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1 Introduction

In the companion Part I [1] to this paper we introduced the Laplace equations

(∆− s(s− 1))F+(s)
m,k = EmEk , (1.1a)

(∆− s(s− 1))F−(s)
m,k = (∇Em)(∇Ek)− (∇Ek)(∇Em)

2(Im τ)2 , (1.1b)

with integers s ≥ 2 and 2 ≤ m ≤ k, and where Ek are non-holomorphic Eisenstein series

Ek = (Im τ)k

πk

∑
(m,n) 6=(0,0)

1
|mτ + n|2k

. (1.2)

The modular parameter τ is in the upper half-plane, and Ek is invariant under the modular
transformations

τ → γ · τ = aτ + b

cτ + d
for γ =

(
a b

c d

)
∈ SL(2,Z) . (1.3)

The Cauchy-Riemann derivatives ∇ = 2i(Im τ)2∂τ of Ek are modular forms of weight
(0,−2) and the Laplacian ∆ = 4(Im τ)2∂τ∂τ̄ = ∇

(
(Im τ)−2∇

)
is modular invariant. The

superscripts ± on F±(s)
m,k indicate that these functions are required to be even/odd under

the involution τ → −τ̄ of the upper half-plane, in line with the respective right-hand sides
of (1.1). The spectrum of eigenvalues appearing in (1.1) is

F+(s)
m,k : s ∈ {k−m+2, k−m+4, . . . , k+m−4, k+m−2} , (1.4a)

F−(s)
m,k : s ∈ {k−m+1, k−m+3, . . . , k+m−3, k+m−1} . (1.4b)

As all the objects in (1.1) are modular invariant, we focus on modular invariant solutions
F±(s)
m,k to the Laplace problem. The transcendental weight of F±(s)

m,k is m+k from (1.1) given
that Em and Ek have transcendental weight m and k, respectively.
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In Part I, we constructed solutions to (1.1) in terms of absolutely convergent1 Poincaré
series

F±(s)
m,k (τ) =

∑
γ∈B(Z)\SL(2,Z)

f
±(s)
m,k (γ · τ) , (1.5)

where the seed functions f±(s)
m,k are invariant under shifts τ → τ+n for n ∈ Z which form

the stabiliser of the cusp τ → i∞

B(Z) =
{(
±1 n

0 ±1

) ∣∣∣∣∣n ∈ Z
}
⊂ SL(2,Z) . (1.6)

For the convenience of the reader, appendix A recaps the explicit form for our choice of
representatives of these seeds f±(s)

m,k .
Even though the solution (1.5) is fully explicit and has interesting structures analysed

in Part I, extracting the complete Fourier expansion of F±(s)
m,k from the Poincaré-series

representations is fairly involved. For the Fourier zero mode one can use the methods
of [2–5] but the non-zero modes with respect to τ → τ+1 are hard to obtain. For this
reason it is desirable to find alternative expressions for the modular invariants F±(s)

m,k .
A family of functions with well-defined modular transformation properties is provided

by modular graph forms (MGFs) [6–8]. These arise in the α′-expansion of configuration-
space integrals of genus-one closed-string amplitudes and have been studied from a physical
perspective in [2, 3, 5–34] and a mathematical perspective in [35–43]. As they arise from
string amplitudes, MGFs possess a lattice-sum description over discrete momenta of Feyn-
man graphs drawn on the genus-one string world-sheet.

In particular, generating functions of closed-string integrals and their associated dif-
ferential equations [28, 30] lead to expressions for MGFs in terms of real-analytic objects
denoted by

βsv
[
j1 j2 ... j`
k1 k2 ... k`

; τ
]

with ki ∈ {4, 6, 8, . . .} and 0 ≤ ji ≤ ki−2 , (1.7)

where ` ∈ N is called the depth of βsv.2 Depth serves as a filtration, and the highest-depth
terms in the complex-conjugation and modular properties of the βsv take a simple form.
The βsv are constructed from (single-valued) iterated integrals over holomorphic Eisenstein
series and should be closely related to Brown’s non-holomorphic modular forms [37, 38],
although a precise dictionary between the two formalisms is still missing beyond depth
one. Together with certain antiholomorphic integration constants determined in Part I,
the complete Fourier expansion of the βsv at depths one and two is known. Therefore it
seems desirable to express the F±(s)

m,k in terms of the βsv. A further advantage of using such
a representation of a modular-invariant function in terms of iterated integrals is that it is
unique [44], unlike lattice-sum representations that are more frequent for MGFs.

In many cases, the Poincaré-series representations in this work may be viewed as inter-
polating between double sums over lattice momenta and double integrals over holomorphic

1Absolute convergence is guaranteed for m < k and for m = k a suitable regularisation was described
in Part I.

2A more detailed review of the construction and properties of the βsv can be found in section 2.
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Eisenstein series: the seeds f±(s)
m,k in (1.5) are constructed from depth-one integrals, and the

sum over SL(2,Z) transformations is comparable to a single lattice momentum. However,
the Poincaré sums in (1.5) often produce MGFs that require three and more lattice mo-
menta (see Part I for details) or modular invariant functions without any known lattice-sum
representation.

In Part I, we have presented a procedure for obtaining linear combinations qF±(s)
m,k of

βsv of depths two and one, together with Laurent polynomial terms in y = π Im τ (that
can be thought of as depth zero). These linear combinations were constructed by starting
from depth-two terms that solve the Laplace equation (1.1) modulo terms of lower depth.
The latter were fixed from certain requirements on the desired solutions concerning their
Cauchy-Riemann derivatives and asymptotics at the cusp, see Part I for further details.
However, this procedure was tailored towards solving the Laplace system in terms of the
building blocks βsv of MGFs and does not guarantee that the resulting expression is modular
invariant.

By comparing the dimensions of the space of solutions to (1.1) and the space of MGFs
at depth two we have seen in Part I that the MGFs do not suffice to span the space of F±(s)

m,k .
This is reflected in the fact that certain qF±(s)

m,k fail to be modular invariant exactly in those
cases when the dimensions of the function spaces differ. In the present paper, we shall
discuss how to augment the qF±(s)

m,k so that they become modular invariant and therefore
equal the corresponding Poincaré series F±(s)

m,k in (1.5). In other words, we illustrate through
a variety of examples that MGFs do not exhaust the modular-invariant combinations of
iterated integrals of holomorphic modular forms and their complex conjugates.

As we shall see, the missing ingredients beyond the βsv are (real and imaginary parts
of) iterated integrals of holomorphic cusp forms. From the Eichler-Shimura theorem [45, 46]
and the work of Brown [35, 37, 38, 47] on iterated integrals of general holomorphic modular
forms, it is not surprising that restricting to the βsv, that only involve iterated integrals of
holomorphic Eisenstein series, is insufficient to describe the full space of modular-invariant
solutions to (1.1). The first discrepancy in the dimensions of the function spaces F±(s)

m,k

and MGFs appears for eigenvalues s = 6, 8, 9, 10, . . . which coincide exactly with half the
modular weight of the first holomorphic cusp forms of SL(2,Z). This can be seen as a hint
that cusp forms are the missing piece of the puzzle.

A further indication for the relevance of holomorphic cusp forms stems from the ap-
pearance of conjectural matrix representations of Tsunogai’s derivation algebra [48] in the
generating series of MGFs [28, 30]. Relations in the derivation algebra are also tied to
holomorphic cusp forms [49] and imply that, starting from depth two, there are combi-
nations of the βsv that are not contained in the generating series of MGFs. Completing
these to modular invariants requires holomorphic cusp forms as we shall see. This follows
from the S-modular transformations of the various βsv which contain interesting so-called
multiple modular values [35] that involve the values of completed L-functions of cusp forms
at integers [50] and extend the set of single-valued multiple zeta values. In order to cancel
these L-values from S-modular transformations in general one has to combine the βsv with
iterated integrals of cusp forms. We shall work out these ideas in detail in this paper and
spell out a variety of examples.

– 3 –
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As a byproduct of our analysis we derive that the series expansions in q = exp(2πiτ)
and q̄ = exp(−2πiτ̄) of these non-holomorphic modular objects F±(s)

m,k display very inter-
esting structures. Firstly, the leading terms in the expansion of the even functions F+(s)

m,k

around the cusp Im τ � 1 are Laurent polynomials in y = π Im τ that will also be referred to
as “perturbative”. These Laurent polynomials have a single term with a rational coefficient,
a single term with a Q-multiple of the product ζ2m−1ζ2k−1, while all other coefficients are Q-
multiples of odd zeta values ζ2m−1, ζ2k−1, ζm+k+s−1, see Part I for further details. Secondly,
the infinite tower of exponentially suppressed, non-perturbative terms of the form qnq̄m,
with both of n,m > 0, have Laurent polynomials in y with rational coefficients for both the
even and odd F±(s)

m,k . Finally, and perhaps more interestingly, due to the presence of iterated
integrals of holomorphic cusp forms we find that the exponentially suppressed terms of the
form qnq̄0 (and their complex conjugates q0q̄n) with n > 0 are multiplied by particularly
rich Laurent polynomials in y: their coefficients are either rationals, or Q-multiples of sin-
gle odd zeta values or surprisingly rationals (or more general number-field extensions of Q)
times special ratios of completed L-values associated to whichever cusp form is at play.

These results allow us to make novel predictions regarding the non-zero Fourier-mode
decomposition of the Poincaré series (1.5). In particular in Part I, we have thoroughly
explained how, for all the constructed seed functions f±(s)

m,k (τ), one can exploit the results
of [3] to obtain the purely perturbative Laurent polynomials in y. To pass from the seed
function f±(s)

m,k (τ) to the actual associated Poincaré series (1.5) one needs to use a particular
integral transform detailed for instance in appendix A of Part I. Such a mapping between
seed and modular function can also be used to formally obtain the non-zero modes for
the modular invariant Poincaré series. However, the computation of non-zero modes from
this integral transform of the seed involves very complicated Kloosterman sums and the
analogue of the analysis in [3] to this case is currently unknown. Despite this lack of
full control over Kloosterman sums, our results imply that these Kloosterman sums must
contain completed L-values of holomorphic cusp forms. It would be extremely interesting
to extend the results of [3] to the non-zero Fourier mode sectors, thus deriving directly from
the seed functions the exponentially suppressed terms qnq̄0 and q0q̄n with n > 0 including
their Laurent polynomials.

Outlook. The results of Part I and this work raise a variety of follow-up questions of
relevance to string perturbation theory, algebraic geometry and number theory. Most ob-
viously, the Fourier expansion of depth-two MGFs and their extension by iterated integrals
of holomorphic cusp forms call for generalisations to higher depth. Among other things,
(single-valued) multiple zeta values beyond depth one, iterated integrals that mix holo-
morphic Eisenstein series with cusp forms and generalisations of L-values [51] are expected
to play a key role starting from depth three. The respective seed should have one unit of
depth less than its modular invariant Poincaré sum, and it will be rewarding to study this
kind of recursive structure at general depth.

Furthermore, a detailed connection with the recent mathematics literature promises
powerful synergies. Various important properties of the βsv at general depth will follow
once their precise relation to Brown’s non-holomorphic modular forms is established. More-

– 4 –



J
H
E
P
0
1
(
2
0
2
2
)
1
3
4

over, we note that iterated integrals of cusp forms and their Poincaré sums have featured
prominently in recent work [52] that also relates to so-called higher-order modular forms.
Certain Laplace systems similar to (1.1) but at depth three have also been studied recently
in [53]. These references can provide useful guidance when generalising our work.

Outline. In section 2, we review the basic properties of iterated integrals of holomorphic
modular forms, with particular emphasis on their modular properties and certain SL(2,Z)
group cocycles that arise. In section 3, we then use these results in the analysis of the
modular invariant solutions to the Laplace equations. We further show how to combine
the βsv with iterated integrals of cusp forms based on the vanishing of the cocycles thus
restoring modularity. We explain the relation between Tsunogai’s derivation algebra and
the modular invariant Laplace eigenfunctions in section 4. Further properties of the solu-
tions to (1.1), such as connections to Kloosterman sums, are discussed in section 5. An
ancillary file that accompanies the arXiv submission and the supplementary material of the
journal publication of this work contains many examples and explicit expressions related
to the functions F±(s)

m,k .

2 Basics of iterated integrals

This section is dedicated to the central aspects of iterated integrals as well as their differ-
ential and modular properties as they enter our analysis. Frequent use will be made of the
Cauchy-Riemann derivatives

∇ = 2i(Im τ)2∂τ , ∇ = −2i(Im τ)2∂τ̄ (2.1)

and the Laplace operator

∆ = 4(Im τ)2∂τ∂τ̄ = (π∇)(y−2π∇) . (2.2)

As in the equation above, we often use the symbol y = π Im τ , and powers of y satisfy

(π∇)kya = (π∇)kya = Γ(a+k)
Γ(a) ya+k , ∆ya = a(a−1)ya . (2.3)

2.1 Iterated integrals of Eisenstein series

In the present work, we shall only require the depth-one and depth-two versions of the
single-valued iterated Eisenstein integrals (1.7). These are defined by the integrals [30]3

βsv
[
j
k

]
= (2πi)−1

(4y)k−2−j

{∫ i∞

τ
dτ1(τ−τ1)k−2−j(τ̄−τ1)jGk(τ1)−

∫ −i∞
τ̄

dτ̄1(τ−τ̄1)k−2−j(τ̄−τ̄1)jGk(τ1)
}

(2.4a)

3We shall often suppress the argument τ of various functions to simplify the notation.
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with 0 ≤ j ≤ k−2 and

βsv
[
j1 j2
k1 k2

]
=
k1−2−j1∑
p1=0

k2−2−j2∑
p2=0

(k1−2−j1
p1

)(k2−2−j2
p2

)
(4y)p1+p2

α
[
j1+p1 j2+p2
k1 k2

]
+ (2πi)−2

(4y)k1+k2−j1−j2−4 (2.4b)

×
{∫ i∞

τ
dτ2(τ−τ2)k2−j2−2(τ̄−τ2)j2Gk2(τ2)

∫ i∞

τ2
dτ1(τ−τ1)k1−j1−2(τ̄−τ1)j1Gk1(τ1)

−
∫ i∞

τ
dτ2(τ−τ2)k2−j2−2(τ̄−τ2)j2Gk2(τ2)

∫ −i∞
τ̄

dτ̄1(τ−τ̄1)k1−j1−2(τ̄−τ̄1)j1Gk1(τ1)

+
∫ −i∞
τ̄

dτ̄1(τ−τ̄1)k1−j1−2(τ̄−τ̄1)j1Gk1(τ1)
∫ −i∞
τ̄1

dτ̄2(τ−τ̄2)k2−j2−2(τ̄−τ̄2)j2Gk2(τ2)
}

with 0 ≤ ji ≤ ki−2. The holomorphic Eisenstein series are normalised as

Gk(τ) =
∑

(m,n) 6=(0,0)

1
(mτ + n)k = 2ζk + 2(2πi)k

(k−1)!

∞∑
n=1

σk−1(n)qn (2.5)

with divisor sum σs(n) =
∑
d|n d

s. The integrals (2.4) have to be understood with tangential
base-point regularisation [35] and satisfy the shuffle relations

βsv
[
j1
k1

]
βsv
[
j2
k2

]
= βsv

[
j1 j2
k1 k2

]
+ βsv

[
j2 j1
k2 k1

]
, (2.6)

as well as the differential equations [30]

−4π∇βsv
[
j
k

; τ
]

= (k − 2− j)βsv
[
j+1
k

; τ
]
− δj,k−2(τ−τ̄)kGk(τ) , (2.7a)

−4π∇βsv
[
j1 j2
k1 k2

; τ
]

= (k1−j1−2)βsv
[
j1+1 j2
k1 k2

; τ
]

+ (k2−j2−2)βsv
[
j1 j2+1
k1 k2

; τ
]

− δj2,k2−2(τ−τ̄)k2Gk2(τ)βsv
[
j1
k1

; τ
]
. (2.7b)

The objects α[ j1 j2
k1 k2

] appearing in (2.4b) are purely antiholomorphic functions and con-
strained by the shuffle relation (2.6). They are not fixed by the differential equation (2.7)
and therefore referred to as integration constants — see [30] for a detailed discussion. A
method to determine them from the reality properties and Laplace equations of F±(s)

m,k is
discussed in Part I, and a large number of examples can be found in the supplementary
material.

2.1.1 Fourier expansions of iterated Eisenstein integrals

The compact definition (2.4) of the βsv can be unpackaged to yield expressions in terms of
other iterated integrals of the form [20, 54]

E0(k, 0p; τ) = (2πi)p+1−k

p!

∫ i∞

τ
dτ1(τ−τ1)pG0

k(τ1) , (2.8a)

E0(k1, 0p1 , k2, 0p2 ; τ) = (2πi)p1+p2+2−k1−k2

p1!p2!

∫ i∞

τ
dτ2(τ−τ2)p2G0

k2(τ2) (2.8b)

×
∫ i∞

τ2
dτ1(τ2−τ1)p1G0

k1(τ1)

– 6 –
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and their complex conjugates with integers k, k1, k2 = 4, 6, 8, . . . and p, p1, p2 ≥ 0. In the
above expressions, 0p is a placeholder for p successive zeroes (reminiscent of integration
kernels G0

0 = −1 [54]), and the G0
k are obtained from the holomorphic Eisenstein series Gk

by removing the zero mode

G0
k(τ) =

{
Gk(τ)− 2ζk : k > 0 even ,

0 : k > 0 odd .
(2.9)

The removal of the zero mode destroys the good modular transformations of Gk but renders
the integrals convergent without regularisation. Moreover, the integrals E0(. . .) have fully
explicit q-expansions, e.g.

E0(k, 0p; τ) = − 2
(k−1)!

∞∑
m=1

σk−1(m)
mp+1 qm , (2.10a)

E0(k1, 0p1 , k2, 0p2 ; τ) = 4
(k1−1)!(k2−1)!

∞∑
m,n=1

σk1−1(m)σk2−1(n)
mp1+1(m+n)p2+1 q

m+n , (2.10b)

see [20, eq. (2.21)] for arbitrary depth. This can be used to obtain the full Fourier expan-
sions of the βsv. The rewriting of the βsv in terms of the E0(. . .) requires a number of steps
that are well-understood and whose precise form can be found in section 3.3 and appendix
D of [20] as well as appendix G of [30].

2.1.2 Differential equations and non-holomorphic Eisenstein series

The definition (2.8a) readily implies the Cauchy-Riemann derivative

π∇E0(k, 0p) = −4y2E0(k, 0p−1) (2.11)

for p ≥ 0, where we define E0(k, 0−1) = −(2πi)−kG0
k, and the Laplace equation ∆E0(k, 0p) =

0.
The non-holomorphic Eisenstein series Ek defined in (1.2) can be decomposed in terms

of iterated Eisenstein integrals as follows [7, 55]:

Ek(τ) = (−1)k−1 B2k
(2k)! (4y)k + 4(2k−3)!ζ2k−1

(k−2)!(k−1)! (4y)1−k

− 2Γ(2k)
Γ(k)

k−1∑
`=0

(4y)−` Γ(k+`)
`!Γ(k−`) Re E0

(
2k, 0k−1+`; τ

)
= (−1)k−1 B2k

(2k)! (4y)k + 4(2k−3)!ζ2k−1
(k−2)!(k−1)! (4y)1−k (2.12)

+
[
− 1

2πi
Γ(2k)
[Γ(k)]2 (4y)1−k

∫ i∞

τ
dτ1(τ−τ1)k−1(τ̄−τ1)k−1G0

2k(τ1) + c.c.
]

= (2k−1)!
[(k−1)!]2

{
−βsv

[
k−1
2k

]
+ 2ζ2k−1

(2k−1)(4y)k−1

}
,

where +c.c. instructs us to add the complex conjugate, making Ek real-analytic and even
under τ → −τ̄ . We also used y = π Im τ as we shall do frequently. This relation between

– 7 –
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Ek and the depth-one βsv, already present in [30], comes directly from (2.4a) when using
the relation between Gk and G0

k as well as tangential base-point regularisation.
From both the lattice-sum representation (1.2) and the final form of (2.12), one can

show the well-known formula for the k-th Cauchy-Riemann derivative of Ek [8]:

(π∇)kEk(τ) = Γ(2k)
Γ(k) (Im τ)2k

[
2ζ2k + G0

2k(τ)
]

= Γ(2k)
Γ(k) (Im τ)2kG2k(τ) , (2.13)

where we have used Euler’s formula relating the even Bernoulli numbers to the even Rie-
mann zeta values

2ζ2n = (−1)n+1 4nπ2n

(2n)! B2n , n = 1, 2, 3, . . . . (2.14)

We also record the following general formula

(π∇)s
[
iy1−s

∫ i∞

τ
dτ1(τ−τ1)s−1(τ̄−τ1)s−1f(τ1)

]
= 22s−1πΓ(s)(Im τ)2sf(τ) (2.15)

for any integer s > 0 and holomorphic function f(τ) irrespective of its modular properties.
If f(τ) has a q-expansion in terms of positive powers of q only, the integral in (2.15) is
well-defined without tangential base-point regularisation. With (2.15) and (2.3) it is easy
to demonstrate (2.13).

