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appear in the low-energy expansion of closed-string scattering amplitudes at genus

one. The Poincaré series are constructed from iterated integrals over single holomor-

phic Eisenstein series and their complex conjugates, decorated by suitable combina-

tions of zeta values. We evaluate the Poincaré sums over these iterated Eisenstein

integrals of depth one and deduce new representations for all modular graph forms

built from iterated Eisenstein integrals at depth two. In a companion paper, some of

the Poincaré sums over depth-one integrals going beyond modular graph forms will

be described in terms of iterated integrals over holomorphic cusp forms and their

L-values.

http://arxiv.org/abs/2109.05017v1


Contents

1 Introduction 2

1.1 Laplace systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Review 7

2.1 Modular graph functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Iterated Eisenstein integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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A From Poincaré seeds to Laurent polynomials 89

B Two-loop modular graph functions at weight eight 91

B.1 Expansions in terms of F
+(s)
m,k at weight 8 . . . . . . . . . . . . . . . . . . . . . . . 92

B.2 Laurent polynomials at weight 6 and 7 . . . . . . . . . . . . . . . . . . . . . . . . 92
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1 Introduction

The low-energy expansion of string scattering amplitudes at genus one introduced infinite classes

of non-holomorphic so-called modular graph forms (MGFs) [1–3]. The fascinating properties of

modular graph forms include multiple zeta values in their expansion around the cusp τ → i∞,
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with τ the modular parameter of the torus, and intricate networks of algebraic and differential

relations. Accordingly, the study of MGFs has received considerable attention in both the

physics [4–6,1, 7, 8, 2, 3, 9–32] and mathematics literature [33–41], also see [42] for a review, [43]

for a Mathematica implementation and [44–52] for generalisations to higher genus.

The direct evaluation of world-sheet integrals in closed-string genus-one amplitudes yields

lattice-sum representations of MGFs [4, 5, 1, 2, 18]. Their differential equations [3] by contrast

suggest to represent MGFs via iterated integrals over holomorphic Eisenstein series Gk(τ) and

their complex conjugates [2,15,27]. The lattice sums refer to the discrete momenta p = mτ+n on

a torus world-sheet withm,n ∈ Z, manifest the modular properties and lead to the interpretation

of MGFs as discretised Feynman integrals for a scalar field on the torus. Iterated-Eisenstein-

integral representations in turn expose the entirety of algebraic and differential relations of MGFs

and make the detailed form of their Fourier-expansion accessible. Hence, from their implications

for different properties of MGFs, it is desirable to swiftly translate between the lattice-sum and

iterated-Eisenstein-integral viewpoints.

In this work, we investigate Poincaré-series representations of MGFs and restrict to the

modular-invariant case, i.e. modular graph functions and modular-invariant combinations of

forms. With a Poincaré-series representation we mean a rewriting of a modular-invariant func-

tion in terms of a sum over images under the modular group SL(2,Z) of a simpler function that

we call its (Poincaré) seed function. As we shall see, our actual space of functions transcends

the space of MGFs in a controlled way related to iterated integrals of holomorphic cusp forms,

a theme that will be explored in great detail in the companion Part II [53].

MGFs associated with one-loop graphs with k ≥ 2 links are known to be given by non-

holomorphic Eisenstein series Ek(τ). These cases can be expressed as (iterated) integrals of a

single holomorphic Eisenstein series and hence they all are said to be of depth one. The non-

holomorphic Eisenstein series Ek(τ) is known to be proportional to the sum over images of the

simple monomial seed (Im τ)k, see e.g. [54, 55].

Our key results advance and apply the dictionary between lattice sums and iterated Eisen-

stein integrals to the depth-two case, i.e. to iterated integrals of two holomorphic Eisenstein

series. In particular, we generalise the studies of Poincaré-series representations of depth-two

MGFs in [1, 16, 19, 20, 56, 28] to arbitrary weight. On the one hand, since Poincaré series add

up images of simpler functions (their Poincaré seeds) under the modular group SL(2,Z), they

manifest the modular properties of the resulting MGFs. On the other hand, we will see from

comparison between the iterated-Eisenstein-integral representations of MGFs and their seed

functions that Poincaré sums effectively add one unit of depth. In fact, iterated Eisenstein in-

tegrals will also play a crucial role to find the system of Laplace equations obeyed by both the

modular invariant MGFs at depth two and by their seed functions.

The notion of depth of an MGF is in general different from the loop order of the graph

defining it. While MGFs corresponding to one-loop Feynman graphs can be represented by

iterated Eisenstein integrals of depth one, the two-loop MGFs do not exhaust all depth-two

modular invariant objects. It was already known that several two-loop MGFs can be reduced

to one-loop ones and odd zeta values [5, 1], which illustrates that the notion of depth and loop

order are not always lined up.
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Poincaré seeds for all two-loop MGFs were already derived in [19], and the results of the

present work extend those in the reference in several ways. Firstly, we give a streamlined

SL(2,Z)-representative of the seed functions which does not contain any powers of qq̄, with

q = exp(2πiτ), in the Fourier expansion and without having to rely on a lattice-sum formulation.

Secondly, we also spell out seed functions for those imaginary combinations of iterated Eisenstein

integrals of depth two which necessitate three- or higher-loop MGFs, see [27] for a simple weight-

five example. Thirdly, although we will not pursue this in detail in the present work, with our

methods we could exploit resurgent analysis, as explained in [20,56], to reconstruct the complete

non-perturbative completion of the MGFs, i.e. the qq̄ terms, from their perturbative expansion

around the cusp τ → i∞. However, the iterated-Eisenstein-integral representation that we

shall derive gives a complementary way of obtaining the qq̄-terms, see section 7.1 for further

comments.

In this work and its companion paper [53], we will give a complete description of the Poincaré

sums of iterated Eisenstein integrals at depth one with Brown’s integration kernels τ jGk(τ)

subject to k ≥ 4 and 0 ≤ j ≤ k−2 [33]. In this way, we recover all MGFs which are expressible

in terms of Brown’s iterated Eisenstein integrals of depth ≤ 2. Moreover, certain Poincaré series

turn out to augment double integrals over holomorphic Eisenstein series by depth-one integrals

over holomorphic cusp forms. These real-analytic modular invariants go beyond MGFs and

will be discussed in the companion Part II. Iterated integrals of holomorphic cusp forms do not

admit the lattice-sum representations with integer exponents characteristic for MGFs. This can

be seen from the fact that repeated τ -derivatives of MGFs give rise to holomorphic Eisenstein

series but not to holomorphic cusp forms [3, 25].

Among the real MGFs of depth two, the most prominent instances are the two-loop lattice

sums Ca,b,c(τ) [1] built from integrals over a+b+c closed-string Green functions. At transcen-

dental weight a+b+c = 8, Poincaré sums over real seed functions similar to those of Ca,b,c(τ)

also generate a modular invariant that involves iterated integrals over the ∆12(τ) discriminant,

the holomorphic cusp form of modular weight 12. Poincaré sums over imaginary seed functions

already generate iterated integrals over ∆12(τ) at transcendental weight 7, see Part II for further

details.

1.1 Laplace systems

The main focus of this pair of papers will be the real and imaginary modular invariant functions

that will be denoted by F
+(s)
m,k and F

−(s)
m,k , respectively, and labelled by positive integers s,m, k to

be explained below. More precisely, the F
+(s)
m,k (F

−(s)
m,k ) are even (odd) under the involution τ → −τ̄

of the upper half-plane. On the one hand, these modular invariant functions F
±(s)
m,k determine

all MGFs of depth two. On the other hand, not all instances of the F
±(s)
m,k can be expressed as

lattice sums and so they transcend the space of MGFs but still will be expressible in terms of

iterated integrals over holomorphic modular forms (including cuspidal ones) of depth at most

two. For this reason we will be referring to F
±(s)
m,k as depth-two modular invariant functions.
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The even modular invariant functions F
+(s)
m,k are characterised by inhomogeneous Laplace

eigenvalue equations similar to those of the two-loop lattice sums MGFs Ca,b,c in [1] namely

(
∆− s(s−1)

)
F
+(s)
m,k = EmEk , s ∈ {k−m+2, k−m+4, . . . , k+m−4, k+m−2} , (1.1)

where 2 ≤ m ≤ k and Em, Ek are non-holomorphic Eisenstein series and ∆ = 4(Im τ)2∂τ∂τ̄
the SL(2,Z) invariant Laplacian. This differential equation fixes the asymptotics of F

+(s)
m,k at the

cusp τ → i∞ up to two integration constants. The latter will be inferred from Poincaré-series

representations whose seed functions enjoy shift symmetry under τ → τ+1. We note that the

differential equation is invariant under swap of the numbers s and 1−s and we always take s to

be the larger one of them. Furthermore, the equation is invariant under the swap of m and k

and we label the function F
+(s)
m,k with m ≤ k.

Moreover, the seed functions of F
+(s)
m,k are systematically reduced to real parts of convergent

iterated Eisenstein integrals at depth one, multiplied by a positive integer power of Im τ . If

the resulting modular invariant function involves a double integral over holomorphic Eisenstein

series (G2m,G2k) with m 6= k, we find that two types of depth-one seed functions lead to the

same Poincaré sums, even if they cannot be related directly by an SL(2,Z) transformation. This

can be thought of as a depth-two generalisation of the standard functional relation between

non-holomorphic Eisenstein series Γ(k)Ek = Γ(1−k)E1−k which superficially relates the seed

functions (Im τ)k and (Im τ)1−k (up to proportionality) even though they are not related by an

SL(2,Z) transformation. However, the Poincaré sum of the seed (Im τ)1−k is not convergent for

k ∈ N but typically its Poincaré sum is defined by analytic continuation using the functional

relation. In the same way, we shall find different ways of expressing the same modular invariant

function through different seeds, however, only one of the seeds will have a convergent Poincaré

sum.

In a similar fashion we will also introduce odd modular invariant functions of depth two,

denoted by F
−(s)
m,k , and characterised by inhomogeneous Laplace eigenvalue equations

(
∆− s(s−1)

)
F
−(s)
m,k =

(∇Em)(∇Ek)− (∇Ek)(∇Em)

2(Im τ)2
(1.2)

s ∈ {k−m+1, k−m+3, . . . , k+m−3, k+m−1} ,

with 2 ≤ m ≤ k and Cauchy–Riemann derivatives ∇ = 2i(Im τ)2∂τ and ∇ = −2i(Im τ)2∂τ̄ .

Under the swap of m and k the right-hand side of the equation changes sign and we always

assume m ≤ k for F
−(s)
m,k (and in fact F

−(s)
m,m = 0 for our choice of boundary conditions).

Unlike the F
+(s)
m,k , the modular objects F

−(s)
m,k will be cusp forms which do not allow for

integration constants proportional to powers of Im τ . Their corresponding seed functions will

reduce to imaginary parts of convergent iterated Eisenstein integrals at depth one, multiplied

by positive integer powers of Im τ . However, yet again, the resulting odd modular invariant

functions F
−(s)
m,k involve double integrals over holomorphic Eisenstein series (G2m,G2k) [19, 27].

The Laplace system (1.2) will provide a generalisation of the cusp forms first discussed in the

references.
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The objects F
±(s)
m,k together with products of two non-holomorphic Eisenstein series and their

Cauchy–Riemann derivatives generate all modular invariant MGFs of depth ≤ 2. This can be

seen for instance from the generating series of MGFs in [27] which also features certain dropouts

among the iterated Eisenstein integrals at depth ≥ 2 and cannot contain all the F
±(s)
m,k . These

dropouts can be traced back to Tsunogai’s derivation algebra [57,58] which also governs Brown’s

construction of real-analytic modular forms [36]. As will be detailed in Part II, those F
+(s)
m,k ,F

−(s)
m,k

beyond MGFs contain iterated integrals of holomorphic cusp forms with ratios of L-values in

their coefficients.

We note that an equation very similar to (1.1) appeared for the first time in the context

of higher-derivative corrections to the type IIB low-energy effective action where now SL(2,Z)

plays the role of U-duality acting on the axio-dilaton [59]. In this case the indices m and k on the

inhomogeneity EmEk are half-integers, see also [60,61,59,62–65] for further developments and [66]

for recent work in the context of N=4 super Yang–Mills theory. Our focus is on Poincaré-seed

representations of the solutions and their relation to (single-valued) iterated integrals. One

remarkable outcome of our work is that iterated integrals of cusp forms also play a central role

for modular-invariant solutions to the Laplace equations. One consequence of this is that the

Fourier expansion of the solutions F
±(s)
m,k can also contain terms that are associated, mode-by-

mode, with homogeneous solutions of the Laplace equations, a behaviour that has not been

encountered in the U-duality context yet [62,67,66,68].

Laplace systems akin to (1.1) and (1.2) of special type at depth three have been recently

investigated in [69]. At depth two in turn, iterated integrals of cusp forms have been studied in

relation to so-called higher modular forms in [70]. More specifically, Poincaré seeds built from

depth-one iterated integrals of holomorphic cusp forms have been considered in this reference,

which can be viewed as the cuspidal counterparts of the seeds in this work.

As further motivation for our work, we stress that MGFs appear in the α′-expansion of

closed-string scattering amplitudes at genus one. As such they are crucial ingredients of the

non-perturbatively completed couplings in the Type-IIB low-energy effective action in flat space,

multiplying the higher-curvature corrections R4,D4R4 and D6R4 known from [60, 71, 62]. Be-

sides playing a central role for checks of U-duality in Type-IIB superstrings, these couplings

are also relevant for precisions tests of the AdS/CFT correspondence. On the AdS/CFT side,

recent developments on the flat-space limit of Type-IIB effective actions on AdS5×S5 involving

localisation and conformal-bootstrap methods include [72–75,66,76–78], and the interplay with

correlation functions in N = 4 super Yang–Mills has for instance been investigated in [79–87].

1.2 Outline

Our work is structured as follows. In section 2, we review the basic notions of modular graph

functions, iterated Eisenstein integrals and Poincaré-series representations. In section 3, we

then show how the central Laplace equations (1.1) and (1.2) arise from iterated Eisenstein

integrals and how they can be solved using the method of Poincaré series. We shall also consider

different bases of Poincaré seeds where the Laplace equations arrange in a step-form system.

The considerations of section 3 are concerned with the leading-depth contributions to modular-
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invariant functions, and we explain how to add their lower-depth tails in section 4. While

sections 3 and 4 are mostly focussed on the even F
+(s)
m,k , the analogous discussions for the odd

F
−(s)
m,k can be found in section 5. Section 6 contains a discussion of alternative seed functions

for the depth-two modular invariant functions and how they are related to the ones derived in

section 3. In section 7, we present possible further directions of investigation. Section 8 contains

concluding remarks. Several appendices collect additional technical details and more involved

examples. In an ancillary file appended to the arXiv submission we enclose a large collection of

data and examples.

2 Review

In this section, we recall the salient features of MGFs and Poincaré sums in order to set the

notation and terminology for our results.

2.1 Modular graph functions

The central objects in this work are modular graph functions [2] that are generated from the

low-energy expansion of the following configuration-space integral relevant to closed-string am-

plitudes1 at genus one [4, 5]:

Mn(sij , τ) =

( n∏

j=2

∫

T

d2zj
Im τ

) n∏

1≤i<j

exp

( n∑

1≤i<j

sijG(zi−zj , τ)
)
. (2.1)

Each puncture zj for j ≥ 2 is independently integrated over the torus T = C/(Z + τZ) with

complex modular parameter τ subject to Im τ > 0, and one can use translation invariance

on the torus to set z1 to an arbitrary value. Upon Taylor-expanding the integrand in the

dimensionless Mandelstam invariants sij ∈ C, it remains to integrate monomials in closed-string

Green functions

G(z, τ) = − log

∣∣∣∣
θ1(z, τ)

η(τ)

∣∣∣∣
2

+
2π(Im z)2

Im τ
=

Im τ

π

∑

(m,n)6=(0,0)

e2πi(mv−nu)

|mτ+n|2 , (2.2)

with the standard Dedekind eta function η(τ) and odd Jacobi theta function θ1(z, τ).
2 The

Fourier sum in the last step is only conditionally convergent and is understood using the Eisen-

stein summation convention [90]. Such integrals over degree-w monomials in G(zi−zj , τ) are

referred to as modular graph functions of weight w, and they are modular invariant since both

1More precisely, the four-point one-loop amplitude of type-II superstrings is proportional to the τ -integral of

M4(sij , τ ) over the fundamental domain of SL(2,Z) [88]. The five-point type-II amplitude in turn involves both

M5(sij , τ ) and additional configuration-space integrals with singularities as zi → zj in the integrand [89,6].
2These are given by the q-series, where q = e2πiτ ,

η(τ ) = q
1/24

∏

n≥1

(1− q
n) , θ1(z, τ ) = i

∞∑

n=−∞

(−1)nq(n−1/2)2
e
2πiz(n−1/2)

.
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• w •
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c

Figure 1: The graphs corresponding to the one-loop and two-loop modular graph functions Ew

and Ca,b,c where a link with a boxed number w indicates w concatenated Green functions.

the Green function (2.2) and the measure in (2.1) are. The integrals over the torus punctures

zj = ujτ + vj with uj , vj ∈ R and
d2zj
Im τ = duj dvj are particularly convenient to perform with

the lattice-sum representation of the Green function in (2.2). When visualizing G(zi−zj , τ) as
an edge between vertices i and j, each modular graph function corresponds to a Feynman graph

on the torus. The integrals over zj impose conservation of the lattice momenta

p = mτ + n ∈ Λ′ , Λ′ = (Z+ τZ) \ {0} (2.3)

at each vertex and lead to vanishing modular graph functions for one-particle reducible graphs.

Hence, the simplest non-vanishing modular graph functions are non-holomorphic Eisenstein

series of weight w 6= 1 associated with closed one-loop graphs

Ew(τ) =

(
Im τ

π

)w ∑

p∈Λ′

1

|p|2w , (2.4)

followed by two-loop modular graph functions of weight w = a+b+c:

Ca,b,c(τ) =

(
Im τ

π

)a+b+c ∑

p1,p2,p3∈Λ′

δ(p1+p2+p3)

|p1|2a|p2|2b|p3|2c
. (2.5)

The graphs corresponding to the MGFs Ew and Ca,b,c are depicted in figure 1.

It is straightforward to represent arbitrary modular graph functions as nested lattice sums,

but it requires more effort to find their algebraic relations. Already the one- and two-loop

modular graph functions in (2.4) and (2.5) obey intricate relations over Q-linear combinations

of multiple zeta values (MZVs)

ζn1,n2,...,nr =
∑

0<k1<k2<...<kr

k−n1
1 k−n2

2 . . . k−nr
r , ni ∈ N , nr ≥ 2 (2.6)

starting with [1]

C1,1,1(τ) = E3(τ) + ζ3 , C2,2,1(τ) =
2

5
E5(τ) +

ζ5
30

. (2.7)
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Another important property of modular graph functions that is not yet readily available from

their lattice-sum representations is their asymptotic expansion around the cusp. In the variables

y = π Im τ , q = e2πiτ , q̄ = e−2πiτ̄ , (2.8)

the non-holomorphic Eisenstein series (2.4) can be written as the Fourier series

Ew(τ) = (−1)w−1 B2w

(2w)!
(4y)w +

4(2w−3)!ζ2w−1

(w−2)!(w−1)! (4y)
1−w (2.9)

+
2

Γ(w)

∞∑

n=1

nw−1σ1−2w(n)

[
w−1∑

a=0

(4ny)−a Γ(w+a)

a! Γ(w−a)

]
(qn + q̄n)

with Bernoulli numbers B2w that are related to even Riemann zeta values by

2ζ2w = (−1)w+1 4
wπ2w

(2w)!
B2w , w = 1, 2, 3, . . . . (2.10)

Here, we have assumed that w is a positive integer w > 1 to replace the usual Bessel function

Kw−1/2(2π|n| Im τ) appearing in the non-zero Fourier mode by its exact functional form

Kw−1/2(z) =

√
π

2z
e−z

w−1∑

ℓ=0

(2z)−ℓ Γ(w + ℓ)

ℓ!Γ(w − ℓ)
. (2.11)

Moreover,

σs(n) =
∑

d|n

ds (2.12)

denotes a divisor sum over positive divisors of n.

The general form of the expansion of modular graph functions around the cusp follows a

structure similar to (2.9): The coefficients of qmq̄n with m,n ≥ 0 are Laurent polynomials in

y whose coefficients are Q-linear combinations of MZVs.3 The simplest Laurent polynomials of

irreducible two-loop modular graph functions are [5, 1]

C2,1,1(τ) =
2y4

14175
+

ζ3y

45
+

5ζ5
12y
− ζ23

4y2
+

9ζ7
16y3

+O(q, q̄) , (2.13)

C3,1,1(τ) =
2y5

155925
+

2ζ3y
2

945
− ζ5

180
+

7ζ7
16y2

− ζ3ζ5
2y3

+
43ζ9
64y4

+O(q, q̄) ,

and the Laurent polynomials for arbitrary Ca,b,c are explicitly known [37] in terms of ζ2w−1 and

products thereof. Notice that the first non-trivial single-valued MZV ζ3,5,3 appears in an MGF

of trihedral topology of weight seven [34].

3This follows from the method of Panzer outlined in [91] to express modular graph functions in terms of

elliptic multiple zeta values [92] and their complex conjugates. While Zerbini proved the weaker statement that

the coefficients in the Laurent polynomials are cyclotomic multiple zeta values [34], it is conjectured [34, 2] and

supported by a growing body of evidence [21,40] that the coefficients in the Laurent polynomials are single-valued

MZVs [93,94] such as ζ2w+1 with w ∈ N. Our results show that up to depth two only single-valued MZVs occur.
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In contrast to (2.9), the q-series of Ca,b,c also involves terms qmq̄n with both of m,n 6= 0,

see [15] for their explicit form at a+b+c ≤ 6 and [19] at general weight. We note that there

can also be terms of the form (qq̄)n that are independent of Re τ and behave as e−2ny. These

arise as non-perturbative terms already in the zero mode and are subsumed in the O(q, q̄)

symbol in (2.13). These (qq̄)n non-perturbative terms can actually be entirely reconstructed

from the purely perturbative Laurent polynomials, or rather a suitable deformation thereof,

using resurgence analysis, see [20, 56], we will however not discuss such construction in the

present work.

2.2 Iterated Eisenstein integrals

In this section, we briefly review the formalism of iterated integrals over holomorphic Eisenstein

series, leaving the analogous discussion of iterated integrals over holomorphic cusp forms to

Part II.

Modular graph functions can be represented via iterated integrals over holomorphic Eisen-

stein series and their complex conjugates whose coefficients are Q-linear combinations of MZVs

[2,3,15,91,19,25,27]. This follows from their differential equations with respect to the Cauchy–

Riemann operator

∇ = 2i(Im τ)2∂τ , ∇ = −2i(Im τ)2∂τ̄ , (2.14)

which maps modular graph functions to non-holomorphic modular forms dubbed modular graph

forms [3], possibly accompanied by holomorphic Eisenstein series

Gk(τ) =
∑

p∈Λ′

1

pk
= 2ζk +

2(2πi)k

(k−1)!
∑

n>0

σk−1(n)q
n , k ≥ 4 , (2.15)

see (2.12) for the divisor sum σk−1(n).

The Cauchy–Riemann equations of modular graph functions with known asymptotics at the

cusp can be solved via iterated Eisenstein integrals. This exposes the entirety of their algebraic

relations. There are different ways of defining iterated Eisenstein series integrals [33,95,15]. In

the present work, we require only a subset of the general case and therefore restrict to presenting

the relevant definitions.

2.2.1 Depth-one iterated Eisenstein integrals

The integral for k > 0

E0(k, 0p; τ) =
(2πi)p+1−k

p!

∫ i∞

τ
dτ1(τ−τ1)pG0

k(τ1) (2.16)

is said to be an iterated integral of depth one and the notation 0p is a short-hand of p successive

zeros. Higher depth versions, where the iterated integral structure becomes more evident, can

be found in [95, 15]. The holomorphic Eisenstein series G0
k appearing in the integrand has its

zero mode removed compared to (2.15) and so is defined as

G0
k(τ) =

{
Gk(τ)− 2ζk : k > 0 , even

0 : k > 0 , odd
(2.17)
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and we additionally define G0
0 = −1.4 The integral in (2.16) converges for p ≥ 0 and from the

q-expansion of (2.15) one can deduce [95,56]

E0(k, 0p; τ) = −
2

(k−1)!
∞∑

m,n=1

mk−1

(mn)p+1
qmn = − 2

(k−1)!
∞∑

m=1

mk−p−2σ1−k(m)qm (2.18)

= − 2

(k−1)!
∞∑

m=1

m−p−1σk−1(m)qm .

This expression can also be considered for arbitrary p. The way we shall use (2.18) is mainly in

the other direction, namely such that we can translate a term involving divisor sums (2.12) into

iterated integrals.

The non-holomorphic Eisenstein series Ek from (2.9) can be recast in terms of (2.16) by

using the expansion of the Bessel function (2.11) as [96,2]

Ek(τ) = (−1)k−1 B2k

(2k)!
(4y)k +

4(2k−3)!ζ2k−1

(k−2)!(k−1)! (4y)
1−k

− 2
Γ(2k)

Γ(k)

k−1∑

a=0

(4y)−a Γ(k+a)

a!Γ(k−a) Re E0
(
2k, 0k−1+a; τ

)

= (−1)k−1 B2k

(2k)!
(4y)k +

4(2k−3)!ζ2k−1

(k−2)!(k−1)! (4y)
1−k (2.19)

+

[
− 1

2πi

Γ(2k)

[Γ(k)]2
(4y)1−k

∫ i∞

τ
dτ1(τ − τ1)

k−1(τ̄ − τ1)
k−1G0

2k(τ1) + c.c.

]
.

From this formula or the lattice-sum representation (2.4) one can check that [3]

(π∇)kEk(τ) =
Γ(2k)

Γ(k)
(Im τ)2k

[
2ζ2k +G0

2k(τ)
]
=

Γ(2k)

Γ(k)
(Im τ)2kG2k(τ) , (2.20)

where the Cauchy–Riemann derivative ∇ was introduced in (2.14) and we record the following

useful identity

(π∇)s
[
iy1−s

∫ i∞

τ
dτ1(τ − τ1)

s−1(τ̄ − τ1)
s−1f(τ1)

]
= 2πΓ(s)4s−1(Im τ)2sf(τ) . (2.21)

The integral converges for any function f exponentially decaying for τ → i∞ (without any

assumption on the modular properties), and (2.21) will also be applied to more general f based

on tangential-base-point regularisation of endpoint divergences [33].

