude in Ref. [46]. The analogous
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result for GR,
3) _GEP[64y° — 120y + 60y* =5 8mumy
Xcons GR — |b|3 3(]/1))6 - E2
14y2 425 4y* — 1292 -3
X 302 o) arctanh v | |,
(1.14)

was first derived in Ref. [16], also from potential-region
integration of the two-loop amplitude.The GR result has a
logarithmic divergence in the high-energy limit due to the
arctanh v term, a feature, which is not present in the EM result
(1.13). This divergence is removed by adding the radiative
contribution to the scattering angle .4, which was first com-
puted in Ref. [30] by using the relation derived in Ref. [31],
1 8XCOHS

Xrad = 2 BJ Jraa + O(G4 e )

where Ji,q is the radiated angular momentum [and with
a/aJ = (1/|p|)(8/3|b])]. This yields

(1.15)

266 3 3E
Krad EM = %@W) +OE),  (1.16)
1 2
2G3mimE 2y? —1)?
Xrad GR = — 13 S 3 Ier(v) + O(GY),
|b] y3v
(1.17)

where the I functions are given in Egs. (1.6) and (1.8). We
confirm below that this result for x.qgm, coming via the
relation (1.15) from Jiaq gm (computed from the second-order
trajectories), matches the result we obtain directly from the
third-order trajectories. The result of Ref. [30] for x;,4.gr from
Jrad.gr via (1.15) has also been independently confirmed by
the direct calculation of the third-order impulse in Ref. [34].

The final ingredients in the expression for radiative impulse
in Eq. (1.12) is the radiated momentum K*. We compute
Kl below from the full third-order impulses, using K* =
—Apy — Aph, obtaining

g _TERG (4w, B )3 E]
EM 4|b|3 m% 1 2 2 3)/1)

_ q192 ul +M2 ]:(U)} +O(€8) (]]8)
mmy y+1
arctanh v )
Foy= ¢ )3{<3y + Dy =) —4r - 1) }
(1.19)

By performing the momentum-space integral given in Eq.
(6.32) of Ref. [33], we find that Eq. (1.18) precisely matches
the direct calculation of the momentum radiated to infinity by
the EM field. The radiated momentum for the GR case was
first computed in Ref. [32] using the KMOC formalism [33],
with the result

G'%
Kig = |'Z|3m2 L 2 EW) + O(GY), (1.20)
E(v + 1 arctanh v
0 piee Y g R ))
T 2 2v

where the f, are polynomials in y divided by powers of
yv given in Eq. (9) of Ref. [32]. This, along with the full

(third-order) impulse structure Eqs. (I.11, 1.12) and all of the
GR results above, has also been confirmed by the calculation
in Ref. [34] of the complete A p‘f!GR using the KMOC formal-
ism [33] applied to the two-loop amplitude.

B. Unbound to bound continuation

An ultimate objective is to use the results obtained from
analyzing scattering problems to learn more about the bound-
orbit problem. One way to achieve this is by mapping
corresponding observables from unbound to bound orbits, as
was exemplified in Refs. [42,43], by relating the scattering
angle x for unbound orbits to the periastron advance A¢ for
bound orbits,

APET)=x(E,T)+ x (&, =J). (1.22)

In Sec. IV, we show how this relation can be extended to
other observables, provided certain conditions are satisfied.
We show this explicitly by relating energy and angular-
momentum losses between unbound and bound orbits. The
relations for the energy loss reads
Ebound(g"]) — E;:i%bound(59j)

rad

E::ébound(g’ -J),
(1.23)

as previously noted in Refs. [44]. Here we find an analogous
relation for the angular-momentum loss,
Jbound(g, J) Junbound(g7 J) + Junbound(g’ —J)

rad rad rad

(1.24)

These maps can be used to recover resummed relativistic
expressions for radiative losses in bound orbits. However,
since the PM/weak field expansion is also an expansion in
1/J (see expressions of scattering angles in Eq. (1.17) for rel-
evant dimensionless quantities, the initial angular momentum
is related to impact parameter as J = |p||b|), we only recover
the leading order 1/J3 (1/J) part of the energy (angular mo-
mentum) losses, respectively, from the leading order radiative
losses. For gravity, the OPN energy loss for generic bound
orbits also contains terms that scale as 1/J° and 1/J7, and the
coefficient of these terms cannot be recovered directly through
the map. The situation is worse for angular-momentum loss
where the OPN angular-momentum loss only contains even
powers of 1/J [as would be expected from Eq. (1.24)] and
thus leading 2PM angular-momentum loss does not provide
any contribution.

Naively, this would lead to the discouraging conclusion
that one needs to solve till 7PM for gravity to recover even
the OPN energy loss. However, as we shall discuss in detail
below, we can circumvent this by using an alternate method of
fixing radiative losses for generic orbits in the PN expansion.
We do it by constructing an ansatz for radiative losses in
generic orbits, parametrized by a finite number of unknown
coefficients, which are then fixed by evaluating the energy
losses in the weak field expansion where it should match with
the PM results. Further constraints on the coefficients can be
obtained by using the relation between energy and angular-
momentum losses for circular orbits and some coefficients can
be discarded by adding schott/total time derivative terms to
the radiative losses. It can be shown that this method allows
us to fix the OPN energy losses from just 4PM results.
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C. Outline

The paper is organized as follows. In Sec. II, we explain
in detail the process of solving for the worldline corrections
iteratively via the classical method to 3rd order. In Sec. IIT A,
we write down the impulse up to 3rd order and express it in
terms of the conservative and radiative parts of the scatter-
ing angle and radiated momentum. In Sec. III B, we derive
the leading order angular-momentum loss and show that it
is correctly related to the leading order radiative correction
to the scattering angle. We then investigate the high-energy
and nonrelativistic limit of relevant observables in Sec. III C
and Sec. IIID, respectively. In Sec. IV, we show how the
method of analytic continuation shown in Refs. [42,43] can
be extended to other observables if certain conditions are
satisfied, and explicitly show how these mappings can be used
to extract partial results for bound orbits, and their scope. We
then conclude in Sec. V with a short summary. In Appendix A,
we explain in detail how we compute the 2nd order correction
worldlines and explicitly write down the 2nd order worldline
correction for particle 1. In Appendix B, we translate the 3rd
order force correction diagrams to expressions and give brief
comments regarding the source of each diagram.

II. RELATIVISTIC SCATTERING OF TWO POINT
CHARGES

We consider here the motion of two charged point particles
in classical relativistic electromagnetism in flat spacetime.
The particles have charges eq; and eq,, masses m; and m;, and
proper-time—parametrized worldlines x* = z|'(7;) and x* =
z5(12). The Lorenz-gauge field equation for the gauge field
eA, (x), with 9,A* =0, is

9% (eA") = 4 J*. 2.1

We take out a factor of the order-counting parameter e from
the gauge field (and the field strength below) for later conve-
nience. The current density is

Jh(x) = ean/dta 28 (x — z4), (2.2)

with a = 1, 2. The equation of motion for each worldline can
be taken as the Lorentz-Dirac equation,

2¢%q,

3

where ef},, = 2ed, A, is the external field strength (due to
the field of the other particle), while the second term accounts
for the action of the self field [47]. Our task is to construct an
iterative solution to these equations working perturbatively in
the coupling strength, measured by ¢?.

At zeroth order in e, the particles follow inertial trajecto-
ries, and their worldlines can be written as

mai = €2q,F"(24)7) + (14202, (23)

0
Zé )z Iz

208 = by, =uyn, 24

where u’l‘ and ug are the zeroth-order 4-velocities, with

uy-up =y, and b* is the impact parameter vector with
b-u; =0 =0b-uy, so that the minimum separation between
the zeroth-order trajectories is given by |b|.

The field sourced by particle a, on a general trajectory x** =
Z(t,), obeys

3*(AL) = 4nqa/dta 2 84 (x — 24(T0)), (2.5)
which has multiple solutions, corresponding to different
boundary conditions. Choosing the retarded (no-incoming ra-
diation) boundary conditions, the solution is

yus
9a Za ,ret

Al(x) = ———
a Za,ret * (x — Za.,rel)7

(2.6)
where we use the shorthand fi; = f (7). The retarded proper
time 7, iS the proper time at which the trajectory of the
source particle a intersects the past light cone of the field point
x. Itis obtained by solving |x — z,(z,)|*> = 0, and choosing the
solution that makes x — z,(t,) a future-directed null vector.
Then, the field strength sourced by particle a is given by

FM(x) = 20AY)

2q . . ..
= r_3p([zﬂ (rZ:,]ret - Z:,]ret(za,ret * Pa — 1))1
a

2.7
where we have defined p¥ = (x — 24 ret)"; 7o = Zayret * Pa and
used aufaﬁrel = Pff/”w

Taking the field-sourcing particle above to be particle a =
2, the equation of motion for the other particle, 1, reads
Zezq%

3
The first term in the right-hand side (RHS) of Eq. (2.8) is the
well known Lorentz force, giving the influence of the field
sourced by particle 2 on particle 1. The second term is the
Abraham-Lorentz-Dirac (ALD) self-force, which accounts for
the particle’s influence on itself, which can be derived from
the traditional Lorentz force law in various ways. The simplest
method for our purposes is to use a regularization procedure
to deal with the divergence when evaluating particle’s field on
its own worldline, as was done in Ref. [39]. In the case of EM,
this can be done once, and the divergence-free expression in
Eq. (2.8) can be used at all orders in the perturbative expansion
in e? (see however the following paragraph). In contrast, in the
GR case, one must repeat the regularization procedure at each
order to compute the self-influence due to nonlinearities in the
theory.