For the Laplacian there is a similar lemma given by

(
∆− s(s−1)

) [
iy1−s

∫ i∞

τ
dτ1(τ−τ1)s−1(τ̄−τ1)s−1f(τ1)

]
= 0 . (2.16)

Besides direct evaluation of the Laplacian on the integral, we can also consider (2.16)
by Fourier expanding the integrand f(τ). Specialising to the case of a single Fourier mode
f(τ) = e2πinτ with n > 0, the integral can be evaluated in terms of Bessel functions Ks−1/2
giving

iy1−s
∫ i∞

τ
dτ1(τ−τ1)s−1(τ̄−τ1)s−1e2πinτ1 = (−1)sΓ(s)

π2s−1ns

√
ny

π
Ks−1/2(2ny)e2πinRe τ , (2.17)

which is the well-known solution to the Laplace equation (2.16) in the nth Fourier mode
sector.

From this and (2.3) one can also prove the classic Laplace equation(
∆− k(k−1)

)
Ek(τ) = 0 , (2.18)

since the Laurent monomials yk and y1−k in (2.12) are in the kernel of (∆− k(k−1)).

2.1.3 Multiple modular values

Besides the version of iterated Eisenstein integrals in (2.8), we shall also make use of

G
[
j
k

; τ
]

=
∫ i∞

τ
dτ1 τ

j
1 Gk(τ1) , (2.19a)

G
[
j1 j2
k1 k2

; τ
]

=
∫ i∞

τ
dτ2 τ

j2
2 Gk2(τ2)

∫ i∞

τ2
dτ1 τ

j1
1 Gk1(τ1) , (2.19b)
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that are, up to normalisation conventions, Brown’s holomorphic iterated Eisenstein inte-
grals and require tangential base-point regularisation [35]. At depth one, this regularisation
means

G
[
j
k

; τ
]

=
∫ i∞

τ
dτ1 τ

j
1 G0

k(τ1)− 2ζk
∫ τ

0
dτ1τ

j
1 , (2.20)

treating the zero mode of (2.5) differently, while the depth-two generalisation can be found
in [35, eq. (4.13)]. A more general translation of (2.19) into the integrals (2.8) can be found
in [20], and the depth-one instance of the dictionary is

E0(k, 0p) = (2πi)p+1−k
p∑
a=0

(−1)aτp−a

a!(p−a)! G[ ak ] + 2ζk(2πi)p+1−k τp+1

(p+1)! . (2.21)

The extra term proportional to ζk is due to E0(k, 0p) being defined in terms of G0
k, thus

lacking the zero mode ζk when compared to Gk appearing in (2.19), see (2.9).
The virtue of the definition (2.19) is that it is easier to describe the behaviour under

S-modular transformations [20, 35]:

G
[
j
k

;−1
τ

]
= (−1)jG

[
k−2−j
k

; τ
]

+ m
[
j
k

]
, (2.22a)

G
[
j1 j2
k1 k2

;−1
τ

]
= (−1)j1+j2G

[
k1−2−j1 k2−2−j2

k1 k2
; τ
]

+ (−1)j2G
[
k2−2−j2

k2
; τ
]
m
[
j1
k1

]
(2.22b)

+ m
[
j1 j2
k1 k2

]
.

The objects m[ ······ ] appearing in this equation do not depend on τ — they are examples of
multiple modular values [35] and correspond to period integrals

m
[
j
k

]
=
∫ i∞

0
dτ1 τ

j
1 Gk(τ1) , (2.23a)

m
[
j1 j2
k1 k2

]
=
∫ i∞

0
dτ2 τ

j2
2 Gk2(τ2)

∫ i∞

τ2
dτ1 τ

j1
1 Gk1(τ1) , (2.23b)

which are obtained formally as limits τ → 0 of (2.19). This limit is divergent and has
to be treated again with tangential base-point regularisation. One way of doing this is to
consider at depths one and two

m
[
j
k

]
= G

[
j
k

; i
]
− (−1)jG

[
k−2−j
k

; i
]
, (2.24a)

m
[
j1 j2
k1 k2

]
= G

[
j1 j2
k1 k2

; i
]
− (−1)j1+j2G

[
k1−2−j1 k2−2−j2

k1 k2
; i
]

(2.24b)

− (−1)j2G
[
k2−2−j2

k2
; i
]
m
[
j1
k1

]
,

where we rewrote the S-modular behaviour (2.22) and evaluated this expression at the
self-dual point τ = i. We recall that the integrals (2.19) are well-defined for any finite τ ,
using tangential base-point regularisation at the upper integration boundary τ → i∞. The
choice of the self-dual point τ = i in (2.24) is arbitrary (any pair of S-dual points would
do) but convenient for numerical evaluations.
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For depth one we can work out the multiple modular values explicitly as

m
[
j
k

]
=


2(−2πi)k−j−1j!

(k−1)! ζj+1ζj+2−k for j > 0 ,

−2πiζk−1
k−1 for j = 0

(2.25)

and these correspond to periods of the holomorphic Eisenstein series [56]. The j = 0 case
can also be obtained as a limit after using the functional relations of the zeta function.
Since k ≥ 4 is an even integer, the multiple modular values of depth one vanish for even
0 < j < k−2 as they involve the zeta function evaluated at a negative even integer.

For depth two, numbers beyond (multiple) zeta values can occur [35, 50]. We will
discuss further properties of multiple modular values and how they arise directly in the
S-modular transformation of the βsv in section 2.3.

2.2 Iterated integrals of cusp forms

We now let ∆2s(τ) denote a holomorphic cusp form of weight 2s ∈ {12, 16, 18, . . .}. Then
we define the analogue of (2.8a) as

E0(∆2s, 0p; τ) = (−1)p(2πi)p+1
∫ i∞

τ
dτ1

∫ i∞

τ1
dτ2 . . .

∫ i∞

τp
dτp+1 ∆2s(τp+1)

= (2πi)p+1

p!

∫ i∞

τ
dτ1 (τ−τ1)p∆2s(τ1) . (2.26)

Since ∆2s is a cusp form, this integral is well-defined for any p ≥ 0; however, in everything
that follows we shall only encounter the usual range of values 0 ≤ p ≤ 2s−2. The cusp
forms in this definition are Hecke normalised with ∆2s(τ) = q + O(q2) such that the
transcendentality of the iterated integral (2.26) is given by p+1, just like for (2.8a).4 The
objects that are on a similar footing are ∆2s and Gk

(2πi)k since both have algebraic Fourier
coefficients, for instance

∆12(τ) = 1
1728

{(G4(τ)
2ζ4

)3
−
(G6(τ)

2ζ6

)2}
= q−24q2 +252q3−1472q4 +O(q5) (2.27)

∆16(τ) = 1
1728

G4(τ)
2ζ4

{(G4(τ)
2ζ4

)3
−
(G6(τ)

2ζ6

)2}
= q+216q2−3348q3 +13888q4 +O(q5)

∆18(τ) = 1
1728

G6(τ)
2ζ6

{(G4(τ)
2ζ4

)3
−
(G6(τ)

2ζ6

)2}
= q−528q2−4284q3 +147712q4 +O(q5) .

If the cusp form has Fourier expansion ∆2s(τ) =
∑∞
n=1 a(n)qn then

E0(∆2s, 0p; τ) = −
∞∑
n=1

n−p−1a(n)qn . (2.28)

4The factor of (−1)p in the first line of (2.26) is due to the insertion of p copies of G0
0 = −1 in the

iterated integral which is the meaning of the notation 0p [20, 54].

– 10 –



J
H
E
P
0
1
(
2
0
2
2
)
1
3
4

While the seed functions of F+(s)
m,k and F−(s)

m,k in (1.5) determined in Part I are essentially5

constructed from real and imaginary parts of E0(2m, 0p; τ) in (2.8a), respectively, Poincaré
sums of E0(∆2s, 0p; τ) have been discussed in [52].

2.2.1 Real-analytic integrals of holomorphic cusp forms
From the fourth line of (2.12), we see that one can define even and odd analogues of the
non-holomorphic Eisenstein series by trading Gk in the integration kernel for holomorphic
cusp forms ∆2s,

H±∆2s
(τ) = (−1)sπ

2s−1i

Γ(s) y1−s
∫ i∞

τ
dτ1 (τ−τ1)s−1(τ̄−τ1)s−1∆2s(τ1)± c.c. , (2.29)

where we have fixed a convenient normalisation. This function satisfies from (2.15)
and (2.16)

(π∇)sH±∆2s
= 1

2(2πi)2s(Im τ)2s∆2s(τ) , (2.30a)(
∆− s(s−1)

)
H±∆2s

= 0 . (2.30b)

Clearly, the even function H+
∆2s

is obtained from the cusp form ∆2s in the same way as Es is
obtained from G2s. Moreover H−∆2s

is its odd cousin, and the appearance of an odd analogue
of Ek (denoted by E(−)

k ) in the lower-depth terms of F−(s)
m,k is discussed in section 5.5 of Part I.

Variants of (2.29) with more general exponents (τ−τ1)j(τ̄−τ1)2s−2−j , j = 0, 1, . . . , 2s−2
arise from Cauchy-Riemann derivatives of H±∆2s

and have been studied in [52].
Following our discussion around (2.17) we expose the q-expansion of H±∆2s

by rewriting
them as a finite sum over the E0(∆2s, 0p; τ) in (2.26) and (2.28),

H±∆2s
(τ) = 1

2

s−1∑
`=0

(4y)−` Γ(s+`)
`!Γ(s−`)

∞∑
n=1

a(n)
ns+`

(qn ± q̄n) (2.31)

= −1
2

s−1∑
`=0

(4y)−` Γ(s+`)
`!Γ(s−`)

[
E0(∆2s, 0s−1+`; τ)± c.c.

]
,

which is the direct analogue of the second line in (2.12) for Es and the definition of E(−)
s in

section 5.5 of Part I. Given that the transcendental weight of iterated integrals E0(∆2s, 0p; τ)
is p+1 in our conventions, their combinations with y = π Im τ of weight 1 in (2.31) assign
transcendentality s to H±∆2s

.
The sum over Fourier modes in the first line of (2.31) can also be recast in terms of

Bessel functions using (2.17) as

H±∆2s
(τ) =

∞∑
n=1

a(n)n−s
√
ny

π
Ks−1/2(2ny)

(
e2πinRe τ ± e−2πinRe τ

)
. (2.32)

Even though the functions H±∆2s
and the modular invariant functions defined in [47] are

both real-analytic and are both obtained from iterated integrals of holomorphic cusp forms
∆2s, they differ crucially in their modular properties. In particular, as we shall show next,
the H±∆2s

are not invariant under S-modular transformations.
5The seed functions of F+(s)

m,k constructed in Part I additionally involve Q-multiples of ym+k and
ζ2m−1y

1−m+k.
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2.2.2 Modular properties

For studying modular transformations of functions F (τ) on the upper half-plane, it is con-
venient to introduce the following cocycles under the generating T- and S-transformations
of SL(2,Z):

δTF (τ) = F (τ)− F (τ+1) , δSF (τ) = F (τ)− F
(
−1
τ

)
. (2.33)

When both of them vanish, F is invariant under modular transformations and in general
there is a connection to the group cohomology of SL(2,Z) [57].

From the explicit q-series in (2.31), it is clear that the functions H±∆2s
have a vanishing

T-cocycle
δTH±∆2s

(τ) = H±∆2s
(τ)−H±∆2s

(τ+1) = 0 . (2.34)

However, the functions H±∆2s
have a non-trivial cocycle under the S-transformation

δSH±∆2s
(τ)=H±∆2s

(τ)−H±∆2s

(
−1
τ

)
= (−iπ)2s−1

Γ(s) y1−s
∫ i∞

0
dτ1(τ−τ1)s−1(τ̄−τ1)s−1∆2s(τ1)±c.c.

=(−1)s+1π
2s−1

Γ(s) y
1−s

s−1∑
a,b=0

(−i)a+b
(
s−1
a

)(
s−1
b

)
τ s−1−aτ̄ s−1−bΛ(∆2s,a+b+1)±c.c.

=


2(−1)s+1 π2s−1

Γ(s) y
1−s∑s−1

a,b=0
a+b∈2Z

(−1)(a+b)/2(s−1
a

)(s−1
b

)
τ s−1−aτ̄ s−1−bΛ(∆2s,a+b+1)

2(−1)s iπ2s−1

Γ(s) y
1−s∑s−1

a,b=0
a+b∈2Z+1

(−1)(a+b−1)/2(s−1
a

)(s−1
b

)
τ s−1−aτ̄ s−1−bΛ(∆2s,a+b+1),

(2.35)

where in the last equality the upper line is for H+
∆2s

and the lower line for H−∆2s
. The function

Λ(∆2s, t) appearing in the above expressions is real-valued for real t and corresponds to
the completed L-function of the cusp form ∆2s(τ) =

∑∞
n=1 a(n)qn of weight 2s defined by

Λ(∆2s, t) = (2π)−tΓ(t)
∞∑
n=1

a(n)
nt

= (−i)t
∫ i∞

0
dτ1 τ

t−1
1 ∆2s(τ1) , (2.36)

where the sum converges absolutely for Re(t)>s+1
2 , using [58] and the improved growth

of the Fourier coefficients of cusp forms following from [59].6 From its integral Mellin-
form representation, it is well-known that the completed L-function enjoys an analytic
continuation to the complex plane and satisfies the functional relation

Λ(∆2s, t) = (−1)sΛ(∆2s, 2s−t) . (2.37)

The interval t ∈ (0, 2s) is called the critical strip, and (2.35) implies that the failure
of modularity of H±∆2s

involves the completed L-function evaluated at integers inside the
critical strip, with only odd integer arguments t contributing to H+

∆2s
and only even integers

for H−∆2s
.

6We thank Nils Matthes for correspondence on this point.
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2.2.3 Integrals of Hecke normalised holomorphic cusp forms

If ∆2s is a normalised eigenform of all Hecke operators Tn and of weight 2s, i.e.,

[
Tn∆2s

]
(τ) = n2s−1∑

d|n
d−2s

d−1∑
b=0

∆2s

(
nτ + bd

d2

)
= a(n)∆2s(τ) (2.38)

for all n > 0, implying Hecke normalisation a(1) = 1, then it is moreover known that the
values Λ(∆2s, t) for all even t inside the critical strip are related, as are all the values for
odd t [45, 46, 60]. The ratios between the even (or the odd) values must belong to the
number-field extension of Q defined by the Fourier coefficients {a(n), n ∈ N} of ∆2s. The
first time a non-trivial extension arises is for cusp forms of weight 2s = 24 where there are
two linearly independent cusp forms and the number field is Q(

√
144169). The non-trivial

Galois automorphism of the number field exchanges the two independent Hecke eigenforms.
Therefore, for (normalised) Hecke eigenforms ∆2s of weight 2s we find that we can

rearrange (2.35) to

δSH+
∆2s

(τ) = 2(−1)s+1π2s−1

Γ(s) y1−sΛ(∆2s, 2s−1)
s−1∑
a,b=0
a+b∈2Z

(−1)
a+b

2

(
s−1
a

)(
s−1
b

)
(2.39a)

× τ s−1−aτ̄ s−1−bc+
a+b ,

δSH−∆2s
(τ) = 2(−1)siπ2s−1

Γ(s) y1−sΛ(∆2s, 2s−2)
s−1∑
a,b=0

a+b∈2Z+1

(−1)
a+b−1

2

(
s−1
a

)(
s−1
b

)
(2.39b)

× τ s−1−aτ̄ s−1−bc−a+b ,

with coefficients c±` from the number field associated with ∆2s defined by

Λ(∆2s, `+1) =
{
c+
` Λ(∆2s, 2s−1) : ` even ,
c−` Λ(∆2s, 2s−2) : ` odd ,

(2.40)

for ` = 0, 1, . . . , 2s−2. The polynomials arising in (2.39) have also appeared in [35, 50] and
are related to period polynomials as will be also discussed in section 4.1.1.

We had argued above that H±∆2s
should be assigned transcendentality s and this is

consistent with the fact that there is no transcendentality carried by L-values inside the
critical strip (0, 2s) like Λ(∆2s, 2s−1) and Λ(∆2s, 2s−2). As we will see later on, the value
Λ(∆2s, 2s+m) has transcendentality (m+1), so that just at the end of the critical strip we
have Λ(∆2s, 2s) of transcendentality one. This is analogous to the Riemann zeta function
whose transcendental weight grows in the same way from the upper end of its critical strip
(0, 1). The transcendentality of the cocycles (2.39) is therefore determined by the prefactor,
including y = π Im τ , and is also given by s, consistent with that of H±∆2s

itself.
Note that with our definition (2.29) for the iterated integral of a cusp form, the S-

cocycles in (2.35) or (2.39) are two-variable generalisations of the classic period polynomial
associated to the same cusp form [56], with δSH±∆2s

(τ) playing the roles of the even/odd
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part of said period polynomial. Furthermore, along the same lines as Manin’s original
work [60], we have that δSH±∆2s

(τ) satisfies the two cocycle conditions [57][
δSH±∆2s

(τ)
] ∣∣∣

1+S
= 0 , (2.41a)[

δSH±∆2s
(τ)
] ∣∣∣

1+U+U2
= 0 , (2.41b)

where | denotes the SL(2,Z)-action on τ and U = TS is an order 3 generator of SL(2,Z).
When applied to (2.35), the first cocycle condition (2.41a) is equivalent to the reflec-

tion formula (2.37) for the even/odd values inside the critical strip. Similarly the second
condition (2.41b), together with the Hecke condition (2.38), is equivalent to the statement
that all the ratios between the even (or odd) critical values must be in the number field
generated by the Fourier coefficients. In (2.39) we chose to factorise out Λ(∆2s, 2s−1) and
Λ(∆2s, 2s−2), respectively, thus making a particular choice for what are usually called the
(holomorphic) periods of the cusp form ∆2s, sometimes denoted by ω±∆2s

[50].

2.2.4 Example with s = 6

As a concrete example we can study the cusp form of lowest weight 2s = 12, i.e. the
Ramanujan cusp form ∆2s = ∆12 =

∑∞
n=1 τ(n)qn with τ(1) = 1. Since the vector space of

cusp forms at weight 2s = 12 is one-dimensional we trivially have that ∆12 is a normalised
Hecke eigenform and obviously the associated number field is simply Q, i.e. τ(n) ∈ Q for all
n > 0. Following [60] we have the following number-field relations amongst the completed
L-values, even and odd, inside the critical strip:

Λ(∆12, 6) : Λ(∆12, 8) : Λ(∆12, 10) = 5
12 : 25

48 : 1 , (2.42)

Λ(∆12, 7) : Λ(∆12, 9) : Λ(∆12, 11) = 691
2520 : 691

1620 : 1 ,

where the remaining values can be obtained via the reflection formula Λ(∆12, 12 − t) =
Λ(∆12, t).