4The conditionally convergent and non-modular form G2(τ ) does not play any role in our analysis.
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2.2.2 More general iterated Eisenstein integrals

Another key role will be played by certain iterated integrals denoted by βsv defined in [27]5

βsv
[
j
k
; τ
]
=

(2πi)−1

(4y)k−2−j

{ i∞∫

τ

dτ1(τ−τ1)k−2−j(τ̄−τ1)jGk(τ1)−
−i∞∫

τ̄

dτ̄1(τ−τ̄1)k−2−j(τ̄−τ̄1)jGk(τ1)

}

(2.22)

as well as their depth-two generalisations

βsv
[
j1 j2
k1 k2

; τ
]
=

k1−2−j1∑

p1=0

k2−2−j2∑

p2=0

(k1−2−j1
p1

)(k2−2−j2
p2

)

(4y)p1+p2
α
[
j1+p1 j2+p2
k1 k2

; τ
]
+

(2πi)−2

(4y)k1+k2−j1−j2−4
(2.23)

×
{ i∞∫

τ

dτ2(τ−τ2)k2−j2−2(τ̄−τ2)j2Gk2(τ2)

i∞∫

τ2

dτ1(τ−τ1)k1−j1−2(τ̄−τ1)j1Gk1(τ1)

−
i∞∫

τ

dτ2(τ−τ2)k2−j2−2(τ̄−τ2)j2Gk2(τ2)

−i∞∫

τ̄

dτ̄1(τ−τ̄1)k1−j1−2(τ̄−τ̄1)j1Gk1(τ1)

+

−i∞∫

τ̄

dτ̄1(τ−τ̄1)k1−j1−2(τ̄−τ̄1)j1Gk1(τ1)

−i∞∫

τ̄1

dτ̄2(τ−τ̄2)k2−j2−2(τ̄−τ̄2)j2Gk2(τ2)

}
.

The objects α
[
j1 j2
k1 k2

]
appearing for depth two are purely antiholomorphic functions which are

determined on a case-by-case basis in [27,97] and preserve the differential equations6

2πi(τ−τ̄ )2∂τβsv
[
j
k
; τ
]
= (k−2−j)βsv

[
j+1
k

; τ
]
− δj,k−2(τ−τ̄)kGk(τ) , (2.24a)

2πi(τ−τ̄)2∂τβsv
[
j1 j2
k1 k2

; τ
]
= (k1−j1−2)βsv

[
j1+1 j2
k1 k2

; τ
]
+ (k2−j2−2)βsv

[
j1 j2+2
k1 k2

; τ
]

− δj2,k2−2(τ−τ̄)k2Gk2(τ)β
sv
[
j1
k1
; τ
]

(2.24b)

manifested by the integral definitions above. The antiholomorphic integration constants α[ j1 j2
k1 k2

]

are invariant under τ → τ+1 and believed to be expressible via ζ2w+1 multiplying antiholomor-

phic iterated Eisenstein integrals (2.16) at depth ≤ 1 [27]. The absence of similar integration

constants at depth one follows from an analysis of the limiting behaviour τ → i∞. The simplest

explicit examples include [27]

α[ 1 0
4 4 ] = 0 , α[ 2 0

6 4 ] = −
ζ3
630
E0(4) ,

α[ 2 0
4 4 ] =

2ζ3
3
E0(4) , α[ 1 2

6 4 ] = −
ζ3
210
E0(4, 0) −

2ζ3
3
E0(6, 0) , (2.25)

α[ 2 1
4 4 ] =

2ζ3
3
E0(4, 0) , α[ 4 0

6 4 ] = −
2ζ3
105
E0(4, 02) +

2ζ5
5
E0(4) ,

5The superscript ‘sv’ indicates that these real-analytic functions are conjecturally the single-valued versions

of holomorphic iterated integral β defined in [97]. We shall often suppress the argument τ in order not to clutter

the notation.
6The higher-depth version of these equations can be found in [27].
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and we will discuss them in more detail in sections 4.6 and 5.6. In fact, the methods of this work

lead to new ways of determining the α[ j1 j2
k1 k2

] and we will provide a large number of examples in

an ancillary file. The shuffle property

βsv
[
j1
k1

]
βsv
[
j2
k2

]
= βsv

[
j1 j2
k1 k2

]
+ βsv

[
j2 j1
k2 k1

]
(2.26)

places constraints on combinations of the integration constants in the form

α
[
j1 j2
k1 k2

]
= −α

[
j2 j1
k2 k1

]
(2.27)

since there are no integration constants at depth one.

Note that we can use the integral representation (2.16) to rewrite (2.22) in the suggestive

form

βsv
[
j
k

]
=

Bkj!(k−2−j)!(−4y)j+1

k! (k−1)! +

j∑

a=0

(k−j−2+a)!

(
j

a

)
(4y)2+2j−k−aE0(k, 0k−j−2+a)

+

k−j−2∑

b=0

(j+b)!

(
k−2−j

b

)
(4y)−bE0(k, 0j+b) , (2.28)

where a tangential base-point regularisation has been used to compute the yj+1 term of depth

zero, see [33, 15, 27]. A similar representation, although involving also depth-two iterated inte-

grals, can be derived for (2.23) as well, modulo the presence of these antiholomorphic objects ᾱ.

The explicit form of their exponentially suppressed terms will be given in section 7.1, i.e. modes

of the form qmq̄n with both of m,n > 0 due to crossterms E0E0.
As a major result of this work, we shall extend the iterated-Eisenstein-integral representa-

tions [27, Eq. (4.9)]

(π∇)mEk =
(
−1

4

)m (2k−1)!
(k−1)!(k−1−m)!

{
−βsv

[
k−1+m

2k

]
+

2ζ2k−1

(2k−1)(4y)k−1−m

}
,

(π∇)mEk

y2m
=

(−4)m(2k−1)!
(k−1)!(k−1−m)!

{
−βsv

[
k−1−m

2k

]
+

2ζ2k−1

(2k−1)(4y)k−1+m

}
, (2.29)

valid for 0≤m<k, to general depth-two MGFs and modular invariant functions. For instance,

the two-loop modular graph functions Ca,b,c in (2.5) will be related to βsv
[
j1 j2
k1 k2

]
subject to the

modular-invariance condition j1+j2 =
1
2(k1+k2−4).

From the definitions (2.22) and (2.23) one can check the following reality and modularity

properties of the βsv at leading order in depth [27]:

βsv
[
j
k
; τ
]
= (4y)2+2j−kβsv

[
k−2−j

k
; τ
]
,

βsv
[
j
k
;− 1

τ

]
= τ̄k−2−2jβsv

[
j
k
; τ
]
mod lower depth (2.30)

and

βsv
[
j1 j2
k1 k2

; τ
]
= (4y)4+2j1+2j2−k1−k2βsv

[
k2−2−j2 k1−2−j1

k2 k1
; τ
]
mod lower depth ,

βsv
[
j1 j2
k1 k2

;− 1
τ

]
= τ̄k1+k2−4−2j1−2j2βsv

[
j1 j2
k1 k2

; τ
]
mod lower depth , (2.31)
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where we recall y = π Im τ .

The lower-depth terms in the complex-conjugation properties of βsv
[
j1 j2
k1 k2

]
can be entirely

attributed to the α[ j1 j2
k1 k2

] in (2.23)

βsv
[
j1 j2
k1 k2

]
= (4y)4+2j1+2j2−k1−k2βsv

[
k2−2−j2 k1−2−j1

k2 k1

]

+

k1−2−j1∑

p1=0

k2−2−j2∑

p2=0

(4y)−p1−p2

(
k1−2−j1

p1

)(
k2−2−j2

p2

)
α
[
j1+p1 j2+p2
k1 k2

]
(2.32)

−
j1∑

p1=0

j2∑

p2=0

(4y)4+2j1+2j2−k1−k2−p1−p2

(
j1
p1

)(
j2
p2

)
α
[
k2−2−j2+p2 k1−2−j1+p1

k2 k1

]
.

Even though this is not manifest from the above equation, the α and ᾱ on the right-hand

side always conspire to produce βsv of depth one, plus possibly depth zero terms. This follows

from the fact that all iterated integrals in the generating series for MGFs [27] can be expressed

exclusively through βsv, and this property is preserved by complex conjugation.

The examples of α
[
j1 j2
4 4

]
in (2.25) for instance lead to

βsv[ 1 0
4 4 ; τ ] =

βsv[ 2 1
4 4 ; τ ]

16y2
− ζ3

24y2
βsv[ 14 ; τ ] +

ζ3
96y3

βsv[ 24 ; τ ]−
ζ3

2160
, (2.33)

and a complete list of βsv
[
j1 j2
k1 k2

]
with k1+k2 ≤ 28 can be found in the ancillary file.

As in this work we are interested in modular invariant functions, most of the βsv of depth two

appearing in the remainder of the paper satisfy j1+j2 = 1
2(k1+k2−4). For these values of the

parameters we shall define the following depth-two combinations that shall feature prominently

in the subsequent analysis

βsv±, j
m,k = βsv

[
2m−2−j k−m+j

2m 2k

]
± βsv

[
k+m−2−j j

2k 2m

]
(2.34)

with 0 ≤ j ≤ 2m−2. These combinations are modular invariant modulo terms of lower depth

by (2.31). The βsv± have eigenvalue ±1 under complex conjugation modulo lower depth and we

shall refer to them as even and odd combinations, respectively. In (2.34), we have introduced

the integers m = k1
2 and k = k2

2 and we shall assume, without loss of generality, that m ≤ k

throughout sections 3 to 5. Note that the odd combinations can vanish for some values of

parameters, e.g.

βsv−,j
k,k = 0 , 0 ≤ j ≤ 2k−2 . (2.35)

Most βsv appear in the generating series of all MGFs [27] and therefore possess representations

as (nested) lattice sums over discrete loop momenta of α′-expanded genus-one string amplitudes.

The reality properties of the MGFs can be used to determine most of the integration constants

α[ j1 j2
k1 k2

]; however, there are some cases, controlled by Tsunogai’s derivation algebra [57, 58],

where this is not possible with the methods of [27]. One of our new results here and in Part II

is a determination of all integration constants at depth two even beyond the constraints of the
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derivation algebra since the class of functions we are reaching via Poincaré series is larger than

that of MGFs.

The βsv defined here are expected to be equivalent to the single-valued iterated Eisenstein

integrals defined for arbitrary depth by Brown in [33, 35, 36]. The tentative analogues of the

integration constants α[ ······ ] in Brown’s setup are determined by the modular properties of holo-

morphic iterated Eisenstein integrals.

2.3 Poincaré series

The modular invariant functions appearing in this paper can be expressed as Poincaré series, i.e.

as a sum over images of a so-called seed function under the action of SL(2,Z) [54,55]. Denoting

a modular invariant function by Φ(τ) and its seed by ϕ(τ), the Poincaré series is

Φ(τ) =
∑

γ∈B(Z)\SL(2,Z)

ϕ(γ · τ) , (2.36)

where

γ =

(
a b

c d

)
∈ SL(2,Z) , γ · τ =

aτ + b

cτ + d
, (2.37)

and we assumed that the seed function is periodic in the real direction, ϕ(τ+n) = ϕ(τ) for all

n ∈ Z, which explains the (Borel) stabiliser

B(Z) =

{(
±1 n

0 ±1

)∣∣∣∣∣n ∈ Z

}
⊂ SL(2,Z) (2.38)

in (2.36). The Poincaré sum (2.36) is only absolutely convergent for appropriate seeds but can

often be defined in other cases by analytic continuation when ϕ depends on a complex parameter.

The simplest instance of a Poincaré series is

Ek(τ) =
2ζ2k
πk

∑

γ∈B(Z)\SL(2,Z)

(Im γ · τ)k (2.39)

that converges absolutely for Re(k) > 1. The seed here is given by ϕ(τ) = 2ζ2k
πk (Im τ)k = 2ζ2k

π2k y
k

and for integer k the prefactor of yk becomes the rational number (−1)k−1 4kB2k
(2k)! . For Re(k) < 1,

the non-holomorphic Eisenstein series can be defined by analytic continuation and one has the

functional relation

Γ(k)Ek(τ) = Γ(1−k)E1−k(τ) , (2.40)

and in our convention E0(τ) = −1 whereas E1(τ) is infinite.

As an MGF, the Eisenstein series Ek is of depth one while its seed in (2.39) is a pure power

of y = π Im τ which is of depth zero. This exemplifies that the transition to the Poincaré seed

reduces the functional complexity, and this viewpoint was exploited in [1, 16, 20, 28] to obtain
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Poincaré-series representations of depth-two MGFs. As an example we recall the Poincaré-series

representation of the two-loop modular graph function C2,1,1 in (2.5) from [1]

C2,1,1(τ) =
∑

γ∈B(Z)\SL(2,Z)

[
2y4

14175
+

yζ3
90

+
y

90

∞∑

m=1

σ−3(m)(qm + q̄m)

]

γ

=
∑

γ∈B(Z)\SL(2,Z)

[
2y4

14175
+

yζ3
90
− y

15
Re E0(4, 02; τ)

]

γ

, (2.41)

and that of C3,1,1 from [16]

C3,1,1(τ) =
∑

γ∈B(Z)\SL(2,Z)

[
2y5

155 925
+

2ζ3
945

y2 − ζ5
60

(
y

π

)ǫ

+
2y2

945

∞∑

m=1

σ−3(m)(qm + q̄m)

]

γ

=
∑

γ∈B(Z)\SL(2,Z)

[
2y5

155 925
+

2ζ3
945

y2 − ζ5
60

(
y

π

)ǫ

− 2y2

315
Re E0(4, 02; τ)

]

γ

, (2.42)

where the notation [· · · ]γ means that γ acts on all occurrences of τ inside the bracket using the

fractional linear action (2.37). In the second lines, we have rewritten the q-series in terms of the

real part of an iterated Eisenstein integral (2.16) with q-expansion (2.18).

We note that, as discussed in [16, 20], both of the cases (2.41) and (2.42) require some

care: The C2,1,1 seed function contains a linear term in y that would lead to a divergence upon

Poincaré summation, see (2.40). By contrast, the C3,1,1 example has, as written, a term yǫ

whose Poincaré sum goes to a constant after Poincaré summation and use of (2.40). Both of

these cases have to be dealt with using analytic continuation. For the case of C3,1,1 we have

shown this explicitly here using the yǫ with ǫ→ 0 after the Poincaré sum. In the case of C2,1,1

this is slightly more subtle but can be done to arrive at finite Fourier expansions [20]. This is

reviewed in more detail in appendix A.

2.3.1 Laurent polynomials from Poincaré series

While the Poincaré-series representation (2.36) in terms of the seed reduces the depth of the

modular invariant function by one unit, it makes extracting some properties of the modular

invariant function Φ more cumbersome. For instance, extracting the Laurent polynomial of the

zeroth Fourier mode of Φ involves now additional steps. For Eisenstein series going from (2.39)

to (2.9) is standard [54, 55], but for general Poincaré series the analysis is more involved and

relies on certain Kloosterman sums. These were studied in [16, 20], where it was shown how

to determine the Laurent polynomial (LP) of the Poincaré sum of seeds that are of the form

σa(ℓ)(4πℓ)
b(Im τ)r(qℓ + q̄ℓ), where ℓ > 0, such as the terms above, where we recall y = π Im τ .

This is reviewed in appendix A, where a quantity I(a, b, r) = I(−a, a + b, r) for the Laurent

polynomial of such seeds is given in (A.8b) that converges for Re(r) > 1 and can be analytically

continued to (almost) all a, b, r ∈ C.
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We here note for future reference that

seed: yα Re E0(k, 0p) = − 2

(k − 1)!
yα

∞∑

m=1

m−p−1σk−1(m)(qm + q̄m)

→
LP

−22p+3πp+α+1

(k − 1)!
I(k − 1,−p − 1, α) . (2.43)

The contribution of a pure power yα to the Laurent polynomial is simple since this is the case

of Eisenstein series with Reα > 1, which according to (2.9) lead to

seed: yα →
LP

yα +
π2α−1/2Γ(α− 1/2)ζ2α−1

Γ(α)ζ2α
y1−α

= yα +
(−1)α−1(2α)!(2α − 3)!ζ2α−1

42α−2(α− 2)!(α − 1)!B2α
y1−α . (2.44)

For integer α ≥ 2, all explicit factors of π in the second term disappear, leaving a rational

number times ζ2α−1y
1−α as shown explicitly.

2.3.2 Examples of Poincaré series

We close this section by recording a few more Poincaré series that will be used in this paper.

The first one expresses the modular invariant (Im τ)kGkGk as a Poincaré sum according to

(Im τ)kGkGk = 2 ζk
∑

γ∈B(Z)\SL(2,Z)

[
(Im τ)kGk

]
γ
. (2.45)

We stress that the SL(2,Z) action here is just on τ , there is no extra factor of automorphy as

one sometimes uses in the ‘slash operator’ for Poincaré-series representations of Gk alone [55].

The sum converges absolutely for k > 2. Similarly, we will use the generalisations of (2.45) to

∑

γ∈B(Z)\SL(2,Z)

[
yk+mG2m(τ)

]
γ
= − (2k)!(k−1)!

(−4)kB2k(k+m−1)!G2m(π∇)mEk (2.46a)

= (−4)m−k (2k)!(2k−1)!y2mG2m

B2k(k+m−1)!(k−m−1)!

{
βsv
[
k−m−1

2k

]
− 2ζ2k−1

(2k−1)(4y)k+m−1

}
,

∑

γ∈B(Z)\SL(2,Z)

[
yk+mG2m(τ)

]
γ
= − (2k)!(k−1)!

(−4)kB2k(k+m−1)!G2m(π∇)mEk (2.46b)

= (−4)−k−m (2k)!(2k−1)!G2m

B2k(k+m−1)!(k−m−1)!

{
βsv
[
k+m−1

2k

]
− 2ζ2k−1

(2k−1)(4y)k−m−1

}
,

where y = π Im τ . The Poincaré sums in the respective first steps converge absolutely for

k+m > 1 and the rewritings in the respective second lines are obtained using (2.29) and require

0 ≤ m < k.

Another Poincaré sum that we shall use was given in [98, Eq. (3.10)]:

∑

γ∈B(Z)\SL(2,Z)

[√
|n| Im τKs−1/2(2π|n| Im τ)e2πinRe τ

]
γ
=

π2s+1/2σ2s−1(|n|)Es(τ)

4|n|s−1 cos(πs)Γ(s+1/2)ζ2s−1ζ2s
.

(2.47)
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This Poincaré sum is over any given non-zero Fourier mode of Es and is therefore expected to

be proportional to Es again. The sum itself is divergent but the result on the right-hand side

was argued for in [98] by analytic continuation.

3 Laplace equations for even seed functions, MGFs and beyond

In this section, we introduce a method to determine the Laplace equations of modular invari-

ant functions of depth two, expressed through the βsv±, j
m,k defined in (2.34) along with iterated

integrals of depth ≤ 1. In particular, we will focus on the even case in this section and infer the

associated seed functions of the schematic form yaRe E0(2m, 0b) with a ≥ 1 and 0 ≤ b ≤ 2m−2.
In the later section 5, similar methods will be applied to infer seed functions ya Im E0(2m, 0b)

for odd modular invariant functions and in section 6 we consider non-convergent seeds for other

ranges of a and b.

3.1 Laplacian of modular graph functions and iterated Eisenstein integrals

A prominent feature of MGFs is that they satisfy (possibly inhomogeneous) eigenvalue equations

with respect to the SL(2,Z)-invariant Laplace operator [1, 9, 13,24]

∆ = 4(Im τ)2
∂2

∂τ∂τ̄
= π∇

[
1

y2
π∇
]
, (3.1)

where we recall y = π Im τ . At depth one, these are the homogeneous eigenvalue equations of

the non-holomorphic Eisenstein series (2.4),

(
∆− s(s−1)

)
Es(τ) = 0 , (3.2)

while the Laplace action on the two-loop modular graph functions Ca,b,c in (2.5) is known from [1]

to be given by

(
∆− a(a−1)− b(b−1)− c(c−1)

)
Ca,b,c (3.3)

= ab
(
Ca−1,b+1,c + Ca+1,b−1,c + Ca+1,b+1,c−2 − 2Ca,b+1,c−1 − 2Ca+1,b,c−1

)
+ cyc(a, b, c) ,

with [1]

Ca,b,0 = EaEb − Ea+b , Ca,b,−1 = Ea−1Eb + EaEb−1 (3.4)

and +cyc(a, b, c) instructs us to add the remaining two cyclic permutations of (a, b, c).

A major goal of this work is to relate the Laplace equations of Ca,b,c to their representations

in terms of Poincaré series and iterated Eisenstein integrals. Poincaré-series representations

for the Ca,b,c were found in [19] but we shall cover the more general space of depth-two (as

opposed to two-loop) functions βsv±, j
m,k and furthermore seek alternative representatives of the

seed functions without the powers of qq̄ in those of the reference.
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Our results on the depth-one seed functions for Ca,b,c are based on the central claim:

Any Ca,b,c(τ) is expressible in terms of the objects βsv+, j
m,k in (2.34) subject to (3.5)

m+k = a+b+c and modulo combinations of ζ2w+1, powers of y and βsv of depth ≤ 1

which follows from the following considerations:

• Any Ca,b,c(τ) is contained in the generating series Y τ
~η of MGFs [27] whose α′-expansion

comprises βsv combined with powers of y−1 and a constant series capturing the τ → i∞
degenerations of MGFs. For instance, all the Ca,b,c(τ) are contained in the five-point

instance of Y τ
~η at the order of s0ij , when isolating the component integrals over Kronecker–

Eisenstein coefficients f
(a)
12 f

(b)
24 f

(c)
25 f

(a)
13 f

(b)
34 f

(c)
35 (with f

(a)
ij = f (a)(zi−zj , τ) and f (a)(z, τ) =

(−1)a−1
∑

p∈Λ′ p−a), where we refer to [27] for the notation.

• The βsv
[
j1 j2 ... jℓ
k1 k2 ... kℓ

]
of depth ℓ ≤ 2 are sufficient to represent the Ca,b,c: Both of βsv

[
j1 j2
k1 k2

]

and Ca,b,c reduce to products of holomorphic Eisenstein series and depth-one objects un-

der repeated Cauchy–Riemann derivatives (2.14). This can be seen from the differential

equation (2.24b) of the βsv
[
j1 j2
k1 k2

]
and the action of ∇ on lattice sums [3]. In particular,

repeated ∇-derivatives eventually reduce the lattice-sum representations (2.5) of Ca,b,c to

single lattice sums after applying holomorphic subgraph reduction.

• As can be anticipated from the dictionary (2.29) between Ek and βsv at depth one,

the leading-depth terms βsv
[
j1 j2
k1 k2

]
entering Ca,b,c are accompanied by a tail of terms

y−αβsv
[
j
k

]
and y−β accompanied by odd zeta values. This is necessary to attain exact

modular invariance beyond the leading-depth term in (2.31).

As a consequence of (3.5), the Laplace equations of Ek and Ca,b,c can be studied at the level

of the βsv. The complex-conjugation properties (2.31) together with the differential equations

(2.24b) of the βsv fix the leading-depth term in the Laplacian of βsv
[
j1 j2
k1 k2

]
. In particular, for

the entries j1+j2 = 1
2 (k1+k2−4) relevant to Ca,b,c, we find

∆βsv
[
j1 j2
k1 k2

] ∣∣∣
j1+j2=

1
2
(k1+k2−4)

=
(
(k1−j1−2)(j1+1) + (k2−j2−2)(j2+1)

)
βsv
[
j1 j2
k1 k2

]

+ j2(k1−j1−2)βsv
[
j1+1 j2−1
k1 k2

]
+ j1(k2−j2−2)βsv

[
j1−1 j2+1
k1 k2

]
(3.6)

− j1δj2,k2−2Gk2(τ−τ̄)k2βsv
[
j1−1
k1

]
− (k2−j2−2)δj1,0

Gk1

(2πi)k1
βsv
[
j2+1
k2

]

+ δj2,k2−2δj1,0
Gk1

(2πi)k1
Gk2(τ−τ̄)k2 mod lower depth ,
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where the third line vanishes for k1 = k2 and the last one vanishes for k1 6= k2. One can

reformulate (3.6) in terms of the combinations βsv±, j
m,k introduced in (2.34) for 0 ≤ j ≤ 2m−2 as

∆βsv±, j
m,k =

[
j
(
2m− j − 1

)
+
(
m+ k − 2− j

)(
k −m+ j + 1

)]
βsv±, j
m,k

+ j
(
k −m+ j

)
βsv±, j−1
m,k +

(
2m− 2− j

)(
m+ k − j − 2

)
βsv±, j+1
m,k

+ δj,2m−2

(
m− k

)[ G2m

(2πi)2m
βsv
[
k+m−1

2k

]
±G2m(τ−τ̄)2mβsv

[
k−m−1

2k

] ]
(3.7)

+ (1± 1)δj,2m−2 δm,k
G2k

(2πi)2k
G2k(τ−τ̄)2k mod lower depth .

In the following we shall analyse Laplace systems associated with the βsv±, j
m,k in more detail and

find Poincaré-series solutions to them. We recall that we assume m ≤ k throughout without

loss of generality. While the even cases will be discussed in the rest of this section, the odd ones

are relegated to section 5.

3.2 Laplacian of even combinations of βsv

The action of the Laplacian on the depth-two βsv±, j
m,k in (3.7) is given by a tri-diagonal matrix of

size (2m−1)× (2m−1). For the even combinations βsv+, j
m,k , we shall focus on the top left corner

of size (m−1)× (m−1) corresponding to 0 ≤ j ≤ m−2. The reason being that for j = m−1, the
expression (2.34) is a pure shuffle according to (2.26) that reduces to a product of Eisenstein

series at leading depth according to (2.29):

βsv+,m−1
m,k = βsv

[
m−1 k−1
2m 2k

]
+ βsv

[
k−1 m−1
2k 2m

]
= βsv

[
m−1
2m

]
βsv
[
k−1
2k

]
(3.8)

=

[
(m−1)!(k−1)!