Dissipative effects are included in the time-asymmetric
part of the force, which come from the choice of retarded
propagator as well as from the ALD term (which is odd in
71 — —11). The validity of the self-force expression in EM
is a nontrivial issue, associated with runaway solutions and
pre-acceleration. In general, one expects the ALD force to be
valid as long as the particle is not too large or too small. In
Ref. [47], this was defined more precisely by requiring that
the particle be small enough to enable fast communication
between portions of its body (I < ., where [ is the size of
the particle and 7. is the time scale of changes in any external
force field) but not so compact that the electromagnetic self-
energy is larger than the mass (i.e., the positive bare mass
condition 0 < my = m — €>¢?/1, or €*q*/1 < m). The latter
of these constraints in particular turns out to be important for

mz) = EqFy @)z + (' +2#). @28
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making sense of divergences in the high-energy limit for some
radiative quantities, as will be shown later in Sec. III C.

To iteratively solve Eq. (2.8), we expand the worldlines in
powers of e, with the zeroth orders given by Eq. (2.4),

2 (r) = b +uft + ezzil)’“(rl) + e4z§2)’“(rl) +...,

(2.9)

2 _(1), 4_(2),
Z;(‘L’Q)ZMIZL‘L'Q-I-e z;)“(‘tg)—l—e Z;)M(Tz)—f‘....

(2.10)

We use |z1(t1) — zg(rg,ret)|2 = 0 to solve for the retarded time
To 1t in terms of the worldline corrections (7).

2_(1) 4_(2)

0
T2 et = Tz(,r)e[ te T T (2.11)

which we then substitute into Eq. (2.8) to get a similar expan-
sion for the force,

2 (1)

Emiz" + etmiz? + fmizY + .

= fV+ et fP 4P (2.12)

Now collecting terms by powers of 2, we get the correction
to the force (¢ f (M) at each order as a function of lower-order
worldline corrections. These 2nd order differential equations
can be then iteratively solved starting from the lowest order to
acquire the worldline corrections at each order.

It is sufficient to solve for the worldline corrections of
particle 1 since the analogous quantities for the second par-
ticle can be then obtained by simply swapping 1 <> 2 and
bt — —b*.

A. Diagrams and rules

The correction to the force at each order £ [see the RHS
of Eq. (2.12)] depends on the corrections to worldlines and
retarded time at lower orders (along with zeroth-order quan-
tities). For instance, f!) only depends on the zeroth-order

quantities (z\”, 23, 7{*), whereas f® depends on z”, ,

and rz(’]r)e[, as well. Put simply, f ™) is the nth term in the
Taylor expansion of the Lorentz and ALD forces with respect
to (w.r.t.) the variables zj, 7, and 75 ,¢. Thus, it is a linear
combination of derivatives of the Lorentz (and ALD) force
multipled by the corrections to these quantities. At higher
orders, we find it convenient to split the force correction f ()
into various diagrams, as a way to illustrate the method of
calculation and its increasing complexity with each order. It is
important to note that these will not be Feynman or Feynman-
like diagrams. We illustrate the rules for understanding the
diagrams with an example below.

Diagrams with two worldlines represent terms in
the Taylor expansion of the Lorentz force term, i.e.,
Eqi1210Fy" (21, 22(Taret), 22(Ta ret)s Z2(T2et)], Via corrections
from z;, z» (and derivatives), and 1, ¢, for example:

2 mmmmmmmmoe- 1)

7—27ret

(2.13)

The directed photon (wavy) line conveys that the field is
sourced by 2 to affect 1’s worldline.

(1) The part of the diagram to the right of the photon line
tells the order at which this diagram contributes, according to

the conventions:
1st order correction

=———————— 2nd order corrections and so on.

(2) The part of the diagram to the left of the photon line
tells us which derivatives to act on €CI1F2WZ1,U and which
corrections to multiply. The derivatives are to be evaluated at
zeroth order. (a) Dashed lines represent contributions solely
from unperturbed zeroth-order worldlines. They merely con-

tribute a factor of 1 to the diagram. __________ no
derivative (zeroth order)
(b) Linear corrections (of any order) are
represented using single/closely-spaced lines,
e? Zi:o d; zﬁl) adQZ, (1st order)
et Zi:o d%zl@) 9 _ (2nd order)

n .
adn Zi

and so on. Here we are using the shorthand notation
dyzi = (d/dv)"zi(ti)

(¢) Quadratic corrections are rep-
resented using wedges as follows,
4 =3 (1) (1) 52
> e m,n m n \
2 Zm,n,:o(d'rl 2 )(dn Z; ) 8d;’; Ziad;',.'1 Zi

> e Zm’n:?’(d"”z(l))(d?iz-@)) 92

2 m,n=0\"7; “q 7 ad;’;’ziadﬁ'izi

and so on. All the derivatives are to be evaluated at zeroth-
order retarded time (7, = TZ(Or)et)'

(4) The label at the intersection of particle 2’s worldline
with the photon (wavy line) (TZ(,”rqEZt)n contributes

(T )" x (1/n!)(d /d T re)",

where 12(":; is the mth order correction to retarded time. Once

again, the derivatives are evaluated at zeroth-order retarded
time Tz(or)er Note that we are separating the dependence on

retarded time purely for convenience, since 7:2("1*)et can be writ-

ten in terms of worldline corrections z{™ via the relation
|Z1(Tl) - Z2(T2,ret)|2 =0.

Thus, based on these rules, the above diagram (2.13) gives
a 3rd order contribution and is equal to

) (Tz(}r)et)(d/dflret)(quzwz.lqv) |(0)‘

0
n _(1)
e6z(d1’]z§ )3(an

T

Contributions from the ALD (self-)force are constructed
using the same rules, but only have one particle’s worldline.
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Also, the derivatives act on the ALD force term, i.e.,

2(2(]1/3)(21 + zlzl 1), and there is no contribution to ALD
force from z\" (partlcle 2’s worldline corrections) or retarded
time corrections 12 rel For instance,

(2.14)
is a 2nd self force (ALD) contribution, which gives
Z (@) 2200 ) = o 2g ) (5)
4 1 = 1 .
part 38(d ) !

Note that there are no photon lines in diagram (2.14) since
ALD force is not due to the interaction between two particles.
We thus simply have a second-order worldline correction (the
double line on the right) produced by first-order worldline
correction (single line on the left) through the ALD force term.

B. 1st order

At leading order, we can substitute the zeroth-order world-
lines (2.4) into the formula for retarded field tensor (2.7), the
self-force can be neglected. The only relevant diagram is given
here.

1 ..............
2 mmmmmmmmmmes (2.15)
The corresponding equations are
D
, di 1w (LON[,0) ()
em dT? _eqlul"’FZ ( )[ZZ (rZret)] (216)
2 Ol
FO» = —qz(p e A=, @17)
LR S

The retarded proper-time at zeroth order 12 ret is obtained by
solving

2 2. 2 0).2 0
0@ = (6P + 77 + 130 = 2n T r) =0,

= 1 = y11 — /B> + (yv)’7}. (2.19)
Defining
P = r2 =,/1b]> + (yv)*t}, (2.20)
we can now write the field tensor explicitly as
FY = 242 (0w + ), (2.21)

21

which we substitute into Eq. (2.17) to get the 4-acceleration
a* = z7*(t,) for particle 1,

b _ n
aD = qi1qaly b + 7—'1(3)/”1 us) ]_ 2.22)
m1r21
This can be integrated twice w.r.t. 7| to get
2usib* + b1 (— yut +ut
vil)ﬂ _ ‘IICIZ[V 1 14 ( yu 2)]’ (2.23)

yv2m|b|*ry

yuy +u5)]

)

(2.24)

L _ 2[yvsib + b log (yvsi)(
! m|b2(yv)3

as the 1st order velocity [vk = z/(t,)] and worldline correc-
tions, where

s1=yvr + ra(n) = yot +,/1b + (yv)?rf. (225

The constants of integration have been chosen such that ini-
tial velocity and impact parameter remain unchanged, i.e.,
v}l)“ — 0 and z(l) b = 0 for 1y — —o0. The corrections for
particle 2 can be obtained by sending (1 < 2) and b* — —b*
to get

yus,b* + |b|? log(yvsz)( —
4my|b*m (yv)?

ra(n) = VI1bI* + (yvn)?.

yis +uj)]

’

9192 —
Zgl),/l, _ [

52 = Yvip + 12, (2.26)

We will find that the complexity of expressions (for force
correction) greatly increases at 2nd order and beyond. These
expressions can be rather simplified by the use of certain
substitutions and variables. Thus, at 2nd and 3rd order, we
use the variables s; = yvt; 4 ry; as the worldline variable (in
place of ;) to express all integrands. This helps get rid of all
square roots involving expressions of 7; while also making the
integrals analytically tractable. In some places, we also use
the rapidity parameter cosh(¢) = y, which simplifies terms
involving arcsinh(y v) = arcosh(y), etc.

C. 2nd order

We can now use the 1st order worldline corrections (zgl)
and zél) ) to compute the worldlines at 2nd order. We need to
evaluate the 2nd order force correction, f® = mlzf), that is

262g% ...
63‘“ (34 + z‘%zq‘)},

(2.27)

2 .
miz 0 = [e ][ez%lele,u +

(0) 2 (1)

(0) 2_(1)
¥4 B g (‘L’)~|—€Z ('L’]), ZZrel_>Z2ret+e Z2ret’

Tl = YT — 121 + €T3 (2.28)

Here [x"] f(x) is the coefficient of x" in f(x). To evaluate this,
we split the contributions from corrections to z;, 22, and T ret
as mentioned before. The 1st order worldline corrections z( )

and z(l) were derived in the last subsection [see Eq. (2.24)
and Eq. (2.26)], the 1st order retarded time correction TZ(,lr)et’ in

terms of z{" is given in Eq. (A16). The relevant diagrams are
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shown and labeled here,

I II

etf = +
111 1AY
+ +
----- 1 1
7—2( l)ct (Zl(l ))

(2.29)

The diagrams in Fig. (2.29) can be used to compute the
second-order correction to the force (f® = mlzg )) using the
rules given in Sec. (Il 1). This has been done explicitly in
Appendix A. One needs to then integrate each term twice
w.r.t 7 to get the 2nd order worldline corrections, z; )(rl)
We impose the same boundary conditions as in first-order
worldline corrections [see the paragraph below Eq. (2.23)].
We briefly discuss the integration process below.