If we compute the cocycles (2.39) defined above we obtain

H+
∆12

(τ)−H+
∆12

(
−1
τ

)
=π11Λ(∆12,11)(1−τ τ̄)

60y5

{
1+τ4τ̄4−691

162(τ2+τ̄2)(1+τ2τ̄2) (2.43a)

+691
504(τ4+τ̄4)−3131τ τ̄

324 (1+τ2τ̄2)+21421τ τ̄
2268 (τ2+τ̄2)+40273τ2τ̄2

2268

}
H−∆12

(τ)−H−∆12

(
−1
τ

)
= iπ11Λ(∆12,10)(τ+τ̄)

12y5

{
1+τ4τ̄4−25

24(τ2+τ̄2)(1+τ2τ̄2) (2.43b)

+ 1
12(τ4+τ̄4)−25

6 τ τ̄(1+τ2τ̄2)+2τ τ̄(τ2+τ̄2)+19τ2τ̄2

3

}
.

Similar expressions for the cocycles of H±∆16
and H±∆18

can be found in appendix B, while
in the supplementary material the expressions are given up to modular weight 2s = 26.

In summary, we can construct even and odd solutions H±∆2s
of the homogeneous Laplace

equation (1.1) whenever we have a holomorphic cusp form ∆2s of weight 2s. These homo-
geneous solutions are expressible through iterated integrals of ∆2s of depth one, see (2.29).

– 14 –



J
H
E
P
0
1
(
2
0
2
2
)
1
3
4

They are not modular invariant but their failure of modularity is characterised by a single
number that is a value of the completed L-function inside the critical strip. This number
is expected to be independent over Q from the set of multiple zeta values.

2.3 Properties of multiple modular values and the βsv

We now study the multiple modular values defined in (2.23) in more detail and also present
expressions for the S-modular transformation of the βsv introduced in (2.4).

From their definition (2.23) the multiple modular values inherit the shuffle relations of
the (regularised) iterated integrals in (2.19)

m
[
j1
k1

]
m
[
j2
k2

]
= m

[
j1 j2
k1 k2

]
+ m

[
j2 j1
k2 k1

]
. (2.44)

By applying another S-transformation to (2.22) one can show the reflection properties

m
[
j
k

]
= −(−1)jm

[
k−2−j
k

]
, (2.45a)

m
[
j1 j2
k1 k2

]
= −(−1)j1+j2m

[
k1−2−j1 k2−2−j2

k1 k2

]
+ m

[
j1
k1

]
m
[
j2
k2

]
= (−1)j1+j2m

[
k2−2−j2 k1−2−j1

k2 k1

]
. (2.45b)

Under complex conjugation they satisfy

m
[
j
k

]
= (−1)j+1m

[
j
k

]
, m

[
j1 j2
k1 k2

]
= (−1)j1+j2+2m

[
j1 j2
k1 k2

]
. (2.46)

The transcendentality of the multiple modular values as defined in (2.23) is given
by
∑
i ki. For the depth-one case (2.25) this is evident from the fact that (2πi)k−j−1 has

transcendentality k−j−1, ζj+1 has transcendentality j+1 and ζj+2−k has transcendentality
zero.7 In the general case, this follows from the definition (2.19) by realising that Gk in
our convention has transcendentality k, see (2.5). The iterated integrals (2.8a) and (2.8b)
therefore have transcendentality p+1 and p1+p2+2, respectively.

2.3.1 Reduced multiple modular values

While the multiple modular values (2.23) appear in the S-transformation of the holomorphic
iterated integrals (2.19), the S-transformation of the βsv only contains the following specific
combinations of them:

M
[
j
k

]
= m

[
j
k

]
−m

[
j
k

]
=
(
1 + (−1)j

)
m
[
j
k

]
, (2.47a)

M
[
j1 j2
k1 k2

]
= m

[
j2 j1
k2 k1

]
−m

[
j2
k2

]
m
[
j1
k1

]
+ m

[
j1 j2
k1 k2

]
= (−1)j1

(
1 + (−1)j2

)
m
[
j1 j2
k1 k2

]
+
(
1 + (−1)j1

)
m
[
j2 j1
k2 k1

]
=
(
(−1)j1+j2 − 1

)
m
[
j1 j2
k1 k2

]
+
(
1 + (−1)j1

)
m
[
j1
k1

]
m
[
j2
k2

]
. (2.47b)

We refer to the combinations M[ j
k

] and M[ j1 j2
k1 k2

] as reduced multiple modular values of
depth one and two, respectively. The simplifications at depth two are based on (2.44)

7The last statement is true since j ≤ k−2 and zeta values at non-positive integers are either zero or
given by rational numbers (expressible through Bernoulli numbers).
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and (2.46), and they show that reduced multiple modular values vanish if both of j1 and j2
are odd, whereas cases with both j1 and j2 even yield the product 2m[ j1k1

]m[ j2k2
]. Moreover,

reduced multiple modular values inherit the shuffle property and so satisfy

M
[
j1
k1

]
M
[
j2
k2

]
=M

[
j1 j2
k1 k2

]
+M

[
j2 j1
k2 k1

]
. (2.48)

2.3.2 Depth one reduced multiple modular values and βsv modular transfor-
mations

At depth one, (2.25) leads to the following explicit expressions

M
[
j
k

]
=



−4πiζk−1
k−1 j = 0 ,

+ 4πiζk−1
k−1 j = k−2 ,

0 otherwise ,

(2.49)

where the vanishing of all cases with j = 1, 2, . . . , k−3 is in agreement with their occurrence
in certain coboundary polynomials [35, 38, 50]. They appear in the transformation of the
depth-one βsv according to

βsv
[
j
k

;−1
τ

]
= τ̄k−2−2jβsv

[
j
k

; τ
]
− (τ τ̄)k−2−j

2πi(4y)k−2−j

×
k−2−j∑
A=0

j∑
B=0

(
k−2−j
A

)(
j

B

)(
−1
τ

)A(
−1
τ̄

)B
M
[
A+B
k

]
(2.50)

= τ̄k−2−2jβsv
[
j
k

; τ
]

+ 2ζk−1
(k−1)(4y)k−2−j

{
(τ τ̄)k−2−j − τ̄k−2−2j

}
.

2.3.3 Modular transformation of βsv at depth two

In the same way the depth-one reduced multiple modular values arise in the modular
transformations of the depth-one βsv, the depth-twoM[ j1 j2

k1 k2
] arise in the modular trans-

formation of the βsv at depth two. Performing the calculation based on the integral repre-
sentation (2.4b) one can show that

βsv
[
j1 j2
k1 k2

;−1
τ

]
=τ̄k1+k2−4−2j1−2j2βsv

[
j1 j2
k1 k2

;τ
]

+τ̄k2−2−2j2βsv
[
j2
k2

;τ
]2ζk1−1

{
(τ τ̄)k1−2−j1−τ̄k1−2−2j1

}
(k1−1)(4y)k1−2−j1

+ (τ τ̄)k1+k2−4−j1−j2

(2πi)2(4y)k1+k2−4−j1−j2

k1−2−j1∑
A1=0

k2−2−j2∑
A2=0

j1∑
B1=0

j2∑
B2=0

(
k1−2−j1

A1

)(
k2−2−j2

A2

)

×
(
j1
B1

)(
j2
B2

)(
−1
τ

)A1+A2(
−1
τ̄

)B1+B2

M
[
A1+B1 A2+B2
k1 k2

]
+ τ̄k1+k2−4−2j1−2j2

(2πi)2(4y)k1+k2−4−j1−j2C
[
j1 j2
k1 k2

;τ
]
. (2.51)
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Here, the C[· · · ] are pure depth-zero terms, i.e. rational functions of τ and τ̄ multiplied by
rational combinations of odd zeta values and powers of π, that can be traced back to the
modular transformation of the α[· · · ]. Their definition is most conveniently given in terms
of the shorthand

βsv
(α)

[
j1 j2
k1 k2

; τ
]

=
k1−2−j1∑
p1=0

k2−2−j2∑
p2=0

(k1−2−j1
p1

)(k2−2−j2
p2

)
(4y)p1+p2

α
[
j1+p1 j2+p2
k1 k2

; τ
]

(2.52)

for the contributions of the antiholomorphic α[· · · ] to (2.4b), namely

C
[
j1 j2
k1 k2

; τ
]

= (2πi)2(4y)k1+k2−4−j1−j2

τ̄k1+k2−4−2j1−2j2 βsv
(α)

[
j1 j2
k1 k2

;−1
τ

]
(2.53)

−(2πi)2(4y)k1+k2−4−j1−j2βsv
(α)

[
j1 j2
k1 k2

; τ
]

+2πi
{2ζk2−1
k2−1 (1− τk2−j2−2τ̄ j2)

∫ −i∞
τ̄

dτ̄1(τ−τ̄1)k1−2−j1(τ̄−τ̄1)j1Gk1(τ1)

−2ζk1−1
k1−1 (1− τk1−j1−2τ̄ j1)

∫ −i∞
τ̄

dτ̄1(τ−τ̄1)k2−2−j2(τ̄−τ̄1)j2Gk2(τ1)
}
.

Then, the known expressions for α[· · · ] [1, 30] and the modular transformations of the
E0(k, 0p) (see for instance section 2.1.3) lead to representative examples such as8

C [0 1
4 4]= 32τ̄2π4yζ3

405 − 4π4yζ3
135 + 128iτ̄π3y2ζ3

405 − 16π2y3ζ3
81 − 16π2y3ζ3

135τ̄2 + 16iτ̄πyζ2
3

9 − 32y2ζ2
3

9 ,

C [0 2
4 4]=−8π4yζ3

135 + 64τ̄2π4yζ3
405 + 128iτ̄π3y2ζ3

405 + 32iτ̄πyζ2
3

9 − 32y2ζ2
3

9 , (2.54)

C [1 2
4 4]=−4π4yζ3

135 + 32τ̄2π4yζ3
405 + 16iτ̄πyζ2

3
9 ,

C [4 2
6 4]= 4iτ̄3π7ζ3

2025 − 8iτ̄π7ζ3
14175 + 4iτ̄5π7ζ3

2835 + 8iτ̄3π5ζ5
675 − 4iτ̄5π5ζ5

135 − 8τ̄2π2ζ3ζ5
15 + 8τ̄4π2ζ3ζ5

15 .

While the antisymmetry of βsv
(α) in (j1, k1)↔ (j2, k2) clearly propagates to

C
[
j1 j2
k1 k2

]
= −C

[
j2 j1
k2 k1

]
, (2.55)

it is not immediately obvious from the definition (2.53) that the depth-one terms cancel.
In fact, one may view the dropout of E0(k, 0p) from (2.53) as a defining property of α[· · · ].

2.3.4 Examples at depth two expressible via zeta values

For reduced multiple modular values at depth two, no analogue of the closed formula (2.49)
is known. We begin with a few illustrative examples. In the (G4,G4) sector we have [50]

M[ 0 0
4 4 ] = −8π2ζ2

3
9 , M[ 0 1

4 4 ] = −16iπ5ζ3
405 + 10iπ3ζ5

27 , M[ 1 0
4 4 ] = 16iπ5ζ3

405 − 10iπ3ζ5
27 ,

M[ 1 1
4 4 ] = 0 , M[ 0 2

4 4 ] = 8π2ζ2
3

9 , M[ 2 0
4 4 ] = 8π2ζ2

3
9 , (2.56)

M[ 2 2
4 4 ] = −8π2ζ2

3
9 , M[ 1 2

4 4 ] = 2iπ5ζ3
135 − 10iπ3ζ5

27 , M[ 2 1
4 4 ] = −2iπ5ζ3

135 + 10iπ3ζ5
27 .

8Here, we have chosen to replace τ by τ̄ + 2i
π
y for slightly more compact expressions.
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We note that all rational multiples of π8 present in the individual terms such as [50]

m[ 0 2
4 4 ] = 209π8

364500 , m[ 2 0
4 4 ] = − 209π8

364500 + 4π2ζ2
3

9 , (2.57)

disappear in the combination (2.47).
More remarkable instances of such simplifications occur for higher weight, for instance

in the reduced multiple modular values of the (G4,G6) sector [50]

M[ 0 0
4 6 ] = −8π2ζ3ζ5

15 , M[ 0 1
4 6 ] = − iπ

7ζ3
1575 + 7iπ3ζ7

90 ,

M[ 0 2
4 6 ] = 0 , M[ 0 3

4 6 ] = iπ7ζ3
4725 −

4iπ5ζ5
675 ,

M[ 0 4
4 6 ] = 8π2ζ3ζ5

15 , M[ 1 0
4 6 ] = 8iπ7ζ3

14175 + 2iπ5ζ5
135 − 7iπ3ζ7

45 ,

M[ 1 1
4 6 ] = 0 , M[ 1 2

4 6 ] = −4iπ7ζ3
8505 + 2iπ5ζ5

675 , (2.58)

M[ 1 3
4 6 ] = 0 , M[ 1 4

4 6 ] = 8iπ7ζ3
14175 −

7iπ3ζ7
45 ,

M[ 2 0
4 6 ] = 8π2ζ3ζ5

15 , M[ 2 1
4 6 ] = 2iπ7ζ3

2835 −
4iπ5ζ5

675 ,

M[ 2 2
4 6 ] = 0 , M[ 2 3

4 6 ] = −2iπ7ζ3
14175 + 7iπ3ζ7

90 ,

M[ 2 4
4 6 ] = −8π2ζ3ζ5

15 .

Rational multiples of π10 and π2ζ3,5 drop out from all the reduced counterparts M[ j1 j24 6 ]
even though they appear in individual multiple modular values such as [50]

m[ 0 0
4 6 ] = − 503π10

25515000 + 4π2

75 ζ3,5 ,

m[ 0 0
6 4 ] = 503π10

25515000 −
4π2

75 ζ3,5 −
4π2

15 ζ3ζ5 . (2.59)

We expect that more generally, the double zeta values ζn1,n2 present in individual
m[ j1 j2

k1 k2
] [61] will drop out in the combination to their reduced counterparts at arbitrary

weight.

2.3.5 Examples at depth two involving L-values

Individual m[ j1 j2
k1 k2

] at weight k1+k2 ≥ 14 involve certain “new numbers” [50] such as
c(∆; 12) and L-values of holomorphic cusp forms outside the critical strip. However, the
reduced combinations (2.47) are conjectured to feature only single zeta values, L-values
of cusp forms and powers of π. This can be checked from the M[ j1 j2

k1 k2
] provided in the

supplementary material up to k1+k2 ≤ 28 and the examples presented in this work.
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The simplest examples of reduced multiple modular values involving non-critical L-
values occur in the (G4,G10) and (G6,G8) sectors [50],9

M[ 0 1
4 10 ] = − 43iπ11ζ3

25259850 + 11iπ3ζ11
540 + 256iπ13Λ(∆12, 12)

1913625 ,

M[ 0 3
4 10 ] = 17iπ11ζ3

265228425 −
iπ5ζ9
17010 −

16iπ13Λ(∆12, 12)
229635 ,

M[ 1 0
4 10 ] = 8iπ11ζ3

2525985 + 2iπ5ζ9
243 − 11iπ3ζ11

135 + 256iπ13Λ(∆12, 12)
1913625 , (2.60)

M[ 1 2
4 10 ] = − 4iπ11ζ3

10609137 + iπ5ζ9
5670 −

16iπ13Λ(∆12, 12)
229635 ,

M[ 1 4
4 10 ] = − 4iπ11ζ3

37889775 + 64iπ13Λ(∆12, 12)
1148175 ,

as well as

M[ 0 1
6 8 ] = − 4iπ9ζ5

297675 + 22iπ3ζ11
1575 − 256iπ13Λ(∆12, 12)

826875 ,

M[ 0 3
6 8 ] = − 2iπ9ζ5

496125 + iπ5ζ9
2250 + 16iπ13Λ(∆12, 12)

99225 ,

M[ 1 0
6 8 ] = iπ7ζ7

4725 −
11iπ3ζ11

525 − 256iπ13Λ(∆12, 12)
826875 , (2.61)

M[ 1 2
6 8 ] = 4iπ9ζ5

2480625 −
iπ5ζ9
2250 + 16iπ13Λ(∆12, 12)

99225 ,

M[ 2 1
6 8 ] = − 2iπ9ζ5

496125 + iπ5ζ9
1350 + 16iπ13Λ(∆12, 12)

99225 ,

M[ 2 3
6 8 ] = iπ9ζ5

165375 −
4iπ7ζ7
99225 −

64iπ13Λ(∆12, 12)
496125 .

All other cases with (k1, k2) = (4, 10) or (6, 8) are determined from (2.47), the depth-one
results (2.25) and the reflection properties (2.45). Starting from k1+k2 = 16, we also find
L-values Λ(∆2s, t) at odd t such as

M[ 1 6
4 12 ] = − 2764iπ13ζ3

1005657778125 + 64iπ14Λ(∆12, 13)
245581875 ,

M[ 3 4
6 10 ] = − 2iπ11ζ5

21049875 + iπ7ζ9
297675 + 8iπ14Λ(∆12, 13)

2679075 ,

M[ 2 5
8 8 ] = − 2iπ9ζ7

496125 + 4iπ7ζ9
83349 + 32iπ14Λ(∆12, 13)

3472875 , (2.62)

M[ 1 6
10 10 ] = iπ11ζ9

5893965 −
iπ9ζ11
612360 −

4iπ16Λ(∆12, 15)
104483925 − 8iπ18Λ(∆16, 17)

1316497455 ,

M[ 0 1
4 16 ] = − 31034iπ17ζ3

51288546684375 + 680iπ3ζ17
97659 − 256iπ18Λ(∆16, 17)

138175277625 − 512iπ19Λ(∆18, 18)
28733079375 .

In the ancillary file accompanying the arXiv submission, the supplementary material in
the journal publication of this work and Part I, we present the complete list of reduced

9We are indebted to Francis Brown for correspondence on his work [62] and making many explicit
expressions available to us, such as (2.60), (2.61) and the first three lines of (2.62).
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multiple modular values at depth two up to k1+k2 = 28. The values there were fixed by
knowing on which numbers to expand the reduced multiple modular value [50] and fitting
the rational coefficients via numerical evaluation.10 Since we assign transcendental weight
m+1 to Λ(∆2s, 2s+m), the explicit expressions are compatible with the transcendentality
k1+k2 ofM[ j1 j2

k1 k2
].

3 Modular properties of solutions to the Laplace equations

The problem that motivates this work is to find modular invariant solutions F±(s)
m,k to the

Laplace equations (1.1). In Part I, we showed how a leading-depth solution could be
constructed in terms of the βsv and how to complete it by including lower-depth βsv terms.
We already pointed out in Part I that the modular invariance of the resulting function
qF±(s)
m,k is not guaranteed by the construction that was only tailored to produce an exact

solution of (1.1) in terms of various βsv. Since the βsv have the more involved modular
properties presented above, this does not necessarily entail modular invariance of qF±(s)

m,k .
As we argued, failure of modular invariance can and will arise whenever the space of

F±(s)
m,k is larger than the space of modular graph forms constructed from βsv at depth ≤ 2.

The explicit counting done in section 3.6 of Part I showed that this can happen at Laplace
eigenvalue s(s−1) whenever there are holomorphic cusp forms at modular weight 2s. This
is not surprising since the generating series of MGFs [30] only contains combinations of βsv

that are compatible with the relations in Tsunogai’s derivation algebra, see section 4 for a
more detailed discussion of the corresponding ‘dropouts’ from the βsv. As the relations in
the derivation algebra are triggered by holomorphic cusp forms [49] we have a consistent
picture that iterated integrals of such cusp forms should arise. They also feature naturally
in the space of real-analytic modular functions studied in [37, 38, 47, 52, 53].