]2

(2m−1)!(2k−1)! EmEk mod lower depth .

Similarly, the even βsv+, j
m,k in the range m ≤ j ≤ 2m−2 are determined by those with 0 ≤ j ≤

m−2 by the following shuffle relations

βsv+, j
m,k + βsv+, 2m−2−j

m,k = βsv
[

j
2m

]
βsv
[
k+m−j−2

2k

]
+ βsv

[
j+k−m

2k

]
βsv
[
2m−j−2

2m

]
. (3.9)

For j in the range 0 ≤ j ≤ m−2 we notice moreover that the Kronecker deltas in (3.7) do not

contribute and the Laplace equation can be rewritten as

∆βsv+, j
m,k =

m−2∑

i=0

M+
ji β

sv+, i
m,k + δj,m−2

4
[
m!k!

]2

(2m)!(2k)!
EmEk mod lower depth , (3.10)

where the (m−1)× (m−1) matrix M+
ji is given by

M+
ji =





j
(
2m− j − 1

)
+
(
m+ k − 2− j

)(
k −m+ j + 1

)
for i = j ,

j
(
k −m+ j

)
for i = j − 1 ,

(
2m− 2− j

)(
m+ k − j − 2

)
for i = j + 1 ,

0 otherwise .

(3.11)
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3.2.1 Completing the βsv at depth two

From the structure of the Laplace system (3.7) we can easily see that the shuffle irreducible

βsv+, j
m,k with 0 ≤ j ≤ m−2 together with repeated Laplace action on the pure shuffle (3.8) at

j = m−1 determine the remaining βsv+, j
m,k with m ≤ j ≤ 2m−2. For example, the Laplace

equation (3.7) for the pure shuffle βsv+, j=m−1
m,k will determine the leading-depth part of βsv+, j=m

m,k

in terms of βsv+, m−2
m,k ,

(
∆−m(m−1)−k(k−1)

)
βsv+, m−1
m,k = (m−1)(k−1)

(
βsv+,m−2
m,k +βsv+, m

m,k

)
mod lower depth . (3.12)

This equation can be solved for βsv+,m
m,k and one obtains an explicit expression if one uses the

Laplacian of the shuffle that can be calculated as

∆
(
EmEk

)
= Ek ∆Em + Em∆Ek +

(π∇Em)(π∇Ek) + (π∇Em)(π∇Ek)

y2
. (3.13)

The same procedure will allow us to determine all the leading-depth terms for m ≤ j ≤ 2m−2
in terms of the previous βsv+, j

m,k and higher powers of the Laplacians of the shuffle. The terms in

the higher Laplacians can be expressed in terms of the auxiliary modular invariant objects

J
+[ℓ]
m,k = Re

[(
(π∇)ℓEm

)
(π∇)ℓEk

y2ℓ

]
for ℓ ≥ 0 . (3.14)

For instance, (3.13) in this language is

(
∆−m(m−1)− k(k−1)

)
J
+[0]
m,k = 2J

+[1]
m,k , (3.15)

where we made use of the well-known Laplacian ∆Ek = k(k−1)Ek. The Laplacians on the other

J
+[ℓ]
m,k can be worked out as a recurrence relation for ℓ ≥ 1:

(
∆−m(m−1)− k(k−1) + 2ℓ2

)
J
+[ℓ]
m,k = J

+[ℓ+1]
m,k + (m+ℓ−1)(m−ℓ)(k+ℓ−1)(k−ℓ)J+[ℓ−1]

m,k (3.16)

that complements (3.15). In order to derive the recurrence one uses

π∇
(
(π∇)pEk

y2p

)
= (k−p)(k+p−1)(π∇)

p−1Ek

y2p−2
(3.17)

and its complex conjugate. We note that the Laplace equation (3.16) does not close on a finite

set as it always generates J
+[ℓ]
m,k for increasing ℓ.

The modular functions J
+[ℓ]
m,k are directly related to βsv+, j

m,k with j ≥ m−1. From equation

(3.8) we see that

J
+[0]
m,k = Nm,kβ

sv+,m−1
m,k mod lower depth , (3.18)

where

Nm,k =
(2m−1)!(2k−1)!
[(m−1)!(k−1)!]2 . (3.19)
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Using then (3.12) together with (3.15) we obtain

J
+[1]
m,k =

Nm,k

2
(m−1)(k−1)

(
βsv+,m
m,k + βsv+,m−2

m,k

)
mod lower depth . (3.20)

We can then keep on exploiting the Laplace system (3.7) combined with (3.16) to find the

general expression for 0 ≤ ℓ ≤ m−1

J
+[ℓ]
m,k =

Nm,k

2

[ ℓ∏

j=1

(m−j)(k−j)
](

βsv+, m+ℓ−1
m,k + βsv+, m−ℓ−1

m,k

)
mod lower depth . (3.21)

Note that here we are assuming that ℓ < m since for ℓ ≥ m the expression (3.14) can no longer

be written in terms of βsv but involves holomorphic Eisenstein series by (2.20).

3.2.2 Spectrum of the Laplacian

In order to understand the space of modular-invariant even combinations βsv+, j
m,k it is then crucial

to characterise the space of solutions to the system (3.10). As a concrete example we can rewrite

(3.10) for the cases (m,k) = (2, 2), (m,k) = (3, 4) and (m,k) = (4, 4)

∆βsv+, 0
2,2 = 2βsv+, 0

2,2 +
1

9
E2
2 mod lower depth ,

∆

(
βsv+, 0
3,4

βsv+, 1
3,4

)
=

(
10 20

2 16

)(
βsv+, 0
3,4

βsv+, 1
3,4

)
+

1

350

(
0

E3E4

)
mod lower depth , (3.22)

∆



βsv+, 0
4,4

βsv+, 1
4,4

βsv+, 2
4,4


 =



6 36 0

1 16 25

0 4 22






βsv+, 0
4,4

βsv+, 1
4,4

βsv+, 2
4,4


+

1

1225




0

0

E2
4


 mod lower depth .

The matrices above can be diagonalised and have eigenvalues {6, 20} in case of (m,k) = (3, 4)

and {2, 12, 30} in case of (m,k) = (4, 4).

More generally, we find that the tridiagonal matrix M+
ji in (3.11) has eigenvalues given by

the spectrum (recall m ≤ k)

s(s−1) with s ∈ {k−m+2, k−m+4, . . . , k+m−4, k+m−2} (3.23)

and each eigenvalue has multiplicity one. We only have even values for s when the integers m

and k have same parity and odd values otherwise when m and k have opposite parity, and none

of the eigenvalues vanishes since s ≥ 2. This spectrum was found on the basis of a large number

of examples including all m,k with m+k ≤ 28 and is in general conjectural7. We shall next

describe the eigenvalue problem more concretely which also yields the proof of the spectrum for

some infinite families of m and k.

The diagonalisation of M+ proceeds by writing the linear combination

β̃+
(s) =

m−2∑

i=0

vi(s)β
sv+, i
m,k , (3.24)

7A promising strategy for a proof could be to clarify the relation between the βsv and the single-valued iterated

Eisenstein integrals of Brown [33,35,36] and to then exploit their properties in the references.
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expressed in terms of the eigenvector v(s) =
(
v0(s), . . . , v

m−2
(s)

)T
of (M+)T with eigenvalues s(s−1),

where (M+)T denotes the transpose of M+ given in (3.11). With (3.24) the Laplace equation

(3.10) reduces to (
∆− s(s−1)

)
β̃+
(s) = α(s) EmEk mod lower depth (3.25)

for some rational coefficients α(s).

Since M+ is tridiagonal, the eigenvalue equation (M+)Tv(s) = s(s−1)v(s) translates into a

three-term recurrence given by

M+
i−1,i v

i−1
(s) +

(
M+

ii − s(s−1)
)
vi(s) +M+

i+1,i v
i+1
(s) = 0 , (3.26)

with the boundary conditions v−1
(s) = vm−1

(s) = 0. In order to have a non-zero solution for v(s) we

see in particular that both v0(s) and vm−2
(s) must be non-zero so in particular the constants α(s)

in equation (3.25) in front of the source term will never vanish.

For generic m ≤ k and s in (3.23) we do not have a closed-form solution. However, for m ≤ k

and s = k−m+2, corresponding to the lowest possible eigenvalue in (3.23), one can prove that

vi(s) =
(−1)i(2m−2i−2)Γ(2m−2)

i! Γ(2m−i−1) , (3.27)

where we normalised v0(s) = 1.

For other configurations of m, k and s one can find closed expressions in a few instances and

we have used them to perform large scans over matrices M+
ji given in (3.10) to test that the

claimed spectrum (3.23) seems indeed correct.

As we argued above, our general considerations show that the coefficient α(s) in (3.25) is

always non-zero. For this reason we shall in the following study the equation

(
∆− s(s−1)

)
F
+(s)
m,k = EmEk , s ∈ {k−m+2, k−m+4, . . . , k+m−4, k+m−2} , (3.28)

with integers 2 ≤ m ≤ k, ignoring lower-depth terms in the underlying Laplace equation (3.7)

of the βsv which will be re-instated in section 4 below. Given the modular invariance of the

Laplacian and the non-holomorphic Eisenstein series, the ultimate goal of this work is to con-

struct modular invariant solutions to (3.28) as well as to its odd counterpart (5.13). The F
+(s)
m,k

in (3.28) exhaust and transcend the real MGFs at depth two and zero modular weights, and the

discussion of their iterated-integral and Poincaré-series representations in the next sections is a

key result of this work.

Assigning transcendental weights m and k to Em and Ek, respectively, we deduce that

F
+(s)
m,k should have transcendental weight m+k, a fact that will be supported by its Laurent

polynomial (4.11) below. Equation (3.28) allows for the modular-invariant homogeneous solution

Es whose coefficient must be a rational multiple of ζm+k−s by uniform transcendentality and

being at depth two. However, the allowed spectrum for s in (3.28) shows that m+k−s > 0

is always an even integer. As there are no single-valued zeta values with this property, the

homogeneous solution Es is therefore disallowed by our assumptions: uniform transcendentality

and maximum depth two.
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We note that the spectrum in (3.28) excludes the cases s = 0 and s = 1 for which the Laplace

eigenvalue would vanish. The cases of vanishing Laplace eigenvalue are the ones where constants

can appear as homogeneous solutions. In the case of MGFs such homogeneous solutions do arise,

see for instance (2.7), where these constants are odd zeta values and can be determined from

the lattice-sum representations [37].

In the even sector, equation (3.28) is the most general one to consider when restricting to

sources built out of J
+[ℓ]
m,k , since a source with ℓ > 0 can always be reduced to J

+[0]
m,k = EmEk using

the recursion in (3.15) and (3.16) at the price of redefining the function F
+(s)
m,k .

3.2.3 Examples at m = k

For the Laplace equations (3.28) with m = k, the simplest solutions F
+(s)
k,k with k = 2, 3 have

already been studied from the perspective of both modular graph functions [1] and iterated

Eisenstein integrals [15]. The eigenvectors of the relevant (k−1)× (k−1) matrices M+
ji (3.11) in

the normalisation of (3.28) are given by

F
+(2)
2,2 = 18βsv[ 2 0

4 4 ] mod lower depth ,

F
+(2)
3,3 = 100(2βsv[ 3 1

6 6 ]− βsv[ 4 0
6 6 ]) mod lower depth , (3.29)

F
+(4)
3,3 = 25(8βsv[ 3 1

6 6 ] + βsv[ 4 0
6 6 ]) mod lower depth .

The combinations of βsv on the right-hand sides appeared in [27] as the leading-depth terms

of the modular graph functions E2,2,E3,3,E
′
3,3 introduced in [15]. On these grounds, a modular

invariant completion of (3.29) by lower-depth terms is furnished by

F
+(2)
2,2 = −E2,2 = −C2,1,1 +

9

10
E4 ,

F
+(2)
3,3 =

2

9
E3,3 −

5

3
E′
3,3 = −

1

4
C2,2,2 − C3,2,1 +

13

28
E6 , (3.30)

F
+(4)
3,3 =

1

2
E3,3 −

5

3
E′
3,3 =

1

36
C2,2,2 −

1

6
C3,2,1 +

1

6
E6 ,

and one can confirm from the Laplace equations (3.3) of the Ca,b,c [1] that these examples indeed

satisfy (∆− s(s−1))F+(s)
k,k = E2

k.

3.2.4 Examples at m < k

For the simplest examples of the Laplace equations (3.28) with m < k, the appropriately nor-

malised eigenvectors of the relevant (m−1)× (m−1) matrices M+
ji (3.11) are

F
+(3)
2,3 = 30(βsv[ 2 1

4 6 ] + βsv[ 3 0
6 4 ]) mod lower depth , (3.31)

F
+(4)
2,4 = 105(βsv[ 2 2

4 8 ] + βsv[ 4 0
8 4 ]) mod lower depth .
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The βsv can again be identified as leading-depth terms [27] of the modular graph functions E2,3

and E2,4 [15]. Hence, a modular invariant completion of (3.31) by lower-depth terms is given by

F
+(3)
2,3 = −1

4
E2,3 −

ζ5
240

= −1

4
C3,1,1 +

43

140
E5 −

ζ5
240

, (3.32)

F
+(4)
2,4 = − 1

54
E2,4 = −

1

54
C2,2,2 −

1

18
C3,2,1 −

1

6
C4,1,1 +

13

54
E6 ,

where the subtraction of − ζ5
240 ensures that the zeta constant in (∆− 6)E2,3 =

ζ5
10 − 4E2E3 does

not appear in (∆− 6)F
+(3)
2,3 = E2E3.

3.3 Solution to even Laplace equations via Poincaré series

In the examples (3.29) and (3.31) of F
+(s)
m,k with m+k ≤ 6, the basis of modular graph functions

is known from [12], and the lower-depth terms could be inferred from [27,43]. As a main result

of this work, we shall now introduce an alternative method to determine the modular invariant

F
+(s)
m,k at arbitrarym,k without any recourse to earlier expressions for the MGFs at these weights.

Our method relies on Poincaré-series representations of F
+(s)
m,k to be derived in this section from

the methods of [16,20]. We make the ansatz

F
+(s)
m,k (τ) =

∑

γ∈B(Z)\SL(2,Z)

f
+(s)
m,k (γ · τ) (3.33)

in terms of an even (under τ → −τ̄) and periodic (under τ → τ+1) seed function f
+(s)
m,k and

also replace Ek on the right-hand side of (3.28) by its Poincaré series (2.39), usually dubbed as

folding Ek. We shall assume without loss of generality here that k ≥ m, and we replace Ek rather

than Em by its Poincaré series in order to obtain an f
+(s)
m,k whose Poincaré sum is absolutely

convergent for m < k and hence modular invariant by construction. For m = k, the resulting

Poincaré seed produces a divergent sum (due to the presence of a term linear in y in the seed,

similar to E1). However, as explained in [16,20], this case can be treated by considering k → k+ǫ

in the final expressions (e.g. for the Laurent polynomial), and taking the limit ǫ→ 0 at the end,

see also appendix A, thereby reaching the modular-invariant diagonal case F
+(s)
k,k . Alternative

seeds where the Eisenstein series Em with m < k is folded will be discussed in section 6.2.

3.3.1 Deriving the seed function

With the above Poincaré-series ansatz, we reduce (3.28) to

(
∆− s(s−1)

)
f
+(s)
m,k = (−1)k−1 B2k

(2k)!
(4y)kEm (3.34)

= (−1)k+m B2kB2m

(2k)!(2m)!
(4y)k+m − (−1)k 4B2k(2m−3)!ζ2m−1

(2k)!(m−2)!(m−1)! (4y)
k+1−m

− (−1)k 2B2k(4y)
k

(2k)!Γ(m)

∞∑

n=1

nm−1σ1−2m(n)(qn + q̄n)

m−1∑

a=0

(4ny)−a Γ(m+a)

a!Γ(m−a) ,
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where we have used the truncating Fourier expansion (2.9) for Em and emphasise that the

coefficients of ym+k, ζ2m−1y
1+k−m and yk−a(qn + q̄n) are rational. Since k ≥ m, all powers

of y that occur are positive. We shall solve this equation by Fourier decomposing the periodic

function

f
+(s)
m,k (τ) = c0(y) +

∞∑

n=1

cn(y)(q
n + q̄n) (3.35)

and assuming that cn(y) for n > 0 is a Laurent polynomial

cn(y) =
k−1∑

a=k−m+1

cn,ay
a (3.36)

of the same form as the right-hand side of the differential equation (3.34). Note that the power

yk is absent in the ansatz compared to the right-hand side of the differential equation. The

ansatz (3.35) makes a choice of boundary conditions and, by the relative coefficient of qn and

q̄n, has a built-in evenness under τ → −τ̄ . We furthermore take real coefficients cn,a, so that

f
+(s)
m,k is real under complex conjugation.

Substituting the ansatz for the seed into the differential equation (3.34) then leads to a

second-order differential equation for c0(y) and to recurrence relations for the coefficients cn,a.

We solve these equations by

c0(y) = (−1)k+m B2kB2m(4y)k+m

(2k)!(2m)!(µk+m − µs)
− (−1)k 4B2k(2m−3)!ζ2m−1(4y)

k+1−m

(2k)!(m−2)!(m−1)!(µk−m+1 − µs)
,

cn(y) = (−1)k 2B2k

(2k)!Γ(m)
σ1−2m(n)nm−k−1

k−1∑

ℓ=k−m+1

g+m,k,ℓ,s(4ny)
ℓ , (3.37)

with µs = s(s−1) and rational coefficients

g+m,k,ℓ,s =
Γ(ℓ)

Γ(ℓ+s)

k−1∑

i=ℓ

(ℓ+1−s)i−ℓΓ(s+i)Γ(m+k−i−1)
Γ(k−i)Γ(i+1)Γ(m−k+i+1)

, (3.38)

where (a)n = a(a+1) · · · (a+n−1) = Γ(a+n)
Γ(a) is the (ascending) Pochhammer symbol.

In the zero mode c0(y) we have only used the powers of the right-hand side of the differential

equation and set the homogeneous powers ys and y1−s to zero, which again is our choice of

boundary conditions. Given that s ≥ 2 by (3.28), the second homogeneous solution y1−s clearly

leads to a divergent Poincaré sum, but one that is formally related to Es by (2.40) and that

corresponds to the Poincaré sum of the first homogeneous solution ys (2.39). These corrrespond

to βsv at depth one and which we would like to disentangle from the F
+(s)
m,k at depth two. For

this reason we impose that they vanish in the seed.

Using the relation (2.18) between q-series over divisor sums and iterated integrals, we can

therefore write the Poincaré seed of F
+(s)
m,k as

f
+(s)
m,k (τ) = c0(y)− (−1)k 2B2kΓ(2m)

(2k)!Γ(m)

k−1∑

ℓ=k−m+1

g+m,k,ℓ,s(4y)
ℓ Re E0(2m, 0k+m−ℓ−1) (3.39)
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with c0(y) given by (3.37) and the constants g+m,k,ℓ,s in (3.38). Given that this result for k ≥ m

has been obtained from folding Ek instead of Em for the sake of a convergent Poincaré sum,

the seed function only involves iterated Eisenstein integrals over G2m. In section 6.2 we shall

consider divergent Poincaré sums whose seeds feature iterated integrals over G2k with k > m

instead. The evenness of f
+(s)
m,k under τ → −τ̄ here is reflected in the reality of the coefficients

and the occurrence of Re E0.
From the general expression (3.39) we notice that there are only two terms accompanied

by the power yk−m+1. One is coming from the unique odd zeta ζ2m−1 due to c0(y), as in the

first line of (3.37). The other is coming from the non-zero Fourier modes’ contribution with

ℓ = k−m+1 which brings the iterated integral Re E0(2m, 02m−2).

As we shall be explaining later on from a different perspective, the unique odd zeta value and

the maximal iterated integral are interlocked and always appear in a very specific combination.

Isolating the two terms with yk−m+1 in (3.39) we have

f
+(s)
m,k (τ)

∣∣∣
yk−m+1

=
(−1)k4k−m+2B2k(2m−3)!(2m−1)!
(2k)!(m−2)!(m−1)!(µk−m+1 − µs)

[
Re E0(2m, 02m−2)− ζ2m−1

(2m−1)!
]
. (3.40)

3.3.2 Examples at m = k

For the examples of F
+(s)
k,k in (3.29) and (3.30) with k ≤ 3, the general formula (3.39) for the

seed function yields

f
+(2)
2,2 =

y4

20250
− yζ3

90
+

y

15
Re[E0(4, 02)] ,

f
+(2)
3,3 =

y6

6251175
− yζ5

1260
+

2y2

63
Re[E0(6, 03)] +

2y

21
Re[E0(6, 04)] , (3.41)

f
+(4)
3,3 =

2y6

8037225
− yζ5

7560
+

2y2

63
Re[E0(6, 03)] +

y

63
Re[E0(6, 04)] ,

also see [1, 20] for f
+(2)
2,2 and [16, 20, 28] for f

+(2)
3,3 , f

+(4)
3,3 . The simplest Poincaré seeds for F

+(s)
k,k

beyond the state of the art read

f
+(2)
4,4 =

y8

1205583750
− yζ7

15120
+

4y3

135
Re[E0(8, 04)] +

4y2

27
Re[E0(8, 05)] +

y

3
Re[E0(8, 06)] ,

f
+(4)
4,4 =

y8

982327500
− yζ7

90720
+

4y3

135
Re[E0(8, 04)] +

y2

9
Re[E0(8, 05)] +

y

18
Re[E0(8, 06)] , (3.42)

f
+(6)
4,4 =

y8

580466250
− yζ7

226800
+

4y3

135
Re[E0(8, 04)] +

2y2

45
Re[E0(8, 05)] +

y

45
Re[E0(8, 06)] .

A seed related to f
+(2)
4,4 was given in [28].
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3.3.3 Examples at m < k

For the examples of F
+(s)
m,k in (3.31) and (3.32) with (m,k) = (2, 3) and (2, 4), the general formula

(3.39) for the seed function yields

f
+(3)
2,3 =

y5

297675
− y2ζ3

1890
+

y2

315
Re[E0(4, 02)] , (3.43)

f
+(4)
2,4 =

y6

3827250
− y3ζ3

28350
+

y3

4725
Re[E0(4, 02)] ,

see also [16,20]. We shall give the complete set of seed functions f
+(s)
m,k for the modular invariant

functions of weight m+k ≤ 8,

f
+(5)
2,5 =

y7

46309725
− y4ζ3

374220
+

y4

62370
Re[E0(4, 02)] , (3.44)

f
+(6)
2,6 =

691y8

373530031875
− 691y5ζ3

3192564375
+

1382y5

1064188125
Re[E0(4, 02)] ,

as well as

f
+(5)
3,4 =

y7

49116375
− y2ζ5

113400
+

2y3

945
Re[E0(6, 03)] +

y2

945
Re[E0(6, 04)] ,

f
+(3)
3,4 =

y7

80372250
− y2ζ5

25200
+

2y3

945
Re[E0(6, 03)] +

y2

210
Re[E0(6, 04)] , (3.45)

f
+(6)
3,5 =

2y8

1149323175
− y3ζ5

1496880
+

y4

6237
Re[E0(6, 03)] +

y3

12474
Re[E0(6, 04)] ,

f
+(4)
3,5 =

y8

972504225
− y3ζ5

374220
+

y4

6237
Re[E0(6, 03)] +

2y3

6237
Re[E0(6, 04)] .

Performing the Poincaré sum of these seeds produces F
+(s)
m,k which are modular invariant and

even under τ → −τ̄ by construction.

3.4 Seed functions for even shuffles

In (3.39) we saw that the seed functions of the F
+(s)
m,k can be expressed in terms of iterated

integrals yℓRe E0(2m, 0k+m−ℓ−1) with k−m+1 ≤ ℓ ≤ k−1 such that we only span the iterated

integrals Re E0(2m, 0p) with m ≤ p ≤ 2m−2. In order to exhaust the remaining cases with

0 ≤ p < m, we recall that the (m,k) sector of real modular invariants also contains the (sums

of) shuffles J
+[ℓ]
m,k in (3.14) built from Em,Ek and their derivatives. We shall now determine the

corresponding seed functions for 0 ≤ ℓ < m and see that they contain the missing iterated

integrals. This turns out to be simpler as the J
+[ℓ]
m,k are sums of shuffles unlike the F

+(s)
m,k .

As we shall see, the seed functions of the modular invariant functions F
+(s)
m,k , J

+[ℓ]
m,k at depth two

are both built from rational combinations of ym+k or yk−m+1ζ2m−1 and yk+m−1−pRe[E0(2m, 0p)]

with 0 ≤ p ≤ 2m−2. Hence, the transition from the modular invariant functions to their Poincaré

seeds once more reduces the depth of the contributing iterated Eisenstein integrals by one unit

just like in (2.39).
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3.4.1 Seed functions of J
+[ℓ]
m,k

We want to derive a seed function j
+[ℓ]
m,k in

J
+[ℓ]
m,k(τ) =

∑

γ∈B(Z)\SL(2,Z)

j
+[ℓ]
m,k (γ · τ) , (3.46)

for the objects J
+[ℓ]
m,k(τ) with ℓ ≥ 0 defined in equation (3.14). We recall that we are working

under the assumptions m ≤ k without loss of generality. Starting from ℓ = min(m,k) = m

we then generate holomorphic Eisenstein series G2m according to (2.20). Hence, the J
+[ℓ]
m,k with

ℓ ≥ m are going beyond the Q[y±1,MZV] combinations of βsv[ j1 j2 ... jℓ
k1 k2 ... kℓ

] with ji ≤ ki−2 that

form the backbone of MGFs and the modular invariant functions F
±(s)
m,k here studied.

Using the seed representation (2.39) for Ek, we can easily obtain

j
+[ℓ]
m,k = −(−4)k(k)ℓB2k

2(2k)!
yk−ℓ

(
(π∇)ℓ + (π∇)ℓ

)
Em . (3.47)

For the regime ℓ < m that we are considering, this seed is indeed convergent.