Diagrams I, II, and III are due to corrections to the Lorentz
force term (equz“ "z1.») from 1st order worldline corrections.
Their contribution to second-order force correction consists of
various terms such as

s st sp log(s1) silog(si)

AT A A
where 1, and all quantities that depend on it
rio =4/ |bl> + y2v2t3, 52 = yvna + rio, (2.31)
are to be evaluated at zeroth-order retarded time
T = yT — /1B + y2Tl, (2.32)

Thus, there are many square roots and nested square roots
in the expression, which makes analytical integration compli-
cated. The square roots can be eliminated by rewriting them
as functions of 51 = yvt; + ry; along with the relations given
in Eq. (A21). With these simplifications, we get expressions in
terms of s that only contain rational functions and logarithms
as the ingredients, i.e., terms of the form

s3Poly(sy) log(s1) s;Poly(s)
(my ormy)(1 + s%)5 (my or my)(1 + s%)5
s;Poly(s1)
my(1+52)* (2 + 82)°

(2.33)

where Poly(s;) stands for polynomial function of s;. Such
terms can be easily integrated twice w.r.t. 7; via the relation
dty = (dt1/dsy)ds; = {ry1/(s) sinh(¢))}ds; to obtaln their
contribution to the 2nd order worldline correction (z1 ) The
reader is referred to Appendix A for a detailed discussion of
the contributions from various diagrams and the process of
integration.

Diagram IV ALD force

[(2e%g /3)(zl + z%z )] and only its first term contributes at
2nd order, which is proportional to the 1st order jerk z(l).
Thus, its contribution to 2nd order worldline correction is

simply

comes from the term

42
@) = 241
3m1 !

_ 264(]?(]2[)/211S1b” + |b|2(
- 3yv2mi|bl?ry

yuy + uj )]

(2.34)

After integration, collecting the contribution of all diagrams
gives us the the complete 2nd order worldline correction
zgz)(rl). The explicit expression for ziz)(rl) is given in
Eq. (A25). We can now use this to evaluate the force correc-
tion and subsequently impulse at 3rd order where dissipative
effects appear for the first time.

D. 3rd order

At 3rd the force correction given by mlz = {3, gains
contributions from both 1st and 2nd order worldhne correc-
tions. The 1st order corrections contribute quadratically as
¢*(z(")2, whereas the 2nd order corrections contribute linearly
via e4zflz>. Further, their contributions are independent, in the
sense that there are no cross terms since ¢’z x e4z,(,2) ~ b
It is thus possible to separate their contributions. As before,
there are also corrections to retarded time 7, to take into
account. Since the retarded time is obtained by solving a
quadratic relation |z; — 7|2 = 0, the 2nd order retarded time
correction T2(,r)et gains contribution from both Ist and 2nd

order worldline corrections, once again quadratic in e*z(!
and hnear in e*z\?). Since there are no cross contributions

(z) x z$), we can also separate the 2nd order retarded time

correction Ty e = Ty i (24 + 730, (22)).

Thus, we can divide the contributions into quadratic (in
zV) and linear (in z®) types. The various diagrams corre-
sponding to these contributions are given in Fig. (2.35) and
Fig. (2.36) respectively, where we have accordingly separated

the force correction, f& = f®(z(V) + f(3)(z(2))
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RICE

(1)

(a) Quadratic contributions from z((l]) and derivatives. Dia-
grams in Fig. (2.35) are contributions to 3rd force corrections
(f®) that are quadratic in 1st order worldline corrections (and
derivatives).

Among these, diagrams I through VII are corrections to
the Lorentz force term (¢*qF;""%; ,,) term and give expressions
composed of similar terms. Explicit calculation gives a linear
combination with terms having log(bs, ), log(bs;)?, and poly-
nomial functions of (s;) [written as Poly(s;) from now on]
as numerators, and (1 + s%)" x (e* + s%)m as denominators.
This is in accordance with what we expect from the form of
1st order worldline corrections, see Eqs. (2.23) and (2.26),
and the expression for the field tensor Eq. (2.7), after writing
everything in terms of s; and using the relations in Eq. (A21).
To evaluate their contribution to the impulse, we multiply
by the Jacobian factor and integrate over the entire world-
line 7; € (—00, 00), or 51 € (0, 00) using the relation dt; =
(dt1/dsy) x ds; = {ry1/[s1 sinh(¢)]}ds;. The integrals to be
evaluated are a linear combination of the following types of
terms,

Poly(s;) log(sq)Poly(s1)
(1+ s%)4(e2¢ + s%)3 ’ (1+ s%)4(e24’ + sf)3 ’
1 2
—Og(s‘z) . (2.37)
(1 + sl)

Mathematica is once again able to evaluate them in a rel-
atively short time once they have been separated into these
types. Although we only require the definite integral, it is
convenient for some terms to evaluate the indefinite integrals
and then take the limits.

Diagram VIII comes from the second term in the ALD

force [(2¢¢}/3)(Z +732))] (the first term does not con-

1)y,  ~~°°°7 1
TQ,rcL(Zg )) (T2(.1'>ct (Za

VII VIII
+ e
------ 2 1
))? Ty (257) (2.35)
XI
+
------ 2 2
T (28) (2.36)

(

tribute to the impulse). Its contribution at 3rd order is
given by (2/3)e6q%(2(l]))2u’l‘ and it contributes to the radia-
tive part of the impulse. It is worth noting here that this
term is proportional to the initial momentum p; = mju,
and thus it cannot be the sole contribution to the radia-
tive part of the impulse, even in the test-body limit, since
that would change the rest mass. Additional contributions
to the radiative part of the impulse come from corrections
to the Lorentz-force term (e?qFy"z;,) (included in other
diagrams). Together, they lead to a radiative contribution to
the impulse that conserves the rest mass. Specifically in the
test-body limit, the only other contribution to radiative im-
pulse comes from the contribution of 7P|y, see Eq. (2.34)
to the Lorentz force term (e*q; Fy'"z1,). This additional con-
tribution was ignored in Ref. [33] in their calculation of net
impulse in the test-body limit, leading to an incorrect result
for the net radiative impulse in the test-body case that was
proportional to p;.

(b) Linear contributions from z'». Diagrams in Fig. (2.36)
are contributions to 3rd force corrections ( f)) that are linear
in 2nd order worldline corrections (and derivatives).

All three diagrams are due to corrections to the Lorentz-
force term (e’qF)*"z;,). Only the first term in the

ALD force [(2¢%q3/3)(Z1 +Z32)")] contributes linearly in
2nd order worldline corrections (z®) at 3rd order and
we have not included its contribution since it is a to-
tal time derivative of a quantity that vanishes at infinite
past/future (acceleration), and we are only interested in the
net impulse.

Thus, all three diagrams give expressions composed of
similar terms. We get a linear combination of terms with
arctan(yvs;/|b|), arctan(s;), log(|b|yvs;), arctan(rp;/|b|),
and Poly(s;) in numerators, and (1 + s7)" x (€** + s7)" in
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denominators. This is in accordance with the expression for
2nd order worldline correction given in Eq. (A25) and the
expression for the field tensor Eq. (2.7), after expressing ev-
erything in terms of s; using the relations in Eq. (A21).

Once again, to get the impulse, we multiply with the Ja-
cobian factor and integrate over the whole worldline s, €
(0, 00), where Mathematica has no trouble evaluating the
integrals. Indefinite integrals sometimes give non-elementary
polylogarithms, but they do not pose a challenge as far as
computing the impulse is concerned. This however indicates
that one might have to deal with non-elementary functions
starting from 4th order (i.e., e®).

Finally, performing the integration and adding the
quadratic and linear contributions to the impulse, we obtain
the complete expression for the 3rd correction to the impulse
Apy (Ap(l3)). The explicit expression for the same is given
below in Eq. (3.3).

Now, we will use the key results of this section (i.e., 1st and
2nd order worldline corrections), and the 3rd order correction
to the impulse A p(13) , to compute observables associated with
the scattering process (e.g., the impulses).

III. OBSERVABLES IN THE SCATTERING PROCESS

A. Net impulses

The net impulse (defined as change in momentum) of par-
ticle 1 to 3rd order can be written as

Apr = AP + e ApP + fapP. 3.1

We can derive A p(ll) and A p(lz) from the time-dependent
worldlines upto 2nd order given in Eq. (2.24) and Eq. (A25).
With 2 (1) = 2 + €22{V + ¢*z{?, we have

AAp + et ApY = tim mizi(n) — lim_mizi(n),
T1—>00 T1—>—00
_ 2¢%q,qp u
v|b|?

e4q%q§E(v2 |pIMrb"* 4+ 4E|b|p*)
2mimsy2vt|b)3 ’

(3.2)

We can now add to Eq. (3.2) the 3rd order correction to the
impulse. We described the process of computing Ap(13) in
Sec. I C, and the result is

TME*qq3

A —
Py mim3|b|*y v’

44143

3mim3|b|*y vt

2 2
n nm;

414 |:<f1% q_§>3y2+1 919>

4y2v2[bP?

where

f =
) N

We can simplify this somewhat bulky expression by splitting
the result into conservative and radiative parts and writing
these in terms of the scattering angles and the total radiated
momentum. To do so, we first evaluate the total scattering
angle as

. —Api-b 8
siny = ——— 4+ 0(e°), 3.5)
|pl|b]
which yields
X = Xcons t Xrad» (3.6)
_ 22Eqiqp me'MEqq
Xeons = mymyy|blv?  2mim3y?|b|?v?