For every holomorphic cusp form ∆2s of modular weight 2s, we have constructed even
and odd homogeneous solutions H±∆2s

to the Laplace equation in (2.29) and we have also
shown that they are not modular invariant, see (2.39). Therefore, if the combination qF±(s)

m,k

of βsv is not modular invariant but solves the correct inhomogeneous Laplace equation, we
can consider

F±(s)
m,k (τ) = qF±(s)

m,k (τ) +
∑

∆2s∈S2s

a±∆2s,m,k
H±∆2s

(τ) , (3.1)

where the sum runs over the space S2s of holomorphic cusp forms of weight 2s. Then we
can ask whether a suitable choice of constants a±∆2s,m,k

renders this new solution F±(s)
m,k to

the same Laplace equation modular invariant.
To answer this question we have to determine the modular transformation of qF±(s)

m,k .
As this is a combination of βsv, potentially multiplied by powers of y, we have to use
the S-modular transformation of the βsv discussed in section 2.3. As is evident from (2.50)
and (2.51), the modular transformation generates special combinations of multiple modular

10Numerical approximations of the L-values can be obtained efficiently using PARI/GP [63, 64]. In the
supplementary material, we have collected the numerical values of relevance to this work, meaning up to
modular weight 26 and the first integer values outside critical strip.
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values and additional depth-zero terms C[· · · ], which can be derived from the relevant
α[· · · ] appearing in (2.4b). Ultimately, we obtain the explicit S-modular transformation
of qF±(s)

m,k in terms of these multiple modular values. In order for a failure of modularity
of qF±(s)

m,k to be cancelled by that of H±∆2s
, one must obtain very specific combinations of

multiple modular values that ultimately are proportional to the same polynomial in τ and
τ̄ given in (2.39). This is true in all examples and should follow from the general analysis
in [35, 37]. We exemplify the mechanism for a variety of weights and Laplace eigenvalues.
In all cases, their construction from L-values assigns transcendental weight m+k−s to the
constants a±∆2s,m,k

in (3.1) such that their combination with H±∆2s
of weight s matches the

transcendentality m+k of F±(s)
m,k .

The occurrence of these extra terms H±∆2s
was also argued for on general grounds from

the Cauchy-Riemann equation in Part I. We shall initially focus on the case when S2s is
one-dimensional and defer more general cases to sections 3.3 and 3.4. We also note that the
presence of H±∆2s

in the modular-invariant solution F±(s)
m,k of the Laplace equation (1.1) im-

plies that, inspecting Fourier by Fourier mode, there are non-zero coefficients for the homo-
geneous solutions (provided by Bessel functions) to the Laplace equations, see (2.32). This
is in contrast to what was observed in examples in an SL(2,Z) U-duality context in [65–67].

3.1 Examples involving the Ramanujan cusp form

The cusp form of lowest weight is the Ramanujan cusp form ∆12 =
∑∞
n=1 τ(n)qn. Since

it has holomorphic modular weight 12, its iterated integrals can arise as the modular
completion of qF±(s)

m,k at eigenvalue s = 6. According to the spectrum (1.4) this happens first
for m+k = 7 in the odd sector and for m+k = 8 in the even sector.

3.1.1 Odd functions for (m, k) = (2, 5) and (m, k) = (3, 4)

As presented in Part I, we can carry out the procedure for obtaining a solution to the
Laplace equations (1.1), and the simplest odd functions where modular invariance at the
level of the βsv breaks down are given by

qF−(6)
2,5 = −1890βsv[ 1 4

4 10 ]− 1512βsv[ 2 3
4 10 ] + 1890βsv[ 4 1

10 4 ] + 1512βsv[ 5 0
10 4 ] + 1008ζ3β

sv[ 3
10 ]

+ 315ζ3
y

βsv[ 4
10 ]− 21ζ9

4y3 β
sv[ 0

4 ]− 105ζ9
64y4 β

sv[ 1
4 ] + 7ζ9

1920y2 ,

qF−(6)
3,4 = −2100βsv[ 2 3

6 8 ]− 2100βsv[ 3 2
6 8 ] + 2100βsv[ 3 2

8 6 ]− 210βsv[ 4 1
6 8 ] + 2100βsv[ 4 1

8 6 ] (3.2)

+ 210βsv[ 5 0
8 6 ] + 84ζ5β

sv[ 1
8 ] + 210ζ5

y
βsv[ 2

8 ] + 105ζ5
2y2 βsv[ 3

8 ]− 15ζ7
y

βsv[ 0
6 ]

− 75ζ7
2y2 β

sv[ 1
6 ]− 74ζ7

8y3 β
sv[ 2

6 ]− ζ7
15120 .

The modular transformations of these expressions can be obtained by the methods of
section 2.3 where we also use the knowledge of the α[· · · ] whose values were determined in
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Part I, building on [30]. The modular transformation (2.33) of the functions above yields

δSqF−(6)
2,5 (τ) =

(
1701i
8π7 M[ 0 1

4 10 ] + 1701i
32π7 M[ 1 0

4 10 ]− 23π4ζ3
118800 + 7ζ9

16π2

)
τ+τ̄

(τ−τ̄)5 + . . . ,

δSqF−(6)
3,4 (τ) =

(
6615i
32π7 M[ 0 1

6 8 ] + 2205i
16π7 M[ 1 0

6 8 ]− π2ζ5
360 + 7ζ7

240

)
τ+τ̄

(τ−τ̄)5 + . . . , (3.3)

where the dots denote similar terms that consist of multiple modular values and polynomials
in τ and τ̄ over the same denominator (τ−τ̄)5. Even without further knowledge of the exact
multiple modular values one can check numerically, using (2.24), that neither of the above
S-transformations vanishes. Hence, we are indeed in one of the cases where the combination
qF−(6)

2,5 of βsv that solves the Laplace equation fails to be modular invariant.
Fortunately, further knowledge of the multiple modular values is available through the

beautiful work of Brown [35], and the examples relevant to (3.3) can be found in (2.60)
and (2.61). We emphasise that the multiple modular values are not built out of multiple
zeta values alone but also contain L-values of cusp forms. In general the individual multiple
modular values also contain other ‘new numbers’ such as the object c(∆; 12) in [50], but
these do not enter in the examples above and cancel in all reduced multiple modular
values (2.47) that we have encountered.

Using these and similar results one can show that

δSqF−(6)
2,5 (τ) = iπ11Λ(∆12, 12)

900y5 p−12(τ, τ̄) (3.4)

δSqF−(6)
3,4 (τ) = − iπ

11Λ(∆12, 12)
300y5 p−12(τ, τ̄)

with the same polynomial in τ, τ̄ in both cases

p−12(τ, τ̄) = (τ+τ̄)
{

1 + τ4τ̄4 − 25
24(τ2+τ̄2)(1+τ2τ̄2) + 1

12(τ4+τ̄4) (3.5)

− 25
6 τ τ̄(1+τ2τ̄2) + 2τ τ̄(τ2+τ̄2) + 19

3 τ
2τ̄2
}
.

These cocycles turn out to be proportional to those of H−∆12
in (2.43b),

qF−(6)
2,5 (τ)− qF−(6)

2,5

(
−1
τ

)
= 1

75
Λ(∆12, 12)
Λ(∆12, 10)

(
H−∆12

(τ)−H−∆12

(
−1
τ

))
, (3.6)

qF−(6)
3,4 (τ)− qF−(6)

3,4

(
−1
τ

)
= − 1

25
Λ(∆12, 12)
Λ(∆12, 10)

(
H−∆12

(τ)−H−∆12

(
−1
τ

))
.

We can therefore form the linear combinations

F−(6)
2,5 = qF−(6)

2,5 −
1
75

Λ(∆12, 12)
Λ(∆12, 10)H−∆12

, (3.7)

F−(6)
3,4 = qF−(6)

3,4 + 1
25

Λ(∆12, 12)
Λ(∆12, 10)H−∆12

,
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that are modular invariant thanks to (3.6) and solve the Laplace equation (1.1b). The ratio
of L-values appearing here might appear a bit surprising since in all previous expressions of
this work and Part I, (multiple) zeta values only appear in the numerator. The reason for
the ratio showing up here lies in our normalisation of the homogeneous solution in (2.29)
as a simple iterated integral. This definition leads to the explicit appearance of an L-value
in the S-cocycle, see (2.43b), which needs to be cancelled by the denominator in (3.7).
Choosing a different normalisation for H±∆2s

one could turn the quotient in (3.7) into a
multiplication by an L-value only. Note that the transcendental weight six of H−∆12

, weight
zero of Λ(∆12, 10) and weight one of Λ(∆12, 12) ensure that both terms on the right-hand
sides of (3.7) have the expected weight seven.

We note that the combination

3F−(6)
2,5 + F−(6)

3,4 = 3qF−(6)
2,5 + qF−(6)

3,4 , (3.8)

is an eigenfunction of the Laplacian with eigenvalue 30 which is perfectly modular invariant
on its own without the need of adding any iterated integral of ∆12. This is one of the
examples of modular objects analysed in Part I that are expressible in terms of βsv, y and
odd zeta values.

3.1.2 Even functions for (m, k) = (2, 6), (m, k) = (3, 5) and (m, k) = (4, 4)

In the even sector, the first occurrence of the eigenvalue s = 6 is for F+(6)
2,6 , F+(6)

3,5 and
F+(6)

4,4 . The βsv representations of the associated qF+(6)
m,8−m take a form similar to their

odd counterparts in (3.2) and can be found in section 4.5 of Part I. Performing the S-
transformations on the combinations constructed only out of the βsv we find

δSqF+(6)
2,6 (τ) =

(
693
64π8 (M[ 0 1

4 12 ]−M[ 1 0
4 12 ]) + 823iπ5ζ3

202702500 + 7iζ11
96π3 −

9555iζ13
11056π5

)
1

(τ−τ̄)5 + . . .

= −π
11Λ(∆12, 13)
518250y5 p+

12(τ, τ̄) ,

δSqF+(6)
3,5 (τ) =

(
945
64π8 (M[ 0 1

6 10 ]−M[ 1 0
6 10 ]) + iπ3ζ5

86400 + 7iζ9
2880π −

63063iζ13
176896π5

)
1

(τ−τ̄)5 + . . .

= π11Λ(∆12, 13)
132672y5 p+

12(τ, τ̄) , (3.9)

δSqF+(6)
4,4 (τ) =

(1029
32π8M[ 0 1

8 8 ] + iπζ7
3240 −

5005iζ13
16584π5

) 1
(τ − τ̄)5 + . . .

= −7π11Λ(∆12, 13)
621900y5 p+

12(τ, τ̄) .

In the second steps, we have inserted the relevant expressions for the reduced multiple
modular values and thereby arrived at the polynomial

p+
12(τ, τ̄) = (1−τ τ̄)

{
1 + τ4τ̄4 − 691

162(τ2+τ̄2)(1+τ2τ̄2) + 691
504(τ4+τ̄4) (3.10)

− 3131
324 τ τ̄(1+τ2τ̄2) + 21421

2268 τ τ̄(τ2+τ̄2) + 40273
2268 τ

2τ̄2
}
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which determines the ellipses in the first steps of (3.9). Since the corresponding S-cocycle of
the homogeneous solution H+

∆12
in (2.43a) is proportional to the same polynomial in (3.10),

the following combinations are modular invariant:

F+(6)
2,6 = qF+(6)

2,6 + 2
17275

Λ(∆12, 13)
Λ(∆12, 11)H+

∆12
,

F+(6)
3,5 = qF+(6)

3,5 −
5

11056
Λ(∆12, 13)
Λ(∆12, 11)H+

∆12
, (3.11)

F+(6)
4,4 = qF+(6)

4,4 + 7
10365

Λ(∆12, 13)
Λ(∆12, 11)H+

∆12
.

From this we also see that the following combinations are modular invariant without the
inclusions of an iterated integral of a holomorphic cusp form,

F+(6)
2,6 −

6
35F+(6)

4,4 = qF+(6)
2,6 −

6
35

qF+(6)
4,4 , (3.12)

F+(6)
3,5 + 75

112F+(6)
4,4 = qF+(6)

3,5 + 75
112

qF+(6)
4,4 ,

as already discussed in section 4.5.2 of Part I. There is a two-dimensional subspace of
the three modular invariants {F+(6)

2,6 ,F+(6)
3,5 ,F+(6)

4,4 } that does not require a cusp form — in
agreement with our counting of MGFs in section 3.6 of Part I.

Similar to the odd case, the right-hand sides of (3.11) have uniform transcendental
weight eight by combining weight six of H+

∆12
with weight zero of Λ(∆12, 11) and weight

two of Λ(∆12, 13).

3.2 Examples with cusp forms of higher weight

We have performed the same analysis as in the previous section for all F±(s)
m,k withm+k ≤ 14.

The combinations qF±(s)
m,k of βsv require additional cusp forms for their modular invariant

completion whenever s is half the weight of a holomorphic cusp form, i.e. s ∈ {6, 8, 9, . . .}.
We only list those cases here, a full list of the qF±(s)

m,k with m+k ≤ 14 in terms of βsv can be
found in the supplementary material along with their modular completions.

Besides the examples of the previous section, the Ramanujan cusp form occurs in the
following modular invariant functions at transcendental weight m+k = 9, 10,

F−(6)
2,7 = qF−(6)

2,7 + 1
51825

Λ(∆12, 14)
Λ(∆12, 10)H−∆12

,

F−(6)
3,6 = qF−(6)

3,6 −
1

4500
Λ(∆12, 14)
Λ(∆12, 10)H−∆12

,

F−(6)
4,5 = qF−(6)

4,5 + 1
1800

Λ(∆12, 14)
Λ(∆12, 10)H−∆12

, (3.13)

F+(6)
3,7 = qF+(6)

3,7 + 1
725550

Λ(∆12, 15)
Λ(∆12, 11)H+

∆12
,

F+(6)
4,6 = qF+(6)

4,6 −
1

232176
Λ(∆12, 15)
Λ(∆12, 11)H+

∆12
,

F+(6)
5,5 = qF+(6)

5,5 + 1
165840

Λ(∆12, 15)
Λ(∆12, 11)H+

∆12
,
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where Λ(∆12, 14) and Λ(∆12, 15) carry three and four units of transcendental weight, re-
spectively. The Hecke normalised cusp form of weight 16 arises in (also see appendix B.1)

F−(8)
2,7 = qF−(8)

2,7 −
13

7350
Λ(∆16, 16)
Λ(∆16, 14)H−∆16

,

F−(8)
3,6 = qF−(8)

3,6 + 13
2100

Λ(∆16, 16)
Λ(∆16, 14)H−∆16

,

F−(8)
4,5 = qF−(8)

4,5 −
143

14700
Λ(∆16, 16)
Λ(∆16, 14)H−∆16

,

F+(8)
2,8 = qF+(8)

2,8 + 39
3544660

Λ(∆16, 17)
Λ(∆16, 15)H+

∆16
, (3.14)

F+(8)
3,7 = qF+(8)

3,7 −
91

2083392
Λ(∆16, 17)
Λ(∆16, 15)H+

∆16
,

F+(8)
4,6 = qF+(8)

4,6 + 1001
13021200

Λ(∆16, 17)
Λ(∆16, 15)H+

∆16
,

F+(8)
5,5 = qF+(8)

5,5 −
143

1620416
Λ(∆16, 17)
Λ(∆16, 15)H+

∆16
,

with Λ(∆16, 16) and Λ(∆16, 17) of transcendental weight one and two, respectively. The
Hecke normalised cusp form of weight 18 arises in (also see appendix B.2)

F−(9)
2,8 = qF−(9)

2,8 + 1
1260

Λ(∆18, 18)
Λ(∆18, 16)H−∆18

,

F−(9)
3,7 = qF−(9)

3,7 −
5

2016
Λ(∆18, 18)
Λ(∆18, 16)H−∆18

, (3.15)

F−(9)
4,6 = qF−(9)

4,6 + 13
5040

Λ(∆18, 18)
Λ(∆18, 16)H−∆18

,

with Λ(∆18, 18) of transcendental weight one. Just as discussed in the previous examples, it
is possible to find suitable rational linear combinations of these objects to produce modular
invariant functions for which the homogeneous solutions H±∆2s

cancel out, thus properly
living in the realm of MGFs.

3.3 An example involving the two weight 24 cusp forms

As explained in Part I [1], as we increase the total transcendental weight w = m+k we
encounter higher and higher eigenvalues s ≤ k+m−1 in the spectrum, see (1.4). This in
turn means that the obstructions to finding modular solutions to the Laplace systems (1.1)
are related to iterated integrals (2.29) of cusp forms ∆2s of higher and higher modular
weight 2s. Denoting by S2s the vector space of holomorphic cusp forms for SL(2,Z) with
even integer modular weight 2s, we have the classic result [68]

dimS2s =


⌊

2s
12

⌋
− 1 2s ≡ 2 mod 12 ,⌊

2s
12

⌋
otherwise .

(3.16)

Hence, we see that starting with 2s = 24 we should in general expect the space of
obstructions to have dimension greater than one since dimS24 = 2. From (1.4) we know
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that the first instance for which the eigenvalue s = 12 appears is for the odd sector and
with transcendental weight w = m+k = 13. We are then led to expect that a modular
invariant solution to (1.1) in this sector must take the form

F−(12)
m,k = qF−(12)

m,k + a−∆24,i,m,k
H−∆24,i

+ a−∆24,ii,m,k
H−∆24,ii

, (3.17)

with m+k = 13 and m, k ≥ 2, where we use a basis of Hecke eigenforms subject to (2.38)
and denoted by ∆24,i,∆24,ii.

Such a basis can be constructed by considering the linear combination α∆2
12+β∆12G12,

i.e. the most general holomorphic cusp form of weight 2s = 24. Then, the real coefficients
α, β for Hecke eigenforms are obtained by imposing the resulting Fourier coefficients to be
multiplicative, i.e. a(m)a(n) = a(m·n) for m,n coprime: gcd(m,n) = 1. This procedure
constructs the two Hecke eigenforms11

∆24,i(τ) =
(324204

691 − 12
√

144169
)

∆12(τ)2 + G12(τ)
2ζ12

∆12(τ) , (3.18a)

∆24,ii(τ) =
(324204

691 + 12
√

144169
)

∆12(τ)2 + G12(τ)
2ζ12

∆12(τ) , (3.18b)

whose Fourier coefficients lie in the number field Q(
√

144169):

∆24,i(τ) = q1 + (540− 12
√

144169)q2 + (169740 + 576
√

144169)q3 +O(q4) , (3.19a)
∆24,ii(τ) = q1 + (540 + 12

√
144169)q2 + (169740− 576

√
144169)q3 +O(q4) . (3.19b)

The number field generated by the above Fourier coefficients has a non-trivial Galois au-
tomorphism σ ∈ AutQ

(
Q(
√

144169)
)
, which acts as σ :

√
144169→ −

√
144169 and under

which the two basis elements are exchanged, i.e. σ(∆24,i) = ∆24,ii.
In the basis of Hecke eigenforms we have that all the even/odd completed L-values

inside the critical strip are Q(
√

144169) multiples of one another [60] and the S-cocycles
for ∆24,i and ∆24,ii can be put in the form (2.39). The Galois automorphism exchanges
the two cocycles, as well as the completed L-values.

Following the same types of arguments that led to (3.6), we see that in gen-
eral the S-cocycle for qF−(12)

m,k does not vanish and involves the completed L-values
Λ(∆24,i, t),Λ(∆24,ii, t) of the two Hecke eigenforms through the reduced multiple modu-

11Alternative expressions in terms of the ring generators G4,G6 read

∆24,i(τ) =
(

131
248832 −

√
144169

248832

)(
G4(τ)

2ζ4

)6

−
(

13
248832 +

√
144169

248832

)(
G6(τ)

2ζ6

)4

+
(
− 59

124416 +
√

144169
124416

)(
G4(τ)

2ζ4

)3(G6(τ)
2ζ6

)2

and the analogous combination with
√

144169→ −
√

144169 for ∆24,ii(τ).
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lar values. For example, we find

M[0 1
4 22]=− 24438334iπ23ζ3

77661373832214046875 + 4016053iπ3ζ23
1153592550 + 4096iπ24Λ(∆22,23)

7791418647627615

+
(

39121664iπ25

7428479236124821875 + 1279322368iπ25√144169
1070956422992879444896875

)
Λ(∆24,i,24) (3.20a)

+
(

39121664iπ25

7428479236124821875−
1279322368iπ25√144169

1070956422992879444896875

)
Λ(∆24,ii,24),

M[1 0
4 22]= 1242928iπ23ζ3

847214987260516875 + 2iπ5ζ21
567 + 4016053iπ3ζ23

115359255 − 8192iπ24Λ(∆22,23)
1558283729525523

+
(

39121664iπ25

7428479236124821875 + 1279322368iπ25√144169
1070956422992879444896875

)
Λ(∆24,i,24) (3.20b)

+
(

39121664iπ25

7428479236124821875−
1279322368iπ25√144169

1070956422992879444896875

)
Λ(∆24,ii,24).