Then, using the explicit expression (2.9) for the non-holomorphic Eisenstein series, we have

to compute

(π∇)ℓ
(
ya(qn + q̄n)

)
= ya+ℓ

[
(a)ℓq̄

n + qn
ℓ∑

s=0

(−1)s
(
ℓ

s

)
(a+ s)ℓ−s(4ny)

s
]
,

(π∇)ℓ
(
ya(qn + q̄n)

)
= ya+ℓ

[
(a)ℓq

n + q̄n
ℓ∑

s=0

(−1)s
(
ℓ

s

)
(a+ s)ℓ−s(4ny)

s
]
, (3.48)

which one can prove by induction. We also note (π∇)ℓya = (π∇)ℓya = (a)ℓy
a+ℓ .

Putting everything together we obtain

j
+[ℓ]
m,k = (−1)k+m B2kB2m

(2k)!(2m)!
(m)ℓ(k)ℓ(4y)

k+m − 4(−1)k+ℓ B2k(2m−3)!ζ2m−1

(2k)!(m−2)!(m−1−ℓ)! (k)ℓ(4y)
k+1−m

− (−1)k+ℓ B2k(k)ℓ
(2k)!Γ(m)

(4y)k
∞∑

n=1

nm−1σ1−2m(n)(qn + q̄n)
m−1∑

a=0

(4ny)−a Γ(m+a)

a!Γ(m−a) (3.49)

×
[
(a+1−ℓ)ℓ +

ℓ∑

s=0

(
ℓ

s

)
(a+1−ℓ)ℓ−s(4ny)

s
]
.

The q-series over the divisor sums can again be written in terms of iterated Eisenstein integrals

over G2m of different lengths and multiplied by different powers of y by using (2.18):

j
+[ℓ]
m,k = (−1)k+m B2kB2m

(2k)!(2m)!
(m)ℓ(k)ℓ(4y)

k+m − 4(−1)k+ℓ B2k(2m−3)!ζ2m−1

(2k)!(m−2)!(m−1−ℓ)! (k)ℓ(4y)
k+1−m

+ (−1)k+ℓB2k(k)ℓΓ(2m)

(2k)!Γ(m)
(4y)k

m−1∑

a=0

Γ(m+a)

a!Γ(m−a)

[
(a+1−ℓ)ℓ (4y)−aRe[E0(2m, 0m+a−1)]

+

ℓ∑

s=0

(
ℓ

s

)
(a+1−ℓ)ℓ−s (4y)

s−aRe[E0(2m, 0m+a−s−1)]

]
. (3.50)
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When combined with (3.39), this shows that the expressions

yk+m−1−bRe E0(2m, 0b) for 0 ≤ b ≤ 2m−2 , (3.51)

together with yk+m and yk−m+1ζ2m−1 from the Fourier zero mode, provide a basis of the Poincaré

seeds for the modular invariants built from βsv+, j
m,k . Note that 0 ≤ j ≤ 2m−2 so that the counting

agrees. The Fourier zero-mode contributions yk+m and yk−m+1 appear only in such a way to

produce the correct Laplace equations and are lower depth than the iterated integrals.

As in (3.39), the odd zeta value in (3.50) always occurs with the same relative coefficient

Re[E0(2m, 02m−2)]− ζ2m−1

(2m−1)! . This can be easily seen from (3.50) where the only instances of the

maximally integrated Re[E0(2m, 02m−2)] occur for a = m−1 and s = 0, so isolating the unique

odd zeta value and the two maximal iterated integrals we have

j
+[ℓ]
m,k

∣∣∣
yk−m+1

=
(−1)k+ℓ4k+2−mB2k(2m−3)!(2m−1)!(k)ℓ

(2k)!(m−2)!(m−1−ℓ)!
[
Re[E0(2m, 02m−2)]− ζ2m−1

(2m−1)!
]
,

(3.52)

upon using the Legendre duplication formula. This very same combination, with a different

rational prefactor, was found in (3.40) when we discussed the seed functions for the F
+(s)
m,k . We

shall come back to this observation in section 3.5.

3.4.2 Examples at m = k

The simplest examples of the seed functions (3.50) related to bilinears in E2 and E3 are

j
+[0]
2,2 =

y4

2025
+

yζ3
45
− 4y2

15
Re[E0(4, 0)] −

2y

15
Re[E0(4, 02)] , (3.53)

j
+[1]
2,2 =

4y4

2025
− 2yζ3

45
+

16y3

15
Re[E0(4)] +

8y2

15
Re[E0(4, 0)] +

4y

15
Re[E0(4, 02)] ,

and

j
+[0]
3,3 =

4y6

893025
+

yζ5
630
− 16y3

63
Re[E0(6, 02)]−

8y2

21
Re[E0(6, 03)]−

4y

21
Re[E0(6, 04)] ,

j
+[1]
3,3 =

4y6

99225
− yζ5

105
+

32y4

21
Re[E0(6, 0)] +

16y3

7
Re[E0(6, 02)]

+
16y2

7
Re[E0(6, 03)] +

8y

7
Re[E0(6, 04)] , (3.54)

j
+[2]
3,3 =

64y6

99225
+

4yζ5
105

− 512y5

21
Re[E0(6)] −

512y4

21
Re[E0(6, 0)] −

128y3

7
Re[E0(6, 02)]

− 64y2

7
Re[E0(6, 03)]−

32y

7
Re[E0(6, 04)] ,

respectively. By combining these seeds with those for F
+(s)
k,k in (3.41), we can isolate the iterated

Eisenstein integrals in the linear combinations

y4

1350
+ y
(
Re[E0(4, 02)]−

ζ3
6

)
= 15f

+(2)
2,2 ,
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− y4

450
+ y2Re[E0(4, 0)] = −

15

4
(2f

+(2)
2,2 + j

+[0]
2,2 ) , (3.55)

y4

360
+ y3Re[E0(4)] =

15

16
(2j

+[0]
2,2 + j

+[1]
2,2 ) ,

and

− y6

893025
+ y
(
Re[E0(6, 04)]−

ζ5
5!

)
=

63

5
(f

+(2)
3,3 − f

+(4)
3,3 ) ,

y6

119070
+ y2 Re[E0(6, 03)] = −

63

10
(f

+(2)
3,3 − 6f

+(4)
3,3 ) ,

− y6

34020
+ y3 Re[E0(6, 02)] = −

63

16
(12f

+(4)
3,3 + j

+[0]
3,3 ) , (3.56)

y6

17010
+ y4Re[E0(6, 0)] =

21

32
(36f

+(4)
3,3 + 9j

+[0]
3,3 + j

+[1]
3,3 ) ,

− y6

15120
+ y5Re[E0(6)] = −

21

512
(72j

+[0]
3,3 + 16j

+[1]
3,3 + j

+[2]
3,3 ) .

Similar relations between Poincaré sums over Re[E0(8, 0p)] and F
+(s)
4,4 can be found in ap-

pendix C.1.

3.4.3 Examples at m < k

One can similarly combine the seeds for F
+(3)
2,3 , F

+(4)
2,4 in (3.43) with the following j

+[ℓ]
m,k from (3.50),

j
+[0]
2,3 =

2y5

42525
+

2y2ζ3
945

− 8y3

315
Re[E0(4, 0)] −

4y2

315
Re[E0(4, 02)] ,

j
+[1]
2,3 =

4y5

14175
− 2y2ζ3

315
+

16y4

105
Re[E0(4)] +

8y3

105
Re[E0(4, 0)] +

4y2

105
Re[E0(4, 02)] ,

j
+[0]
2,4 =

y6

212625
+

y3ζ3
4725

− 4y4

1575
Re[E0(4, 0)] −

2y3

1575
Re[E0(4, 02)] , (3.57)

j
+[1]
2,4 =

8y6

212625
− 4y3ζ3

4725
+

32y5

1575
Re[E0(4)] +

16y4

1575
Re[E0(4, 0)] +

8y3

1575
Re[E0(4, 02)] ,

and thereby isolate the iterated Eisenstein integrals in the linear combinations

y5

945
+ y2

(
Re[E0(4, 02)]−

ζ3
6

)
= 315f

+(3)
2,3 ,

− y5

420
+ y3 Re[E0(4, 0)] = −

315

8
(4f

+(3)
2,3 + j

+[0]
2,3 ) , (3.58)

y5

360
+ y4Re[E0(4)] =

105

16
(3j

+[0]
2,3 + j

+[1]
2,3 )

and

y6

810
+ y3

(
Re[E0(4, 02)]−

ζ3
6

)
= 4725f

+(4)
2,4 ,

− y6

405
+ y4 Re[E0(4, 0)] = −

1575

4
(6f

+(4)
2,4 + j

+[0]
2,4 ) , (3.59)

y6

360
+ y5 Re[E0(4)] =

1575

32
(4j

+[0]
2,4 + j

+[1]
2,4 ) .
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Similar relations between Poincaré sums over Re[E0(2k, 0p)] and F
+(s)
2,5 ,F

+(s)
2,6 ,F

+(s)
3,4 ,F

+(s)
3,5 can

be found in appendix C.2. Comparing (3.55) with (3.58) and (3.59) illustrates once more that

the seed functions f
+(s)
m,k and j

+[ℓ]
m,k with m ≤ k derived above only feature iterated Eisenstein

integrals over G2m rather than G2k. Still, k leaves a fingerprint in the structure of the seed

function through the power of y in the terms yk+m−p−1Re[E0(2m, 0p)].

3.5 Laplace equations of even combinations in step form

The above results motivate an alternative organisation of the system of Laplace equations

at each (m,k) where seeds of the form in (3.51) take center stage. We will now describe a

procedure to directly construct the combinations of F
+(s)
m,k in the Poincaré sums over a given

yk+m−p−1Re[E0(2m, 0p)].

As noted in (3.40) and (3.52), all the seed functions f
+(s)
m,k and j

+[ℓ]
m,k feature a term involving

yk−m+1(Re[E0(2m, 02m−2)]− ζ2m−1

(2m−1)! ), i.e. the iterated Eisenstein integral Re[E0(2m, 02m−2)] with

the maximal number of zeros. Both the seed yk−m+1Re[E0(2m, 02m−2)] and its Poincaré sum

require the maximum number 2m−1 of Laplace actions until a holomorphic Eisenstein series is

generated. For given (m,k), there is a unique real depth-two combination βsv+, j
m,k which shares

this property, as can be seen from the Laplace system (3.7), namely βsv+, 0
m,k . Therefore we

conclude

∑

γ∈B(Z)\SL(2,Z)

[
yk−m+1

(
Re[E0(2m, 02m−2)]− ζ2m−1

(2m−1)!
)]

γ

= ρm,k β
sv+, 0
m,k mod lower depth

(3.60)

with rational prefactor

ρm,k =
(−4)m−k−1(2k)!(2k−1)!

2B2k(k+m−2)!(k−m)!(2m−2)! , (3.61)

such that in particular ρk,k = −k(2k−1)2

4B2k
. The combination (3.60) is the only choice, where the

occurrence of the holomorphic Eisenstein series is maximally delayed to the (2m−1)th power

of the Laplacian, i.e. to ∆2m−1βsv+, j=0
m,k . In order to generate the Poincaré sums over shorter

iterated Eisenstein integrals ∼ Re[E0(2m, 02m−2−r)], we apply combinations of Laplace operators

to both sides of (3.60). From ∆yn = n(n−1)yn and

∆
(
ynRe[E0(2m)]

)
=

4nyn+1

(2πi)2m
Re[G0

2m] + n(n−1)yn Re[E0(2m)] , (3.62)

∆
(
ynRe[E0(2m, 0p)]

)
= −4nyn+1Re[E0(2m, 0p−1)] + n(n−1)yn Re[E0(2m, 0p)] , p 6= 0 ,

we deduce that the operator (for ℓ > 0)

Oℓ = −
1

4ℓ

(
∆− ℓ(ℓ−1)

)
(3.63)
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has the property

Ok+m−b−1

(
yk+m−b−1Re E0(2m, 0b)

)
= yk+m−bRe E0(2m, 0b−1) (b > 0) , (3.64a)

Ok+m−1

(
yk+m−1Re E0(2m)

)
= − yk+m

(2πi)2m
ReG0

2m . (3.64b)

It therefore can be used to reduce the number of zeros of an iterated integral while increasing

the power of y in exactly the same way as they appear in the Poincaré seeds studied in the

previous sections.

However, the seeds (2.45) of the holomorphic Eisenstein series generated from ∆βsv+, 2m−2
m,k

involve the full G2m = G0
2m+2ζ2m rather than G0

2m seen in (3.64b). Hence, we have to combine

the Re E0(2m, 0p) term with a power of y as in

Ok+m−1

(
yk+m−1Re E0(2m)− 2B2m

(2m)!
yk+m

)
= − yk+m

(2πi)2m
ReG2m , (3.65)

where we used the relation between the even ζ-value in terms of Bernoulli numbers given

in (2.10). This fixes the coefficients of the pure powers of y in the seeds of the last lines in

(3.55) to (3.59) – they ensure that no additional Em+k are generated in the respective Poincaré

sums.

From the above arguments, the Poincaré sums over individual iterated Eisenstein integrals

yield modular forms with the following leading-depth terms (r = 1, 2, . . . , 2m−2)
∑

γ∈B(Z)\SL(2,Z)

[
arm,ky

k+m + yk−m+1+r Re[E0(2m, 02m−2−r)]
]
γ

(3.66)

∼ Ok−m+rOk−m+r−1 . . .Ok−m+2Ok−m+1β
sv+, 0
m,k mod lower depth .

The product of operators (3.63) can be straightforwardly evaluated via (3.7) and results in a

combination of βsv+, 0
m,k , βsv+, 1

m,k , βsv+, 2
m,k , . . . , βsv+, r

m,k . The coefficient of yk+m in (3.66) is given by

arm,k = − 2(−4)2m−2−rB2m(k+m−2)!(2k+r−1)!
(2m)!(k−m+r)!(2m−1−r)!(2k+2m−3)! (3.67)

and ensures that the terms of lower depth do not include any Em+k. Note in particular that the

2m−1 possibilities of inserting j = 0, 1, 2, . . . , 2m−2 zeros into the seed Re[E0(2m, 0j)] precisely

match the number of leading-depth-two terms βsv+, j
m,k for real modular invariants, cf. (2.34).

Based on (2.46), we deduce the following Poincaré sum over (3.65),

1

(2πi)2m

∑

γ∈B(Z)\SL(2,Z)

[
yk+mRe(G2m(τ))

]
γ

(3.68)

= − (2k)!(k−1)!
2(−4)kB2kΓ(k+m)

{
G2m

(2πi)2m
(π∇)mEk +

G2m

(2πi)2m
(π∇)mEk

}
,
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or alternatively

1

(2πi)2m

∑

γ∈B(Z)\SL(2,Z)

[
yk+mRe(G2m(τ))

]
γ
= −δk,m

(2k)!

42kB2k

G2k

(2πi)2k
(τ−τ̄)2kG2k

+
(2k)!(2k−1)!(k−m)

2(−4)k+mB2kΓ(k+m)(k−m)!

{
(τ−τ̄)2mG2mβsv

[
k−m−1

2k

]
+

G2m

(2πi)2m
βsv
[
k+m−1

2k

]}

mod lower depth . (3.69)

The Poincaré sum converges for k+m > 1 and the rewriting using (2.29) in terms of βsv requires

0 ≤ m < k.

3.6 Comparison to Ca,b,c MGFs

In the examples (3.30) and (3.32) we expressed some of the F
+(s)
m,k that are determined by (3.28)

in terms of the two-loop modular graph functions Ca,b,c defined in (2.5), together with Em+k

and possibly ζm+k. This was possible because the Ca,b,c that appeared contained the same

inhomogeneous terms EmEk in their Laplace equations. We shall take the appearance of EmEk

as the defining feature of what we call the (m,k) depth-two sector obtained from double integrals

of holomorphic Eisenstein series (G2m,G2k) as in section 2.2. Thinking of the F
+(s)
m,k as the most

general real and shuffle-irreducible depth-two objects in the (m,k) sector, a natural question

is how they relate in general to the Ca,b,c. In the following discussion we restrict to only even

F
+(s)
m,k ; a similar analysis can be done for the odd ones which relate to cuspidal MGFs.

From the general analysis of [1], we know that the Ca,b,c are closed under the action of the

Laplacian at fixed weight w = a+b+c up to source terms of the form EmEk with w = m+k and

Ew, as was recalled in (3.3) and (3.4). This closure condition is not met by the modular invariants

J
+[ℓ]
m,k with ℓ ≤ m defined in (3.14), so the F

+(s)
m,k are the appropriate choice of modular invariant

functions at depth two to represent the Ca,b,c. Moreover, the dimension of the vector space,

VC(w, s), of Ca,b,c at a given weight w = a+b+c and given eigenvalue s(s−1) was determined

in [1] to be

dimVC(w, s) =
{ ⌊

s+2
3

⌋
for 1 ≤ s ≤ w−2 and s,w of same parity,

0 otherwise.
(3.70)

We can perform a similar counting of the number of independent F
+(s)
m,k using the spectrum

in (3.28) and find

dimVF+(w, s) =

{ ⌊
s
2

⌋
for 2 ≤ s ≤ w−2 and s,w of same parity,

0 otherwise,
(3.71)

where w = m+k. We note that the only difference in the allowed values of s occurs when w is

odd and s = 1 which corresponds to vanishing Laplace eigenvalue. The corresponding modular

invariant solution is a constant. For Ca,b,c it is known that this must be ζw times a rational

number [37].
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Comparing the dimensions (3.70) and (3.71) we see that the F
+(s)
m,k are in general more

numerous than the Ca,b,c. The first deviations occur at

dimVC(w, s) < dimVF+(w, s) , at s = 6, 8, 9, 10, . . . i.e. w = 8, 10, 11, 12, . . . , (3.72)

i.e. at weight w = 8 and at any weight w ≥ 10, the number of independent F
+(s)
m,k is strictly

larger than that of Ca,b,c. Hence, there exist even and modular invariant combinations involving

βsv at depth two which cannot be represented in terms of two-loop MGFs Ca,b,c. However, we

are not claiming that the “missing” modular invariant functions are built from genuine MGFs

in that they possess a lattice-sum representation. We will come back to this point at the end of

this section.

Given that the Ca,b,c span a subspace of the depth-two objects in the (m,k) sector, we can

expand

Ca,b,c =

⌊w
2
⌋∑

m=2

w−2∑

s=w−2m+2

α(s)
m (a, b, c)F

+(s)
m,w−m + γ(a, b, c)Ew + λ(a, b, c)ζw , (3.73)

for some rational8 coefficients γ, λ, α
(s)
m , with s running in steps of 2, and the ζw only occur for

odd values of w = a+b+c. The Laplace system of the Ca,b,c given in (3.3) and (3.4) shows that

the only possible source term linear in Eisenstein series is Ew and therefore this term can arise

in (3.73), with a rational coefficient due to uniform transcendentality. An argument similar to

the one below (3.28) can be used to exclude any other term linear in Eisenstein series. From the

spectrum (3.70), Es could also arise from a homogeneous solution; uniform transcendentality

and depth two would require its coefficient to be a rational multiple of ζw−s. Since w and s

have the same parity by (3.70), no such single-valued zeta exists for s > 1. For s = 1 (which is

possible only for odd w) we can use the Eisenstein functional equation for s → 1−s to obtain

the term ζwE0 = ζw indeed present in the decomposition (3.73).

At fixed weight w = a+b+c, we can substitute this ansatz in the Laplace system for the

Ca,b,c in (3.3) and, using the defining equation (3.28), solve for the unknown rational coefficients

α
(s)
m , γ. By comparing the Laurent polynomials of Ca,b,c known from [37] with those of the F

+(s)
m,k

to be determined in section 4.3, it will also be possible to determine the coefficient λ of ζw. An

inverse change of basis is in general not possible.

This procedure reproduces the examples in sections 3.2.3 and 3.2.4, e.g.

C1,1,1 = E3 + ζ3 , C3,1,1 = −4F+(3)
2,3 +

43

35
E5 −

ζ5
60

,

C2,1,1 = −F+(2)
2,2 +

9

10
E4 , C2,2,1 =

2

5
E5 +

ζ5
30

, (3.74)

8The coefficients appearing in the Laplace system (3.3) and (3.4) for the Ca,b,c are all integers, furthermore

from (3.28) we know that the action of the Laplacian on F
+(s)
m,w−m produces linear combinations of F

+(s)
m,w−m and

EmEw−m with integer coefficients, hence this problem reduces to a linear system for the coefficients α
(s)
m , γ, λ

with integer coefficients. If a solution exists it must be rational.
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as well as

C2,2,2 = −
12

5
F
+(2)
3,3 +

72

5
F
+(4)
3,3 −

9

7
E6 ,

C3,2,1 = −
2

5
F
+(2)
3,3 −

18

5
F
+(4)
3,3 +

11

14
E6 , (3.75)

C4,1,1 =
2

5
F
+(2)
3,3 −

2

5
F
+(4)
3,3 − 6F

+(4)
2,4 +

167

126
E6 .

Moreover, we obtain the following new decompositions at weight seven

C3,2,2 = −
24

7
F
+(3)
3,4 +

108

7
F
+(5)
3,4 −

23

21
E7 +

ζ7
630

,

C3,3,1 =
24

7
F
+(3)
3,4 −

108

7
F
+(5)
3,4 +

32

21
E7 +

ζ7
420

,

C4,2,1 = −
24

7
F
+(3)
3,4 −

18

7
F
+(5)
3,4 +

16

21
E7 −

ζ7
630

, (3.76)

C5,1,1 =
12

7
F
+(3)
3,4 −

12

7
F
+(5)
3,4 − 8F

+(5)
2,5 +

661

462
E7 +

ζ7
2520

,

where the coefficients of ζ7 are based on the results of [37] (see section 4.3) and

C3,3,1 + C3,2,2 =
3

7
E7 +

ζ7
252

. (3.77)

Weight eight is then the first instance where the five linearly independent Ca,b,c modulo E8 do

not suffice to span the space of six F
+(s)
m,k ,

C3,3,2, C4,2,2, C4,3,1

C5,2,1, C6,1,1

}
−→

{
F
+(6)
4,4 , F

+(6)
3,5 , F

+(6)
2,6

F
+(4)
4,4 , F

+(4)
3,5 , F

+(2)
4,4

. (3.78)

From [1] it is known that the Laplacian on the five Ca,b,c of weight eight can be diagonalised

with eigenvalues {2, 4, 4, 6, 6}, so that only a co-dimension one subspace of combinations of F
+(6)
2,6 ,

F
+(6)
3,5 and F

+(6)
4,4 can be expressed through the Ca,b,c at leading depth. The representations of

Ca,b,c at weight eight in terms of F
+(s)
m,8−m and E8 analogous to (3.74) to (3.76) can be found in

appendix B.1.

These first instances of discrepancy in the counting occur for eigenvalue s = 6 consistent

with (3.72). Our results in Part II imply that all these discrepancies in counting are due to

relations in Tsunogai’s derivation algebra. We know that the generating series of MGFs intro-

duced in [27] relates MGFs to expressions in terms of the βsv; furthermore this generating series

contains a conjectural matrix realisation of Tsunogai’s derivation algebra [57,58] and therefore

there are combinations of the βsv that do not arise in the generating series due to relations in

the algebra. This means that there are modular invariant completions of the βsv for which no

lattice-sum representation is currently available and none is expected.

As explained in detail in Part II, the modular invariant F
±(s)
m,k beyond MGFs cannot be

represented solely in terms of Q[y±1,MZV] combinations of βsv. The βsv are iterated Eisenstein

integrals and it turns out that the representation of all modular invariant F
±(s)
m,k also requires the
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inclusion of iterated integrals of holomorphic cusp forms. From (3.72) we see that discrepancies

arise whenever s is half the weight of a holomorphic cusp form. In particular, we can prove that

the difference

dimVF+(w, s) − dimVC(w, s) = dimS2s =
{ ⌊

2s
12

⌋
− 1 2s ≡ 2 mod 12 ,

⌊
2s
12

⌋
otherwise

(3.79)

matches the dimension of the space S2s of holomorphic cusp forms with even modular weights

(2s, 0) [90]. The second part of this paper [53] is dedicated to clarifying these points by explicitly

constructing the necessary additions of iterated integrals of cusp forms.

4 Reinstating lower depth

In the previous section we found a map between the F
+(s)
m,k and βsv+, j

m,k that is based on diagonal-

ising the Laplace equation (3.7) at leading depth. While the F
+(s)
m,k constructed from Poincaré

series are modular invariant by construction, this is not the case for the pure depth-two βsv+, j
m,k .

We shall now describe a procedure to add lower-depth βsv to the leading-depth expression of the

F
+(s)
m,k in terms of the depth-two βsv+, j

m,k that is based on Cauchy–Riemann equations. In many

cases this leads to modular-invariant expressions for the F
+(s)
m,k through βsv. The analogous map

between F
−(s)
m,k and βsv−, j

m,k along with the lower-depth terms in the odd case can be found in

section 5.

As already indicated at the end of the previous section, cases where a completion only in

terms of βsv is not possible are tied to iterated integrals of holomorphic cusp forms and will be

treated in detail in Part II. Once this is achieved, we have the full Fourier expansions of the

F
±(s)
m,k at our disposal, see section 7.1 for comments on this. An alternative route would be to

explore the Fourier expansion from the Poincaré series using resurgence [20,56] but we shall not

follow this approach here.

4.1 Cauchy–Riemann equations

The Laplace equation (3.28) was studied in detail in the previous section and now we will look

at Cauchy–Riemann equations that are compatible with it. On any function F we have for any

p ≥ 0 that

(π∇)
[
y−2p(π∇)pF

]
= y−2(p−1)(π∇)p−1 [(∆− p(p−1))F ] , (4.1)

with ∇ defined in (2.14). We can use this for p = s together with the Laplace equation (3.28) to

determine a Cauchy–Riemann equation (of order s) compatible with the Laplace equation for

F
+(s)
m,k . The value p = s is the lowest value where genuine depth-two terms (that are not products

of depth-one terms) disappear and this case is the generalisation of the condition (2.20) for depth
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one. We take the ansatz9

(π∇)sF+(s)
m,k =

s−1∑

i=1

c+i (π∇)iEm(π∇)s−iEk + (π∇)sH+ (4.2)

in terms of products of Cauchy–Riemann derivatives of the constituent Eisenstein series and

possible homogeneous solutionsH of the Laplace equation. A consistent modular transformation

of the equation requires (π∇)sH+ to have modular weight (0,−2s), however, this does not

require H+ itself to be modular invariant. If one were to require modular invariance of H+, the

only option would be H+ ∝ Es but this would be too restrictive, in particular there would be

no odd analogue.