N SGBE[(m? + m3)(dy* — 6) — dmimyy (v* — 3v?)]
3mim3|bPyovo

’

(3.7)

_2qig3[ymi +ym; + 2mma(1 4y )]

mim3|bPy3vt

arctanh v
b“[(m%qf +miqy)y v’ — 3mimyqiq (V - —)}

yv

- m]:(l/)} (ul; - J/ulf)7 (3.3)
) arctanh v 5
Gy +1D V—T —4(y =17 3.4
[
4e6q2q2E
Xrad = _W}?E)ﬂvs |:(VU)2 (m%q% + m%q%)
arctanh v
— 3mimyq19> (V - T)} (3.8)

where the conservative (radiative) scattering angle has been
defined to be the part that is even (odd) under v — —v. We
can now define the conservative part of the impulse as the
result of a simple rotation in the scattering plane by the angle
Xcons,» and define the radiative part of the impulse to be the
remainder,
bH*
Apllj’,cons = |plsin Xconsm + (cOS Xcons — I)Pu,

Apl,rad = Apl - Apl,cons~

(3.9)

(3.10)

As we will see below, Apjq is fully determined by the
radiative contribution to the scattering angle x.,q together with
the total radiated momentum K*. The latter is found from
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summing the impulse (3.3) on particle 1 and its (1 < 2)
version, yielding

K" = —Apllt — Apg = —APT,md - Apg,rad

_ neéq%‘é |:<q_% " q% M) 3V2 +1
2

= app G2 T ) T

Qg wy +uy

3.11
mmy y+1 ( )

F (7/)],
where F(y) was defined in Eq. (3.4). Now, the conservative
part of the impulse of each particle separately conserves the
particle’s rest mass [i.e., (p1.; + APi.cons)’ = m%]. Thus, the
leading-order radiative effect must satisfy Apj raq - u; = 0, so
that the total impulse conserves the rest mass to 3rd order.
Furthermore, Apj g is solely responsible for both radiated
momentum and radiative part of the scattering angle. Thus,
we obtain the following expression for Apj raq

b
yuy) + 1pl Xraa s (3.12)

K - up
2 _ 12
Apl,l‘ad - U)z (I/l2 - |b|

(y
as anticipated in Eq. (1.12).

B. Radiation of angular momentum

The emitted radiation also carries away angular momen-
tum. Unlike radiated momentum, angular-momentum loss can
be seen already at 2nd order. Radiated angular momentum can
be evaluated using the relations

Jha = —J I (3.13)

wo_ . PP,
Jf/i _rl,rlzgnzl:oo € vpo E (21 2)°, (3.14)
Pl = mazl. (3.15)

Note that the evaluation of this quantity requires the complete
time-dependent worldlines and thus we cannot evaluate it to
3rd order. However, we can evaluate the radiated angular mo-
mentum at 2nd order by substituting z/* = z(O% + 2z +
etz 1o get

no_ 2 84‘]%(13 " v.p o O 6 1
Jrad = — ml(v)f qub uyu, + (e )7 (3 6)
2 m m 2 2 arctanh v
I(v) = ——y(ql/ Ly 92/ 2) t S
3" \q/my  q1/m v yov
(3.17)

As discussed in Sec. I A, this leading (2nd) order change in
angular momentum determines the leading (3rd) order radia-
tive contribution to the scattering angle (3.8), via the relation
(1.15) above, as derived in Ref. [31].

C. High-energy limits of observables

We define the high-energy (HE) limit by requiring that the
system of particles have energies much higher than their total
rest mass in the COM reference frame. The energy of the

system in this frame is given by E = \/ m? 4+ m3 + 2mimyy

and we choose it to be much larger than m; 4 m; by setting
y > 1, which is the high-energy limit. Note that we are not

sending m,, m, to 0, which is the massless limit. The high-
energy /ultra-relativistic limit is not equivalent to the massless
limit in EM. We will see the need for this distinction soon.
We further require that g; ~ g, and m; ~ m; and they will be
treated as fixed when taking the high-energy limit.

The conservative scattering angle to 3rd order for EM in
the HE limit is given by

4lqq2  16€%qiq3
BIE 3[bPE3

It is finite and well behaved, unlike in GR where the con-
servative part of the scattering angle exhibits a logarithmic
divergence o< log(y) at 3rd order that cancels against con-
tributions from the radiative part. The radiative part of the
scattering angle in the HE limit is given by

(3.18)

Xcons,EM|HE —

ot i —> 8666]142( 419> B
rad|

64143
Elbl \mi|b|> = m3|b|? '

E2|b|?
(3.19)

Here, we see the importance of distinguishing between the
HE limit and the massless limit. The first two terms in the
brackets are divergent in the massless limit (m;, my; — O,
y — oo while fixing E). We encounter a similar situation for
the radiated angular momentum, as well, which is given by

4 (ae | sa 6419
milbl " w3l T E2IP )

|Jrad,EM|
J

HE 3
(3.20)

This divergence in the massless limit is however not nec-
essarily indicative of any fundamental issue, but rather an
indication of the limited regime of validity of our computa-
tion. In this paper, we have treated the charges as structureless
classical point particles. This approximation is only valid
when the impact parameter |b| is much larger than the size
of the particle (]b| > r,). A natural length scale for a classical
body holding a charge is given by r<' ~ g2 /m,, the “classical
radius” (e.g., of the electron), which can be regarded as a
lower limit on the size of the particle. The particle’s “bare
mass” mgy (mass not due to its EM field), given by m, —
My ~ qZ /14, would be negative if it were any smaller. Thus,
our method is only valid in the regime |b| > r > (¢%/2m),
which can be rearranged as the constraint (¢>/m|b|) > 1. This
prevents us from naively taking the massless limit by sending
m — 0 at fixed ¢ and |b|. It is easy to see that Eq. (3.19) and
Eq. (3.20) diverge precisely when this constraint is violated
[48]. Note that this argument is invalid for gravitation since
the gravitational self energy of a massive particle is always
negative, so my — m ~ Gm?/r, and requiring my > 0 does not
provide any constraint.

Finally, we consider the fraction of energy radiated in the
COM frame per mass-energy, K - ucom/E, diverges in the HE
limit regardless of masses (without taking massless limit). In
the HE limit, it is given by

ne®qiqn f]ffiz 613611 3‘1%‘1%
-V 3 st 5 |73 |
HE 2|b| m; m; E

(3.21)

K - ucom
E

013127-11



SAKETH, VINES, STEINHOFF, AND BUONANNO

PHYSICAL REVIEW RESEARCH 4, 013127 (2022)

This diverges for E > M (y > 1). It is important to note
however that the divergence in the fraction of energy radiated
is also present in gravity for which the analogous result was
recently obtained in Ref. [32]. Either way, this means that the
e2- or G-expansion is invalid at high energies.

D. Nonrelativistic limit

We now consider both particles be moving at nonrela-
tivistic (NR) speeds in the COM frame. This is achieved by
simply sending y — 1, and we recover (to leading order) the
Newtonian result £ = m; + m, (where E is the total energy
in the COM frame). The radiated energy (in the COM frame)
is then given by

6.2 2 2
e qi4q; [ 41 q2
Kem - Ueom|NR — % — . (3.22)
31bPPv \my  my

The dependence on (q,/m; — ¢q/m)?* is consistent with the
expectation that the dipole approximation should suffice for
computing the radiated energy in the NR limit via the term
2% /3. We can see this explicitly by considering a hyperbolic
orbit (an exact trajectory in the NR limit) and evaluating the
dipolar energy loss along it. We work in the center-of-mass
frame (equivalent to the center-of-momentum frame in the NR
limit) where the expression for the dipolar energy loss is given
by

dE 2|p|? PR (TR
dt 37 mp  mp

P = ——|NR = _— —)/,Lr (323)

We denote the NR energy per reduced mass and angular mo-
mentum with the symbols £ = (E — M)/u and J respectively.
The orbit is then given in the NR limit as

e2qiqor R J?
= s r = S a——— R = —
r 1 +ecos¢ e2q1qat
2877 d¢
2 2
e=14+—-—=>1, J=pur—. (3.24)
eqiq3 dt

We can now integrate P over the entire trajectory, ¢ € ( —
arccos(—1/e), arccos(—1/e)) and obtain the total radiated en-

ergy

2
4
IR m—l——> (I +ecosg)”.

23 (a1 a2
—uAE= | d 112
’ ./ ¢ my

(3.25)

To make contact with Eq. (3.22), we take the limit of high
angular momentum (low e%q?/J, weak-field limit) where a
perturbative analysis of the orbit is valid and get

_ 2776661%613195(611 B )2. 3.26)

—uAE,, =

" lue 3.]3 m ny
This is equal to Eq. (3.22) in the NR limit once we identify
E =v2/2+0OW*) and J = uv|b|(1 + O(v?)) thus confirm-
ing our expectations.

IV. FROM SCATTERING TO BOUND ORBITS

We now consider the case of generic classical scattering
of point-charges to study general relations between bound
and unbound motion [42,43]. This is of particular interest
for gravitational interactions and gravitational-wave physics.
Indeed, mergers of bound compact binaries are much more
likely to be observed than scattering encounters through
gravitational-wave radiation. We are then motivated to inves-
tigate the methods by which knowledge of bound orbits can
be obtained by looking at scattering events. One such method
is via the maps for certain observables between bound and
unbound orbits based on analytic continuation, as shown in
Ref. [43], which related the unbound scattering angle to the
bound periastron-advance angle. These maps can be extended
or motivated for some other observables as well, as shown
below.

Let us briefly explain the basis of the mapping procedure
given in Refs. [42,43] before extending it to other observables.
Consider a system of two nonspinning relativistic compact
bodies whose interaction can be effectively described by con-
servative local dynamics. We can write down an effective
Hamiltonian for the system in the COM frame (in an isotropic
gauge [15-17,42,43,49]) as

Hp.r)= \/pz +m? + \/p2 +m3+V(rp®), @l
where p*(E, J, r) = p*(E, J, r) + J?/r*. The position coor-
dinates are ¢ = (r, ¢), in polar coordinates in the plane of the
motion. The Hamiltonian has no explicit dependence on ¢, ¢,
and thus we have conserved quantities £ = H(p, r) (energy)
and J = py (angular momentum). We interpret +p to be the
physical spatial momentum of either particle when they are
far apart [which happens when r — oo, V (r, p*) — 0].