Using these and similar expressions for the other M[ j1 j2
k1 k2

] with k1+k2 = 26, there is
a unique choice of the constants a−∆24,i,m,k

, a−∆24,ii,m,k
such that the combinations (3.17) are

modular invariant. Explicitly,

a−∆24,i,2,11 = 1
7200

(
−152819

76230 −
4997353

√
144169

10990002870

)
Λ(∆24,i, 24)
Λ(∆24,i, 22) ,

a−∆24,i,3,10 = − 19
4320

(
−18289

87780 −
554243

√
144169

12655154820

)
Λ(∆24,i, 24)
Λ(∆24,i, 22) ,

a−∆24,i,4,9 = 323
7200

(
− 2117

78540 −
44479

√
144169

11323033260

)
Λ(∆24,i, 24)
Λ(∆24,i, 22) , (3.21)

a−∆24,i,5,8 = − 323
1680

(
− 1

220 + 13
√

144169
31717180

)
Λ(∆24,i, 24)
Λ(∆24,i, 22) ,

a−∆24,i,6,7 = 4199
10800

(
− 823

660660 + 82699
√

144169
95246691540

)
Λ(∆24,i, 24)
Λ(∆24,i, 22) ,

where we have split the result into three factors: the ratio of L-values carries transcendental
weight one, the middle factor is valued in the number field Q(

√
144169) and corresponds

to the inverse of the Petersson-Haberland pairing [69–71] between two properly normalised
polynomials associated with the cusp from ∆2s. The first factor is a rational number
multiplying the vector in the number field and we refer to [35] for why this splitting
occurs. The constants a−∆24,ii,m,k

for the second cusp form can be directly obtained by the
application of the Galois automorphism to a−∆24,i,m,k

, i.e. a−∆24,ii,m,k
= σ(a−∆24,i,m,k

) that
acts on the number-field-valued middle factor by the Galois action and on the L-values by
σ(Λ(∆24,i, t)) = Λ(∆24,ii, t).

With the above values we obtain that the combinations (3.17) are then the unique
modular invariant solutions to the Laplace system (1.1). Furthermore, we can easily check
that, for some particular rational linear combinations of F−(12)

m,k , the iterated integrals of the
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cusp forms H−∆24,i
(τ) and H−∆24,ii

(τ) drop out, thus producing the modular objects discussed
in Part I, for example:

1862
103 F−(12)

2,11 −
470
103F−(12)

4,9 + F−(12)
6,7 = 1862

103
qF−(12)

2,11 −
470
103

qF−(12)
4,9 + qF−(12)

6,7 ,

171
49 F−(12)

3,10 + 165
49 F−(12)

4,9 + F−(12)
5,8 = 171

49
qF−(12)

3,10 + 165
49

qF−(12)
4,9 + qF−(12)

5,8 , (3.22)

−76
11F−(12)

3,10 −
62
11F−(12)

4,9 + F−(12)
6,7 = −76

11
qF−(12)

3,10 −
62
11

qF−(12)
4,9 + qF−(12)

6,7 .

In section 4, we discuss the relation between linear combinations of this type and Tsunogai’s
derivation algebra.

The complete list of modular completions qF±(s)
m,k → F±(s)

m,k with m+k ≤ 14 can be found
in the supplementary material.

3.4 Structure for general weight

For general transcendental weight w = m+k and eigenvalue s in the spectrum (1.4), the
modular invariant solutions F±(s)

m,k to the Laplace system (1.1) must take the form given
in (3.1).

From their general form given in (2.39) we know that the cocycles δSH±∆2s
can be

normalised so that we have factorised out the completed L-values Λ(∆2s, 2s−1) in the even
case and Λ(∆2s, 2s−2) in the odd case, times a rational function in τ, τ̄ with coefficients in
K∆2s , the number field generated by the Fourier coefficients of ∆2s.

To understand the generic structure of the coefficients a±∆2s,m,k
we can analyse in more

depth their transcendentality properties. Since the iterated-integral representation (2.31)
assigns transcendentality s to H±∆2s

, the coefficients a±∆2s,m,k
must have weight m+k−s in

order to arrive at combinations F±(s)
m,k of weight w = m+k in (3.1). On these grounds, by

the transcendentality ` of Λ(∆2s, 2s+`−1) outside the critical strip ` ≥ 1, we are led to
conclude that

a±∆2s,m,k
=


q+

∆2s,m,k
κ+

∆2s,m,k

Λ(∆2s,m+k+s−1)
Λ(∆2s, 2s−1) ,

q−∆2s,m,k
κ−∆2s,m,k

Λ(∆2s,m+k+s−1)
Λ(∆2s, 2s−2) ,

(3.23)

where we have q±∆2s,m,k
∈ Q, while κ±∆2s,m,k

∈ K∆2s is given by the inverse of the Petersson-
Haberland pairing between the two cocycles δSH+

∆2s
(τ) and δSH−∆2s

(τ) properly normalised,
see [35]. Given that m+k+s is even (odd) for even functions F+(s)

m,k (odd functions F−(s)
m,k ),

the L-function Λ(∆2s,m+k+s−1) in the numerator of (3.23) is evaluated at odd integers
in the modular invariant completion of F+(s)

m,k (at even integers in the case of F−(s)
m,k ).

Note that, as discussed previously, to determine the number field K∆2s , which contains
the Fourier coefficient of ∆2s ∈ S2s, one has to diagonalise the Hecke operators (2.38) in
S2s. The nature of this number field K∆2s is clarified12 by the Maeda conjecture [72],
which states that the characteristic polynomials of the Hecke operator Tn are irreducible

12We would like to thank Herbert Gangl for related discussions.
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over Q. In a certain sense the number field K∆2s is “maximal” in that the Maeda conjecture
suggests that the associated Galois group is the full symmetric group Sd with d = dimS2s.

For example at weight 2s = 28 with d = dimS28 = 2 we have K∆28 = Q(
√

18209), for
2s = 30 we have once more d = 2 and nowK∆30 = Q(

√
51349), while moving to weight 2s =

36, the lowest weight for which d = 3, we haveK∆36 = Q[x]/(x3−12422194x−2645665785),
which means that the algebraic number-field extension of Q contains all three roots of the
polynomial. The Maeda conjecture, although still unproven, has been extensively tested
for all modular weights up to 2s = 12000, see [73] where strong evidence is presented
to support its validity. More examples of such number fields can be found on the very
comprehensive LMFDB database [74] of L-functions and modular forms.

As a final comment we stress that the action of a non-trivial element, σ, of the Galois
automorphism group AutQ(K∆2s) allows us to relate the constants a±∆2s,m,k

for different
Hecke eigenforms σ(a±∆2s,m,k

) = a±σ(∆2s),m,k, hence if Maeda’s conjecture were to be true it
would be enough to find one such number a±∆2s,m,k

for a single Hecke cusp ∆2s to deduce
all the others.

4 Selection rules on βsv from Tsunogai’s derivation algebra

In this section, we study the interplay between the generating series of MGFs introduced
in [28], the modular invariant functions F±(s)

m,k and an abstract algebra on generating deriva-
tions εk introduced by Tsunogai [48] that is related to holomorphic cusp forms [49]. This
connection will clarify why some instances of qF±(s)

m,k are not modular invariant. The commu-
tation relations among Tsunogai’s derivations εk with k = 0, 4, 6, 8, . . . govern which linear
combinations of the modular completions F±(s)

m,k appear as MGFs.
The generating series of MGFs introduced in [28] captures the structure of the α′-

expansion of certain genus-one integrals in closed-string amplitudes that eventually com-
prise all MGFs when integrating over sufficiently many torus punctures. More specifically,
the first-order differential equations in τ of this generating series is solved by

Φτ = 1 +
∞∑
k=4

k−2∑
j=0

(−1)j(k−1)
(k−2−j)! β

sv
[
j
k

]
ε
(k−j−2)
k (4.1)

+
∞∑
k1=4

∞∑
k2=4

k1−2∑
j1=0

k2−2∑
j2=0

(−1)j1+j2(k1−1)(k2−1)
(k1−2−j1)!(k2−2−j2)! β

sv
[
j1 j2
k1 k2

]
ε
(k2−j2−2)
k2

ε
(k1−j1−2)
k1

+O(ε3k)

with conjectural matrix representations of εk acting on suitable initial values as τ → i∞
that are series in zeta values [30].13 In [28, 30] the εk were explicit finite-dimensional matrix
operators that were checked at low orders to obey the relations of Tsuongai’s derivation
algebra, and this is conjectured to hold to all orders. Here, we think of the εk as the
abstract generators of Tsuongai’s derivation algebra. In (4.1) and the following we make

13The generating series of genus-one integrals are denoted by Y τ in [30] and given by Φτ exp(− ε0
4y )Ŷ i∞,

where the initial values Ŷ i∞ comprise all the (conjecturally single-valued [7, 36]) MZVs in the expansion of
the resulting MGFs around the cusp.
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use of the convenient shorthand notation

ε
(j)
k = (adε0)j(εk) , (4.2)

for the repeated adjoint actions adε0(∗) = [ε0, ∗]. The suppressed terms O(ε3k) in (4.1) are
all multiplied by βsv of depth ≥ 3.

4.1 Overview of εk relations at depth two

Tsunogai’s derivations satisfy a wealth of commutator relations. First of all, [ε2, εk] = 0 with
k = 0, 2, 4, . . . identifies ε2 to be a central element which does not occur in the series (4.1).
On the remaining derivations, adε0 enjoys the nilpotency properties

adk−1
ε0 (εk) = ε

(k−1)
k = 0 , k = 4, 6, 8, . . . (4.3)

such that the ji = 0 terms in (4.1) exhaust the maximal non-vanishing nested commutators
ε
(k−2)
k . Apart from the relations (4.3) that take a simple and universal form for all k, com-
mutators of εk1 , εk2 , . . . at weight k1+k2+ . . . ≥ 14 obey more involved identities starting
with [49, 54, 75]

0 = [ε10, ε4]− 3[ε8, ε6] ,

0 = [ε14, ε4]− 7
2[ε12, ε6] + 11

2 [ε10, ε8] , (4.4)

0 = [ε16, ε4]− 25
8 [ε14, ε6] + 13

4 [ε12, ε8] .

Nested commutators of three and more derivations obey corollaries of these relations ob-
tained from action of adεk . At the same time, there are infinite families of indecomposable
relations among three or more derivations, i.e. relations that cannot be obtained by repeat-
edly acting with adεk on simpler ones. The simplest indecomposable relation trilinear in
derivations reads

0 = 80[ε12, [ε4, ε0]] + 16[ε4, [ε12, ε0]]− 250[ε10, [ε6, ε0]]− 125[ε6, [ε10, ε0]] + 280[ε8, [ε8, ε0]]
− 462[ε4, [ε4, ε8]]− 1725[ε6, [ε6, ε4]] (4.5)

and already illustrates a generic feature: when referring to the number of εk 6=0 in a nested
commutator as its depth,14 indecomposable relations involving more than two εk usually
mix terms of different depth. The depth-two terms in the first line of (4.5) affect the
appearance of βsv of depth two in (4.1) while the depth-three terms in the second line
are related to βsv of depth three that are part of the suppressed terms O(ε3k) in (4.1) and
beyond the scope of this work.

Relations in the derivation algebra are also assigned a notion of depth according to the
maximal depth of the nested commutator therein, e.g. (4.5) is said to have depth three.
As will be reviewed in the remainder of this subsection, Pollack determined the depth-two
terms in indecomposable relations of arbitrary depth in closed form. More precisely, their
rational coefficients are determined from the period polynomials of holomorphic cusp forms
in [49].

14This terminology differs from the work of Pollack [49] where also ε0 is assigned depth one.
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4.1.1 Cusp forms and depth-two relations

In order to concisely relate the coefficients in relations like (4.4) or (4.5) to holomorphic cusp
forms ∆2s of modular weight 2s, we follow the conventions of [49] for period polynomials

r∆2s(X,Y ) =
∫ i∞

0
dτ ∆2s(τ)(X − τY )2s−2 (4.6)

= i
2s−2∑
k=0

(
2s−2
k

)
X2s−2−k(−iY )kΛ(∆2s, k+1) ,

where the arguments t of the L-function Λ(∆2s, t) are all within the critical strip t ∈ (0, 2s).
Moreover, we introduce the even and odd parts of the period polynomials (4.6) via

r±∆2s
(X,Y ) = 1

2
[
r∆2s(X,Y )± r∆2s(X,−Y )

]

=


i
∑2s−2

k=0
k even

(2s−2
k

)
X2s−2−k(−iY )kΛ(∆2s, k+1) : r+

∆2s

i
∑2s−2

k=0
k odd

(2s−2
k

)
X2s−2−k(−iY )kΛ(∆2s, k+1) : r−∆2s

.

(4.7)

The ratios of L-values at 2s = 12, 16 and 18 noted in (2.42), (B.1) and (B.3) are equivalent
to

r+
∆12

(X,Y ) = −691iΛ(∆12, 11)
36

{
X8Y 2 −X2Y 8 − 3(X6Y 4 −X4Y 6)− 36

691(X10 − Y 10)
}
,

r+
∆16

(X,Y ) = −3617iΛ(∆16, 15)
180

{
X12Y 2 −X2Y 12 − 7

2(X10Y 4 −X4Y 10)

+ 11
2 (X8Y 6 −X6Y 8)− 180

3617(X14 − Y 14)
}
, (4.8)

r+
∆18

(X,Y ) = 43867iΛ(∆18, 17)
2250

{
X14Y 2 −X2Y 14 − 25

8 (X12Y 4 −X4Y 12)

+ 13
4 (X10Y 6 −X6Y 10)− 2250

43867(X16 − Y 16)
}
.

The rational coefficients r+
∆2s

(X,Y )
∣∣
XaY b

of the non-zero powers XaY b with a, b > 0 are
easily seen to match those in the depth-two relations (4.4) among [εk1 , εk2 ] with k1+k2 =
2s+2. More generally, the depth-two relations in the derivation algebra are given by

0 =
∑

a+b=2s−2
r+

∆2s
(X,Y )

∣∣
XaY b

[εa+2, εb+2] (4.9)

in terms of the even parts of period polynomials (4.6) of cusp forms [49]. The extremal
terms ∼ (X2s−2−Y 2s−2) in (4.8) are mapped to coefficients of the vanishing commutators
[ε2, ∗] in (4.9), that is why their more involved coefficients 36

691 ,
180
3617 and 2250

43867 do not enter
the depth-two relations (4.4).
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4.1.2 Cusp forms and higher-depth relations

Also for higher-depth relations such as (4.5), the coefficients of the depth-two terms
[ε(j1)
k1

, ε
(j2)
k2

] = [adj1ε0(εk1), adj2ε0(εk2)] are determined by the period polynomials (4.6). More
specifically, relations of even (odd) depth are governed by the even part r+

∆2s
(the odd part

r−∆2s
) in (4.7). At weight 2s = 12, 16, 18, the coefficients in the odd counterpart of (4.8)

r−∆12
(X,Y ) = 10Λ(∆12, 10)

{
X9Y +XY 9 − 25

4 (X7Y 3 +X3Y 7) + 21
2 X

5Y 5
}
,

r−∆16
(X,Y ) = 14Λ(∆16, 14)

{
X13Y +XY 13 − 245

36 (X11Y 3 +X3Y 11)

+ 539
36 (X9Y 5 +X5Y 9)− 55

3 X
7Y 7

}
, (4.10)

r−∆18
(X,Y ) = −16Λ(∆18, 16)

{
X15Y +XY 15 − 77

12(X13Y 3 +X3Y 13)

+ 91
8 (X11Y 5 +X5Y 11)− 143

24 (X9Y 7 +X7Y 9)
}
,

enter relations of depth three, five, . . . such as (4.5). By rewriting the first line of (4.5) as

− 160
{ [ε12, ε

(1)
4 ]

2 + [ε4, ε(1)
12 ]

10 − 25
4

( [ε10, ε
(1)
6 ]

4 + [ε6, ε(1)
10 ]

8

)
+ 21

2
[ε8, ε(1)

8 ]
6

}
= 0 mod depth 3 ,

(4.11)
one can identify the relative factors of −25

4 and 21
2 inside the curly bracket with those in the

expression (4.10) for the odd part r−∆12
(X,Y ). The additional denominators of the combi-

nations
[εk1 ,ε

(1)
k2

]
k2−2 line up with the d = 3 instance of the general depth-two combination15

tdp,q = (d−2)!
d−2∑
i=0

(−1)i (p−2−i)!(q−d+i)!
i!(p−2)!(d−2−i)!(q−2)! [ε

(i)
p , ε

(d−2−i)
q ] , (4.12)

with d ≥ 2 subject to alternating symmetry properties tdp,q = (−1)d−1tdq,p. The ratios of
factorials in (4.12) are engineered such that tdp,q is firstly annhilated by p+q−2d+1 powers
of adε0 , i.e.

adp+q−2d+1
ε0 (tdp,q) = 0 , adp+q−2d

ε0 (tdp,q) 6= 0 . (4.13)

In the simplest instances of (4.12),

t2p,q = [εp, εq] ,

t3p,q = [εp, ε(1)
q ]

q−2 + [εq, ε(1)
p ]

p−2 , (4.14)

t4p,q = [εp, ε(2)
q ]

(q−2)(q−3) −
2[ε(1)

p , ε
(1)
q ]

(p−2)(q−2) + [ε(2)
p , εq]

(p−2)(p−3) ,

15We depart from Pollack’s conventions for the commutators (4.12) to ensure that the subscripts of tdp,q
line up with the εp, εq in their definition. The commutators hdp,q in [49] are reproduced by tdp,q = hdp−2,q−2.
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the relative factors ensure that t3p,q and t4p,q are annihilated by p+q−5 and p+q−7 powers
of adε0 , respectively, e.g. that terms of the form [ε(p−2)

p , ε
(q−2)
q ] cancel from adp+q−5

ε0 (t3p,q).
One can therefore view the tdp,q at different values of d (together with their non-vanishing
adjε0 actions at j = 0, 1, . . . , p+q−2d) as spanning different SL(2) representations contained
in the tensor product of {ε(j)p , j = 0, 1, . . . , p−2} and {ε(j)q , j = 0, 1, . . . , q−2}.

With the combinations of commutators in (4.12) and the even or odd parts of pe-
riod polynomials in (4.7), Pollack’s result for the depth-two coefficients in indecomposable
relations takes the compact form [49]

0 =
∑

a+b=2s−2
r+

∆2s
(X,Y )

∣∣
XaY b

tda+d,b+d mod depth ≥ 3 : d even ,

0 =
∑

a+b=2s−2
r−∆2s

(X,Y )
∣∣
XaY b

tda+d,b+d mod depth ≥ 3 : d odd .
(4.15)

In other words, the ratios of odd L-values Λ(∆2s, 2n+1) (with n∈N) in the even parts r+
∆2s

determine the coefficients in indecomposable relations among tdp,q at even d. Conversely,
tdp,q at odd d are related by even L-values Λ(∆2s, 2n) (with n∈N) in the odd parts r−∆2s

. In
both cases, the L-values are within the critical strip, and the coefficients of higher-depth
terms such as the second line of (4.5) remain undetermined by (4.15). The ε-weight of
the [ε(j1)

k1
, ε

(j2)
k2

] in a relation (4.15) due to cusp forms of modular weight 2s is given by
k1+k2 = 2s+2d−2.