Acting with π∇ on the ansatz and using (3.28) and (4.1) leads to the relations

c+1 =
1

m(m−1) , c+s−1 =
1

k(k−1) , (4.3)

[
m(m−1)− i(i+1)

]
c+i+1 +

[
k(k−1)− (s−i)(s−i−1)

]
c+i =

(
s−1
i

)
for 1 ≤ i ≤ s−2

for the coefficients c+i that can be solved for recursively. The complex conjugate of the Cauchy–

Riemann equation (4.2) can be obtained straightforwardly.

As examples of such Cauchy–Riemann equations we have

(π∇)2F+(2)
2,2 =

1

2
(π∇E2)

2 , (4.4)

(π∇)3F+(3)
2,3 =

1

2
(π∇)E2(π∇)2E3 + (Im τ)4G4(π∇)E3 ,

which are equivalent to [15, Eqs. (4.29), (4.35)]. In the second one we have used (2.20) to write

(π∇)2E2 in terms of the holomorphic Eisenstein series G4. In general, the term (π∇)iEm in (4.2)

can also contain derivatives of (Im τ)2mG2m since s−1 may be larger than m.

In the two examples above one can check from the q-expansion or modular invariance that

there are no homogeneous solutions H+ present. Cases when H+ 6= 0 do occur and will be

explored in detail in Part II.

Note that the βsv representations of a variety of Cauchy–Riemann derivatives (π∇)pF±(s)
m,k

and (π∇)pF±(s)
m,k are discussed in section 5.6 and examples are gathered in appendix G and all

derivatives for m+ k ≤ 14 are collected in the ancillary file.

4.2 Reinstating depth-one terms

The Cauchy–Riemann equation (4.2) can be used to obtain (candidate) expressions for F
+(s)
m,k

in terms of the βsv of various depths. The depth-two part was fixed by the diagonalisation

procedure in section 3.2.2. However, acting with the Cauchy–Riemann derivative on the depth-

two terms does not generate only terms of the correct type.

9Contributions i = 0 and i = s to the sum in (4.2) are absent since ∇ acting on this equation would be

inconsistent with the Laplace equation of F
+(s)
m,k .
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The differential equation (2.24b) that we reproduce here in rewritten form for convenience

−4π∇βsv
[
j1 j2
k1 k2

; τ
]
= (k1−j1−2)βsv

[
j1+1 j2
k1 k2

; τ
]
+ (k2−j2−2)βsv

[
j1 j2+1
k1 k2

; τ
]

− δj2,k2−2(τ−τ̄)k2Gk2(τ)β
sv
[
j1
k1
; τ
]

(4.5)

shows that we obtain the holomorphic Eisenstein series Gk2 as instances of (π∇)k2Ek2 according

to (2.20) but they are multiplied by βsv of depth one that are not of the (π∇)•E• type as is

required by (4.2). (A related statement is that the βsv are not lattice sums.)

The connection between the depth-one βsv
[
j
k

]
and (π∇)•E• was given in (2.29) and involves

additional depth-zero terms of the form ζ2s−1y
j+2−k. Looking back at this equation, we can

therefore improve the Cauchy–Riemann derivative of the depth-two βsv by considering

βsv
[
j1 j2
k1 k2

]
→ β̂sv

[
j1 j2
k1 k2

]
= βsv

[
j1 j2
k1 k2

]
− 2ζk1−1

(k1−1)(4y)k1−j1−2
βsv
[
j2
k2

]
. (4.6)

These combinations obey the differential equation

−4π∇β̂sv
[
j1 j2
k1 k2

; τ
]
= (k1−j1−2)β̂sv

[
j1+1 j2
k1 k2

; τ
]
+ (k2−j2−2)β̂sv

[
j1 j2+1
k1 k2

; τ
]

(4.7)

− δj2,k2−2(τ−τ̄)k2Gk2(τ)
(
βsv
[
j1
k1
; τ
]
− 2ζk1−1

(k1−1)(4y)k1−j1−2

)
,

where the Gk2(τ) on the right-hand side is accompanied by one of the modular graph forms

(2.29) of depth one. For the depth-two combinations βsv±, j
m,k in (2.34) relevant to the modular

invariants F
±(s)
m,k , the analogue of (4.6) is

βsv±, j
m,k → β̂sv±, j

m,k = βsv±, j
m,k − 2

(
ζ2m−1

(2m−1)(4y)j β
sv
[
k+j−m

2k
; τ
]
± ζ2k−1

(2k−1)(4y)k+j−m
βsv
[

j
2m

; τ
])

.

(4.8)

Performing this substitution for the depth-two βsv that arise in the diagonalisation (3.24) of

the Laplacian therefore leads to an object whose Cauchy–Riemann derivatives are completely

expressed in terms of depth-two β̂sv
[
j1 j2
k1 k2

]
and products of (π∇)•E•.

The products on the right-hand sides of the repeated Cauchy–Riemann derivatives (4.2) lead

to shuffle combinations of depth-two βsv in the schematic form

β̂sv
[
j1 j2
2k 2m

]
+ β̂sv

[
j2 j1
2m 2k

]
= #(π∇)•Em(π∇)•Ek +

4ζ2m−1ζ2k−1

(2m−1)(2k−1)(4y)2m+2k−4−j1−j2
, (4.9)

where the substitution rule (4.6) captures the depth-one terms. However, the depth-zero terms

∼ ζ2k−1ζ2m−1 (i.e. pure powers of y) need to be modified to obtain the correct Laurent polynomial

of F
+(s)
m,k that we shall describe next.

4.3 Reinstating Laurent polynomials

From the modular properties of Cauchy–Riemann derivatives, we have derived the substitution

rule (4.8) that allows us to reconstruct the depth-one additions to the defining depth-two βsv
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terms in F
+(s)
m,k . In this way, we have obtained a combination of depth-two and depth-one βsv

that has the correct Cauchy–Riemann and Laplace equations up to terms of depth zero given

by pure powers of y. The missing pure y-power terms can be conveniently inferred from the

Poincaré seeds f
+(s)
m,k we have constructed as a solution to the Laplace equation with our choice

of boundary conditions: The Laurent polynomials of F
+(s)
m,k can be computed from the Poincaré

seeds in (3.39), using the conversion rules (2.43) and (2.44).

In order to determine the additional y-powers that need to be added to the depth-two and

depth-one βsv in order to match those of F
+(s)
m,k , the only information we need are the Laurent-

polynomial contributions of the βsv and the Laurent polynomial of F
+(s)
m,k . The former are given

by [27]

βsv
[
j1
k1
; τ
]
=

Bk1j1!(k1−2−j1)!(−4y)j1+1

k1! (k1−1)!
+O(q, q̄) ,

βsv
[
j1 j2
k1 k2

; τ
]
=

Bk1Bk2(j1+j2+1)!(k2−2−j2)!(−4y)j1+j2+2

(j1+1)k1!k2!(k2+j1)!
(4.10)

× 3F2

[
1+j1, 2+j1+j2, 2+j1−k1

2+j1, 1+j1+k2
; 1
]
+O(q, q̄) ,

where 3F2 denotes a generalised hypergeometric function which, in the present case, always

evaluates to a finite sum, yielding a rational number.

The Laurent polynomial of F
+(s)
m,k is determined from the explicit solution (3.39) by using

(2.43) and (2.44) together with the general formula (A.8b) for the Laurent polynomial of Poincaré

seeds. As a result we obtain the Laurent polynomial for 2 ≤ m ≤ k,

F
+(s)
m,k =

(−4)k+mB2mB2k

(k+m−s)(k+m+s−1)(2m)!(2k)!
yk+m − 2(−1)m41+m−kB2mΓ(2k−1)ζ2k−1

Γ(k)Γ(k)(m−k+s)(m−k−s+1)(2m)!
y1+m−k

− 2(−1)k41+k−mB2kΓ(2m−1)ζ2m−1

Γ(m)Γ(m)(k−m+s)(k−m−s+1)(2k)!
y1+k−m (4.11)

+
43−m−kΓ(2m−1)Γ(2k−1)ζ2m−1ζ2k−1

[Γ(m)Γ(k)]2(k+m−s−1)(k+m+s−2)y
2−k−m + c

(s)
m,kζk+m+s−1y

1−s +O(q, q̄)

with the rational coefficient

c
(s)
m,k =

42−s(−1)m+s+1Bs+m−kBk+m−sBk+s−m(2s)!

(s+m−k)Γ(m)Γ(s)B2s(k+m−s)!(k+s−m)!

min(k−1,s)∑

ℓ=k−m+1

(−1)ℓg+m,k,ℓ,s

Γ(ℓ+s−1)
Γ(ℓ)(s−ℓ)! (4.12)

in terms of the rational numbers g+m,k,ℓ,s defined in (3.38). For m = k the terms y1+m−k and

y1+k−m are both linear in y and have the same coefficient that just doubles. All terms including

the zeta values they contain, except for the one proportional to y1−s, can be directly traced back

to the Laurent polynomials of the source EmEk. We summarise the structure of the Laurent

polynomial schematically as (recalling that m < k)

F
+(s)
m,k mod O(q, q̄) ←→ ym+k , ζ2m−1y

k−m+1 , ζ2k−1y
m−k+1 ,

ζ2m−1ζ2k−1

yk+m−2
,
ζm+k+s−1

ys−1
,

F
+(s)
k,k mod O(q, q̄) ←→ y2k , ζ2k−1y ,

ζ22k−1

y2k−2
,
ζ2k+s−1

ys−1
, (4.13)
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where all terms have rational coefficients. This means that all terms in the Laurent polyno-

mial (4.11) have the same transcendental weight m+k, where both ζn and yn are assigned

transcendental weight n.

We also note that the term c
(s)
m,kζm+k+s−1 along with y1−s in (4.11) is an instance of a multiple

modular value associated with the βsv at depth two [33,35,36,99] that we discuss in more detail

in the companion Part II. We shall always display these as the last terms in the examples below.

Obtaining these correctly from the Poincaré-series approach is one of the central results of this

paper.

The final step in constructing a combination of βsv that solves the Laplace equation (3.28) is

then adding terms to the Laurent polynomial obtained from depth two and depth one via (4.10)

such that the correct Laurent polynomial (4.11) is obtained. We summarise the steps by

1. For a given choice of m ≤ k, and s in the spectrum (3.23), take the combination of βsv+, j
m,k

obtained from the diagonalisation (3.24). This solves the Laplace equation at depth two.

2. Replace the βsv+, j
m,k by β̂sv+, j

m,k as defined in (4.8). This solves solves the Laplace equation

at depths two and one.

3. Modify the pure y-power terms such that the correct Laurent polynomial (4.11) is obtained.

After this step an exact solution to the Laplace equation is obtained.

We denote the resulting combination of βsv of depths two, one and zero by qF
+(s)
m,k .

Note that the second and third terms ∼ ζ2m−1y
k−m+1, ζ2k−1y

m−k+1 in (4.13) do not solve

the homogeneous Laplace equation (∆ − s(s−1))F = 0 for the values of s in the spectrum

(3.28) of even F
+(s)
m,k . Hence, their coefficients are always determined by the source term in the

Laplace equations (3.28). The situation changes in the odd case, and will see that Laurent

monomials ζ2m−1y
k−m+1 signal additional solutions of the homogeneous Laplace equation, i.e.

the eigenvalue coincides with k−m+1, in the βsv representations of F
−(s)
m,k to be constructed in

section 5.5.

4.4 Combinations qF
+(s)
m,k of βsv versus modular invariants F

+(s)
m,k

The notation qF
+(s)
m,k introduced above indicates that the combination of βsv does not need to

be identical to F
+(s)
m,k but could be a ‘downgraded’ version. Both F

+(s)
m,k and qF

+(s)
m,k are solutions

to the same Laplace equation. However, while F
+(s)
m,k is modular invariant by construction as

a Poincaré series, this is not necessarily true for qF
+(s)
m,k as it is built out of βsv that can have

complicated modular S-transformation properties [27]. By the lower-depth terms in the modular

transformations (2.31), it is not guaranteed that the combinations qF
+(s)
m,k obtained in this way

are exactly modular.

Another way of understanding this is to reconsider the Cauchy–Riemann equation (4.2) that

is satisfied by F
+(s)
m,k and that is compatible with the Laplace equation. From the way that qF

+(s)
m,k
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was constructed, it satisfies

(π∇)sqF
+(s)
m,k =

s−1∑

i=1

c+i (π∇)iEm(π∇)s−iEk , (4.14)

which has vanishing homogeneous term H+. Even though the right-hand side of this equation

has good modular properties and transforms with weight (0,−2s) under SL2(Z), there is no

guarantee that there is a modular invariant primitive to this equation. In fact, the Eichler–

Shimura theorem [100, 101] shows that in general the homogeneous term is needed, see for

instance the discussion in the work of Brown [33,35].

After multiplication by y−2s, the homogeneous term (π∇)sH+ in (4.2) must be a modular

form of weight (2s, 0) and it must be holomorphic in order to be annihilated by π∇, see (4.1).

Thus we arrive at the strong requirement that

(π∇)sH+ = y2sf (4.15)

with f a holomorphic modular form of weight (2s, 0). The space of holomorphic modular forms

is very well studied and decomposes into holomorphic Eisenstein series G2s and cusp forms that

arise for 2s ∈ {12, 16, 18, . . .}, see e.g. [90].

However, since qF
+(s)
m,k is already engineered to match the Laurent polynomial (4.11) of F

+(s)
m,k ,

both H+ and therefore f has to vanish at the cusp. Hence, there is no room for the zero mode

of G2s = 2ζ2s + O(q), and f cannot be a holomorphic Eisenstein series.10 Therefore, the case

f ∝ G2s cannot arise for even functions F
+(s)
m,k .

We therefore conclude that the only cases when F
+(s)
m,k 6= qF

+(s)
m,k is possible are associated with

holomorphic cusp forms of weight (2s, 0), and in those cases the function qF
+(s)
m,k will not necessarily

be modular invariant. This can also be understood as follows. The generating series of MGFs

introduced in [27] implements conjectural matrix representations of Tsunogai’s derivations [57]

and therefore does not contain certain depth-two combinations of βsv. The relations in the

derivation algebra are known to be associated with holomorphic cusp forms as well [58]. This

discrepancy between MGFs and the F
+(s)
m,k is also hinted at by the different counting of two-loop

modular graph functions Ca,b,c discussed in section 3.6 at the relevant weights.

The non-modular invariance of some qF
+(s)
m,k can moreover be traced back to the multiple

modular values from the βsv of depth two that can go beyond MZVs and involve L-values of

holomorphic cusp forms [102].

In this paper we shall restrict to the modular invariant cases where qF
+(s)
m,k = F

+(s)
m,k can be

identified with MGFs. Cases with qF
+(s)
m,k 6= F

+(s)
m,k in turn will be the subject of Part II where

iterated integrals of holomorphic cusp forms will play a key role.

10Choosing f to be a holomorphic Eisenstein series would make the relation (4.15) identical to (2.20) and H+

would become an iterated integral of G2s. Since we do not require H+ to be modular invariant, it could differ

from Es. However, H+ would necessarily contain a term of the form ys from the differential equation which is

incompatible with the fact that the Laurent polynomial of F
+(s)
m,k is already accounted for by qF

+(s)
m,k .
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4.5 Examples

We now give a few exemplary instances of the construction of the lower-depth terms and how

the F
+(s)
m,k can be expressed in terms of the βsv.

4.5.1 Examples at m = k

By applying the procedure outlined around (4.8) and (4.10) to the simplest examples of F
+(s)
k,k ,

we find the following completion of (3.29),

F
+(2)
2,2 = 18βsv[ 2 0

4 4 ]− 12ζ3β
sv[ 04 ] +

ζ23
4y2
− 5ζ5

12y
,

F
+(2)
3,3 = 100(2βsv[ 3 1

6 6 ]− βsv[ 4 0
6 6 ]) + 40ζ5β

sv[ 06 ]−
20ζ5
y

βsv[ 16 ] +
ζ25

32y4
− 5ζ7

288y
, (4.16)

F
+(4)
3,3 = 25(8βsv[ 3 1

6 6 ] + βsv[ 4 0
6 6 ])− 10ζ5β

sv[ 06 ]−
20ζ5
y

βsv[ 16 ] +
9ζ25

128y4
− 35ζ9

1152y3
,

in agreement with the results for E2,2,E3,3,E
′
3,3 in [27]. As an example of our new results for

F
+(s)
k,k , the Poincaré sums over the seed functions (3.42) yield

F
+(2)
4,4 = 490(5βsv[ 4 2

8 8 ]− 4βsv[ 5 1
8 8 ] + βsv[ 6 0

8 8 ])− 140ζ7β
sv[ 08 ]

+
140ζ7
y

βsv[ 18 ]−
175ζ7
4y2

βsv[ 28 ] +
5ζ27

512y6
− 5ζ9

3888y
, (4.17)

F
+(4)
4,4 =

490

3
(15βsv[ 4 2

8 8 ]− 6βsv[ 5 1
8 8 ]− βsv[ 6 0

8 8 ]) +
140

3
ζ7β

sv[ 08 ]

+
70ζ7
y

βsv[ 18 ]−
175ζ7
4y2

βsv[ 28 ] +
5ζ27

384y6
− 7ζ11

6912y3
,

where the terms ∼ ζ9/y and ζ11/y
3 in the kernel of (∆ − s(s−1))F+(s)

4,4 are related to multiple

modular values at depth two.

Reinstating the lower-depth terms for the final eigenfunction with s = 6 leads to

qF
+(6)
4,4 =

98

3
(75βsv[ 4 2

8 8 ] + 24βsv[ 5 1
8 8 ] + βsv[ 6 0

8 8 ])−
28

3
ζ7β

sv[ 08 ]

− 56ζ7
y

βsv[ 18 ]−
175ζ7
4y2

βsv[ 28 ] +
25ζ27
768y6

− 5005ζ13
530688y5

, (4.18)

with ζ13/y
5 in the kernel of (∆ − s(s−1)) at s = 6. This function can be checked to be

non-invariant under modular transformations and is one of the simplest examples outside the

realm of MGFs where iterated integrals of cusp forms need to be added. The relation of the

expression (4.18) to Tsunogai’s derivation algebra will be explored in Part II.

The examples in (4.17) are modular invariant which is why we write them as F
+(s)
m,k rather

than qF
+(s)
m,k . The Laurent polynomials of (4.16) to (4.18) resulting from (4.10) are gathered in

appendix D.1.
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4.5.2 Examples at m < k

Similarly, the above procedure to reinstate lower-depth terms leads to the completion of (3.31) by

F
+(3)
2,3 = 30(βsv[ 2 1

4 6 ] + βsv[ 3 0
6 4 ])− 20ζ3β

sv[ 16 ]−
3ζ5
y

βsv[ 04 ] +
ζ5
360

+
ζ3ζ5
8y3
− 7ζ7

64y2
, (4.19)

F
+(4)
2,4 = 105(βsv[ 2 2

4 8 ] + βsv[ 4 0
8 4 ])− 70ζ3β

sv[ 28 ]−
15ζ7
8y2

βsv[ 04 ] +
ζ7

480y
+

5ζ3ζ7
64y4

− 25ζ9
432y3

,

in agreement with the results for E2,3,E2,4 in [27]. The simplest cases that go beyond the state

of the art include the Poincaré sums over the seeds (3.44)

F
+(5)
2,5 = 378(βsv[ 2 3

4 10 ] +βsv[ 5 0
10 4 ])− 252ζ3β

sv[ 3
10 ]−

21ζ9
16y3

βsv[ 04 ] +
ζ9

640y2
+

7ζ3ζ9
128y5

− 77ζ11
2048y4

,

(4.20)

and those over the seeds (3.45),

F
+(3)
3,4 = 175(2βsv [ 3 2

6 8 ]− βsv[ 4 1
6 8 ] + 2βsv[ 4 1

8 6 ]− βsv[ 5 0
8 6 ]) + 70ζ5β

sv[ 18 ]−
35ζ5
y

βsv[ 28 ]

+
25ζ7
2y

βsv[ 06 ]−
25ζ7
4y2

βsv[ 16 ] +
5ζ7

18144
+

5ζ5ζ7
256y5

− 49ζ9
11520y2

,

F
+(5)
3,4 = 70(5βsv[ 3 2

6 8 ] + βsv[ 4 1
6 8 ] + 5βsv[ 4 1

8 6 ] + βsv[ 5 0
8 6 ])− 28ζ5β

sv[ 18 ]−
35ζ5
y

βsv[ 28 ]

− 5ζ7
y

βsv[ 06 ]−
25ζ7
4y2

βsv[ 16 ]−
ζ7

30240
+

3ζ5ζ7
64y5

− 77ζ11
4608y4

, (4.21)

F
+(4)
3,5 = 630(2βsv [ 3 3

6 10 ]− βsv[ 4 2
6 10 ] + 2βsv[ 5 1

10 6 ]− βsv[ 6 0
10 6 ]) + 252ζ5β

sv[ 2
10 ]−

126ζ5
y

βsv[ 3
10 ]

+
35ζ9
4y2

βsv[ 06 ]−
35ζ9
8y3

βsv[ 16 ] +
ζ9

4320y
+

7ζ5ζ9
512y6

− 5ζ11
2304y3

.

Moreover, the above procedure yields two further examples of βsv combinations that are not

modular invariant at eigenvalue s = 6 and weight m+k = 8,

qF
+(6)
2,6 = 1386(βsv [ 2 4

4 12 ] +βsv[ 6 0
12 4 ])− 924ζ3β

sv[ 4
12 ]−

63ζ11
64y4

βsv[ 04 ]

+
7ζ11

5760y3
+

21ζ3ζ11
512y6

− 9555ζ13
353792y5

, (4.22)

qF
+(6)
3,5 = 315(4βsv [ 3 3

6 10 ] + βsv[ 4 2
6 10 ] + 4βsv[ 5 1

10 6 ] + βsv[ 6 0
10 6 ])− 126ζ5β

sv[ 2
10 ]−

126ζ5
y

βsv[ 3
10 ]

− 35ζ9
8y2

βsv[ 06 ]−
35ζ9
8y3

βsv[ 16 ]−
ζ9

24192y
+

35ζ5ζ9
1024y6

− 63063ζ13
5660672y5

.

Still, the counting of Ca,b,c in section 3.6 with two Laplace eigenfunctions at s = 6 and weight

a+b+c = 8 implies that two linear combinations of qF
+(6)
4,4 , qF

+(6)
3,5 , qF

+(6)
2,6 must be modular graph

functions. Indeed, the linear combinations

qF
+(6)
2,6 −

6

35
qF
+(6)
4,4 = F

+(6)
2,6 −

6

35
F
+(6)
4,4 , (4.23)

qF
+(6)
3,5 +

75

112
qF
+(6)
4,4 = F

+(6)
3,5 +

75

112
F
+(6)
4,4 ,
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seen in the expressions (B.1) for Ca,b,c at weight 8 can be recovered from the generating se-

ries [27] after taking the relations among Tsunogai’s derivations into account. We have con-

firmed the modular invariance of (4.23) both numerically from the q-expansions of the iterated

Eisenstein integrals in (4.18), (4.22) and analytically from the multiple modular values in the

S-transformation of the βsv. We are indebted to Francis Brown for providing us with extensive

data relevant for demonstrating this [103].

The complete list of βsv-representations of F
+(s)
m,k and qF

+(s)
m,k with m ≤ k and m+k ≤ 14 can

be found in an ancillary file in the arXiv submission of this paper. The Laurent polynomials of

(4.19) to (4.22) resulting from (4.10) are gathered in appendix D.2.

4.6 The integration constants α

On the one hand, a major motivation to derive the above βsv-representations of F
±(s)
m,k is to infer

their Fourier expansion from those of the contributing iterated Eisenstein integrals. On the other

hand, the expression (2.23) for the βsv at depth two still involves antiholomorphic integration

constants α[ j1 j2
k1 k2

] that are only known up to k1+k2 = 12 in the earlier literature [97].

However, the Poincaré-series representations of F
±(s)
m,k with seeds of the form yr, yr Re E0 (or

yr Im E0 in the odd case studied later) imply that the iterated Eisenstein integrals at all depths

add up to even or odd combinations, respectively. Since the holomorphic iterated Eisenstein

integrals entering the βsv[ j1 j2
k1 k2

] are completely explicit from (2.23), the α[ j1 j2
k1 k2

] contributing to

the F
±(s)
m,k are determined by their reality properties. Hence, the βsv-representations of F

+(s)
m,k such

as (4.17), (4.20) and (4.21) yield new examples of α[ j1 j2
k1 k2

], and additional integration constants

will be inferred from the F
−(s)
m,k in section 5.6. The examples of F

+(s)
m,k we gathered at m+k ≤ 14

point towards the conjectural closed formula in appendix F.2 for all even integration constants

at arbitrary weight.

4.6.1 Examples at m = k

Reality of F
+(2)
4,4 ,F

+(4)
4,4 in (4.17) and qF

+(6)
4,4 in (4.18) determines the integration constants

α[ 4 2
8 8 ] = 0 , α[ 6 0

8 8 ] =
2

7
ζ7 E0(8) ,

α[ 4 3
8 8 ] = 0 , α[ 6 1

8 8 ] =
2

7
ζ7 E0(8, 0) ,

α[ 5 1
8 8 ] = 0 , α[ 6 2

8 8 ] =
4

7
ζ7 E0(8, 02) , (4.24)

α[ 5 2
8 8 ] = 0 , α[ 6 3

8 8 ] =
12

7
ζ7 E0(8, 03) ,

α[ 5 3
8 8 ] = 0 , α[ 6 4

8 8 ] =
48

7
ζ7 E0(8, 04) ,

α[ 5 4
8 8 ] = 0 , α[ 6 5

8 8 ] =
240

7
ζ7 E0(8, 05) ,

with α[ j1 j2
2k 2k

] = −α[ j2 j1
2k 2k

] and no information on cases with j1+j2 < 6. Similarly, the non-

vanishing α[ j1 j2
10 10 ] with 8 ≤ j1+j2 ≤ 16 and α[ j1 j2

12 12 ] with 10 ≤ j1+j2 ≤ 20 identified from the
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reality of qF
+(s)
5,5 with s = 2, 4, 6, 8 and qF

+(s)
6,6 with s = 2, 4, 6, 8, 10 are

α[ 8 j
10 10

] =
2

9
j! ζ9 E0(10, 0j) , 0 ≤ j ≤ 7 , (4.25)

α[ 10 j
12 12

] =
2

11
j! ζ11 E0(12, 0j) , 0 ≤ j ≤ 9 .