When the system is bound (E < M = m; + my), there are
two turning points rpi, and rpa,x where 7 = 0. Since 7 =
0p,H o< p,, the turning points occur at p,.(E, J, r) = 0. When
the system is unbound (E > M), one of the turning points
max becomes negative, and thus non-physical. However, the
roots can be generally related to each other via the relation
Fmin(€, =J) = rmax(E,J) [where £ = (E — M)/u] for both
bound and unbound orbits. Since rp,y tends to o0 as —€ —
40, we work instead with the variable u = 1/r. We define
Uy = 1/rmin and u_ = 1/rnax, which are continuous if we
vary & for fixed J with up,, — 0 if &€ — 0. The relation be-
tween the roots is the same as before, u_(€,J) = u (€, —J).

This relation between the roots was used to relate the
scattering angle for unbound orbits to periastron advance for
bound orbits in Ref. [43] as follows. The scattering angle for
an unbound system is given by

KET) = —7 + Awd = —7 + / de/dt 42

ot du/dt

0
J
= -7 — 2/ ——du,
woen) Pru, €,J)

where we use ¢ /i = J/(r*p,) and the fact that the contribu-
tion to Ay from r = 00 t0 iy (or u = 0 to u,) is the same
as that from the subsequent journey from rpy;, to ¥ = 00, hence
the factor of 2.

(4.3)
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Now, consider the quantity

x(E, D)+ x(&,—=J)
0 0
J —
“du-2 | —du,
Uy Pr u_ Pr

uy (€,J) J
=27 + 2/ du,
wien Pr&J)

where we use u(£,J) =u_(E,—J). It is not difficult to
recognize the second term in Eq. (4.4) as the expression for
the total angle subtended by a bound binary in one radial orbit
(analytically continued to £ > 0). Thus, we have for Eq. (4.4)

=2 -2

“4.4)

=27 +27(K+1)=27K(E > 0,J), 4.5)

where 2K is the angle of periastron advance. This gives us
the relation

x(E N+ x(&, —J)=2nK(E, ), (4.6)

as obtained in Ref. [43]. Note that the left-hand side (LHS)
of the relation is only valid for £ > 0 and vice-versa for the
RHS; this relation is thus based on analytical continuation of
the expressions for scattering angle and periastron advance.

A. Analytic continuation of general observables

Assume that an observable Opouna (€, J) associated with a
nonspinning bound system can be expressed as an integral
over one radial period (of the conservative dynamics) as

Uy
2[ fu, &, J)du = Opouna(E, J), 4.7)
Here, we are assuming that the function f only depends on
u, not on ¢ (reflecting rotational invariance). Now, the corre-
sponding observable for an unbound orbit Oyppouna (€, J) can
be written as
2 / fu, &, J)du = Oyppound (€, J). (4.8)
0

Again, with this integral evaluated along the conservative dy-
namics, we have the mapping given in Ref. [42], u_(E, —J) =
u4 (5 5 J )

Further assuming that f(u, £, J) is either odd or even in J
(reflecting a certain behavior under time reversal), we have

Obound (5, J) = Ounbound(gv J) + G(f)ounbound (8, _J),
“4.9)

with 6(f) = £1 if f is odd/even, respectively. Note that the
LHS is not really an observable for bound orbits unless £ <
0. This is a formal relation between the functions based on
analytical continuation of the expressions.

B. Radiated energy

It is reasonable to assume that the rate of energy loss
(power) for generic orbits can be expressed as dE/dt =
P(u=1/r,&,J?) (ie., as an even function of J) — for ex-
ample see Sec. IV D for a motivation of this property in the
PN context. Thus, we can write the energy radiated per radial

orbit in the bound case as

Uy -1
EPod — fp(u,g,ﬁ)dz = 2/ P(u,&,J*)—=—du,
i uspy
u
4.10)
and for the unbound case
ra “ -1

Eun(ti)ound = 2[) P(u, &, Jz)uzprdu, 4.11)

where we have defined Egi‘)ﬁnd as the energy loss per orbit for
bound systems and E™ as the total energy loss for an
unbound trajectory. Then, using the general relation derived
in Eq. (4.9), we get the relation between unbound and bound
energy losses as

Ebound(g’ J) — Eunbound((c/-’ J) _ Efl:zibound(g’ —J),

rad rad

4.12)

which was given earlier in Ref. [44]. We now use this relation
to compute partial results for bound orbits in EM and verify it
with explicit calculations in the NR limit.

To compute the RHS of Eq. (4.12), we use the expression
for the energy radiated in the COM frame in a scattering event
in the NR limit given in Eq. (3.22). We write it in terms of £
and J using the relations £ = v?/2, and J = uv|b|, obtaining

2P ulE [ q q2 2
Eunbound g,J — 142 gt 42 , 4.13
rad &) 3J3 m, mp ( )

which is odd in J. Thus, in this case the RHS in Eq. (4.12) is

2
drebPgrEp’ <q_1 3 2)

RHS of (4.12) = 37 -
N 1 2

(4.14)
We should acquire the same result to the highest power in 1/J
if we compute the radiated energy per orbit for bound orbits
in the NR limit. We use the fact that, in this limit, the orbits
are conic sections and the power can be obtained from the
dipole approximations. We computed the dipole-power loss
for unbound orbits in Eq. (3.25), we now do the same for
bound orbits.

Thus, once again using the dipole formula for the power
P = 2p*/3, with p = (q1/my — qa/mp)ur, where r is the sep-
aration vector from particle 2 to particle 1, |r| = r = R/(1 +
ecosp), ur’de/dt = J, with R = J*/(e*qiqapn), € =1+
28J%/(e*q3q3), we integrate over one period and obtain

pbound _ 2nu3eﬁqfq§(3e4q%q§ + 25]2) Q@ 2
rad 3.]5 nmg niy ’
(4.15)
We then take the limit J/ — oo and get
And@BEr’ (a0 @\’
Ebound — 172 Z ), 4.16
rad ]3 m m, ( )

which is identical to Eq. (4.14) as expected.

C. Radiated angular momentum

The angular momentum is a vector, and symmetry requires
that the rate of angular-momentum loss be in the same direc-
tion as the angular momentum. Thus, we expect a relation of
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the form

d

Y rpwes, (4.17)
dt
which gives the following rate of change for the magnitude of
the angular-momentum loss

dJ
— =JPu &, J%),

= (4.18)

which is odd in J. Now, defining J™! . as the total angular-
momentum loss for an unbound trajectory and J&d | as the

angular-momentum loss per orbit for bound systems, we

J

AJunbound — —8Gm myv
rad 5¢5h*

-1
| ()

1
* Toosree [arccos (h 1/ + 28

derive the relation

Jbound(g"]) — Junbound(é‘,])—|—Jl:éb°und(€, —J),

rad rad T

(4.19)

which has the opposite sign in the RHS compared to
Eq. (4.12).

The above relation, unfortunately, cannot be used to obtain
partial result for the angular-momentum loss for bound orbits
using only the leading-order result we have derived in this pa-
per, since the angular-momentum loss at leading order is odd
in J, as seen in Egs. (1.6) and (1.8). We need to evaluate it to at
least 3rd order in the weak-field expansion. Nevertheless, as
an illustration, we verify this relation at 1PN order in gravity.
We compute the 1PN angular-momentum loss for unbound
orbits following the method in Ref. [45] to obtain

(15 + 14ER%) + V2ER(15 + 4ER?)

)[105(1077 — 940v) + 252(535 — 748v)ER* + 12(4283 — 3976v)E*h*)

V2ER?
+ 1er{losaow — 940v) + 224(1275 — 1429v)ER*+4(42711 — 61600v)E>h*+288(109 — 35v)52h6}j| }
(4.20)
Substituting this in the RHS of Eq. (4.19) and using arccos(—x) = m — arccos(x), we get
—87 Gmymyv 105(1077 — 940v) + 252(535 — 748v)ER? + 12(4283 — 3976v)E2h*
AJPowd — = T (15 4 14ER? , (421
rad 5¢5h [( + )+ 100822 (@.21)

where h = J/(GM 1) and thus we recover the correct expres-
sion for the angular-momentum radiated per bound orbit at
IPN order, obtained by multiplying Eq. (30) in Ref. [45] for
the average angular momentum flux by the orbital period P =
27 /n, with n given in Eq. (26) of Ref. [45]. We also verified
this expression by doing the explicit calculation for angular-
momentum loss in case of bound orbits (at 1PN). Note that the
expression for angular-momentum losses in unbound orbit in
Eq. (4.20) does not completely match that given in Ref. [45],
there is a minor computational error in their result.

D. Total radiative losses from instantaneous fluxes

Given the maps provided in the last two subsections, one
can find resummed relativistic expressions for the energy and
angular-momentum losses for bound orbits via the following
simple algorithm: (i) solve the scattering problem in the weak-
field expansion to compute energy and angular-momentum
losses, and (ii) use the maps provided earlier to find partial
expressions for the energy and angular-momentum losses of
bound orbits.

However, this method is limited by the order to which the
scattering problem can be solved in the weak-field regime.
Since this is an expansion in large impact parameters |b|, the
observables are obtained in powers of 1/|b|—for example see
Eq. (1.8) and Eq. (1.20). Using the relation between |b| and

(

initial angular momentum, J = (uM/E)yv|b|, we see that
this is also an expansion in 1/J.