4.1.3 Examples

The depth-two relations (4.9) are the special case d = 2 of (4.15), i.e. the examples in (4.4)
are reproduced by the first three lines of

r+
∆12

⇒ 0 = −2t24,10 + 6t26,8 ,

r+
∆16

⇒ 0 = −2t24,14 + 7t26,12 − 11t28,10 ,

r+
∆18

⇒ 0 = −2t24,16 + 25
4 t

2
6,14 −

13
2 t

2
8,12 , (4.16)

r+
∆20

⇒ 0 = −2t24,18 + 20
3 t

2
6,16 −

28
3 t

2
8,14 + 26

3 t
2
10,12 ,

r+
∆22

⇒ 0 = −2t24,20 + 105
16 t

2
6,18 −

17
2 t

2
8,16 + 85

16 t
2
10,14 ,
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depth 2 3 4 5
∆12 14 16 18 20
∆16 18 20 22 24
∆18 20 22 24 26
∆20 22 24 26 28
∆22 24 26 28 30

∆24,i, ∆24,ii 2× 26 2× 28 2× 30 2× 32

Table 1. The number given corresponds to the ε-weight of the indecomposable relation of the
given depth triggered by the cusp form ∆2s, so that for instance ∆12 induces one indecomposable
relation of depth 2 at weight 14. There are two indecomposable relations of depth 2, 3, 4, . . . at
weight 26, 28, 30, . . ., respectively, due to the two cusp forms of modular weight 24.

where td2,q = 0 since ε2 commutes with all the εk. Indecomposable relations at depth three
due to (4.15) at d = 3 include

r−∆12
⇒ 0 = 2t34,12 −

25
2 t

3
6,10 + 21

2 t
3
8,8 mod depth ≥ 3 ,

r−∆16
⇒ 0 = 2t34,16 −

245
18 t

3
6,14 + 539

18 t
3
8,12 −

55
3 t

3
10,10 mod depth ≥ 3 ,

r−∆18
⇒ 0 = 2t34,18 −

77
6 t

3
6,16 + 91

4 t
3
8,14 −

143
12 t

3
10,12 mod depth ≥ 3 , (4.17)

r−∆20
⇒ 0 = 2t34,20 −

715
54 t

3
6,18 + 242

9 t38,16 −
260
9 t310,14 + 715

54 t
3
12,12 mod depth ≥ 3 ,

r−∆22
⇒ 0 = 2t34,22 −

1183
90 t36,20 + 1547

60 t38,18 −
697
30 t

3
10,16 + 1547

180 t
3
12,14 mod depth ≥ 3 ,

whose first line due to r−∆12
is equivalent to (4.11). The relations at higher d ≥ 4 start with

r+
∆12

⇒ 0 = 72
691 t

4
4,14 − 2t46,12 + 6t48,10 mod depth ≥ 3 , (4.18)

r+
∆16

⇒ 0 = 360
3617 t

4
4,18 − 2t46,16 + 7t48,14 − 11t410,12 mod depth ≥ 3 ,

as well as

r−∆12
⇒ 0 = 2t56,14 −

25
2 t

5
8,12 + 21

2 t
5
10,10 mod depth ≥ 3 , (4.19)

r−∆16
⇒ 0 = 2t56,18 −

245
18 t

5
8,16 + 539

18 t
5
10,14 −

55
3 t

5
12,12 mod depth ≥ 3 ,

and feed into relations among [[. . . [[εk1 , εk2 ], εk3 ], . . .], εk` ] of increasing ε-weight
k1+k2+ . . .+k`. Table 1 summarises the counting of indecomposable higher-depth rela-
tions along with their εk-weight (which is p+q in case of tdp,q for arbitrary d ≥ 2) due to
given holomorphic cusp forms.

4.1.4 Comparison with the eMZV datamine

The explicit form of various indecomposable relations up to depth 5 can be downloaded
from the datamine [76] of relations among elliptic multiple zeta values (eMZVs) [77].
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The datamine uses the notation rRel[w, r] for relations of ε-weight w and depth
r. The depth-two parts of these relations rRel[w, r] are usually combinations of
several relations (4.15) at different d ≤ r. For instance, rRel[20, 3] at depth three
mixes the specialisations of (4.15) to (r−∆16

, d=3) with adε0 acting on the relation from
(r+

∆18
, d=2). Similarly, the depth-two terms of rRel[18, 4] can be reconstructed from

(r+
∆12

, d=4) and ad2
ε0 action on (r+

∆16
, d=2) whereas rRel[20, 5] mixes input from all of

(r−∆12
, d=5), ad2

ε0(r−∆16
, d=3) and ad3

ε0(r+
∆18

, d=2).

4.2 Modular graph forms and εk relations at depth two

Based on the relations among depth-two commutators [ε(j1)
k1

, ε
(j2)
k2

] reviewed above, we shall
now describe the dropouts of iterated Eisenstein integrals of depth two from the generating
series (4.1) of MGFs. We will be interested in the modular invariant cases where the
entries of βsv[ j1 j2

k1 k2
] obey 2j1+2j2+4 = k1+k2, see (2.51). These cases of βsv are related

to the F±(s)
m,k with 2m+2k = k1+k2, modulo shuffles βsv[ j1k1

]βsv[ j2k2
] and lower-depth terms.

The derivations [ε(j1)
k1

, ε
(j2)
k2

] relevant to modular invariant terms in (4.1) involve a total of
j1+j2 = 1

2(k1+k2)−2 powers of adε0 .
In the following, we shall rewrite the shuffle-irreducible modular invariants with βsv at

depth two in terms of F±(s)
m,k . In this way, the [ε(j1)

k1
, ε

(j2)
k2

] conspire to the commutators tdp,q
defined in (4.12) and their images under adNε0 with N ≤ p+q−2d,

adNε0 [ε(j1)
k1

, ε
(j2)
k2

] =
N∑
j=0

(
N

j

)
[ε(j1+j)
k1

, ε
(j2+N−j)
k2

] . (4.20)

We will decompose the generating series (4.1) into depth-two sectors Φτ (k1, k2) associated
with double integrals of given (Gk1 ,Gk2). The modular invariant contributions are isolated
by means of the delta function in

Φτ (k1, k2) = (k1−1)(k2−1)
k1−2∑
j1=0

k2−2∑
j2=0

(−1)j1+j2δ(2j1+2j2+4−k1−k2)
(k1−2−j1)!(k2−2−j2)!

× βsv
[
j1 j2
k1 k2

]
ε
(k2−j2−2)
k2

ε
(k1−j1−2)
k1

, (4.21)

and the depth-two modular-invariant part of the generating series (4.1) is obtained by
summing over k1, k2 ∈ 2N+2. The shuffle-irreducible modular invariants of the (G4,G6)
sector are for instance encoded in

Φτ (4, 6) + Φτ (6, 4) = −5
2
(
βsv[ 1 2

6 4 ] ε4ε(3)
6 + 3βsv[ 2 1

6 4 ] ε(1)
4 ε

(2)
6 + 3βsv[ 0 3

4 6 ] ε(1)
6 ε

(2)
4 (4.22)

+ 3βsv[ 3 0
6 4 ] ε(2)

4 ε
(1)
6 + 3βsv[ 1 2

4 6 ] ε(2)
6 ε

(1)
4 + βsv[ 2 1

4 6 ] ε(3)
6 ε4

)
.

Using (2.6) we can rewrite βsv[ j1 j2
k1 k2

] = −βsv[ j2 j1
k2 k1

] mod �, where � refers to shuffle
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products (2.6) of depth-one βsv. Picking the basis16

F+(3)
2,3 = 30βsv[ 2 1

4 6 ] + 30βsv[ 3 0
6 4 ] mod lower depth ,

F−(2)
2,3 = −90βsv[ 1 2

4 6 ] + 90βsv[ 2 1
4 6 ] + 90βsv[ 2 1

6 4 ]− 90βsv[ 3 0
6 4 ] mod lower depth , (4.23)

F−(4)
2,3 = −90βsv[ 1 2

4 6 ]− 60βsv[ 2 1
4 6 ] + 90βsv[ 2 1

6 4 ] + 60βsv[ 3 0
6 4 ] mod lower depth ,

of shuffle irreducibles, the derivations in (4.22) conspire to the following adε0-images of the
commutators tdp,q in (4.12):

Φτ (4, 6) + Φτ (6, 4) = 1
10F−(2)

2,3 adε0(t44,6)− 1
120F−(4)

2,3 ad3
ε0(t24,6) (4.24)

+ 1
6F+(3)

2,3 ad2
ε0(t34,6) mod lower depth & � .

The analogous expressions at weights m+k ≥ 7 will in the first place involve the combina-
tions qF±(s)

m,k of βsv rather than the full modular invariants F±(s)
m,k : the iterated integrals (2.29)

of cusp forms are consistently absent from the generating series (4.1). In the matrix rep-
resentations of (4.1) relevant to closed-string genus-one integrals [30], the combinations
of βsv

[
j
k

]
contributing to MGFs at depth two can be recovered by the initial conditions

τ → i∞ that the derivations in Φτ act on.

However, the initial conditions do not allow us to retrieve the iterated integrals of cusp
forms in (2.29): they do not have any known realisation in closed-string integrals over torus
punctures since Cauchy-Riemann derivatives of MGFs [8] or their generating series [28] do
not introduce any holomorphic cusp forms. Many of the subsequent equations will hold
modulo lower depth and shuffles as in (4.24), and we will indicate by using ∼= in the place of
= that shuffles, βsv of depth one and depth-zero terms have been dropped while depth-one
integrals of holomorphic cusp forms are still tracked.

We will exemplify in the following sections that the depth-two terms (4.15) of εk-
relations are sufficient to effectively replace all the qF±(s)

m,k in Φτ by F±(s)
m,k . In all cases

up to and including m+k = 14, the coefficient of qF±(s)
m,k is checked to be a Q-multiple of

ads−1
ε0 (tm+k−s+1

2m,2k ). Given that m+k−s is even for qF+(s)
m,k and odd for qF−(s)

m,k , the transition
to F+(s)

m,k (to F−(s)
m,k ) by adding cusp-form contributions is governed by tdp,q at odd values of

d (even values of d).

16The relation between (4.23) and MGFs in their lattice-sum representations is discussed in section 5.4
of Part I and section 5 of [30].
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4.2.1 Weight 7

At weight m+k = 7, the analogue of (4.24) for the shuffle-irreducible modular invariants
reads

Φτ (4, 10) + Φτ (10, 4) ∼=
qF−(4)

2,5
540 ad3

ε0(t44,10)−
qF−(6)

2,5
30240ad5

ε0(t24,10) +
qF+(5)

2,5
420 ad4

ε0(t34,10) ,

Φτ (6, 8) + Φτ (8, 6) ∼= −
3qF−(2)

3,4
140 adε0(t66,8) +

qF−(4)
3,4
360 ad3

ε0(t46,8)−
qF−(6)

3,4
30240ad5

ε0(t26,8) (4.25)

−
qF+(3)

3,4
14 ad2

ε0(t56,8) +
qF+(5)

3,4
280 ad4

ε0(t36,8) .

There are no cusp-form contributions to the even functions at this weight, qF+(s)
m,7−m =

F+(s)
m,7−m, but the individual differences qF−(6)

m,7−m−F−(6)
m,7−m in (3.7) involve the odd combina-

tion H−∆12
. This leads to the extra terms ∼ H−∆12

in the last line of

Φτ (4,10)+Φτ (10,4)+Φτ (6,8)+Φτ (8,6)∼=
F−(4)

2,5
540 ad3

ε0(t44,10)−
F−(6)

2,5
30240ad5

ε0(t24,10)

+
F+(5)

2,5
420 ad4

ε0(t34,10)−
3F−(2)

3,4
140 adε0(t66,8)+

F−(4)
3,4
360 ad3

ε0(t46,8)−
F−(6)

3,4
30240ad5

ε0(t26,8) (4.26)

−
F+(3)

3,4
14 ad2

ε0(t56,8)+
F+(5)

3,4
280 ad4

ε0(t36,8)−
Λ(∆12,12)H−∆12

2268000Λ(∆12,10) ad5
ε0(t24,10−3t26,8) ,

which vanish due to ad5
ε0(t24,10 − 3t26,8) = 0, i.e. due to the εk-relation in the first line

of (4.16). Using the same relation also for the coefficients of F−(6)
m,k shows that only the

linear combination 3F−(6)
2,5 + F−(6)

3,4 seen in (3.8) appears as an MGF, but not the individual
modular invariant functions F−(6)

2,5 or F−(6)
3,4 .

4.2.2 Weight 8

At weight m+k = 8, we can similarly start from

Φτ (4, 12) + Φτ (12, 4) ∼= −
qF−(5)

2,6
7392 ad4

ε0(t44,12) +
qF−(7)

2,6
665280ad6

ε0(t24,12)−
qF+(6)

2,6
6048 ad5

ε0(t34,12) ,

Φτ (6, 10) + Φτ (10, 6) ∼=
qF−(3)

3,5
252 ad2

ε0(t66,10)−
qF−(5)

3,5
4620 ad4

ε0(t46,10) +
qF−(7)

3,5
665280ad6

ε0(t26,10)

+
qF+(4)

3,5
90 ad3

ε0(t56,10)−
qF+(6)

3,5
3780 ad5

ε0(t36,10) , (4.27)

Φτ (8, 8) ∼= −
9qF+(2)

4,4
280 adε0(t78,8) +

qF+(4)
4,4
120 ad3

ε0(t58,8)−
qF+(6)

4,4
6720 ad5

ε0(t38,8) ,

and immediately identify qF−(s)
m,8−m = F−(s)

m,8−m since all of these odd depth-two combinations
are modular invariant without any need for cusp forms. However, relating qF+(6)

m,8−m to
F+(6)
m,8−m introduces the even combination H+

∆12
via (3.11), leading to extra terms in the last
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line of

Φτ (4, 12) + Φτ (12, 4) + Φτ (6, 10) + Φτ (10, 6) + Φτ (8, 8)

∼= −
F−(5)

2,6
7392 ad4

ε0(t44,12) +
F−(7)

2,6
665280ad6

ε0(t24,12)−
F+(6)

2,6
6048 ad5

ε0(t34,12) +
F−(3)

3,5
252 ad2

ε0(t66,10)

−
F−(5)

3,5
4620 ad4

ε0(t46,10) +
F−(7)

3,5
665280ad6

ε0(t26,10) +
F+(4)

3,5
90 ad3

ε0(t56,10)−
F+(6)

3,5
3780 ad5

ε0(t36,10) (4.28)

−
9F+(2)

4,4
280 adε0(t78,8) +

F+(4)
4,4
120 ad3

ε0(t58,8)−
F+(6)

4,4
6720 ad5

ε0(t38,8)

+
Λ(∆12, 13)H+

∆12

208958400Λ(∆12, 11)ad5
ε0(4t34,12 − 25t36,10 + 21t38,8) .

In this case, it is the depth-two terms in first line of (4.17) which imply the vanishing of
ad5

ε0(4t34,12−25t36,10 +21t38,8) and therefore the dropout of H+
∆12

modulo higher-depth terms
that are given in the second line of (4.5). The higher-depth commutators of εk in the
second line of (4.5) will be associated with higher-depth βsv, and their modular invariant
completions must also contain the iterated integrals of H+

∆12
of depth one. Using the first

line of (4.17) also for the coefficients of the functions F+(6)
m,k in (4.28) reproduces the linear

combinations appearing in (3.12) (modulo commutators of εk of higher depth).

4.2.3 Weight 9

Similar to (4.26) at weight seven, the even functions qF+(s)
m,9−m at weight m+k = 9 are all

identical to the modular invariants F+(s)
m,9−m. The odd functions in turn introduce iterated

integrals of the cusp forms ∆12 and ∆16 from the Laplace eigenspaces with s = 6 and s = 8,
respectively:

Φτ (4, 14) + Φτ (14, 4) + Φτ (6, 12) + Φτ (12, 6) + Φτ (8, 10) + Φτ (10, 8)

∼=
F−(6)

2,7
131040ad5

ε0(t44,14)−
F−(8)

2,7
17297280ad7

ε0(t24,14) +
F+(7)

2,7
110880ad6

ε0(t34,14)−
F−(4)

3,6
2376 ad3

ε0(t66,12)

+
F−(6)

3,6
78624ad5

ε0(t46,12)−
F−(8)

3,6
17297280ad7

ε0(t26,12)−
F+(5)

3,6
924 ad4

ε0(t56,12) +
F+(7)

3,6
66528ad6

ε0(t36,12)

+
F−(2)

4,5
210 adε0(t88,10)−

F−(4)
4,5

1320 ad3
ε0(t68,10) +

F−(6)
4,5

65520ad5
ε0(t48,10)−

F−(8)
4,5

17297280ad7
ε0(t28,10) (4.29)

+
F+(3)

4,5
42 ad2

ε0(t78,10)−
3F+(5)

4,5
1540 ad4

ε0(t58,10) +
F+(7)

4,5
55440ad6

ε0(t38,10)

−
691Λ(∆12, 14)H−∆12

244481328000Λ(∆12, 10) ad5
ε0

( 36
691 t

4
4,14 − t46,12 + 3t48,10

)

−
Λ(∆16, 16)H−∆16

19559232000Λ(∆16, 14) ad7
ε0(2t24,14 − 7t26,12 + 11t28,10) .

Both combinations 36
691 t

4
4,14 − t46,12 + 3t48,10 and 2t24,14 − 7t26,12 + 11t28,10 of εk commutators

vanish by (4.18) and (4.16), respectively (modulo higher-depth commutators in the case of
the t4p,q).
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4.2.4 Weight 10

Starting from weight 10, both even and odd functions qF±(s)
m,k involve Laplace eigenvalues

s = 6, 8, 9, . . . where cusp forms are required in the modular completion to F±(s)
m,k . All of

∆12,∆16 and ∆18 feature in the corrections in the lowest lines of the weight-10 terms at
depth two,

Φτ (4,16)+Φτ (16,4)+Φτ (6,14)+Φτ (14,6)+Φτ (8,12)+Φτ (12,8)+Φτ (10,10)

∼=
F+(2)

5,5
105 adε0(t910,10)−

F+(4)
5,5
330 ad3

ε0(t710,10)+
F+(6)

5,5
10920ad5

ε0(t510,10)−
F+(8)

5,5
2162160ad7

ε0(t310,10)

−
F−(7)

2,8
2851200ad6

ε0(t44,16)+
F−(9)

2,8
518918400ad8

ε0(t24,16)−
F+(8)

2,8
2471040ad7

ε0(t34,16)+
F−(5)

3,7
32032ad4

ε0(t66,14)

−
F−(7)

3,7
1663200ad6

ε0(t46,14)+
F−(9)

3,7
518918400ad8

ε0(t26,14)+
F+(6)

3,7
13104ad5

ε0(t56,14)−
F+(8)

3,7
1441440ad7

ε0(t36,14)

−
5F−(3)

4,6
5544 ad2

ε0(t88,12)+
F−(5)

4,6
16016ad4

ε0(t68,12)−
F−(7)

4,6
1330560ad6

ε0(t48,12)+
F−(9)

4,6
518918400ad8

ε0(t28,12)

−
F+(4)

4,6
264 ad3

ε0(t78,12)+
F+(6)

4,6
6552 ad5

ε0(t58,12)−
F+(8)

4,6
1153152ad7

ε0(t38,12) (4.30)

−
Λ(∆12,15)H+

∆12

38030428800Λ(∆12,11) ad5
ε0(4t56,14−25t58,12 +21t510,10)

+
Λ(∆16,17)H+

∆16

8085227673600Λ(∆16,15) ad7
ε0(36t34,16−245t36,14 +539t38,12−330t310,10)

−
Λ(∆18,18)H−∆18

5230697472000Λ(∆18,16)ad8
ε0(8t24,16−25t26,14 +26t28,12) .

Again, all the H±∆2s
are accompanied by combinations 4t56,14 − 25t58,12 + 21t510,10 as well

as 36t34,16 − 245t36,14 + 539t38,12 − 330t310,10 and 8t24,16 − 25t26,14 + 26t28,12 which vanish
by (4.19), (4.17) and (4.16), respectively (modulo higher-depth commutators in case of
the t5p,q and t3p,q).

4.2.5 Summary

In this section, we have demonstrated in detail how (specific linear combinations of) the
modular functions F±(s)

m,k appear in the generating series of MGFs. On the one hand, the
representations of MGFs as lattice sums or integrals over torus punctures manifest that they
are modular forms; on the other hand, their differential equations [8, 28] rule out iterated
integrals of holomorphic cusp forms. These requirements have been explicitly confirmed
for the βsv-contributions (4.1) to modular invariant MGFs at depth two and a wide range
of weights.

By reorganising the shuffle irreducible βsv of depth two in terms of qF±(s)
m,k , the accom-

panying derivations in (4.1) conspire to specific combinations tdp,q of commutators defined
in (4.12) that are singled out by representation theory of SL(2,Z). More importantly, these
combinations tdp,q were identified by Pollack [49] to streamline relations in the derivation
algebra. By rewriting parts of the generating series (4.1) in terms of qF±(s)

m,k and tdp,q, we
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have exhibited the interplay between Pollack’s relations and the dropout of the modular
completions H±∆2s

from the generating series of MGFs at depth two. These findings are
consistent with the main result of this work that not all linear combinations of F±(s)

m,k can
be represented by βsv of depth one and two, powers of y and odd zeta values.