Both the known cases of α[ j1 j2
2k 2k

] in the ancillary file of [97] and the new results (4.24), (4.25)

point towards the closed formula

α[ 2k−2 j
2k 2k

] =
2ζ2k−1

2k−1 j!E0(2k, 0j) = −α[ j 2k−2
2k 2k

] , 0 ≤ j ≤ 2k−3 , (4.26)

α[ j1 j2
2k 2k

] = 0 , 2k−2 ≤ j1+j2 ≤ 4k−4 with j1, j2 ≤ 2k−3 .

On the one hand, the above strategy does not yield any constraints on the α[ j1 j2
2k 2k

] with j1+j2 <

2k−2. On the other hand, we expect the so far undetermined α[ j1 j2
2k 2k

] with j1+j2 < 2k−2 to

vanish based on transcendentality arguments: Given that βsv[ j1 j2
2k 2k

] and y have transcendental

weight j1+j2+2 and 1, respectively, the weight of α[ j1 j2
2k 2k

] is fixed to be j1+j2+2 by (2.23).

Hence, the transcendental weight of the undetermined α[ j1 j2
2k 2k

] is ≤ 2k−1, but reality of the

underlying F
+(s)
k,k requires a factor of ζ2k−1 multiplying an antiholomorphic function that vanishes

at the cusp. Since E0(2k, 0p) carry transcendental weight p+1, there are no such functions of

weight ≤ 0 compatible with the differential equations of F
+(s)
k,k to assemble the α[ j1 j2

2k 2k
] with

j1+j2 < 2k−2, that is why they are expected to vanish.

4.6.2 Examples at m < k

For the integration constants that become accessible from the reality of F
+(s)
m,k with m < k, it

will be convenient to employ the shorthands

α0,j
m,k = α[ 2m−2−j k−m+j

2m 2k
] + α[ k+m−2−j j

2k 2m
] (4.27)

for the combinations that mimic the βsv+, j
m,k in (2.34). Moreover, by analogy with repeated

Cauchy–Riemann derivatives (4.5) of the βsv, we furthermore introduce

αN,j
m,k =

∑

a+b=N

N !

a!b!

{
j!(k+m−2−j)!

(j−a)!(k+m−2−j−b)!α[
2m−2−j+a k−m+j+b

2m 2k
] (4.28)

+
(k−m+j)!(2m−2−j)!

(k−m+j−a)!(2m−2−j−b)!α[
k+m−2−j+a j+b

2k 2m
]

}
,

subject to shuffle relations αN,j
m,k = −αN,2m−2−j

m,k . As will be exemplified below and in appendix F,

reality of qF
+(s)
m,k will fix all instances of αN,j

m,k in (4.28) with N ≥ 0. In particular, the examples

α0,0
2,3 =

2

3
ζ3 E0(6, 0) , α0,0

2,4 =
4

3
ζ3 E0(8, 02) ,

α1,0
2,3 = 4ζ3 E0(6, 02) +

2

5
ζ5 E0(4) , α1,0

2,4 = 16ζ3 E0(8, 03) , (4.29)
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α2,0
2,3 = 16ζ3 E0(6, 03) +

8

5
ζ5 E0(4, 0) , α2,0

2,4 = 160ζ3 E0(8, 04) +
4

7
ζ7 E0(4) ,

α3,0
2,4 = 960ζ3 E0(8, 05) +

24

7
ζ7 E0(4, 0) ,

and α3,0
2,3 = α4,0

2,4 = 0 resulting from reality of (4.19) are consistent with the known expressions

for α[ j1 j2
4 6

] and α[ j1 j2
4 8

] [27, 97]. Beyond this, reality of (4.20) to (4.22) yields new results that

are spelt out in appendix F.1 and line up with the conjectural closed formulae

αN,0
2,k =

2ζ2k−1

2k−1
{
δN,k−2(k−2)!E0(4) + δN,k−12(k−1)!E0(4, 0)

}

+
2ζ3
3

(k−2)!(k−1+N)!

(k−1−N)!
E0(2k, 0k+N−2) , k ≥ 3 , 0 ≤ N ≤ k−1

αN,0
3,k − 2αN,1

3,k =
2ζ2k−1

2k−1
{
(k−3)!δN,k−3E0(6) + 2(k−2)!δN,k−2E0(6, 0)

}
(4.30)

+
2ζ5
5

(k−3)!(k−2+N)!

(k−N−2)! E0(2k, 0k+N−3) , k ≥ 4 , 0 ≤ N ≤ k−2

αN,1
3,k =

2ζ2k−1

2k−1
{
(k−2)!δN,k−2E0(6, 0) + 6(k−1)!δN,k−1E0(6, 02) + 12k!δN,kE0(6, 03)

}

+
2ζ5
5

N(k−2)!(k−2+N)!

(k−N)!
E0(2k, 0k+N−3) , k ≥ 4 , 0 ≤ N ≤ k ,

where αk,0
2,k, α

k+1,1
3,k and αk−1,0

3,k − 2αk−1,1
3,k vanish by shuffle relations. We have tested (4.30), and

the later generalisation (F.4), to hold for all cases of αN,j
m,k with m+k ≤ 14.

However, the combinations (4.28) only span a subspace of the α[ j1 j2
2m 2k

] since we did not

yet investigate cases with j1+j2 < m+k−2 or imaginary cusp forms at depth two. As will be

detailed in section 5.6, the imaginary cusp forms associated with double integrals over (G4,G6)

introduce terms of the form ζ3 E0(4, 0p) into some of the α[ j1 j2
4 6

] [27] which are absent in (4.29).

The αN,j
m,k determined by the reality of qF

+(s)
m,k are exclusively built from ζ2m−1 E0(2k, 0p) and

ζ2k−1 E0(2m, 0p) whereas more general α[ j1 j2
2m 2k

] may also involve different combinations of zeta

values and iterated Eisenstein integrals at depth one.

The expression for α[ 2 0
6 4 ] in (2.25) exemplifies that α[ j1 j2

2m 2k
] with j1+j2 < m+k−2 may be

non-zero. Indeed, m 6= k does not admit any transcendentality argument for the vanishing of

α[ j1 j2
2m 2k

] that do not occur in qF
±(s)
m,k . Already in the even case, the lowest-weight integration

constant α0,0
2,3 = 2

3ζ3 E0(6, 0) contributing to F
+(3)
2,3 still has a non-trivial analogue ζ3 E0(6) of

lower transcendental weight which does occur in α[ 0 2
6 4 ] [27].

5 Laplacian, seed functions and lower-depth terms for F
−(s)
m,k

We shall now extend the analysis of the even modular invariants F
+(s)
m,k in the previous sections

to their odd counterparts F
−(s)
m,k . As we will see, the absence of Laurent polynomials in the

expansion of F
−(s)
m,k and their Poincaré seeds around the cusp will simplify certain steps. At the

same time, the iterated-integral representations of odd modular invariants will turn out to pose
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additional challenges and introduce more diverse integration constants α[. . .] as compared to the

even case.

5.1 Laplacian of odd combinations of βsv

In the previous sections, we have solved the Laplace system (3.7) for the even combinations

βsv+, j
m,k in terms of Poincaré seeds f

+(s)
m,k . We now turn to the odd combinations βsv−, j

m,k with

m < k and 0 ≤ j ≤ 2m−2, since for m = k all βsv−, j
m,k vanish. One difference to the even case

is that while βsv+,m−1
m,k was a pure shuffle according to (3.8), this is no longer true for the odd

combination. Instead we now find that

βsv−,m
m,k − βsv−,m−2

m,k = βsv
[
m−2
2m

]
βsv
[

k
2k

]
− βsv[ m

2m ] βsv
[
k−2
k

]

=
(k−1)!(k−2)!(m−1)!(m−2)!

(2k−1)!(2m−1)!
(π∇)Ek(π∇)Em − (π∇)Em(π∇)Ek

y2
(5.1)

mod lower depth

is a combination of shuffles. In the second step we have used (2.29) to express this in terms of

Cauchy–Riemann derivatives of Em and Ek.

More generally, we define in analogy with (3.14) for ℓ ≥ 1

J
−[ℓ]
m,k =

(π∇)ℓEm(π∇)ℓEk − (π∇)ℓEk(π∇)ℓEm

2y2ℓ
, (5.2)

which is the odd combination of the gradients of the Eisenstein series. It is purely imaginary

and we have from (5.1)

βsv−,m
m,k − βsv−,m−2

m,k = −2(k−1)!(k−2)!(m−1)!(m−2)!
(2k−1)!(2m−1)! J

−[1]
m,k mod lower depth , (5.3)

which serves as the substitute for source term J
+[0]
m,k = EmEk appearing for the even combinations

βsv+, m−1
m,k in (3.8). More generally, the odd counterpart of the dictionary (3.21) between βsv+

and J
+[ℓ]
m,k is (for 1 ≤ ℓ ≤ m−1)

J
−[ℓ]
m,k =

(2m−1)!(2k−1)!
2
[
(m−1)!(k−1)!

]2
[ ℓ∏

j=1

(m−j)(k−j)
](

βsv−,m−ℓ−1
m,k −βsv−, m+ℓ−1

m,k

)
mod lower depth (5.4)

and the recurrence (3.16) immediately carries over to the odd case upon replacing J
+[ℓ]
m,k → J

−[ℓ]
m,k

on both sides of the equation for ℓ ≥ 1 (noting that J
−[0]
m,k = 0).

We take βsv−, j
m,k in the range 0 ≤ j ≤ m−1 as shuffle-independent representatives which is

one value more than in the even case studied in section 3.2. The range for the superscripts j

is again such that the holomorphic Eisenstein series in (3.7) never contribute to the Laplacians

of βsv−, j
m,k . As a consequence of (3.7), the first time the source term J

−[1]
m,k is introduced by the

Laplacian is ∆βsv−,m−1
m,k . The Laplace system is now given in terms of an m×m matrix M−

ji as

∆βsv−, j
m,k =

m−1∑

i=0

M−
jiβ

sv−, i
m,k − 2

[(m−1)!(k−1)!]2
(2m−1)!(2k−1)!δj,m−1J

−[1]
m,k mod lower depth (5.5)
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with 0 ≤ j ≤ m−1 and

M−
ji =





j
(
2m− j − 1

)
+
(
m+ k − 2− j

)(
k −m+ j + 1

)
for i = j ,

j
(
k −m+ j

)
+ δj,m−1(m− 1)(k − 1) for i = j − 1 ,

(
2m− 2− j

)(
m+ k − j − 2

)
for i = j + 1 ,

0 otherwise .

(5.6)

The contribution δj,m−1 in the second line of (5.6) is due to having to form the combination (5.3)

for the source.

Examples of (5.5) for small m < k are

∆

(
βsv−,0
2,3

βsv−,1
2,3

)
=

(
6 6

4 8

)(
βsv−,0
2,3

βsv−,1
2,3

)
− 1

90

(
0

J
−[1]
2,3

)
mod lower depth ,

∆

(
βsv−,0
2,4

βsv−,1
2,4

)
=

(
12 8

6 14

)(
βsv−,0
2,4

βsv−,1
2,4

)
− 1

420

(
0

J
−[1]
2,4

)
mod lower depth , (5.7)

∆



βsv−,0
3,4

βsv−,1
3,4

βsv−,2
3,4


 =



10 20 0

2 16 12

0 12 18






βsv−,0
3,4

βsv−,1
3,4

βsv−,2
3,4


− 1

2100




0

0

J
−[1]
3,4


 mod lower depth .

The matrix M−
ji can be diagonalised and a large number of examples suggests that the spectrum

in the case of odd modular invariant combinations is given by

s(s−1) with s ∈ {k−m+1, k−m+3, . . . , k+m−3, k+m−1} . (5.8)

As we have m < k the value s = 1 never occurs. Comparing with the spectrum (3.23) in the case

of even modular invariants F
+(s)
m,k , we see that odd modular invariants F

−(s)
m,k have the opposite

correlation between s and the transcendental weight w = k+m: The F
+(s)
m,k of even (odd) weight

w = k+m have even (odd) s whereas F
−(s)
m,k of even (odd) weight w = k+m have odd (even) s.

At odd weight m+k = 5, for instance, the eigenvalues are characterised by odd s = 3 in case of

F
+(3)
2,3 but by even s = 2, 4 in case of F

−(2)
2,3 ,F

−(4)
2,3 . Conversely, even weight m+k = 6 gives rise

to even s = 4 for F
+(4)
2,4 and odd s = 3, 5 for F

−(3)
2,4 ,F

−(5)
2,4 .

We can proceed similarly to (3.24) and study the diagonalisation of M− by writing the linear

combination

β̃−
(s) =

m−2∑

i=0

vi(s)β
sv−, i
m,k , (5.9)

expressed in terms of the eigenvector v(s) =
(
v0(s), . . . , v

m−2
(s)

)T
of (M−)T . With (5.9) the Laplace

equation (5.5) reduces to

(
∆− s(s−1)

)
β̃−
(s) = α(s)

(π∇)Em(π∇)Ek − (π∇)Ek(π∇)Em

y2
mod lower depth (5.10)

for some rational coefficients α(s).
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Again, since M− is tridiagonal, the eigenvalue equation (M−)Tv(s) = s(s−1)v(s) translates

into a three-term recurrence given by

M−
i−1,i v

i−1
(s) +

(
M−

ii − s(s−1)
)
vi(s) +M−

i+1,i v
i+1
(s) = 0 , (5.11)

with the boundary conditions v−1
(s) = vm(s) = 0. In order to have a non-zero solution for v(s) we

see that both v0(s) and vm−1
(s) must be non-zero so in particular the constants α(s) in equation

(5.10) in front of the source term will never vanish.

As it happened in the even case, also in the odd sector and for generic m ≤ k and s in (5.8)

we do not have a closed-form solution. However, for m < k and s = k−m+1, corresponding to

the lowest possible eigenvalue in (5.8), one can prove that

vi(s) =
(−1)iΓ(2m−1)

i! Γ(2m−i−1)(1+δi,m−1)
, (5.12)

where we normalised v0(s) = 1 obtaining an expression extremely similar to the even eigenvector

(3.27) corresponding to the lowest eigenvalue.

For other configurations of m, k and s one can find closed expressions in a few instances

and we have used them and large scans over matrices M−
ji given in (5.6) to test the claimed

spectrum (5.8) in numerous cases.

In conclusion, similarly to (3.28), we now study the solutions to the Laplace problem

(
∆− s(s−1)

)
F
−(s)
m,k =

(π∇)Em(π∇)Ek − (π∇)Ek(π∇)Em

2y2
(5.13)

s ∈ {k−m+1, k−m+3, . . . , k+m−3, k+m−1} ,

where we wrote out the source J
−[1]
m,k for definiteness. As suggested by the notation we are

looking for modular invariant solutions F
−(s)
m,k that are odd under τ → −τ̄ . The source term

on the right-hand side has transcendental weight m+k which is also the transcendental weight

of F
−(s)
m,k .

Similar to the even sector, equation (5.13) is the most general one to consider in the odd case

when restricting to sources built out of J
−[ℓ]
m,k , since a source with ℓ > 1 can always be reduced

to J
−[1]
m,k using equation (3.16) adapted to the odd case and after redefining the function F

−(s)
m,k .

5.2 Solution to odd Laplace equations via Poincaré series

The strategy for solving (5.13) will be the same as in section 3.3, i.e. we shall construct a

Poincaré seed f
−(s)
m,k for F

−(s)
m,k and recall our assumption m < k. After having folded ∇Ek and

its complex conjugate (see section 6.4 for the alternative folding) a solution to (5.13) can be

obtained in terms of an absolutely convergent Poincaré sum by solving

(
∆− s(s−1)

)
f
−(s)
m,k = j

−[1]
m,k , (5.14)
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where one has to insert the ℓ = 1 instance of the Poincaré seed

j
−[ℓ]
m,k =

(−4)k(k)ℓB2k

2(2k)!
yk−ℓ

(
(π∇)ℓ − (π∇)ℓ

)
Em

= (−1)k+ℓ+1 B2k(k)ℓ
(2k)!Γ(m)

(4y)k
∞∑

n=1

nm−1σ1−2m(n)(qn − q̄n)

m−1∑

a=0

(4ny)−a Γ(m+a)

a!Γ(m−a)

×
[
− (a+1−ℓ)ℓ +

ℓ∑

s=0

(
ℓ

s

)
(a+1−ℓ)ℓ−s(4ny)

s
]

(5.15)

= i(−1)k+ℓB2k(k)ℓΓ(2m)

(2k)!Γ(m)
(4y)k

m−1∑

a=0

Γ(m+a)

a!Γ(m−a)

×
ℓ∑

s=1

(
ℓ

s

)
(a+1−ℓ)ℓ−s (4y)

s−a Im[E0(2m, 0m+a−s−1)]

of J
−[ℓ]
m,k with ℓ ≤ m−1 obtained in analogy with section 3.4. Note that there is no Laurent-

polynomial part as this would be incompatible with being odd under τ → −τ̄ (that exchanges

q ↔ q̄ and keeps y invariant).

The solution of (5.14) proceeds as in section 3.3 except for that there is no zero mode c0(y).

We find

f
−(s)
m,k = i(−1)kB2k(2m−1)!

2Γ(2k)Γ(m)

k∑

ℓ=k−m+1

g−m,k,ℓ,s(4y)
ℓ Im E0(2m, 0k+m−ℓ−1) (5.16)

with

g−m,k,ℓ,s =
Γ(ℓ)

Γ(ℓ+s)

k∑

i=ℓ

(ℓ+1−s)i−ℓΓ(s+i)Γ(m+k−i)
Γ(k−i+1)Γ(i+1)Γ(m−k+i)

, (5.17)

see (3.38) for the analogous coefficients g+m,k,ℓ,s in the even seed functions.

5.2.1 Examples of source terms at m+ k ≤ 7

The simplest examples of the seeds j
−[ℓ]
m,k in (5.15) with ℓ ≤ m−1 are given by

j
−[1]
2,3 =

16iy4

105
ImE0(4) +

8iy3

105
Im E0(4, 0) ,

j
−[1]
2,4 =

32iy5

1575
ImE0(4) +

16iy4

1575
ImE0(4, 0) , (5.18)

j
−[1]
2,5 =

16iy6

6237
ImE0(4) +

8iy5

6237
Im E0(4, 0) ,

as well as

j
−[1]
3,4 =

64iy5

315
Im E0(6, 0) +

32iy4

105
Im E0(6, 02) +

16iy3

105
ImE0(6, 03) , (5.19)

j
−[2]
3,4 = −256iy6

63
ImE0(6)−

256iy5

63
Im E0(6, 0) −

64iy4

21
Im E0(6, 02)−

32iy3

21
Im E0(6, 03) .
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5.2.2 Examples of Poincaré seeds at m+ k ≤ 7

The simplest examples of the seed functions (5.16) of the F
−(s)
m,k resulting from the expressions

for j
−[1]
m,k in the previous section are given by

f
−(2)
2,3 = −4iy3

315
Im E0(4, 0) −

iy2

63
Im E0(4, 02) , f

−(4)
2,3 = −4iy3

315
ImE0(4, 0) ,

f
−(3)
2,4 = − 2iy4

1575
ImE0(4, 0) −

iy3

675
Im E0(4, 02) , f

−(5)
2,4 = − 2iy4

1575
Im E0(4, 0) , (5.20)

f
−(4)
2,5 = − 4iy5

31185
Im E0(4, 0) −

iy4

6930
Im E0(4, 02) , f

−(6)
2,5 = − 4iy5

31185
Im E0(4, 0) ,

as well as

f
−(2)
3,4 = −4iy4

315
Im E0(6, 02)−

34iy3

945
Im E0(6, 03)−

iy2

27
Im E0(6, 04) ,

f
−(4)
3,4 = −4iy4

315
Im E0(6, 02)−

8iy3

315
ImE0(6, 03) , (5.21)

f
−(6)
3,4 = −4iy4

315
Im E0(6, 02)−

2iy3

315
ImE0(6, 03) .

5.3 Step form for odd Laplace system

We shall now extend the step form of the Laplace equations in section 3.5 to odd seed functions.

The simplest examples for the step form in the odd case are obtained by regrouping the results

for seed functions in (5.18) to (5.21),

y2 Im[E0(4, 02)] = 63i(f
−(2)
2,3 − f

−(4)
2,3 ) ,

y3 Im[E0(4, 0)] =
315i

4
f
−(4)
2,3 , (5.22)

y4 Im[E0(4)] = −
315i

8
f
−(4)
2,3 − 105i

16
j
−[1]
2,3 ,

as well as

y3 Im[E0(4, 02)] = 675i(f
−(3)
2,4 − f

−(5)
2,4 ) ,

y4 Im[E0(4, 0)] =
1575i

2
f
−(5)
2,4 , (5.23)

y5 Im[E0(4)] = −
1575i

4
f
−(5)
2,4 − 1575i

32
j
−[1]
2,4 ,

and the analogous examples with m+k = 7, 8 can be found in appendix C.3.

The analogous step form involving f
−(s)
m,k and j

−[ℓ]
m,k at general m < k follows the logic of the

even case in section 3.5: The starting point is the j = 0 case of βsv−, j
m,k in (2.34) which requires

the maximum number of Laplace actions until a holomorphic Eisenstein series can be factored

out. As the odd counterpart of (3.60), we have

∑

γ∈B(Z)\SL(2,Z)

[
yk−m+1 Im[E0(2m, 02m−2)]

]
γ
= iρm,k β

sv−, 0
m,k mod lower depth (5.24)
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with the same rational prefactor ρm,k given by (3.61) as in the even case. Starting from (5.24),

repeated action of the shifted Laplace operator Oℓ = − 1
4ℓ(∆−ℓ(ℓ−1)) introduced in (3.63) yields

yk−m+1+r Im[E0(2m, 02m−2−r)] on the left-hand side. This follows from

∆
(
yn Im[E0(2m)]

)
=

4nyn+1

(2πi)2m
Im[G2m] + n(n−1)yn Im[E0(2m)] , (5.25)

∆
(
yn Im[E0(2m, 0p)]

)
= −4nyn+1 Im[E0(2m, 0p−1)] + n(n−1)yn Im[E0(2m, 0p)] , p 6= 0 ,

with Im[G2m] = Im[G0
2m], see (3.62) for the even counterpart. On the right-hand side, we obtain

a sequence of Oℓ acting on βsv−, 0
m,k which can be simplified via (3.7), (r = 1, 2, . . . , 2m−2)

∑

γ∈B(Z)\SL(2,Z)

[
yk−m+1+r Im[E0(2m, 02m−2−r)]

]
γ

(5.26)

∼ Ok−m+rOk−m+r−1 . . .Ok−m+2Ok−m+1β
sv−, 0
m,k mod lower depth

with r = 1, 2, . . . , 2m−2, see (3.66) for the even counterpart. After 2m−1 Laplace actions on

(5.24), one arrives at the following analogue of (3.68) and (3.69),

1

(2πi)2m

∑

γ∈B(Z)\SL(2,Z)

[
yk+m Im(G2m(τ))

]
γ

=
i(2k)!Γ(k)

2(−4)kB2kΓ(k+m)

{
G2m

(2πi)2m
(π∇)mEk −

G2m

(2πi)2m
(π∇)mEk

}
(5.27)

= − i(2k)!(2k−1)!(k−m)

2(−4)k+mB2kΓ(k+m)(k−m)!

{
(τ−τ̄)2mG2mβsv

[
k−m−1

2k

]
− G2m

(2πi)2m
βsv
[
k+m−1

2k

]}

mod lower depth ,

where we used (2.29) in the last step.

5.4 Comparison with cuspidal MGFs

In the same way as the F
+(s)
m,k were compared with the modular graph functions Ca,b,c in section

3.6, we shall now relate the simplest F
−(s)
m,k to imaginary MGFs. A variety of imaginary and

thereby cuspidal MGFs have been identified in [19, 27]. Due to the absence of F
−(s)
m,k at weight

m+k = 4 (the source vanishes) we will spell out the seed functions for their bases at m+k = 5, 6.

5.4.1 Weight m+k = 5

At weight m+k = 5, the shuffle irreducible imaginary MGFs are spanned by the quantities B2,3

in section 5 of [27] and A1,2;5 in section 6 of [19] subject to the Laplace equations

(∆ − 2)(2B2,3 + 3A1,2;5) = 42A1,2;5 ,

(∆− 6)A1,2;5 = 2(3A1,2;5 − J
−[1]
2,3 ) , (5.28)

(∆− 12)(3A1,2;5 − J
−[1]
2,3 ) = − 3

π4

(
G4(π∇)2E3 −G4(π∇)2E3

)
,
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see in particular equations (5.19a) and (5.19b) of [27]. This can be lined up with the Laplace

equations (5.7) of the βsv−, j
m,k at (m,k) = (2, 3), consistent with the βsv-representations (see [27]

for the lower-depth terms)

2B2,3 + 3A1,2;5 = 1260
(
βsv[ 2 1

4 6 ]− βsv[ 3 0
6 4 ]

)
mod lower depth ,

A1,2;5 = 180
(
βsv[ 1 2

4 6 ]− βsv[ 2 1
6 4 ]

)
+ 120

(
βsv[ 2 1

4 6 ]− βsv[ 3 0
6 4 ]

)
mod lower depth ,

3A1,2;5 − J
−[1]
2,3 = 180

(
βsv[ 0 3

4 6 ]− βsv[ 1 2
6 4 ]

)
+ 540

(
βsv[ 1 2

4 6 ]− βsv[ 2 1
6 4 ]

)
(5.29)

+ 180
(
βsv[ 2 1

4 6 ]− βsv[ 3 0
6 4 ]

)
mod lower depth .