In particular, the leading-order energy loss in the scattering
case goes as 1/J° [see Eq. (1.20)]. Thus, the map only gives us
the 1/J3 part of the energy loss for bound orbits. However, the
expression for OPN energy loss per orbit for bound systems is
given (from Einstein’s quadrupole formula) by

AEGr =

2 u? (148 o G’M? L2 G M3 L85 G'M’
MS\15° 13 57 3 7
4.22)

+0O(1/c"), and we do not recover the 1/J° and 1/J7 terms.
Each higher order in the PM expansion adds a power of 1/J,
and thus naively, one needs to solve to 7th order (7PM, G7)
to recover the complete expressions for even the OPN energy
loss via the maps. This leads to a discouraging conclusion
regarding the possibility of recovering expressions for bound-
orbit radiative losses via results for the scattering encounter.
However, an alternative way of recovering bound-orbit
observables is to fix the form of (gauge-dependent) instan-
taneous fluxes of energy and angular momentum that are
directly applicable to both bound and unbound orbits (at least
for local-in-time contributions). Following the known forms
of PN expansions of these fluxes, one can write down general
ansitze parametrized by unknown coefficients, which can then
be fixed by computing the energy and angular-momentum
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losses along near-straight-line (small-deflection-regime) tra-
jectories, which should equal the results obtained from the
weak-field expansion.

For example, in the gravitational case, the expressions
for energy and angular momentum fluxes through 1PN order
[45,50] suggest that suitable ansitze can be written as

G'iM2 2 3
) X i X
E = TaA Za + Z“/ +.

i,j=1

(4.23)
D, = Giﬁig‘J(Zﬂ,X + = Z,B,]XX +. )
i 1
- (4.24)
v {v{ =y G_M} o
r r my +my

where v is the velocity and r is the relative position, in the
PN context. For the purpose of demonstration, consider the
leading-PN-order (OPN) fluxes,

G M2 v.r\2  GM
oy =M law +a2( ) +au22 |, (426
r r

P
G*M ] vor\2  GM

r=—5 |:,31 +,32<—) +ﬁ3—]- (4.27)
r r r

The above expressions are subject to a gauge freedom in
that we can add terms that are total time derivatives, the so-
called Schott terms Escnoy and Jschon, Which are functions of
r and v (under the Newtonian equations of motion 7 = v and
v = —GMr/r®) and vanish at infinity. This does not change
the total energy and angular-momentum losses, obtained by
integrating over one radial period for the bound case or the
entire orbit for the unbound case. The relevant Schott terms at
OPN order are

G3 M2 MZ

Eschon = a (v-r), (4.28)

GZMMJ

Jschou = b——=—=—(v-r). (4.29)

We find that we can choose a = a2/4 and b = B,/3 and set
the coefficients of the (v - r)* terms in Egs. (4.26) and (4.27)
to zero. This leaves us with an isotropic gauge for the fluxes, in
which they depend only on v? and r; we can then also express
the fluxes as functions only of r and & = v?/2 — GM/r +
O(1/c*). With &y = ®p + Egepoy and similarly for J, we are
left with
31722
b = Gl‘f—j‘(a,g +a2G—M> + o(%) (4.30)
cr r c

. G*MuJ M 1
&, = “<ﬂ15+ﬁ2—>+0<c—7), 431)

with &, =~2051 4+ ay/2, &y =201 + a2 /4 + a3, B] =281+
2B2/3 and B, = 281 + B2/3 + Bs. There is now a direct corre-
spondence (via integration over the Newtonian orbit) between

these coefficients &;, and Bl,z and the coefficients in the
PN-PM expansion of the total radiative losses for a scattering
orbit; the former can be determined from the latter. We see
that the orders in the weak-field-scattering expansion needed
to recover the Newtonian fluxes (and thus also the bound-
orbit losses) are considerably less than those needed in the
direct use of the analytic-continuation maps. For example,
to determine the (effective) OPN energy flux @1, instead of
7PM, we need AEr‘;‘fjb"““d only to 4PM order, to O(G*). Still
we cannot recover the complete OPN fluxes from the leading
orders in the weak-field expansions of AE"*"" (leading G*)
and AJUPoud (Jeading G?) [51].

rad

V. SUMMARY

We have considered the relativistic scattering of two
charged point particles in classical electrodynamics and have
calculated, via direct iteration of the classical equations of
motion, the impulse on each particle through 3rd order in
the weak-field expansion (through 6th order in the charges).
This is the order at which radiative effects first appear in
the impulse, and we have consistently included them by us-
ing retarded boundary conditions and by accounting for each
particle’s influence on itself by using the ALD force (see
Sec. II). We have related the impulse up to 3rd order to the
conservative scattering angle, the radiated momentum and the
radiative correction to the scattering angle (see Sec. III A). We
have completely or partially verified the latter quantities by
comparisons with other results and consistency tests in the lit-
erature. In particular, we have verified the general relationship
derived in Ref. [31] between the radiated angular momentum
[see Eq. (3.16)] at 2nd order and the radiative contribution to
the scattering angle [see Eq. (3.8)] at 3rd order, by separately
computing these quantities within our setup. We have also ver-
ified that the conservative scattering angle matches the result
of Ref. [16], and that the total radiated momentum matches
the result of an integral given in Ref. [33]. We have considered
both the nonrelativistic (v < ¢) and high-energy (v — c¢) lim-
its of observables such as the scattering angle and the radiated
energy (see Sec. III C and Sec. III D). We found consistency
with known (well-behaved) results in the nonrelativistic limit,
but encountered certain divergences in the high-energy limit
[see Eq. (3.19), Eq. (3.20), and Eq. (3.21)]. Whilst some
of these divergences seem to arise from limitations of the
validity of ALD self-force (or more generally of the zero-size
point-particle idealization), the divergence in the fraction of
energy radiated signals a breakdown of weak-field perturba-
tion theory for arbitrarily high energies, a feature in common
with the gravitational case, as discussed in Ref. [32]. It would
be highly instructive to see if our results for the complete
3rd order impulse match those which would be produced by
applying the KMOC formalism [33] to the relevant amplitudes
up to 2-loop order in (scalar) quantum electrodynamics, and
to explore how the methodologies compare.

We have also investigated the scope of relating observables
via analytic continuation between unbound and bound orbits,
following Ref. [42] (see Sec. IV). We have derived a general
map between generic unbound and bound observables that
satisfy certain reasonable requirements (see Sec. IV A). We
have shown that the different maps known so far are special
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cases of this general map [see Eq. (4.9)], and we have also
derived a new map between loss of angular momentum [see
Eq. (4.19)]. We have explicitly verified this new map for the
gravitational case through the next-to-leading order in the PN
expansion, and we have uncovered an error in the expression
for the loss of angular momentum in hyperbolic encounters
obtained in Ref. [50] [see Eq. (4.20) for corrected expres-
sion]. The previously known map between energy losses was
further verified for the electromagnetic case by comparing to
the leading order in the nonrelativistic limit (see Sec. IV B).
We have found that directly using the analytic-continuation
maps, to obtain complete expressions for bound-orbit radia-
tive observables in the nonrelativistic limit, requires going to
quite high orders in the weak-field expansion in the scattering
regime. Conversely, we saw that lower orders for scattering
are required to fix the coefficients in general ansitze for
(gauge-dependent) instantaneous fluxes [see Eq. (4.26) and

J

Eq. (4.27)], from which one can derive the total radiated
energy and angular momentum for both unbound and bound
orbits (for local-in-time contributions) (see Sec. IV D). These
investigations are valuable for understanding and modeling
the relativistic binary problem in EM and GR (its dynamics
and radiation) over the full range of eccentricities.
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APPENDIX A: THE 2ND ORDER WORLDLINE CORRECTIONS

1. Evaluating the force

Here, we show the steps leading to the explicit computation of the 2nd order worldline corrections. We first need to find the
partial derivatives of the field tensor (F'*”) w.r.t. the coordinates of the particles” worldlines, velocities and accelerations. We list
them below and then use them to compute the 2nd order force in terms of 1st order worldline corrections z'!. We have

1

20205 [ o — 5 Gorer - 2 — 1]

F'™ (z1(t))z2(T2,ret) = 220l = 3
2

s P =Y~ 2= Do P2 (A1)

This is the field sourced by particle 2 at particle 1’s position [x = z(7;)]. It depends on the worldlines directly via the expression
shown above and indirectly through the retarded time 7 .. It is convenient to separately deal with the dependence on retarded

time. The required partial derivatives are

8F;w(Zl)[Z2,ret] 26]2[(’25& - 323.;3[)02,[u)(VZZZ,ret,v] - Z2,ret,v|(22,ret c P2 — 1)) + r2p2,[,u(zg’ret22,ret,vl - ZZ,rel,u]Zg,ret)]

BZI,a r§ - (A2
I @)z 0] _8Fuv(zl)[z2,ret)]’ (A3)
aZZ,ret,a 8Z1,a
aFMu(Z])[ZZ,ret] 3 _2(»12/)2’ [M [2p2a22,ret,v] - (3p(2122,ret,v] - 83{])(22,rel P2 — 1)] A4
822,1’61,0{ B rg ’ ( )
OF,(@) (22l 202021 (r28% — Z.ret,0105) (AS)

aZZ,ret,a

3 9
r

where we have kept the retarded time fixed while varying the coordinates. We now quantify the dependence on retarded time by

the total derivative

dF;w(Zl)[ZZ(TZ,ret)] _ aFuv(Zl)[ZZ(fZ,ret)] .
dTZ,ret B

2, ret,a
aZZ,ret,oz

aFlLv (Zl )[ZZ(‘[Z,ret )] .

aFlLv (Zl )[ZZ(‘[Z,ret )] e

2, ret,a 2,ret,a - (A6)

aiZ,ret,a aZZ,ret,a

We can now compute the 2nd order corrections to the force. The 2nd order correction to the force is obtained by substituting 1st
order worldlines (and retarded time) in the force and taking the coefficient of et ie.,

247 ...
m 2 = [e*] [e%nF’”m + ez%(z‘f + z%z‘;)] — @K where [x2]f(x) = Coefficient of x in f(x),