5 Kloosterman sums and the Fourier expansion of the F±(s)
m,k

In this last section we want to highlight some of the “side-effects” due to the presence of
iterated integrals of holomorphic cusp forms in the generic expression (3.1) for F±(s)

m,k . One of
the consequences will be to provide a connection between L-values and Kloosterman sums
that come out of the Poincaré-series representation of the F±(s)

m,k as anticipated in Part I.
The addition of the iterated integrals over cusp forms has consequences for the Fourier

expansion of the F±(s)
m,k : in the following, we will compare different approaches to determin-

ing the coefficients of qaq̄b in the expansion around the cusp

F±(s)
m,k (τ) =

∞∑
a,b=0

da,b(y)qaq̄b . (5.1)

The coefficients da,b(y) are Laurent polynomials in y = π Im τ (with powers ranging from
ym+k to y−m−k+2) which will be referred to as F±(s)

m,k

∣∣
qaq̄b

in the rest of this section. They
are straightforwardly determined from the representation of F±(s)

m,k in terms of βsv and H±∆2s
and carry highly non-trivial information on (infinite combinations of) Kloosterman sums by
comparing with the Poincaré-series representations (1.5) of F±(s)

m,k . As detailed in Part I, the
βsv-part qF±(s)

m,k only introduces single-valued zeta values and rational numbers into da,b(y).
However, the novelty is that now the addition of H±∆2s

also introduces L-values into the
Fourier coefficients in (5.1).

5.1 Odd example

As a first example we assemble the order q1q̄0 term in F−(6)
2,5 from (3.2) and (3.7),

F−(6)
2,5

∣∣
q1q̄0 = 2y5

93555 −
y2

1080 −
y

360 + 19
720 + 2

9y + 301
384y2 + 301

192y3 + 903
512y4 + 903

1024y5

− ζ3

( 1
24y + 1

4y2 + 21
32y3 + 7

8y4 + 63
128y5

)
+ ζ9

( 35
64y4 + 63

128y5

)
(5.2)

− Λ(∆12, 12)
Λ(∆12, 10)

( 1
150 + 1

20y + 7
40y2 + 7

20y3 + 63
160y4 + 63

320y5

)
.

Here, we can see clearly the separate contributions from qF−(6)
2,5 in the first two lines, con-

taining only rational coefficients and single odd zetas, and H−∆12
in the last line, which is

instead multiplied by the ratio of L-values. Note that the complete Fourier mode e2πiRe τ

receives an infinite series of additional contributions beyond the q1q̄0 term in (5.2): all the
exponentially suppressed corrections q(qq̄)n for n > 0 share the factor of e2πiRe τ and are
multiplied by Laurent polynomials in y with rational coefficients, see section 7.1 of Part I
for their precise form.
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At the same time, we have found a Poincaré-series representation of F−(6)
2,5 in Part I,

see section 5.2 there. Specialising the general seed formula, recapped in (A.3), to the case
at hand yields

F−(6)
2,5 (τ) =

∑
γ∈B(Z)\SL(2,Z)

[
− 4iy5

31185 Im E0(4, 0; τ)
]
γ

(5.3)

=
∑

γ∈B(Z)\SL(2,Z)

[
2y5

93555

∞∑
n=1

n−2σ3(n)(qn − q̄n)
]
γ

,

where the SL(2,Z) element γ acts on the τ -dependence via both q, q̄ and y.
The general formula for obtaining the Fourier series of a Poincaré sum from the Fourier

series of its seed function [78, 79], see also appendix A of Part I, then leads to the following
identity

F−(6)
2,5 (τ)

∣∣
q1q̄0 +

∞∑
n=1

F−(6)
2,5 (τ)

∣∣
qn+1q̄n

= 2y5

93555 +e2y
∞∑
d=1

∑
`∈Z

S(`,1;d) (5.4)

×
∫
R
e
−2πiω−2πi` ω

d2((Imτ)2+ω2) c`

( Imτ

d2((Imτ)2 +ω2)

)
dω ,

where c`(Im τ) is the `th Fourier mode of the Poincaré seed in (5.3), i.e. c0(Im τ) = 0 and

c`(Im τ) = 2 sign(`)
93555 |`|

−2σ3(|`|)(π Im τ)5e−2π|`| Im τ for ` 6= 0 , (5.5)

where the sign(`) arises since we are considering an odd modular invariant. Moreover,
S(`, 1; d) denotes a particular instance of the Kloosterman sum

S(`, n; d) =
∑

r∈(Z/dZ)×
exp

(2πi
d

[
`r + n

r

])
, (5.6)

where 0 ≤ r ≤ d is coprime to d, such that r has the multiplicative inverse r−1 in (Z/dZ)×.
Note that the above expression (5.4) contains the full e2πiRe τ Fourier mode sector, i.e.
it contains both the q1q̄0 term as well as the infinite tower of exponentially suppressed
corrections q(qq̄)n for n > 0. Since H±∆2s

does not have any (qq̄)n terms, one can restrict to
qF±(s)
m,k , and the only sources of (qq̄)n are the depth-two βsv, for which the full q>0q̄>0 terms

were given in section 7.1 of Part I. All of them are accompanied by Laurent polynomials
with rational coefficients.

5.2 Even example

The same kind of analysis can be performed for the q, q̄-expansion (5.1) of the even modular
functions F+(s)

m,k . As an example we can focus on F+(6)
2,6 , where the q1q̄0 coefficient is given
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by

F+(6)
2,6

∣∣
q1q̄0 = − 691y5

3192564375 −
y

10800 −
5123

4914000 −
7061

1310400y −
6151

374400y2 −
23239

748800y3

− 89
2600y4 −

89
5200y5 + ζ3

( 1
480y2 + 7

480y3 + 7
160y4 + 21

320y5 + 21
512y6

)
(5.7)

+ 21ζ11
512y6 + Λ(∆12, 13)

17275Λ(∆12, 11)

(
1 + 15

2y + 105
4y2 + 105

2y3 + 945
16y4 + 945

32y5

)
and strongly resembles its odd counterpart (5.2). These two examples (5.2) and (5.7) once
more illustrate the fact that the ratio of L-values Λ(∆2s,t1)

Λ(∆2s,t2) , appearing in the perturbative
expansion of the non-zero Fourier modes, has t1, t2 odd for F+(s)

m,k as compared to t1, t2 even
for F−(s)

m,k .
While the seed functions of the odd F−(s)

m,k are series of qn−q̄n as in (5.3), the seed
functions of the even F+(s)

m,k contain qn+q̄n and furthermore have zero modes involving Q
multiples of ym+k and ζ2m−1y

k−m+1 such as

F+(6)
2,6 =

∑
γ∈B(Z)\SL(2,Z)

[
691y8

373530031875 −
691y5ζ3

3192564375 + 1382y5

1064188125 Re E0(4, 02)
]
γ

(5.8)

=
∑

γ∈B(Z)\SL(2,Z)

[
691y8

373530031875 −
691y5

3192564375

(
ζ3 +

∞∑
n=1

n−3σ3(n)(qn + q̄n)
)]

γ

,

see section 3.3 of Part I for a construction at generic s,m, k, and (A.1) for a quick recap.
We can again employ the relations between the Fourier expansion of seed functions and
Poincaré series reviewed in appendix A of Part I to generate examples of how the ratios of
L-values as in (5.2) and (5.7) arise from Kloosterman sums and integrals as in (5.4).

5.3 General comments

As we discussed in Part I, the seed functions for the various F±(s)
m,k can all be written as

finite, rational linear combinations of building blocks whose Fourier coefficients of e2πi`Re τ

take the simple form

c`(Im τ) ∼

 |`|−rσ2m−1(|`|)(π Im τ)m+k−re−2π|`| Im τ : ` > 0 ,

±|`|−rσ2m−1(|`|)(π Im τ)m+k−re−2π|`| Im τ : ` < 0 ,
(5.9)

for integers r in the range m+1 ≤ r ≤ 2m−1 and where the sign ± for the negative Fourier
modes ` < 0 is adapted to the modular function F±(s)

m,k considered.
In [3] it was explained how to extract the asymptotic expansion for Im τ →∞ for the

Poincaré sum of a seed of the form (5.9) and how to derive its Laurent polynomial d0,0(y)
for the zero Fourier mode, discussed in full detail in Part I. It is furthermore possible to
exploit the asymptotic nature of such an expansion to obtain, via resurgence analysis, the
exponentially suppressed terms in the same Fourier mode sector, i.e. the terms ∼ (qq̄)n

with n > 0.
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In a similar spirit, we believe that it should be possible, starting from the Poincaré
sum of the general seed (5.9), to extract its asymptotic expansion for Im τ → ∞ in any
Fourier mode sector. Unlike for the zero-mode sector, no such general expression is at
the present time known for (5.9). For example, it would be extremely interesting to start
from the expression (5.4) for the first Fourier mode e2πiRe τ of F−(6)

2,5 (τ), or the analogous
expression for F+(6)

2,6 starting from (5.8), and to derive their asymptotic expansions for
Im τ → ∞. Similar to what was done in [3] the integral in (5.4) could be done term-wise
after expanding the τ -dependent part of the exponential in an absolutely convergent series.
This yields multiple, partly divergent, infinite sums over Kloosterman sums. The analytic
continuation of these sums is left for future work.

Irrespective of the explicit result, we can still make some predictions. Firstly, due to
the presence of this novel, and extremely non-trivial, Kloosterman sum S(`, 1; d) in the first
Fourier mode (5.4) of F−(6)

2,5 (or (5.6) for the generic Fourier mode), we should find that this
asymptotic expansion truncates after finitely many terms. More importantly, this asymp-
totic expansion has either rational numbers, single odd zetas or L-values in its coefficients,
reproducing all the q1q̄0 terms given in (5.2) and similarly (5.7) for the even example F+(6)

2,6 .
Secondly, the asymptotic nature of such an expansion should also hide and encode the pres-
ence of an infinite tower of exponentially suppressed corrections, i.e. the q(qq̄)n for n > 0,
each one of them accompanied by a Laurent polynomial in y with rational coefficients.
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A Recap of seed functions

For the convenience of the reader, in this appendix we summarise the final results of Part I
for the seed functions f±(s)

m,k associated with the modular invariant solutions (1.5) to the
Laplace systems (1.1).

In the even case we have the seeds

f
+(s)
m,k (τ) = (−1)k+m B2kB2m(4y)k+m

(2k)!(2m)!(µk+m − µs)
− (−1)k 4B2k(2m−3)!ζ2m−1(4y)k+1−m

(2k)!(m−2)!(m−1)!(µk−m+1 − µs)

− (−1)k 2B2kΓ(2m)
(2k)!Γ(m)

k−1∑
`=k−m+1

g+
m,k,`,s(4y)` Re E0(2m, 0k+m−`−1) , (A.1)
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with µs = s(s−1), iterated Eisenstein integrals E0(2m, 0p) defined in (2.8a) and rational
coefficients g+

m,k,`,s given by

g+
m,k,`,s = Γ(`)

Γ(`+s)

k−1∑
i=`

(`+1−s)i−`Γ(s+i)Γ(m+k−i−1)
Γ(k−i)Γ(i+1)Γ(m−k+i+1) . (A.2)

Similarly, in the odd case we have the seeds

f
−(s)
m,k = i(−1)kB2k(2m−1)!

2Γ(2k)Γ(m)

k∑
`=k−m+1

g−m,k,`,s(4y)` Im E0(2m, 0k+m−`−1) (A.3)

with rational coefficients g−m,k,`,s given by

g−m,k,`,s = Γ(`)
Γ(`+s)

k∑
i=`

(`+1−s)i−`Γ(s+i)Γ(m+k−i)
Γ(k−i+1)Γ(i+1)Γ(m−k+i) , (A.4)

see sections 3.3 and 5.2 of Part I for the derivation of (A.1) and (A.3), respectively.

B Examples of cocycles

In this appendix, we spell out further examples of the cocycles (2.39) of the solutions
H±∆2s

to homogeneous Laplace equations. In the supplementary material, all cocycles up to
2s = 26 are given along with the ratios of the completed L-values inside the critical strip.

B.1 Weight 16

For the cusp form of weight 16 in the Hecke normalisation ∆16 = q + O(q2), the ratios of
L-values

Λ(∆16, 8) : Λ(∆16, 10) : Λ(∆16, 12) : Λ(∆16, 14) = 35
468 : 49

468 : 245
936 : 1 , (B.1)

Λ(∆16, 9) : Λ(∆16, 11) : Λ(∆16, 13) : Λ(∆16, 15) = 3617
98280 : 3617

51480 : 3617
16380 : 1 ,

and similar ratios Λ(∆16, t) : Λ(∆16, 14) and Λ(∆16, t) : Λ(∆16, 15) with t < 8 following
from the reflection formula (2.37) lead to the cocycles

H+
∆16

(τ)−H+
∆16

(
−1
τ

)
=π15Λ(∆16,15)(1−τ τ̄)

2520y7

{
1+τ6τ̄6−3617

780 (τ2+τ̄2)(1+τ4τ̄4)

+25319
10296(1+τ2τ̄2)(τ4+τ̄4)− 3617

14040(τ6+τ̄6)−22979
2340 τ τ̄(1+τ4τ̄4)

+647443
51480 τ τ̄(τ2+τ̄2)(1+τ2τ̄2)−25319

8580 τ τ̄(τ4+τ̄4) (B.2a)

−372551
25740 τ

2τ̄2(τ2+τ̄2)+1089559
51480 τ2τ̄2(1+τ2τ̄2)−461756

19305 τ
3τ̄3
}
,
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H−∆16
(τ)−H−∆16

(
−1
τ

)
= iπ15Λ(∆16,14)(τ+τ̄)

360y7

{
1+τ6τ̄6−1225

936 (τ2+τ̄2)(1+τ4τ̄4)

+ 49
156(1+τ2τ̄2)(τ4+τ̄4)− 5

468(τ6+τ̄6)−490
117τ τ̄(1+τ4τ̄4)

+392
117τ τ̄(τ2+τ̄2)(1+τ2τ̄2)−20

39(τ5τ̄+τ τ̄5)+3577
468 τ

2τ̄2(1+τ2τ̄2)

−655
156τ

2τ̄2(τ2+τ̄2)−80
9 τ

3τ̄3
}
. (B.2b)

B.2 Weight 18

For the cusp form of weight 18 in the Hecke normalisation ∆18 = q + O(q2), the ratios of
L-values

Λ(∆18, 10) : Λ(∆18, 12) : Λ(∆18, 14) : Λ(∆18, 16) = 1
120 : 1

24 : 11
60 : 1 , (B.3)

Λ(∆18, 11) : Λ(∆18, 13) : Λ(∆18, 15) : Λ(∆18, 17) = 43867
5544000 : 43867

1310400 : 43867
270000 : 1 ,

along with the remaining values, including Λ(∆18, 9) = 0, due to (2.37) lead to the cocycles

H+
∆18

(τ)−H+
∆18

(
−1
τ

)
=π17Λ(∆18,17)(1−τ2τ̄2)

20160y8

{
1+τ6τ̄6−307069

67500 (τ2+τ̄2)(1+τ4τ̄4)

+43867
18720(1+τ2τ̄2)(τ4+τ̄4)− 43867

198000(τ6+τ̄6)−175468
16875 τ τ̄(1+τ4τ̄4)

+43867
2925 τ τ̄(τ2+τ̄2)(1+τ2τ̄2)−43867

12375τ τ̄(τ4+τ̄4) (B.4a)

+318769
11700 τ

2τ̄2(1+τ2τ̄2)−29785693
1485000 τ

2τ̄2(τ2+τ̄2)−6536183
185625 τ

3τ̄3
}
,

H−∆18
(τ)−H−∆18

(
−1
τ

)
= iπ17Λ(∆18,16)(τ+τ̄)(1+τ τ̄)

2520y8

{
1+τ6τ̄6−77

60(τ2+τ̄2)(1+τ4τ̄4)

+ 7
24(1+τ2τ̄2)(τ4+τ̄4)−97

20τ τ̄(1+τ4τ̄4)+469
120τ τ̄(τ2+τ̄2)(1+τ2τ̄2)

−31
60τ τ̄(τ4+τ̄4)+1247

120 τ
2τ̄2(1+τ2τ̄2)−319

60 τ
2τ̄2(τ2+τ̄2)

− 1
120(τ6+τ̄6)−196

15 τ
3τ̄3
}
. (B.4b)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] D. Dorigoni, A. Kleinschmidt and O. Schlotterer, Poincaré series for modular graph forms at
depth two. Part I. Seeds and Laplace systems, JHEP 01 (2022) 133 [arXiv:2109.05017]
[INSPIRE].

[2] O. Ahlén and A. Kleinschmidt, D6R4 curvature corrections, modular graph functions and
Poincaré series, JHEP 05 (2018) 194 [arXiv:1803.10250] [INSPIRE].

– 45 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP01(2022)133
https://arxiv.org/abs/2109.05017
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.05017
https://doi.org/10.1007/JHEP05(2018)194
https://arxiv.org/abs/1803.10250
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.10250


J
H
E
P
0
1
(
2
0
2
2
)
1
3
4

[3] D. Dorigoni and A. Kleinschmidt, Modular graph functions and asymptotic expansions of
Poincaré series, Commun. Num. Theor. Phys. 13 (2019) 569 [arXiv:1903.09250] [INSPIRE].

[4] D. Dorigoni and A. Kleinschmidt, Resurgent expansion of Lambert series and iterated
Eisenstein integrals, Commun. Num. Theor. Phys. 15 (2021) 1 [arXiv:2001.11035]
[INSPIRE].

[5] A. Basu, Zero mode of the Fourier series of some modular graphs from Poincaré series,
Phys. Lett. B 809 (2020) 135715 [arXiv:2005.07793] [INSPIRE].

[6] E. D’Hoker, M.B. Green and P. Vanhove, On the modular structure of the genus-one type II
superstring low energy expansion, JHEP 08 (2015) 041 [arXiv:1502.06698] [INSPIRE].

[7] E. D’Hoker, M.B. Green, Ö. Gürdogan and P. Vanhove, Modular graph functions, Commun.
Num. Theor. Phys. 11 (2017) 165 [arXiv:1512.06779] [INSPIRE].

[8] E. D’Hoker and M.B. Green, Identities between modular graph forms, J. Number Theor. 189
(2018) 25 [arXiv:1603.00839] [INSPIRE].

[9] M.B. Green and P. Vanhove, The low-energy expansion of the one loop type-II superstring
amplitude, Phys. Rev. D 61 (2000) 104011 [hep-th/9910056] [INSPIRE].

[10] M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one
amplitude in type-II superstring theory, JHEP 02 (2008) 020 [arXiv:0801.0322] [INSPIRE].

[11] M.B. Green, C.R. Mafra and O. Schlotterer, Multiparticle one-loop amplitudes and S-duality
in closed superstring theory, JHEP 10 (2013) 188 [arXiv:1307.3534] [INSPIRE].

[12] E. D’Hoker, M.B. Green and P. Vanhove, Proof of a modular relation between 1-, 2- and
3-loop Feynman diagrams on a torus, J. Number Theor. 196 (2019) 381 [arXiv:1509.00363]
[INSPIRE].

[13] A. Basu, Poisson equation for the Mercedes diagram in string theory at genus one, Class.
Quant. Grav. 33 (2016) 055005 [arXiv:1511.07455] [INSPIRE].

[14] A. Basu, Poisson equation for the three loop ladder diagram in string theory at genus one,
Int. J. Mod. Phys. A 31 (2016) 1650169 [arXiv:1606.02203] [INSPIRE].

[15] A. Basu, Proving relations between modular graph functions, Class. Quant. Grav. 33 (2016)
235011 [arXiv:1606.07084] [INSPIRE].

[16] A. Basu, Simplifying the one loop five graviton amplitude in type IIB string theory, Int. J.
Mod. Phys. A 32 (2017) 1750074 [arXiv:1608.02056] [INSPIRE].

[17] E. D’Hoker and J. Kaidi, Hierarchy of modular graph identities, JHEP 11 (2016) 051
[arXiv:1608.04393] [INSPIRE].