By translating the right-hand side into the leading-depth terms of the F
−(s)
m,k , we identify

A1,2;5 = −2F−(4)
2,3 , B2,3 =

21

5
F
−(2)
2,3 −

6

5
F
−(4)
2,3 . (5.30)

Moreover, (5.28) matches the Laplace system of the seed functions in (5.22), which suggests the

Poincaré-series representations

∑

γ∈B(Z)\SL(2,Z)

[
y2 Im[E0(4, 02)]

]
γ
=

15i

2
(2B2,3 + 3A1,2;5) ,

∑

γ∈B(Z)\SL(2,Z)

[
y3 Im[E0(4, 0)]

]
γ
= −315i

8
A1,2;5 , (5.31)

∑

γ∈B(Z)\SL(2,Z)

[
y4 Im[E0(4)]

]
γ
=

105i

16
(3A1,2;5 − J

−[1]
2,3 ) .

Note that (5.30) can be solved to express the Laplace eigenfunctions via imaginary combinations

of lattice sums

F
−(4)
2,3 = −1

2
A1,2;5 = −

i

3

(
Im τ

π

)5

Im
∑

p1,p2,p3∈Λ′

δ(p1+p2+p3)

p22p
3
3p̄

3
1p̄

2
3

,

F
−(2)
2,3 = −1

7
A1,2;5 +

5

21
B2,3 , (5.32)

=
5

63
J
−[1]
2,3 +

2i

21

(
Im τ

π

)5

Im

{
5

∑

p1,p2,p3,p4∈Λ′

δ(p1+p2+p3+p4)

p2p23p
2
4p̄1p̄2p̄

3
4

−
∑

p1,p2,p3∈Λ′

δ(p1+p2+p3)

p22p
3
3p̄

3
1p̄

2
3

}
.

By the exhaustive scan of weight-five MGFs in [43], the quadruple sum over four lattice momenta

p1, p2, p3, p4 in F
−(2)
2,3 cannot be reduced to simpler lattice sums over ≤ 3 momenta.

5.4.2 Weight m+k = 6

The same kind of discussion applies to the imaginary cusp forms in the (m,k) = (2, 4) sector:

The imaginary parts of the complex modular graph forms B2,4 and B′
2,4 introduced in section
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9.2 of [43] obey a Laplace system11

∆(B2,4 − B2,4) = 20(B2,4 − B2,4) + 4 J
−[1]
2,4 , (5.33)

∆(B′
2,4 − B

′
2,4) = 6(B′

2,4 − B
′
2,4)− 180(B2,4 − B2,4) ,

consistent with the Poincaré-series representations

∑

γ∈B(Z)\SL(2,Z)

[
y3 Im[E0(4, 02)]

]
γ
=

105i

8
(B′

2,4 − B
′
2,4) ,

∑

γ∈B(Z)\SL(2,Z)

[
y4 Im[E0(4, 0)]

]
γ
=

1575i

8
(B2,4 − B2,4) , (5.34)

∑

γ∈B(Z)\SL(2,Z)

[
y5 Im[E0(4)]

]
γ
= −1575i

32
(2B2,4 − 2B2,4 + J

−[1]
2,4 ) .

Note that the Laplace action on the last lines of (5.31) and (5.34) yields

∑

γ∈B(Z)\SL(2,Z)

[
(−y5) ImG4

]
γ
=

315i

16

(
G4(π∇)2E3 −G4(π∇)2E3

)
, (5.35)

∑

γ∈B(Z)\SL(2,Z)

[
(−y6) ImG4

]
γ
=

945i

8

(
G4(π∇)2E4 −G4(π∇)2E4

)
,

consistent with (5.27). Unfortunately, it currently appears challenging to confirm (5.31) and

(5.34) by direct computation: From [54, 55] we know that the Poincaré sums over the seeds

ya Im[E0(2m, 0b)] must involve more complicated Kloosterman sums and, in particular, the re-

sults of [20] cannot be applied to directly determine these imaginary cusp forms. For the moment,

we leave them as conjectures supported by their consistency with the Laplacian which commutes

with the convergent Poincaré sum over ya Im[E0(4, 0b)].

5.5 Reinstating lower depth for odd modular invariants

Our next step is to reinstate the βsv of depth ≤ 1 into the iterated-integral representation of

the odd functions F
−(s)
m,k , following an extension of the strategy for the even case in section 4. At

leading depth two, the F
−(s)
m,k are expressed in terms of the βsv−, j

m,k as we showed in section 5.1 by

diagonalising the corresponding Laplace system (5.13). The F
−(s)
m,k must have vanishing Laurent

polynomial (and in fact vanishing Fourier zero mode, see also section 7.1) since they are by

definition odd under the transformation τ → −τ̄ that sends y → y and q ↔ q̄.

In order to determine the lower-depth βsv in compliance with a vanishing Laurent poly-

nomial we again resort to the Cauchy–Riemann equation that is compatible with the Laplace

system (5.13). The generalisation of (4.2) to the odd case is

(π∇)sF−(s)
m,k =

s∑

i=0

c−i (π∇)iEm(π∇)s−iEk + (π∇)sH− , (5.36)

11We are grateful to Jan Gerken for providing the Laplace equations of B2,4 and B′
2,4.
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where H− is a homogeneous solutions to the Laplace equation (∆− s(s−1))H− = 0 that is not

required to be modular invariant on its own, only its sth Cauchy–Riemann derivative has to be

modular.

The coefficients c−i appearing in (5.36) now have to satisfy

c−0 = −1

2
, c−s =

1

2
, (5.37)

[
m(m−1)− i(i+1)

]
c−i+1 +

[
k(k−1)− (s−i)(s−i−1)

]
c−i =

(
k

2

)(
s− 1

i− 1

)
−
(
m

2

)(
s− 1

i+ 1

)

for 0 ≤ i ≤ s−1. These equations can be solved by iteration.

In order to write a solution to the Laplace equation that is expressed in terms of the βsv at all

depths, we proceed as in section 4. Starting from the depth-two terms βsv−, j
m,k that come from the

diagonalisation of the Laplacian, we first perform the substitution βsv−, j
m,k → β̂sv−, j

m,k from (4.8).

This substitution generates a specific set of depth-one terms that are constructed so that the

Cauchy–Riemann derivative gives modular expressions (π∇)•E•, compatible with (5.36). This

produces a solution to the Laplace equation at depths two and one.

We then compute the Laurent polynomial of this combination of depth-two and depth-one

terms using the degeneration limits (4.10) of the βsv. We know that F
−(s)
m,k has a vanishing Laurent

polynomial since it is odd and therefore all depth-zero y-powers coming from the combinations

of the β̂sv−, j
m,k must be cancelled.

Non-positive powers of y can simply be cancelled by adding their negatives to the β̂sv, j
m,k

combinations since they are in the kernel of (π∇)s. This is also consistent with the fact that

non-positive powers of y are ubiquitous in the generating series of MGFs (see [25,27]).

If the Laurent polynomial of the β̂sv−, j
m,k features positive powers of y, the only possibility

compatible with the Laplace and Cauchy–Riemann equations is ys. Since the generating series

of MGF in [27] does not introduce positive powers of y in isolation12, the appropriate way of

removing ys from the Laurent polynomial is to add a suitable multiple of βsv
[
s−1
2s

]
. Indeed,

the depth-one contributions in the substitution rule (4.8) applied to a single β̂sv−, j
m,k in F

−(s)
m,k

introduces the positive power ζ2m−1y
k−m+1 at the cusp. This power s = k−m+1 is part of the

spectrum (5.13) in the odd case but does not occur in the even spectrum (3.28). That is why only

the odd functions F
−(k−m+1)
m,k require corrections of the Laurent polynomial via βsv

[
k−m

2k−2m+2

]
,

and we did not encounter such terms for the even F
+(s)
m,k .

As we know from (2.29), βsv
[
s−1
2s

]
is proportional to Es up to a term involving ζ2s−1y

1−s.

This power of y is in the kernel of both (∆ − s(s−1)) and (π∇)s such that an extra term

proportional to βsv
[
s−1
2s

]
will add a contribution with (π∇)sH− ∝ y2sG2s to the Cauchy–

Riemann equation (5.36). As already anticipated, apart from holomorphic Eisenstein series, we

will also find iterated integrals of holomorphic cusp forms in the homogeneous solutions H−

relevant to F
−(s)
m,k with s ≥ 6 to be discussed in Part II.

Since we are seeking an odd function with vanishing Laurent polynomial, the addition of the

βsv
[
s−1
2s

]
needs to be combined with antiholomorphic corrections E0(2s, 0p) from the integration

12The coefficients of βsv in the expansion of the generating series Y τ in [27] involve non-positive powers of y

from the operator exp(− ǫ0
4y
) acting on a suitable initial value at τ → i∞.
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constants α[ j1 j2
k1 k2

] at depth two. As will be detailed in section 5.6, the α[. . .] contributing to

F
−(k−m+1)
m,k are tailored to effectively flip the sign of the E0(2s, 0p) in (2.19) for Es. In this

way, the q, q̄-terms of βsv
[
s−1
2s

]
are promoted to the odd analogue E

(−)
s of the non-holomorphic

Eisenstein series Es (2.19) which we define as

E(−)
s (τ) = −2iΓ(2s)

Γ(s)

s−1∑

a=0

(4y)−a Γ(s+a)

a!Γ(s−a) Im E0
(
2s, 0s−1+a; τ

)
. (5.38)

These odd functions solve the desired eigenvalue equation (∆ − s(s−1))E(−)
s = 0 but are not

modular invariant. In summary, for all values of m < k considered, the subtraction of βsv
[
s−1
2s

]

needed for a vanishing Laurent polynomial of F
−(s)
m,k is associated with ζm+k−sE

(−)
s and occurs

only for the eigenvalue s = k−m+1.

In case of the even F
+(s)
m,k , the matching of the Laurent polynomial with the results from the

Poincaré series in section 4.3 could be achieved solely in terms of non-positive powers of y. For

the MGFs among the F
+(s)
m,k , one can give a heuristic explanation of why the even case did not

involve any analogue of the above βsv
[
s−1
2s

]
beyond the substitution rule (4.6): We have checked

up to m+k ≤ 14 that all the F
+(s)
m,k with an MGF representation are expressible in terms of

Ca,b,c, Es and ζ2n−1, i.e. in terms of sums over no more than three lattice momenta. The space

of F
+(s)
m,k with an MGF representation differs from the space of all F

+(s)
m,k by iterated integrals

of holomorphic cusp forms (cf. Part II), and the counting in (3.79) therefore suggests that at

arbitrary weight, all F
+(s)
m,k in the MGF subspace are expressible in terms of Ca,b,c. While all

even F
+(s)
m,k that enjoy lattice-sum expressions must therefore admit a representation in terms of

three lattice momenta, the lattice-sum representations of the odd F
−(s)
m,k in turn may necessitate

four or more lattice momenta as in the weight-five example (5.32). These extra momenta give

room for the additional complexity of having βsv
[
s−1
2s

]
, e.g. via independent appearances of Es

and ζ2n−1 in the Cauchy–Riemann derivatives of certain F
−(s)
m,k .

In conclusion, performing the above steps we arrive at a combination of βsv that we call
qF
−(s)
m,k that is odd under τ → −τ̄ and solves the correct Laplace equation. As in the even case,

we are not guaranteed that the function is invariant under modular transformations and so it

may differ from the modular invariant F
−(s)
m,k that was constructed from the Poincaré seed. In

the present work we shall focus on cases where qF
−(s)
m,k = F

−(s)
m,k and relegate the other cases to the

companion Part II.

5.5.1 Examples at weight m+k = 5

We shall now apply the prescription above to the simplest odd functions with Poincaré-series

representations in section 5.4. At weight five, one arrives at

F
−(2)
2,3 = −90 (βsv[ 1 2

4 6 ]− βsv[ 2 1
4 6 ]− βsv[ 2 1

6 4 ] + βsv[ 3 0
6 4 ])

− 60βsv[ 16 ] ζ3 +
15ζ3
y

βsv[ 26 ] +
9ζ5
y

βsv[ 04 ]−
9ζ5
4y2

βsv[ 14 ]−
5ζ3
7

βsv[ 14 ]−
ζ5
40

,
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F
−(4)
2,3 = −30 (3βsv[ 1 2

4 6 ] + 2βsv[ 2 1
4 6 ]− 3βsv[ 2 1

6 4 ]− 2βsv[ 3 0
6 4 ]) (5.39)

+ 40ζ3β
sv[ 16 ] +

15ζ3
y

βsv[ 26 ]−
6ζ5
y

βsv[ 04 ]−
9ζ5
4y2

βsv[ 14 ] +
ζ5
360

,

where the terms beyond the reach of the substitution rule (4.6) are −5ζ3
7 βsv[ 14 ] − ζ5

40 for F
−(2)
2,3

and ζ5
360 for F

−(4)
2,3 . The multiples of ζ5 are examples of the non-positive powers of y which are

added by hand to the βsv-representations of F
−(s)
m,k . The other term ζ3β

sv[ 14 ] in the second line of

(5.39) together with the antiholomorphic integration constants α[. . .] to be detailed in section 5.6

conspire to the desired multiple of ζ3y
2 and the odd quantity ζ3E

(−)
2 in (5.38) to get a vanishing

Laurent polynomial for F
−(2)
2,3 . In the resulting Cauchy–Riemann equation

(π∇)2F−(2)
2,3 =

1

2
(π∇E2)(π∇E3)−

1

2
E2(π∇)2E3 + (Im τ)4G4

(
3E3 +

5

7
ζ3

)
, (5.40)

the last term ∼ ζ3(Im τ)4G4 corresponds to (π∇)2H− in the notation of (5.36). The appearance

of such extra terms is consistent with the quadruple lattice sum for F
−(2)
2,3 in (5.32) while the

simpler βsv representation of F
−(4)
2,3 without any analogue of E

(−)
2 lines up with the sum over

three lattice momenta in (5.32). Note that (5.39) reproduces the βsv representations of the odd

MGFs B2,3 and A1,2;5 in [27] through the dictionary (5.30).

5.5.2 Examples at weight m+k = 6

The next examples are

F
−(3)
2,4 = −420 (βsv[ 1 3

4 8 ]− βsv[ 2 2
4 8 ]− βsv[ 3 1

8 4 ] + βsv[ 4 0
8 4 ])

+
70ζ3
y

βsv[ 38 ] +
15ζ7
2y2

βsv[ 04 ]−
15ζ7
8y3

βsv[ 14 ]− 280ζ3β
sv[ 28 ]−

7ζ3
2

βsv[ 26 ]−
ζ7
48y

,

F
−(5)
2,4 = −420βsv[ 1 3

4 8 ]− 315βsv[ 2 2
4 8 ] + 420βsv[ 3 1

8 4 ] + 315βsv[ 4 0
8 4 ] (5.41)

+ 210ζ3β
sv[ 28 ] +

70ζ3
y

βsv[ 38 ]−
45ζ7
8y2

βsv[ 04 ]−
15ζ7
8y3

βsv[ 14 ] +
ζ7

288y
.

The Laurent polynomials are adjusted to vanish by means of the last two terms −7ζ3
2 βsv[ 26 ]− ζ7

48y

in F
−(3)
2,4 and the last term ζ7

288y in F
−(5)
2,4 . As detailed in section 5.4 all these functions given here

are modular invariant and expressible in terms of the MGFs B2,4 and B′
2,4 introduced in section

9.2 of [43]

F
−(3)
2,4 =

1

4
(B2,4 − B2,4) +

7

360
(B′

2,4 − B
′
2,4) , F

−(5)
2,4 =

1

4
(B2,4 − B2,4) , (5.42)

and reinstating their real parts ReB2,4 = −6F+(4)
2,4 − E2E4 and ReB′

2,4 = 180F
+(4)
2,4 − 3ζ3E3 [43]

leads to

B′
2,4 = 37800βsv [ 2 2

4 8 ]− 25200ζ3β
sv[ 28 ]−

9ζ3ζ5
4y2

− ζ7
4y

+
225ζ3ζ7
16y4

− 125ζ9
12y3

, (5.43)

B2,4 = −1680βsv[ 1 3
4 8 ]− 1260βsv[ 2 2

4 8 ] + 840ζ3β
sv[ 28 ] +

280ζ3
y

βsv[ 38 ]−
ζ7

180y
− 35ζ3ζ7

32y4
+

25ζ9
72y3

.
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The lattice-sum representations of B2,4 and B′
2,4 given in section 9.2 of [43] involve three and

four lattice momenta, respectively. The quadruple sum in B′
2,4 only enters F

−(3)
2,4 (but not F

−(5)
2,4 )

via (5.42) and can be viewed as triggering the term ∼ ζ3β
sv[ 26 ] in the second line of (5.41)

associated with the odd non-modular Laplace eigenfunction E
(−)
3 .

5.5.3 Higher weight

Examples at weight m+k = 7, 8 are spelt out in appendix E. Starting from weight m+k = 7,

the odd Laplace eigenfunctions may involve eigenvalues s ≥ 6 associated with holomorphic cusp

forms in the Cauchy–Riemann equation (5.36). Indeed, the Poincaré series F
−(6)
2,5 and F

−(6)
3,4

cannot be individually identified with MGFs. The combinations of βsv in appendix E.1 instead

refer to qF
−(6)
2,5 and qF

−(6)
3,4 and only the particular combination

3qF
−(6)
2,5 + qF

−(6)
3,4 = 3F

−(6)
2,5 + F

−(6)
3,4 (5.44)

is modular invariant and expressible via MGFs. The individual modular invariant completions

F
−(6)
2,5 and F

−(6)
3,4 via primitives of the holomorphic cusp form at weight 12 are discussed in Part II.

All the F
−(s)
m,k at m+k = 8 with βsv-representations in appendix E.2 are MGFs whereas each

weight m+k ≥ 9 features at least one Laplace eigenvalue s with iterated integrals of holomorphic

cusp forms in the modular invariant completion discussed in Part II. The βsv representations

of all the qF
−(s)
m,k up to and including weight m+k = 14 are given in an ancillary file in the

arXiv submission of this work. Note that higher-weight examples starting from F
−(6)
2,7 may have

contributions from both E
(−)
s and holomorphic cusp forms.

5.6 Completing integration constants α at depth two

The combined spectra of F
+(s)
m,k and F

−(s)
m,k in (3.28) and (5.13) with given m < k involve

all eigenvalues s ∈ {k−m+1, k−m+2, . . . , k+m−1} with multiplicity one, leading to the to-

tal number of 2m−1 even or odd modular invariants. By imposing the reality properties

F
±(s)
m,k = ±F±(s)

m,k on their βsv sector qF
±(s)
m,k , we can solve for all the antiholomorphic integra-

tion constants α[ j1 j2
2m 2k

] = −α[ j2 j1
2k 2m

] at depth two with j1+j2 ≥ m+k−2, thereby filling some

of the gaps in section 4.6.

In the previous subsection, some of the odd functions F
−(s)
m,k were seen to feature odd Laplace

eigenfunctions ζm+k−sE
(−)
s , signalled by the need to cancel Laurent monomials ys via βsv

[
s−1
2s

]
.

The antiholomorphic E0(2s, 0b) in the expression (5.38) for these E
(−)
s receive essential contri-

butions from the α[ j1 j2
2m 2k

] which violate the pattern of the αN,j
m,k (4.28) in the even case: All the

terms in αN,j
m,k are of the form ζ2m−1E0(2k, 0p) or ζ2k−1E0(2m, 0p) which clearly differ from the

additional terms ζm+k−sE0(2s, 0p) related to ζm+k−sE
(−)
s in the odd case. These additional terms

occur for Laplace eigenvalue s = k−m+1 and thereby introduce iterated Eisenstein integrals

ζm+k−sE0(2s, 0p) = ζ2m−1E0(2k−2m+2, 0p). The simplest examples are the terms ζ3E0(4, 0p) in

α[ 3 0
6 4 ] = −

ζ3
210
E0(4, 0) , α[ 4 0

6 4 ] = −
2ζ3
105
E0(4, 02) +

2ζ5
5
E0(4) (5.45)
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due to ζ3E
(−)
2 in F

−(2)
2,3 since they deviate from the ingredients ζ3E0(6, 0p) and ζ5E0(4, 0p) of the

even cases αN,0
2,3 seen in (4.29).

5.6.1 The missing cases with j1+j2 < m+k−2

As a next step, it remains to determine the α[ j1 j2
2m 2k

] with j1+j2 < m+k−2. These only occur in

the antiholomorphic derivatives (π∇)pF±(s)
m,k with 0 < p < s. Since there is no simple differential

equation for ∇ action on the βsv, the antiholomorphic derivatives of F
±(s)
m,k have to be determined

on the basis of the Laplace equations: For this purpose, we use a variant of (4.1) that can also

be viewed as the depth-two extension of (3.17),

π∇
(
(π∇)pF+(s)

m,k

y2p

)
= (s−p)(s+p−1)

(π∇)p−1F
+(s)
m,k

y2p−2
+

(π∇)p−1J
+[0]
m,k

y2p−2
,

π∇
(
(π∇)pF−(s)

m,k

y2p

)
= (s−p)(s+p−1)

(π∇)p−1F
−(s)
m,k

y2p−2
+

(π∇)p−1J
−[1]
m,k

y2p−2
. (5.46)

These equations serve as a recursion to determine higher antiholomorphic derivatives ∇p
F
±(s)
m,k

from lower ones ∇p−1
F
±(s)
m,k and the known βsv-representations of the derivatives of the sources.

Since we are here interested only in the βsv part that contains the integrations constants,

the following discussion is solely based on the βsv-solutions qF
±(s)
m,k to the differential equation

and the fact that sometimes qF
±(s)
m,k 6= F

±(s)
m,k does not affect the conclusions. We shall write F

±(s)
m,k

for simplicity even though the whole argument only relies on qF
±(s)
m,k .

In the first place, (5.46) only gives the ∇-derivative of the initially unknown
(
∇p

F
±(s)
m,k

)
/y2p

in terms of the (p−1)-th derivative. By making an ansatz for the depth-one and depth-two

terms in
(
∇p

F
±(s)
m,k

)
/y2p constructed out of βsv and products of derivatives of Eisenstein series,

we can fix a solution at depth one and depth two if the right-hand side is known. For p = 1,

we have construced βsv-representatives of the right-hand sides of (5.46) in sections 4 and 5.5,

respectively, and in general we shall use (5.46) to determine the antiholomorphic derivatives

iteratively.

The remaining information required for fixing a unique βsv-representative of
(
∇p

F
±(s)
m,k

)
/y2p

at any step are the depth-zero terms that are fixed by the known Laurent polynomial and

(π∇)pF+(s)
m,k = (π∇)pF+(s)

m,k +O(q, q̄) , (π∇)pF−(s)
m,k = O(q, q̄) , (5.47)

see (4.11) for the Laurent polynomials of F
+(s)
m,k while those of F

−(s)
m,k vanish.

By equating the full βsv representations of

∇p
F
±(s)
m,k = ±∇pF

±(s)
m,k , (5.48)

one can determine the complex-conjugation properties of the depth-two βsv occurring in this

relation. Considering this equation for fixed m ≤ k but all possible values of s and 0 ≤ p < s

shows that all βsv
[

j1 j2
2m 2k

]
with j1+j2 ≤ m+k−2 occur and their exact complex-conjugation
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properties are then fixed by (5.48). Since complex conjugation reflects the range of (j1, j2),

see (2.31), and squares to one, we can use this to determine the exact complex-conjugation

properties of all βsv for fixed m and k. The resulting formulæ for the complex conjugation of

the βsv are presented up to k1+k2 ≤ 28 in the ancillary file.

By comparing these complex-conjugation properties with the abstract (2.32), we can then

fix the antiholomorphic α[. . .] in (2.23). A variety of representative examples of ∇pF
±(s)
m,k and

∇p
F
±(s)
m,k can be found in appendix G, and all Cauchy–Riemann derivatives for m+k ≤ 14 are

given in the ancillary file. We note that for p ≥ m, antiholomorphic Eisenstein series and their

derivatives can appear explicitly in (5.48).

This strategy gives access to all the α[ j1 j2
2m 2k

] at depth two, for any 2 ≤ m ≤ k as well as

0 ≤ j1 ≤ 2m−2 and 0 ≤ j2 ≤ 2k−2. The case with m = k is considerably simpler than the

generic one with m < k, and the associated integration constants have already been determined

in section 4.6.1. The complete set of such α[ j1 j2
2m 2k

] with m+k ≤ 14 and m ≤ k can be found as

an ancillary file which also repeats the cases with m+k ≤ 6 from the arXiv submission of [97]

for completeness.

5.6.2 A conjectural pattern among the α

Investigating the outcome of the above algorithm leads to the following conjectural identity

− π∇
4y2

α[ j1 j2
k1 k2

] = j1 α[
j1−1 j2
k1 k2

] + j2 α[
j1 j2−1
k1 k2

] mod G0
k (5.49)

that we have checked for k1+k2 ≤ 28 and all admissible values of j1, j2. The differential operator

on the left-hand side simply removes the terminal zero of

− π∇
4y2
E0(2k, 0p) = E0(2k, 0p−1) , p ≥ 1 (5.50)

and acts for p = 0 as

−π∇
4y2
E0(2k) = −

G0
2k

(2πi)2k
. (5.51)

In order not to keep track of the antiholomorphic Eisenstein series in G0
2k we have added the

disclaimer mod G0
k in (5.49). For instance, this amounts to dropping the last term ∼ G0

4 in

− π∇
4y2

α[ 4 0
6 4 ] = 4α[ 3 0

6 4 ]−
2ζ5
5

G0
4

(2πi)4
, (5.52)

see (5.45) for the α[. . .] on both sides. We expect a simple explanation of the observation

(5.49) once the βsv and their integration constants are related to Brown’s single-valued iterated

Eisenstein integrals [33,35,36].