. 0 2 (1 0 2. 0 2
and in RHS, we have 2/ — 7" 4 22" 2t — 2% 4 22 1) 1 = Tz(,r)et +e Tz(,r)ew (A7)

where f®* s the total force correction at 2nd order. We expand the RHS of Eq. (2.27) into four parts using Taylor series, as was
shown in the diagrams in figure 2.29 in main text. Here, we write those contributions explicitly in terms of 1st order worldline
corrections using the partial derivatives of the field tensor derived above.
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(a) Correction to e*q,F "z1.v due to ez (1) Diagram I is the force correction due to the 1st order worldline corrections to
particle 1 in the zeroth-order field of partlcle 2, via the explicit dependence of z;(t;), z1(t1) in the Lorentz force [first term in
RHS of Eq. (A7)]. It thus scales as 1/m;. It is given by

(g1 F"z1,0) Ag1F""21,0)
2 1 1, 1, 1 1, i
e4f]( o _ &t - v |(0)Z(1 ), +e4 — v | O ( )01 (A8)
0z} 0z
At zeroth order, we have 3 =0, z; = u;, p3 " = b +uT1 —ub Ty, 12 = —Ty o + yT1. We define ry(t1, T5n) = 121 =
B> 4+ (yv)?*t? and 51 = yvT| 4 rp1. Thus, the contribution to force is given by
1 0 1 1 0 1
o vl (e =300 ) — - = 3 0 1)
I - 4
1
0), - (1) 0) (1)
q192| P 2 o
2l 1)~ 6 4)] o)
1

where the 1/m; dependence comes from 1st order worldline corrections z Us1ng this expression and the 1st order corrections
[Eq. (2.23)], it is easy to see that this is composed of a linear combmatlon of terms such as

4 ’ 4 ’ 4 (A10)

1 | (rp orsyort) x log(s;) (rpporsyorty) xs; (rporsy)
nmy o5 1 1

(b) Correction to e*q\ F "zy v duetoe zg ) Diagram II is the force correction due to 1st order worldline correction of particle
2 via explicit dependence of the Lorentz force term on [z;]. It thus scales as 1/ms;. It is given by,

@n _ 3(q1F‘“’u1,,,) (g1 F" uy,y) (1), 49(q1F* uy,y) (1)

1),a 4 s
e ——————|n,  te———lo0z All
i P 02 e l0z e l0z (ALD)
Evaluating the partial derivatives with zeroth-order worldlines gives us
0), 1 0 1
son -~ e =307 0 - 57) — i (50— 3u -0y - 2))]
i
0 0 .( (1 0 0 () _ (),
q1q [ ()M(3p() Zé))/ Z;)) (,05) )(3142/0() - (1) Z;)M)]
4
3
), (1) 0) | (1) (0) (1), ©0) | (1)
q192| P ra(ur-Z,7) —yp 2 —ub (p
L el 08~ AE = 1) )
21

(D and we can use this expression and the 1st

where the 1/m; dependence comes from the first-order worldline corrections z,
order corrections [Eq. (2.26)] to see that it is a linear combination of terms like

1 !(rzl ortyorsy) x sy (raort orsy) x log(sy) (sity or t2 or 57 or sy or 1) x (1 or s2)

4 3 4 s ’

4
nm; 5 o e

F21 OF §1 OF T| OF §7 OF T{$] OF T OF §3 Or 5771 OF T }

”31’132
rio =/ 1B + (yv)’13, 2 =yvn+ro. (A13)
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In the above expressions, all functions of 7, should be evaluated at TZ(,Or)et‘
III
1
""" 1 1
T2(,r)et (Z ((1 ) )

(c) Correction to e*q, F Yzy.» due to & ‘L’z( lr)el. Diagram III is the force correction due to first-order corrections to retarded time,

which in turn comes from 1st order correction to both particles” worldlines. It gains contributions linear in both zgl) and zgl) (and

their derivatives) and thus has terms with both kinds of scaling (1/m, 1/m,). It is given by,

dF*'u 3(q1F,,(z1, 2 u
egql 1,v 2(1r)el — e4 (q1 ;w( 1 2,ret) l,v)ugl_z(l) ) (A14)
s o ,ret
d"-’2,rct azz,ret

The 1st order correction to retarded time is obtained by solving |p|*> = 0 with first-order corrected worldlines to order ¢?. Thus,
we have

21 — 22(Tore) P & (B2 + 11 + T oy — 2T T2 y) + 26200+ 11T — rTa o) - (25 — 257) = 0. (A15)

To solve iteratively, we substitute 75, = rz(ill + eztz(lr)el, Tz(,or)et =y — ry1. We get

2 (1) (0) 2_(1) 2 0) (1) (2)
€ T2,ret(‘[2,ret - ]/Tl) =€ 21 = —€ (b +turt — u212,ret) ’ (Zl — % )’
2 (0) (1) (1)
2_(1 € P, '(Zl % )
el = pe : (A16)

As expected, the retarded time is linear in both zﬁl) and zgl) and thus has terms with both types of mass dependencies ml_l, my I

We can now evaluate its contribution to force to be
o _ o (6 =Dt~ 3eky)y — (rra = 3ot )] (A1)
21

It contains new types of terms such as

(s1 or 7y ors7 or 7ysy or ) x (s1 or log(sy) or s or log(s>))

5
21

(A18)

We omit discussion of Diagram IV in the Appendix since it is much simpler and was explicitly treated in the main text. The total
force is the sum of all four contributions,

e4mlz§2)“ _ 64(f1(2)” _|_fl(12)u +fl(ém _}_fl(\%)u)' (A19)

2. Performing the integrals

All three sets of terms in Eq. (A10), Eq. (A13), and Eq. (A18) contain many square roots coming from ry; = ,/|b|2 + (yv)? rlz,

rlz(TZ(,Or)e[) = \/ |b|2 + (yv)2(y 11 — r21)?. The latter even appears to contribute nested square roots. This however can be resolved

by using the relation

P20 = b + (yv)X(yr — ra)? = b + (% — Dyt + (2 = D3y = 2% = Dy
=2 + (¢ = D) + (* = D] +2(y* = Dy
= (yra + (yv)n ), (A20)

which removes the nested square roots but the square roots still complicate analytical integration. We can remove all the square
roots by using the very convenient variable s; = yvt| + r,; along with the relations

Ibl(s? — 1) | |bl(s? — €*) bI(1 + 53)
= ), T _ =, 14 =
2s1 sinh(¢) Ho=gl, 2s,e? 2 251
b|(e*? + 52
ral,_o = M sal,_o =e s, (A21)
270 ret 2e¢sl 270 ret
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where ¢ = arccosh(y ). This reduces the many terms in the acceleration to these simpler classes of terms

s7Poly(sy) log(sy) s7Poly(s;) s7Poly(s;)
(m, or mz)(l + s%)s (m, or mz)(l + s%)s m2(1 + S%)4(€2¢ + s%)3

(A22)

We continue to use s; as our main variable during integration, we multiply the acceleration (force/m;) with the Jacobian
(dt1/ds1) = ra1/(s1 sinh(¢)) = (1 + s3)/(2s7 sinh(¢)). We can now integrate w.r.t. s; to get the correction to the velocity (252))
up to a constant. The integrals are of the type(s)

s1 x Poly(sy)log(sy) s1 x Poly(sy) s1 x Poly(sy)
dsy 1 dsy———— dsy 3 3
(1+) (1) (1+5) (@ )

Mathematica has no trouble evaluating these integrals in this form, no further simplification is required from a practical point
of view. It may be tempting to divide them further into basis integrals (say of the form f dsystlog(sy)/(1 + s%)3) but this does
not provide any insight or lead to further simplification. In fact, dividing in such a way can lead to non-elementary functions
(PolyLogs) upon integration, which cancel out in the overall expression. A better way to divide them further (if one wishes to)
is to divide the terms in the force in the forms given in Eq. (A10), Eq. (A13), and Eq. (A18) except expressed as functions of s;.
Then each individual integral is made only of elementary functions. Regardless, performing all the integrals and putting them
together gives an expression for 2nd order velocity (Ziz)) made of a linear combination of terms of the form

(A23)

Poly(s;) 1 Poly(s;)log (|b|s; sinh(¢)) s
o arctan(sy ), > arctan(e” ?sy),
(mymz or m?) (1 + 57) (mymy or m?) (mymz or m?) (1 + 57) mny
Poly(sy)

. (A24)
mma(1+83) (¢ + 53)°

We get the worldline correction (ziz)) by repeating the integration process one more time. Thus, we once again multiply the
Jacobian (dt;/ds;) = r21/(sy sinh(¢)) = (1 + s%)/(Zs% sinh(¢)) integrate w.r.t. s;. Mathematica can do these integrals with
relative ease and we get the 2nd order corrections to the worldlines. Exglicit calculation gives the following expression after

imposing the boundary conditions lim;,_, 152) -b=0and lim,,_,_ z'§ ) — 0:

on 4D T1yv | (— cosh(2p) b + |b|(ul — yub)) 7 arctan(s /|b|)b*
= —32 1 arctan

a m’ 1b] 20612 (yv) b2y v

B log(s1yv)(s1y>vb* + y |bl(uy — yul)) N —2@|b* + sD)yul + [51b1* + 57 + (|b]> + 57) cosh(2¢) Jub
|blrai (yv)? 4|62y y 43
n 2|b|(1b1%s1 + 557) + [ (1b]* — s7) — 2s11b]* + 657]b]] COSh(2¢)bM
16]b3s2ry (yv)*

n q%q% {1:1 [2 arctan(s,/|b|) — arctan(rlyv/|b|)]l;" B log(e_¢s1yv)(s1y2v13“ — (yu’f — u’;))

mymy 2|b|2y 203 |blra1 (Y v)d

. larctan (a1 /(1bly ) + arctan(vr /IDDIC— 5y v’ B + bl — ) | e — yul)
2|b|2)/21)3 32r12r2151|b|2(yv)5

l;“(l —V)sq nt113“
[blray3vt 4[b2y 20’