[18] A. Kleinschmidt and V. Verschinin, Tetrahedral modular graph functions, JHEP 09 (2017)
155 [arXiv:1706.01889] [INSPIRE].

[19] A. Basu, Low momentum expansion of one loop amplitudes in heterotic string theory, JHEP
11 (2017) 139 [arXiv:1708.08409] [INSPIRE].

[20] J. Broedel, O. Schlotterer and F. Zerbini, From elliptic multiple zeta values to modular graph
functions: open and closed strings at one loop, JHEP 01 (2019) 155 [arXiv:1803.00527]
[INSPIRE].

[21] J.E. Gerken and J. Kaidi, Holomorphic subgraph reduction of higher-point modular graph
forms, JHEP 01 (2019) 131 [arXiv:1809.05122] [INSPIRE].

– 46 –

https://arxiv.org/abs/1903.09250
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.09250
https://doi.org/10.4310/CNTP.2021.v15.n1.a1
https://arxiv.org/abs/2001.11035
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.11035
https://doi.org/10.1016/j.physletb.2020.135715
https://arxiv.org/abs/2005.07793
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.07793
https://doi.org/10.1007/JHEP08(2015)041
https://arxiv.org/abs/1502.06698
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.06698
https://doi.org/10.4310/CNTP.2017.v11.n1.a4
https://doi.org/10.4310/CNTP.2017.v11.n1.a4
https://arxiv.org/abs/1512.06779
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.06779
https://doi.org/10.1016/j.jnt.2017.11.015
https://doi.org/10.1016/j.jnt.2017.11.015
https://arxiv.org/abs/1603.00839
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.00839
https://doi.org/10.1103/PhysRevD.61.104011
https://arxiv.org/abs/hep-th/9910056
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9910056
https://doi.org/10.1088/1126-6708/2008/02/020
https://arxiv.org/abs/0801.0322
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0801.0322
https://doi.org/10.1007/JHEP10(2013)188
https://arxiv.org/abs/1307.3534
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1307.3534
https://doi.org/10.1016/j.jnt.2017.07.022
https://arxiv.org/abs/1509.00363
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.00363
https://doi.org/10.1088/0264-9381/33/5/055005
https://doi.org/10.1088/0264-9381/33/5/055005
https://arxiv.org/abs/1511.07455
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.07455
https://doi.org/10.1142/S0217751X16501694
https://arxiv.org/abs/1606.02203
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.02203
https://doi.org/10.1088/0264-9381/33/23/235011
https://doi.org/10.1088/0264-9381/33/23/235011
https://arxiv.org/abs/1606.07084
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1606.07084
https://doi.org/10.1142/S0217751X17500749
https://doi.org/10.1142/S0217751X17500749
https://arxiv.org/abs/1608.02056
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.02056
https://doi.org/10.1007/JHEP11(2016)051
https://arxiv.org/abs/1608.04393
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.04393
https://doi.org/10.1007/JHEP09(2017)155
https://doi.org/10.1007/JHEP09(2017)155
https://arxiv.org/abs/1706.01889
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.01889
https://doi.org/10.1007/JHEP11(2017)139
https://doi.org/10.1007/JHEP11(2017)139
https://arxiv.org/abs/1708.08409
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.08409
https://doi.org/10.1007/JHEP01(2019)155
https://arxiv.org/abs/1803.00527
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.00527
https://doi.org/10.1007/JHEP01(2019)131
https://arxiv.org/abs/1809.05122
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.05122


J
H
E
P
0
1
(
2
0
2
2
)
1
3
4

[22] J.E. Gerken, A. Kleinschmidt and O. Schlotterer, Heterotic-string amplitudes at one loop:
modular graph forms and relations to open strings, JHEP 01 (2019) 052 [arXiv:1811.02548]
[INSPIRE].

[23] E. D’Hoker and J. Kaidi, Modular graph functions and odd cuspidal functions. Fourier and
Poincaré series, JHEP 04 (2019) 136 [arXiv:1902.04180] [INSPIRE].

[24] E. D’Hoker and M.B. Green, Absence of irreducible multiple zeta-values in melon modular
graph functions, Commun. Num. Theor. Phys. 14 (2020) 315 [arXiv:1904.06603] [INSPIRE].

[25] E. D’Hoker, Integral of two-loop modular graph functions, JHEP 06 (2019) 092
[arXiv:1905.06217] [INSPIRE].

[26] E. D’Hoker and M.B. Green, Exploring transcendentality in superstring amplitudes, JHEP
07 (2019) 149 [arXiv:1906.01652] [INSPIRE].

[27] A. Basu, Eigenvalue equation for the modular graph Ca,b,c,d, JHEP 07 (2019) 126
[arXiv:1906.02674] [INSPIRE].

[28] J.E. Gerken, A. Kleinschmidt and O. Schlotterer, All-order differential equations for one-loop
closed-string integrals and modular graph forms, JHEP 01 (2020) 064 [arXiv:1911.03476]
[INSPIRE].

[29] S. Hohenegger, From little string free energies towards modular graph functions, JHEP 03
(2020) 077 [arXiv:1911.08172] [INSPIRE].

[30] J.E. Gerken, A. Kleinschmidt and O. Schlotterer, Generating series of all modular graph
forms from iterated Eisenstein integrals, JHEP 07 (2020) 190 [arXiv:2004.05156] [INSPIRE].

[31] P. Vanhove and F. Zerbini, Building blocks of closed and open string amplitudes, in
MathemAmplitudes 2019: intersection theory and Feynman integrals, (2020)
[arXiv:2007.08981] [INSPIRE].

[32] A. Basu, Poisson equations for elliptic modular graph functions, Phys. Lett. B 814 (2021)
136086 [arXiv:2009.02221] [INSPIRE].

[33] A. Basu, Relations between elliptic modular graphs, JHEP 12 (2020) 195 [Erratum ibid. 03
(2021) 061] [arXiv:2010.08331] [INSPIRE].

[34] S. Hohenegger, Diagrammatic expansion of non-perturbative little string free energies, JHEP
04 (2021) 275 [arXiv:2011.06323] [INSPIRE].

[35] F. Brown, Multiple modular values and the relative completion of the fundamental group of
M1,1, arXiv:1407.5167.

[36] F. Zerbini, Single-valued multiple zeta values in genus 1 superstring amplitudes, Commun.
Num. Theor. Phys. 10 (2016) 703 [arXiv:1512.05689] [INSPIRE].

[37] F. Brown, A class of non-holomorphic modular forms I, arXiv:1707.01230 [INSPIRE].

[38] F. Brown, A class of nonholomorphic modular forms II: equivariant iterated Eisenstein
integrals, Forum Math. Sigma 8 (2020) e31 [arXiv:1708.03354].

[39] E. D’Hoker and W. Duke, Fourier series of modular graph functions, J. Number Theor. 192
(2018) 1 [arXiv:1708.07998] [INSPIRE].

[40] F. Zerbini, Elliptic multiple zeta values, modular graph functions and genus 1 superstring
scattering amplitudes, Ph.D. thesis, Bonn U., Bonn, Germany (2017) [arXiv:1804.07989]
[INSPIRE].

– 47 –

https://doi.org/10.1007/JHEP01(2019)052
https://arxiv.org/abs/1811.02548
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.02548
https://doi.org/10.1007/JHEP04(2019)136
https://arxiv.org/abs/1902.04180
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.04180
https://doi.org/10.4310/CNTP.2020.v14.n2.a2
https://arxiv.org/abs/1904.06603
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.06603
https://doi.org/10.1007/JHEP06(2019)092
https://arxiv.org/abs/1905.06217
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.06217
https://doi.org/10.1007/JHEP07(2019)149
https://doi.org/10.1007/JHEP07(2019)149
https://arxiv.org/abs/1906.01652
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.01652
https://doi.org/10.1007/JHEP07(2019)126
https://arxiv.org/abs/1906.02674
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.02674
https://doi.org/10.1007/JHEP01(2020)064
https://arxiv.org/abs/1911.03476
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.03476
https://doi.org/10.1007/JHEP03(2020)077
https://doi.org/10.1007/JHEP03(2020)077
https://arxiv.org/abs/1911.08172
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.08172
https://doi.org/10.1007/JHEP07(2020)190
https://arxiv.org/abs/2004.05156
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.05156
https://arxiv.org/abs/2007.08981
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.08981
https://doi.org/10.1016/j.physletb.2021.136086
https://doi.org/10.1016/j.physletb.2021.136086
https://arxiv.org/abs/2009.02221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.02221
https://doi.org/10.1007/JHEP12(2020)195
https://arxiv.org/abs/2010.08331
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.08331
https://doi.org/10.1007/JHEP04(2021)275
https://doi.org/10.1007/JHEP04(2021)275
https://arxiv.org/abs/2011.06323
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.06323
https://arxiv.org/abs/1407.5167
https://doi.org/10.4310/CNTP.2016.v10.n4.a2
https://doi.org/10.4310/CNTP.2016.v10.n4.a2
https://arxiv.org/abs/1512.05689
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.05689
https://arxiv.org/abs/1707.01230
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.01230
https://doi.org/10.1017/fms.2020.24
https://arxiv.org/abs/1708.03354
https://doi.org/10.1016/j.jnt.2018.04.012
https://doi.org/10.1016/j.jnt.2018.04.012
https://arxiv.org/abs/1708.07998
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1708.07998
https://arxiv.org/abs/1804.07989
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.07989


J
H
E
P
0
1
(
2
0
2
2
)
1
3
4

[41] F. Zerbini, Modular and holomorphic graph functions from superstring amplitudes, in KMPB
conference: elliptic integrals, elliptic functions and modular forms in quantum field theory,
Springer, Cham, Switzerland (2019), pg. 459 [arXiv:1807.04506] [INSPIRE].

[42] D. Zagier and F. Zerbini, Genus-zero and genus-one string amplitudes and special multiple
zeta values, Commun. Num. Theor. Phys. 14 (2020) 413 [arXiv:1906.12339] [INSPIRE].

[43] M. Berg, K. Bringmann and T. Gannon, Massive deformations of Maass forms and Jacobi
forms, Commun. Num. Theor. Phys. 15 (2021) 575 [arXiv:1910.02745] [INSPIRE].

[44] N. Matthes, On the algebraic structure of iterated integrals of quasimodular forms, Algebra
Number Theor. 11 (2017) 2113 [arXiv:1708.04561].

[45] M. Eichler, Eine Verallgemeinerung der Abelschen Integrale (in German), Math. Z. 67 (1957)
267.

[46] P.G. Shimura, Sur les intégrales attachées aux formes automorphes (in French), J. Math.
Soc. Jpn. 11 (1959) 291.

[47] F. Brown, A class of non-holomorphic modular forms III: real analytic cusp forms for
SL2(Z), Res. Math. Sci. 5 (2018) 34 [arXiv:1710.07912].

[48] H. Tsunogai, On some derivations of Lie algebras related to Galois representations, Publ.
Res. Inst. Math. Sci. 31 (1995) 113.

[49] A. Pollack, Relations between derivations arising from modular forms, undergraduate thesis,
Duke University, Durham, NC, U.S.A. (2009).

[50] F. Brown, From the Deligne-Ihara conjecture to multiple modular values, arXiv:1904.00179.

[51] F. Brown, Zeta and L-functions, old and new, talk given at the workshop Elliptics and
beyond, https://indico.cern.ch/event/927781/contributions/3926291/attachments/2101487/
3533016/EllipticConf.pdf, (2020).

[52] N. Diamantis, Modular iterated integrals associated with cusp forms, arXiv:2009.07128.

[53] J. Drewitt, Triple equivariant Eisenstein integrals, arXiv:2104.09916.

[54] J. Broedel, N. Matthes and O. Schlotterer, Relations between elliptic multiple zeta values and
a special derivation algebra, J. Phys. A 49 (2016) 155203 [arXiv:1507.02254] [INSPIRE].

[55] D. Zagier and H. Gangl, Classical and elliptic polylogarithms and special values of L-series,
in The arithmetic and geometry of algebraic cycles (Banff, AB, Canada 1998), NATO Sci.
Ser. C 548, Kluwer Acad. Publ., Dordrecht, The Netherlands (2000), pg. 561.

[56] D. Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math. 104 (1991)
449.

[57] D.B. Zagier, Quelques conséquences surprenantes de la cohomologie de SL(2, Z), in Leçons de
Mathématiques d’aujourd’hui, Cassini, Paris, France (2000), pg. 99.

[58] E. Hecke, Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher
Produktentwicklung. I, Math. Ann. 114 (1937) 1.

[59] P. Deligne, La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. 43 (1974) 273.

[60] J.I. Manin, Periods of parabolic forms and p-adic Hecke series, Math. USSR-Sbornik 21
(1973) 371.

[61] A. Saad, Multiple zeta values and iterated Eisenstein integrals, arXiv:2009.09885.

– 48 –

https://doi.org/10.1007/978-3-030-04480-0_18
https://arxiv.org/abs/1807.04506
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.04506
https://doi.org/10.4310/CNTP.2020.v14.n2.a4
https://arxiv.org/abs/1906.12339
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.12339
https://doi.org/10.4310/CNTP.2021.v15.n3.a4
https://arxiv.org/abs/1910.02745
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.02745
https://doi.org/10.2140/ant.2017.11.2113
https://doi.org/10.2140/ant.2017.11.2113
https://arxiv.org/abs/1708.04561
https://doi.org/10.1007/bf01258863
https://doi.org/10.1007/bf01258863
https://doi.org/10.2969/jmsj/01140291
https://doi.org/10.2969/jmsj/01140291
https://doi.org/10.1007/s40687-018-0151-3
https://arxiv.org/abs/1710.07912
https://doi.org/10.2977/prims/1195164794
https://doi.org/10.2977/prims/1195164794
https://hdl.handle.net/10161/1281
https://arxiv.org/abs/1904.00179
https://indico.cern.ch/event/927781/contributions/3926291/attachments/2101487/3533016/EllipticConf.pdf
https://indico.cern.ch/event/927781/contributions/3926291/attachments/2101487/3533016/EllipticConf.pdf
https://arxiv.org/abs/2009.07128
https://arxiv.org/abs/2104.09916
https://doi.org/10.1088/1751-8113/49/15/155203
https://arxiv.org/abs/1507.02254
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.02254
https://doi.org/10.1007/bf01245085
https://doi.org/10.1007/bf01245085
http://people.mpim-bonn.mpg.de/zagier/files/tex/ConsequencesCohomologySL/fulltext.pdf
https://doi.org/10.1007/bf01594160
https://doi.org/10.1007/bf02684373
https://doi.org/10.1070/sm1973v021n03abeh002022
https://doi.org/10.1070/sm1973v021n03abeh002022
https://arxiv.org/abs/2009.09885


J
H
E
P
0
1
(
2
0
2
2
)
1
3
4

[62] F. Brown, private communication.

[63] The PARI group, PARI/GP version 2.13.1, http://pari.math.u-bordeaux.fr/, Univ.
Bordeaux, Bordeaux, France (2020).

[64] T. Dokchitser, ComputeL — PARI package v1.3.8,
https://people.maths.bris.ac.uk/∼matyd/computel/, (2018).

[65] M.B. Green, S.D. Miller and P. Vanhove, SL(2, Z)-invariance and D-instanton contributions
to the D6R4 interaction, Commun. Num. Theor. Phys. 09 (2015) 307 [arXiv:1404.2192]
[INSPIRE].

[66] K. Klinger-Logan, Differential equations in automorphic forms, Commun. Number Theory
Phys. 12 (2018) 767 [arXiv:1801.00838].

[67] K. Klinger-Logan, S.D. Miller and D. Radchenko, The D6R4 coupling, revisited, work in
progress.

[68] T.M. Apostol, Modular functions and Dirichlet series in number theory, Springer, New York,
NY, U.S.A. (1990).

[69] K. Haberland, Perioden von Modulformen einer Variabler und Gruppencohomologie, I (in
German), Math. Nachr. 112 (1983) 245.

[70] K. Haberland, Perioden von Modulformen einer Variabler und Gruppencohomologie, II (in
German), Math. Nachr. 112 (1983) 283.

[71] K. Haberland, Perioden von Modulformen einer Variabler und Gruppencohomologie, III (in
German), Math. Nachr. 112 (1983) 297.

[72] H. Hida and Y. Maeda, Non-Abelian base change for totally real fields, Pacific J. Math. 181
(1997) 189.

[73] A. Ghitza and A. McAndrew, Experimental evidence for Maeda’s conjecture on modular
forms, Tbilisi Math. J. 5 (2012) 55.

[74] LMFDB collaboration, The L-functions and modular forms database,
http://www.lmfdb.org, (2021).

[75] J.-G. Luque, J.-C. Novelli and J.-Y. Thibon, Period polynomials and Ihara brackets, J. Lie
Theory 17 (2007) 229 [math.CO/0606301].

[76] J. Broedel, N. Matthes and O. Schlotterer, Elliptic multiple zeta values,
https://tools.aei.mpg.de/emzv.

[77] B. Enriquez, Analogues elliptiques des nombres multizétas (in French), Bull. Soc. Math.
France 144 (2016) 395 [arXiv:1301.3042].

[78] H. Iwaniec, Spectral methods of automorphic forms, American Mathematical Society,
Providence, RI, U.S.A. (2002).

[79] P. Fleig, H.P.A. Gustafsson, A. Kleinschmidt and D. Persson, Eisenstein series and
automorphic representations, Cambridge University Press, Cambridge, U.K. (2018)
[arXiv:1511.04265] [INSPIRE].

– 49 –

http://pari.math.u-bordeaux.fr/
https://people.maths.bris.ac.uk/~matyd/computel/
https://doi.org/10.4310/CNTP.2015.v9.n2.a3
https://arxiv.org/abs/1404.2192
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.2192
https://doi.org/10.4310/cntp.2018.v12.n4.a4
https://doi.org/10.4310/cntp.2018.v12.n4.a4
https://arxiv.org/abs/1801.00838
https://doi.org/10.1007/978-1-4612-0999-7
https://doi.org/10.1002/mana.19831120113
https://doi.org/10.1002/mana.19831120114
https://doi.org/10.1002/mana.19831120115
https://doi.org/10.2140/pjm.1997.181.189
https://doi.org/10.2140/pjm.1997.181.189
https://doi.org/10.32513/tbilisi/1528768903
http://www.lmfdb.org
https://arxiv.org/abs/math.CO/0606301
https://tools.aei.mpg.de/emzv
https://doi.org/10.24033/bsmf.2718
https://doi.org/10.24033/bsmf.2718
https://arxiv.org/abs/1301.3042
https://doi.org/10.1090/gsm/053
https://doi.org/10.1017/9781316995860
https://arxiv.org/abs/1511.04265
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.04265

	Introduction
	Basics of iterated integrals
	Iterated integrals of Eisenstein series
	Fourier expansions of iterated Eisenstein integrals
	Differential equations and non-holomorphic Eisenstein series
	Multiple modular values

	Iterated integrals of cusp forms
	Real-analytic integrals of holomorphic cusp forms
	Modular properties
	Integrals of Hecke normalised holomorphic cusp forms
	Example with s=6

	Properties of multiple modular values and the beta**(sv)
	Reduced multiple modular values
	Depth one reduced multiple modular values and beta**(sv) modular transformations
	Modular transformation of beta**(sv) at depth two
	Examples at depth two expressible via zeta values
	Examples at depth two involving L-values


	Modular properties of solutions to the Laplace equations
	Examples involving the Ramanujan cusp form
	Odd functions for (m,k)=(2,5) and (m,k)=(3,4)
	Even functions for (m,k)=(2,6), (m,k)=(3,5) and (m,k)=(4,4)

	Examples with cusp forms of higher weight
	An example involving the two weight 24 cusp forms
	Structure for general weight

	Selection rules on beta**(sv) from Tsunogai's derivation algebra
	Overview of epsilon(k) relations at depth two
	Cusp forms and depth-two relations
	Cusp forms and higher-depth relations
	Examples
	Comparison with the eMZV datamine

	Modular graph forms and epsilon(k) relations at depth two
	Weight 7
	Weight 8
	Weight 9
	Weight 10
	Summary


	Kloosterman sums and the Fourier expansion of the F(m,k)**(pm(s))
	Odd example
	Even example
	General comments

	Recap of seed functions
	Examples of cocycles
	Weight 16
	Weight 18