[1b]* + 11s3|b)> + 257

+ e*(15[b]* + 952 |b|* + 251) + € (7|b[* + 1157 |b|* 4 4s7) + 2¢% 12151 |b|*] +

2 (A25)

2e20y202ry 11| b 3yvimi|b|?r

b2 — 2y221R) } 264 Py vsib* + B (—yul + ul)]
APPENDIX B: CONTRIBUTIONS TO THE 3RD ORDER IMPULSE

The force correction at 3rd order is obtained similarly by expanding the expression for force using 1st and 2nd order
trajectories. We also need to find the retarded time corrections at next order, i.e., we need to compute,

2
le(IS)M = [e6]|:€291F“U21,u + ezg_ﬂ(-z-] + Z%ZIIL>:| =y,

(zl —=>b+ut + ezzﬁl) + e4z§2), 2 — UpTy + ezzél) + e4z;2), Toret = TZ(f)r)et + ezfz(}rz:t + e4rz(i)et). (B1)
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In the main text, the various contributions to force correction at 3rd order were given in diagrammatic form in figures (2.36) and
(2.35). Here, we write them down in terms of the partial derivatives of the field tensor explicitly and lower order worldline
corrections. We also provide the formulas for retarded time corrections, and elaborate on the kind of terms that appear at
this order. As mentioned in the main text, contributions at this order come from quadratic in 1st order worldline corrections
[~e*(z")?] and linear in 2nd order worldline corrections [~e*z®]. It is convenient to deal with them separately.

1. Quadratic contributions

I

(I) Correction to e*q F*"7;, ufrom e‘l(z(l))2

1 [i.e., 64(Z§ ))2], thus it scales as my-. 2. We can write this down either by using the rules for diagrams or Taylor series as

Diagram I comes from quadratic contribution of 1st order worldlines for particle

¢ 2@ F™21.) (e (2@ Fay G12@F™ 21 ) ().
fI(z)M (q1 1 )ZEU (1)ﬂ+ (¢ 1 )Zﬁl)” (1)ﬁ+ (q1 1 )Zil) (1)5’ (B2)
2 920970 922920 2 920020

and since the field tensor does not depend on particle 1’s velocity, we can simplify this to

G _ 1 (@F™ v)zma s H@F™), FUCROYS
- 1

f (B3)

2 8oL 9z}

(1I) Correction to e*q1F"’z,, from e* (z(z))z. Diagram II comes from quadratic contribution of 1st order worldlines for

particle 2 [i.e., e4(z§2))2], thus it scales as m~. 2. This is more complicated since the field tensor depends on position, velocity and
acceleration of particle 2,

6 B _e_a (g F* Z1V)Z(1)az<1)5+ G F"™210) 1y (l)ﬂ
1 2 ae TN 2 amer

632(qule1v)Z(1)u¢ W8 4 602 (@ F" Zlv)z(l)u S 6MZ<WZ<W‘
2 gzayt ooz oory 7

3 F*
ST @ Z”)zél)“ .8 (B4)

0zy 821
111

(Ill) Correction to e*qF"'z, from cross terms e4(zi1) xzél)). Diagram IIl is due to quadratic con-

tribution of cross terms from the Ist order worldline corrections of both particles, thus it scales as
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(mymy) ™1,

a FHvz (1 F™z1 ). (1 F™z _ X (q FMz
egfl(é)ﬂ (q1 Z1,0) (1)a (1)ﬂ+e6 (¢ 1u)Z§1),aZ§1),,s+e6 (q1 1v)Z§1),aZ§1),5+e (q1 Z1w) . (1)a (1),3

az?‘azz ozf 822 0zy 822 8z‘f‘812
8 FHvz o- 8 Frz1 o.
4o (q1 1u)Z§1) BB 4 S (q1 1, )Zﬁl) (D (BS)
azy 822 leazz
v

----- (1) ( (1))

Ta ,ret Za

2 ()
2ret

combined contribution of first-order worldline correctlon of parncle 1 (é’z 1)) and 1st order retarded time correction (et

2

(IV) Correction to e*q F*’z1, linear in €z ( ) and 1st order retarded time correction (e ). Diagram IV is due to the

(1)

2,ret/*
This has terms that scale as (m;m,)~" or m;? [see expression of r2 ret in Eq. (A16)],

1
|(0)Z§ ULy

d | 3@iF""21,)
(3) 6 ,
i [ i 7 ol (B6)

o 63(q|F/“’21,u)|(0)Z.(1),a 1)
v er,ret !

(1) (1))

T2, ,;ret (Z@

(V) Correction to e qu vz v linear in z( ) and st order retarded time correction (e*t (1) «)- This is the counterpart of IV. This
has terms that scale as (nm;m;)~" or m, -2,

( 1 - 1 ) o a(Qll vul ) . 8(q1F uj, )

B d 9 q I Uiy (1), Ry 1),a v (1), 0
e 02 4+ Z B7
v dtZ,ret 822 |( )2 8z2‘ |(O) 2 a Ot |( ) [2 ret® ( )

(52 (28))2

(VI) Correction to equF "z v quadratic in 1st order retarded time correction ( 64(12(}r)et)2 ). Diagram VI should be self

explanatory. This scales as (mymy)~ 1, ml_2 or my 2

(1) \2 2
(3);/. 6( 2ret) d
Vi 2 dt?

2,ret

——— (@@ F"2,). (B8)
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VII
""" (2) 1
7-2,1'9,‘5(2’/( ))
(VII) Correction to e*qF"z., linear in 2nd order retarded time correction ( 64T2(2r::1 ) (due to 1st order worldline corrections,

ezz?) and ezzél) ). Ist order worldline corrections also produce a 2nd order correction to retarded time since the relation |z; —
72|? = 0 is quadratic. To find the 2nd order retarded time correction (due to 1st order worldline corrections) e4rz(zr)et(z(1)), we

need to solve the relation |z; — z|> = 0 to NNLO (e*). Substituting worldlines with 1st order corrections, we have
1 1 1 1))\2
21— 2P =0+ 1+ T — 20Ty + 26200+ T — Do) - (25 = 23V) + e (2 = 25) =0, (B9)

where we substitute 77 ret = fz(or)et + 62‘[2( lr)et + e412(2r)et, and then solve for ‘[2(21')et' We get

(1) )2 (2) (1) (1, (0) (D 0)5(1)(_(0) y_(1) (1 (2) . (0) \)2
(t2,ret) + 2r1 TZ,ret - 2142 ’ (Zl — 4 (TZ,rel))IZ - 210( )ZZ (TZ,rel)tZ,ret + (Zl -4 (t2,ret)) = O’

,ret

(1) 2),.0) \\2 0) (1) ((0) (1) (1) (1) (..(0) (1) 1) \2
?2) _(Zl — 4 (T2,ret)) +2p 2 (t2,ret)f2,ret + 2u; - (Zl — 4 (TZ,ret))rZ,ret - (7:2,ret)
Dret = . (BIO)
’ 21’1
Once we have 12(226(, we can simply substitute this in
dF*’y 0(q1Fu0 (215 22,000 )U1,0)
6,3 _ 6 Lv_2) _ 6°2q1fuvlZ1, 22 ret )U1,v )
¢Jvn =¢q 2ret = UST) ey (B11)

dtzyl'el aZgt,ret

These are all the quadratic corrections to Lorentz force at 3rd order (e°).

(IX) Self-force contribution. In addition, there is a quadratic contribution to the ALD force (Zezq% /3 + zfz’f ). We only
need to include the second term at this order since we are interested in the impulse, and the first term is a total derivative of
acceleration (which vanishes at boundaries). Thus, it gains no relevant contribution from 2nd order worldline corrections at 3rd
order. We omit the diagram here. Thus, the relevant contribution is

Lin2 u_ 28013y + Ty — 1)
10 = () x ({0 = 2Bl P riy Z D] ®12)

3min3rf

2. Linear contributions

The next set of contributions are corrections to the Lorentz force term that are linear in 2nd order worldline corrections. These
are similar in form to the diagrams at 2nd order. We thus have three diagrams again,
IX

(IX) Correction to e*q1F" 'y, linear in e4z§2). Diagram IX is due to the 2nd order world line correction to particle 1 to the
Lorentz force, while fixing retarded time and particle 2’s worldline at zeroth order. It is linear in e4z§2), thus scales as 1/mm, or
1/m3. It is given by
o (g1 F"z10)

oz

(q1F""21,0)

6 (3 2), 6 1 1, -(2),

e I(X)M = |(())Zi ) +e Tvko)zg )a. (B13)
1
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4132). Diagram X is due to 2nd order worldline correction to particle 2 while fixing

retarded time and particle 1’s worldline at zeroth order. It is linear in 642;2), thus scales as 1/mym, or 1/m3. It is given by

(X) Correction to equF’“’Zl,v linear in e

(@1 F"uy ) qi1F"*uy ), .
eﬁf)((am =e6a—av|(0)Z;2),a+e6+av|(o)zéz).a
25 075
@1 F"™ ), .
g a'-a—v 03 (B14)
2
XI
""" 2
7—2(,r)et(z(2))

(XI) Correction to e*q; F*'zy , from 2nd order retarded time correction due to 2nd order worldline corrections ( At (zgz)) ).

2,ret

The second order correction to retarded time also gets contribution from z as one would expect. We can find it in the same

manner we found the first order retarded time correction [see derivation in Eq. (A16)], to get 7, =

5O _ esd(%F””il,v)
X dTZ,ret

@ _
l0) T2 et =

2 ©.;0_®
( r)et %12). Thus, we have

69(q1Fu0 (21, 220e)U10) 4 )
o 2 ‘CZ ret”
8Z2,ret '

(B15)

These are all the contributions to the acceleration and subsequently impulse at 3rd order.
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