In fact, the conjectural identity (5.49) can be exploited to generate higher α[. . .]. As the

differential operator lowers the j-labels on α[. . .] we can determine lower labels from higher

labels mod G0
k. As the high labels with j1+j2 ≥ m+k−2 are fixed by the reality properties
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of F
±(s)
m,k , this allows us to bypass the investigation of the reality property (5.48) for p > 0

which requires constructing the Cauchy–Riemann derivatives of F
±(s)
m,k first. Since the α[. . .]

never contain unintegrated antiholomorphic Eisenstein series, the conjectural identity (5.49)

fixes them completely in terms of E0(2k, 0p).

6 Exhausting the seed functions

In section 3, we have constructed Poincaré seed functions for the F
±(s)
m,k by folding the Eisenstein

series, i.e. replacing it by its Poincaré series (2.39), of higher weight k ≥ m in the inhomogeneous

term J
+[0]
m,k and J

−[1]
m,k of the Laplace equation (3.28) and (5.13), respectively. This choice of folding

leads to convergent Poincaré sums, and we have given similar seeds for the other J
±[ℓ]
m,k at higher

values of ℓ. When consistently folding the Eisenstein series of higher weight in the even case,

the resulting seed functions (3.39) and (3.50) turn out to exhaust the yaRe[E0(2m, 0b)] with

a+b ≥ 2m−1 and a ≥ 1, b ≥ 0, see (3.66) and (3.67) for the accompanying term ∼ yk+m. A

similar statement holds for the odd case and seeds of the form ya Im[E0(2m, 0b)], see (5.15) and

(5.16).

In this section, we will discuss the role of certain yaRe[E0(2m, 0b)] and ya Im[E0(2m, 0b)] with

a ≥ 1, b ≥ 0 but a+b < 2m−1 as alternative seed functions for F
±(s)
m,k and J

±[ℓ]
m,k with m 6= k.

These cases arise from folding the Eisenstein series of lower weight m < k in the source term of

the Laplace equation (3.28) and (5.13) for F
±(s)
m,k .

6.1 Overview of seed functions with convergent Poincaré sums

Tables 1 to 3 below give samples of the leading-depth terms βsv±, j
m,k in (2.34) that were found to

arise from seed functions yaRe[E0(2m, 0b)] and ya Im[E0(2m, 0b)]. The (red) crosses in the tables

refer to cases that cannot be covered by βsv±, j
m,k and we shall comment on what kind of modular

objects these are and their more general seeds in section 7.4.

The (m,k) sectors of iterated Eisenstein integrals over G2m and G2k are spread out across

the diagonals a+b = m+k−1 ≥ 2m−1 of the tables. For instance, the βsv
2,3 referring to double

integrals over G4 and G6 as in (2.34) cover the diagonal with a+b = 4 in table 1, bounded by

0 ≤ b ≤ 2. The inequalities in the superscripts of βsv, j≤1
2,2 or βsv, j≤2

2,3 in table 1 are a shorthand for

the specific linear combinations of F
±(s)
m,k in (3.66) that are generated by the Poincaré sums over

the yaE0(4, 0b) in question. From the step forms for even Poincaré seeds in (3.55) and (3.58),

for instance, we can read off

βsv, j≤1
2,2 → −15

4
(2F

+(2)
2,2 + J

+[0]
2,2 ) = −135

2
(βsv+, 0

2,2 + 2βsv+, 1
2,2 ) mod lower depth , (6.1)

βsv, j≤2
2,3 → 105

16
(3J

+[0]
2,3 + J

+[1]
2,3 ) =

4725

4
(βsv+, 0

2,3 + 3βsv+, 1
2,3 + βsv+, 2

2,3 ) mod lower depth

and their counterparts in the odd case follow from step forms as in (5.22) and (5.23).

The same notation applies to tables 2 and 3 to indicate the schematic form of the Poincaré

sums over yaE0(6, 0b) and yaE0(8, 0b), leading to βsv
3,k and βsv

4,k, respectively. In the following
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m = 2:

a
b

0 1 2 3

1

2

3

4

5

6

7

×
×

βsv, j≤2
2,2

βsv, j≤2
2,3

βsv, j≤2
2,4

βsv, j≤2
2,5

βsv, j≤2
2,6

×
βsv, j≤1
2,2

βsv, j≤1
2,3

βsv, j≤1
2,4

βsv, j≤1
2,5

βsv, j≤1
2,6

βsv, j≤1
2,7

βsv, j=0
2,2

βsv, j=0
2,3

βsv, j=0
2,4

βsv, j=0
2,5

βsv, j=0
2,6

βsv, j=0
2,7

βsv, j=0
2,8

×
×
×
×
×
×
×

ւO1

ւO2 ւO2

ւO3 ւO3

ւO4 ւ. . .

ւ. . .

Table 1: Leading-depth terms βsv, j
2,k obtained from Poincaré sums over yaE0(4, 0b), together with

the action of the operators Oℓ defined in (3.63).

subsections, we will discuss the fields marked by ? in the diagonal a+b = 4 of table 2 and the

two diagonals a+b = 5, 6 of table 3 for which we have not yet spelt out a Poincaré series. The

black and red cross signposts will be discussed in sections 7.3 and 7.4, respectively.

m = 3:

a
b

0 1 2 3 4 5

1

2

3

4

5

6

7

×
×
×
?

βsv, j≤4
3,3

βsv, j≤4
3,4

βsv, j≤4
3,5

×
×
?

βsv, j≤3
3,3

βsv, j≤3
3,4

βsv, j≤3
3,5

βsv, j≤3
3,6

×
?

βsv, j≤2
3,3

βsv, j≤2
3,4

βsv, j≤2
3,5

βsv, j≤2
3,6

βsv, j≤2
3,7

?

βsv, j≤1
3,3

βsv, j≤1
3,4

βsv, j≤1
3,5

βsv, j≤1
3,6

βsv, j≤1
3,7

βsv, j≤1
3,8

βsv, j=0
3,3

βsv, j=0
3,4

βsv, j=0
3,5

βsv, j=0
3,6

βsv, j=0
3,7

βsv, j=0
3,8

βsv, j=0
3,9

×
×
×
×
×
×
×

ւO1

ւO2

ւO3

ւO4

ւO2

ւO3

ւO4

ւO5

ւO3

ւO4

ւO5

ւO6

ւ. . .

ւ. . .

ւ. . .

Table 2: Leading-depth terms βsv, j
3,k obtained from Poincaré sums over yaE0(6, 0b), together with

the action of the operators Oℓ defined in (3.63).

6.2 Alternative folding

In order to propose a Poincaré series for the ?-fields in tables 2 and 3 (corresponding to seeds of

the form yaRe[E0(2m, 0b)] with a ≥ 1, b ≥ 0 but in particular a+b < 2m−1), we will generalise

the step form of Laplace equations in section 3.5. By repeated action of the Laplace operator,
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m = 4:

a
b

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

×
×
×
×
?

?

βsv, j≤6
4,4

βsv, j≤6
4,5

×
×
×
?

?

βsv, j≤5
4,4

βsv, j≤5
4,5

βsv, j≤5
4,6

×
×
?

?

βsv, j≤4
4,4

βsv, j≤4
4,5

βsv, j≤4
4,6

βsv, j≤4
4,7

×
?

?

βsv, j≤3
4,4

βsv, j≤3
4,5

βsv, j≤3
4,6

βsv, j≤3
4,7

βsv, j≤3
4,8

?

?

βsv, j≤2
4,4

βsv, j≤2
4,5

βsv, j≤2
4,6

βsv, j≤2
4,7

βsv, j≤2
4,8

βsv, j≤2
4,9

?

βsv, j≤1
4,4

βsv, j≤1
4,5

βsv, j≤1
4,6

βsv, j≤1
4,7

βsv, j≤1
4,8

βsv, j≤1
4,9

βsv, j≤1
4,10

βsv, j=0
4,4

βsv, j=0
4,5

βsv, j=0
4,6

βsv, j=0
4,7

βsv, j=0
4,8

βsv, j=0
4,9

βsv, j=0
4,10

βsv, j=0
4,11

×
×
×
×
×
×
×
×

ւO1

ւO2

ւO3

ւO4

ւO5

ւO6

ւO2

ւO3

ւO4

ւO5

ւO6

ւO7

ւO3

ւO4

ւO5

ւO6

ւO7

ւ. . .

ւ. . .

ւ. . .

ւ. . .

Table 3: Leading-depth terms βsv, j
4,k obtained from Poincaré sums over yaE0(8, 0b), together with

the action of the operators Oℓ defined in (3.63).

seed functions yaRe[E0(2m, 0b)] with such a ≥ 1, b ≥ 0 but a+b < 2m−1 can be eventually

mapped to

− 1

(2πi)2m

∑

γ∈B(Z)\SL(2,Z)

[
yk+mReG2m(τ)

]
γ

=
(2k)!(k−1)!(m−1)!

2(−4)k+mB2k(k+m−1)!(2m−1)!y2m
[
(π∇)mEm(π∇)mEk + (π∇)mEk(π∇)mEm

]

=
(2k)!(k−1)!(m−1)!

(−4)k+mB2k(k+m−1)!(2m−1)!J
+[m]
k,m . (6.2)

The Poincaré sum converges for k+m > 1. Here, k+m = a+b+1 by (3.62) which, thanks to the

bound a+b < 2m−1, implies that k = a+b+1−m < m. The resulting functions J
+[m]
k,m defined

in (3.14) with m > k crucially depart from the earlier cases throughout sections 3 to 4. Given

that (π∇)mEk in (6.2) with m > k involves derivatives of G2k, a rewriting in terms of βsv is no

longer possible as opposed to (3.69).

The seed function on the left-hand side of (6.2) stems from Ok+m−1

(
yk+m−1 Re E0(2m) −

2B2m
(2m)!y

k+m
)
according to (3.65), where the shifted Laplace operators Oℓ ∼ ∆ − ℓ(ℓ−1) were

defined in (3.63). The seed function − yk+m

(2πi)2m ReG2m(τ) is the endpoint of the cascade of Oℓ

operators with adjacent values of ℓ described around (3.66). Even though J
+[m]
k,m is not expressible

in terms of βsv+, j
m,k , the number s of Cauchy–Riemann derivatives of J

+[s]
k,m grows by one with each

Oℓ, see (3.16), so we can attain the term J
+[m]
k,m in m steps from J

+[0]
k,m which corresponds to

βsv+, k−1
k,m modulo lower depth. The latter in turn is generated in k−1 steps of applying suitable

Oℓ to βsv+, 0
k,m , so we know that the cascade of Laplace equations for the associated seed functions
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that terminates with (6.2) has length k+m−1,

Ok+m−1Ok+m−2 . . .O2O1

(
bm,ky

m+k + yRe
[
E0(2m, 0k+m−2)

])
= − yk+m

(2πi)2m
ReG2m(τ) . (6.3)

In this expression, it is important that m > k for Re
[
E0(2m, 0k+m−2)

]
to be a standard iterated

integral since we would otherwise violate the bound p ≤ 2m−2 of E0(2m, 0p) of Brown’s iterated

integrals (see section 7.3 for a brief discussion of such cases with p > 2m−2). The subscripts

of the Oℓ are engineered such that the terms ∼ n(n−1)yn in (3.62) drop out. In the first

0 ≤ r ≤ 2k−1 steps, the Poincaré series
∑

γ∈B(Z)\SL(2,Z)

[
brm,ky

k+m + y1+r Re[E0(2m, 0k+m−2−r)]
]
γ

(6.4)

∼ OrOr−1 . . .O2O1β
sv+, 0
m,k mod lower depth

is expressible in terms of the real modular invariants F
+(s)
k,m and J

+[ℓ]
k,m with ℓ ≤ k at depth two.

The rational prefactors in (6.3) and (6.4) are given by

bm,k = b0m,k = −2(−4)k+m−2B2m (k+m−2)!
(2m)!(2k+2m−3)! , (6.5)

brm,k = −2(−4)k+m−r−2B2m (k+m−2)!(k+m+r−1)!
r!(2m)!(k+m−r−1)!(2k+2m−3)! ,

see (3.66) and (3.67) for the counterparts in the earlier choice of folding. The depth-one part

of the seed functions in (6.4) is always of the form yaRe[E0(2m, 0b)] with a+b = k+m−1 which

obeys indeed a+b < 2m−1 as advertised above since k < m. For the same reason, the iterated

Eisenstein integral E0(2m, 02m−2) with the maximal number of zeros which is combined with

ζ2m−1 in (3.60) does not occur in (6.3) and (6.4).

The same strategy applies in the odd case, based on a variant of (5.27) with m > k. The

cascade of shifted Laplacians then reads

Ok+m−1Ok+m−2 . . .O2O1

(
y Im

[
E0(2m, 0k+m−2)

])
= − yk+m

(2πi)2m
ImG2m(τ) , (6.6)

∑

γ∈B(Z)\SL(2,Z)

[
Im[E0(2m, 0k+m−2−r)]

]
γ
∼ OrOr−1 . . .O2O1β

sv−, 0
m,k mod lower depth

instead of (6.3) and (6.4), without the term ∼ ym+k in the seed.

6.2.1 Even examples

Based on (6.2), (6.3) and (6.4), there is a unique proposal for the Poincaré sums over even

seeds brm,ky
k+m + y1+r Re[E0(2m, 0k+m−2−r)] with k < m which is consistent with the Laplace

equations. Although from their defining relations (3.28), (5.13), (3.14) and (5.2) we have that

F
±(s)
m,k and J

±[ℓ]
m,k are symmetric under the interchange of m and k, we shall adopt the convention

that we write the smaller value first in the subscript. According to this convention, the notation

F
±(s)
k,m then signals that m > k.

65



The Poincaré sums over the iterated integrals discussed then can be seen to provide alterna-

tive seed functions f̃
+(s)
k,m and ̃

+[ℓ]
k,m of

F
±(s)
k,m (τ) =

∑

γ∈B(Z)\SL(2,Z)

f̃
±(s)
k,m (γ · τ) , (6.7)

J
±[ℓ]
k,m(τ) =

∑

γ∈B(Z)\SL(2,Z)

̃
±[ℓ]
k,m(γ · τ) ,

where 2 ≤ k < m. In the simplest cases within this range, the above reasoning leads to

y5

198450
+ yRe[E0(6, 03)] ∼=

3

2
f̃
+(3)
2,3 ,

− y5

39690
+ y2 Re[E0(6, 02)] ∼= −

3

8
(6f̃

+(3)
2,3 + ̃

+[0]
2,3 ) , (6.8)

y5

17640
+ y3Re[E0(6, 0)] ∼=

3

32
(12f̃

+(3)
2,3 + 6̃

+[0]
2,3 + ̃

+[1]
2,3 ) ,

− y5

15120
+ y4Re[E0(6)] ∼= −

1

128
(36̃

+[0]
2,3 + 12̃

+[1]
2,3 + ̃

+[2]
2,3 ) ,

where we have indicated through the equivalence relation ∼= holds up to terms that sum to

zero under the Poincaré sum in (6.7), this will become important for comparison with the seed

functions to be presented in sections 6.3 and 6.4 below. Examples at higher weight m+k = 6

and 7 include

y6

35721000
+ yRe[E0(8, 04)] ∼=

3

28
f̃
+(4)
2,4 ,

− y6

4762800
+ y2Re[E0(8, 03)] ∼= −

3

112
(12f̃

+(4)
2,4 + ̃

+[0]
2,4 ) ,

y6

1360800
+ y3Re[E0(8, 02)] ∼=

3

448
(60f̃

+(4)
2,4 + 12̃

+[0]
2,4 + ̃

+[1]
2,4 ) , (6.9)

− y6

680400
+ y4 Re[E0(8, 0)] ∼= −

1

1792
(360f̃

+(4)
2,4 + 180̃

+[0]
2,4 + 30̃

+[1]
2,4 + ̃

+[2]
2,4 ) ,

y6

604800
+ y5 Re[E0(8)] ∼=

1

28672
(1440̃

+[0]
2,4 + 360̃

+[1]
2,4 + 24̃

+[2]
2,4 + ̃

+[3]
2,4 ) ,

as well as

− y7

196465500
+ yRe[E0(8, 05)] ∼=

9

14
(f̃

+(3)
3,4 − f̃

+(5)
3,4 ) ,

y7

18711000
+ y2Re[E0(8, 04)] ∼= −

9

28
(3f̃

+(3)
3,4 − 10f̃

+(5)
3,4 ) ,

− y7

3742200
+ y3Re[E0(8, 03)] ∼=

9

224
(12f̃

+(3)
3,4 − 180f̃

+(5)
3,4 − 7̃

+[0]
3,4 ) , (6.10)

y7

1247400
+ y4Re[E0(8, 02)] ∼=

3

64
(180f̃

+(5)
3,4 + 18̃

+[0]
3,4 + ̃

+[1]
3,4 ) ,

− y7

665280
+ y5 Re[E0(8, 0)] ∼= −

3

1024
(1440f̃

+(5)
3,4 + 360̃

+[0]
3,4 + 40̃

+[1]
3,4 + ̃

+[2]
3,4 ) ,

y7

604800
+ y6 Re[E0(8)] ∼=

3

20480
(3600̃

+[0]
3,4 + 600̃

+[1]
3,4 + 30̃

+[2]
3,4 + ̃

+[3]
3,4 ) .
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Note that the Poincaré sums (6.7) of ̃
+[2]
2,3 , ̃

+[2]
2,4 , ̃

+[3]
2,4 , ̃

+[3]
3,4 in last line of (6.8) and (6.10) as well

as the last two lines of (6.9) involve explicit appearances of holomorphic Eisenstein series, e.g.

J
+[2]
2,3 =

(π∇)2E2(π∇)2E3 + (π∇)2E3(π∇)2E2

2y4
=

3

π4

(
G4(π∇)2E3 +G4(π∇)2E3

)
(6.11)

as a consequence of (2.20). The examples of this section exhaust the fields marked by ? in tables

2 and 3 as we can see in tables 4 and 5. The quotation marks of “βsv, j≤3
2,3 ” in tables 4 and further

cells of table 5 are a reminder that the definition (2.34) leads to βsv
[
j1 j2
k1 k2

]
with ji outside the

admissible range 0 ≤ ji ≤ ki−2 and that we get (derivatives of) holomorphic Eisenstein series

as in (6.11).

a
b

0 1 2 3 4 5

1

2

3

4

5

6

7

×
×
×

“βsv, j≤3
2,3 ”

βsv, j≤4
3,3

βsv, j≤4
3,4

βsv, j≤4
3,5

×
×

βsv, j≤2
2,3

βsv, j≤3
3,3

βsv, j≤3
3,4

βsv, j≤3
3,5

βsv, j≤3
3,6

×
βsv, j≤1
2,3

βsv, j≤2
3,3

βsv, j≤2
3,4

βsv, j≤2
3,5

βsv, j≤2
3,6

βsv, j≤2
3,7

βsv, j=0
2,3

βsv, j≤1
3,3

βsv, j≤1
3,4

βsv, j≤1
3,5

βsv, j≤1
3,6

βsv, j≤1
3,7

βsv, j≤1
3,8

βsv, j=0
3,3

βsv, j=0
3,4

βsv, j=0
3,5

βsv, j=0
3,6

βsv, j=0
3,7

βsv, j=0
3,8

βsv, j=0
3,9

×
×
×
×
×
×
×

ւO1

ւO2

ւO3

ւO1

ւO2

ւO3

ւO4

ւO2

ւO3

ւO4

ւO5

ւO3

ւO4

ւO5

ւO6

ւ. . .

ւ. . .

ւ. . .

Table 4: Leading-depth terms βsv, j
3,k , or alternatively βsv, j

k,3 , obtained from Poincaré sums over

yaE0(6, 0b) including the alternative folding seeds.

6.2.2 Odd examples

As similar step-form strategy applies to the odd case (6.6) as well for deriving a unique proposal

to the odd Poincaré sums over y1+r Im[E0(2m, 0k+m−2−r)] with k < m that preserves the Laplace

equations of F
−(s)
k,m and J

−[ℓ]
k,m. For the simplest cases (k,m) = (2, 3), (2, 4), (3, 4), the seed functions

f̃
−(s)
k,m and ̃

−[ℓ]
k,m defined in (6.7) are determined by

y Im[E0(6, 03)] ∼= −
3i

10
f̃
−(2)
2,3 +

3i

10
f̃
−(4)
2,3 ,

y2 Im[E0(6, 02)] ∼=
3i

20
f̃
−(2)
2,3 − 9i

10
f̃
−(4)
2,3 , (6.12)

y3 Im[E0(6, 0)] ∼=
9i

8
f̃
−(4)
2,3 +

3i

32
̃
−[1]
2,3 ,

y4 Im[E0(6)] ∼= −
i

128
(72f̃

−(4)
2,3 + 12̃

−[1]
2,3 + ̃

−[2]
2,3 ) ,
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a
b

0 1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

×
×
×
×

“βsv, j≤4
2,4 ”

“βsv, j≤5
3,4 ”

βsv, j≤6
4,4

βsv, j≤6
4,5

×
×
×

“βsv, j≤3
2,4 ”

βsv, j≤4
3,4

βsv, j≤5
4,4

βsv, j≤5
4,5

βsv, j≤5
4,6

×
×

βsv, j≤2
2,4

βsv, j≤3
3,4

βsv, j≤4
4,4

βsv, j≤4
4,5

βsv, j≤4
4,6

βsv, j≤4
4,7

×
βsv, j≤1
2,4

βsv, j≤2
3,4

βsv, j≤3
4,4

βsv, j≤3
4,5

βsv, j≤3
4,6

βsv, j≤3
4,7

βsv, j≤3
4,8

βsv, j=0
2,4

βsv, j≤1
3,4

βsv, j≤2
4,4

βsv, j≤2
4,5

βsv, j≤2
4,6

βsv, j≤2
4,7

βsv, j≤2
4,8

βsv, j≤2
4,9

βsv, j=0
3,4

βsv, j≤1
4,4

βsv, j≤1
4,5

βsv, j≤1
4,6

βsv, j≤1
4,7

βsv, j≤1
4,8

βsv, j≤1
4,9

βsv, j≤1
4,10

βsv, j=0
4,4

βsv, j=0
4,5

βsv, j=0
4,6

βsv, j=0
4,7

βsv, j=0
4,8

βsv, j=0
4,9

βsv, j=0
4,10

βsv, j=0
4,11

×
×
×
×
×
×
×
×

ւO1

ւO2

ւO3

ւO4

ւO1

ւO2

ւO3

ւO4

ւO5

ւO1

ւO2

ւO3

ւO4

ւO5

ւO6

ւO2

ւO3

ւO4

ւO5

ւO6

ւO7

ւ. . .

ւ. . .

ւ. . .

ւ. . .

ւ. . .

Table 5: Leading-depth terms βsv, j
4,k , or alternatively βsv, j

k,4 , obtained from Poincaré sums over

yaE0(8, 0b) including the alternative seeds.

as well as

y Im[E0(8, 04)] ∼= −
3i

196
f̃
−(3)
2,4 +

3i

196
f̃
−(5)
2,4 ,

y2 Im[E0(8, 03)] ∼=
9i

392
f̃
−(3)
2,4 − 15i

196
f̃
−(5)
2,4 ,

y3 Im[E0(8, 02)] ∼= −
9i

784
f̃
−(3)
2,4 +

135i

784
f̃
−(5)
2,4 +

3i

448
̃
−[1]
2,4 , (6.13)

y4 Im[E0(8, 0)] ∼= −
45i

224
f̃
−(5)
2,4 − 15i

896
̃
−[1]
2,4 −

i

1792
̃
−[2]
2,4 ,

y5 Im[E0(8)] ∼=
i

28672
(2880f̃

−(5)
2,4 + 360̃

−[1]
2,4 + 24̃

−[2]
2,4 + ̃

−[3]
2,4 )

and

y Im[E0(8, 05)] ∼= −
9i

140
f̃
−(2)
3,4 +

i

10
f̃
−(4)
3,4 − i

28
f̃
−(6)
3,4 ,

y2 Im[E0(8, 04)] ∼=
9i

280
f̃
−(2)
3,4 − 3i

10
f̃
−(4)
3,4 +

15i

56
f̃
−(6)
3,4 ,

y3 Im[E0(8, 03)] ∼=
3i

8
f̃
−(4)
3,4 − 15i

16
f̃
−(6)
3,4 , (6.14)

y4 Im[E0(8, 02)] ∼= −
3i

16
f̃
−(4)
3,4 +

15i

8
f̃
−(6)
3,4 +

3i

64
̃
−[1]
3,4 ,

y5 Im[E0(8, 0)] ∼= −
135i

64
f̃
−(6)
3,4 − 15i

128
̃
−[1]
3,4 −

3i

1024
̃
−[2]
3,4 ,

y6 Im[E0(8)] ∼=
3i

20480
(7200f̃

−(6)
3,4 + 600̃

−[1]
3,4 + 30̃

−[2]
3,4 + ̃

−[3]
3,4 ) .

The equivalence relation ∼= again indicates that the statements hold up to terms that sum to

zero under the Poincaré sums (6.7), we will presently give more details on this issue.
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6.3 Relations to earlier even seed functions

The arguments above yield seed functions whose Poincaré sums agree with those of the seeds

found in section 3.3.1. The non-uniqueness of seed functions is well-known. Since a Poincaré

series is a sum over images under SL(2,Z), any of the images is in principle equally well suited

since

∑

γ∈B(Z)\SL(2,Z)

ϕ(γτ) =
∑

γ∈(γ−1
0 B(Z)γ0)\SL(2,Z)

ϕ(γ0γτ) (6.15)

for any γ0 ∈ SL(2,Z). However, as shown this will in general change the stabiliser in the

Poincaré sum to a conjugate Borel subgroup. Other seeds with the same Borel stabiliser can be

constructed if one allows for divergent seeds that are to be interpreted via analytic continuation.

According to (2.40), the seeds ys and y1−s both yield Poincaré series that are proportional to Es,

although only one of the Poincaré sums is convergent. Nevertheless, one could formally write

down the seed

ϕ(τ) = ys − π2s−1/2Γ(s− 1/2)ζ2s−1

Γ(s)ζ2s
y1−s , (6.16)

which has vanishing Poincaré sum, if we sum the two terms individually and combine them after

analytic continuation using (2.40). Here, y1−s is not a single SL(2,Z) image of ys but an infinite

sum of images.

The seed functions f̃
+(s)
m,k deduced from the step form of the Laplace system are of the same

nature as y1−s in the example when compared to f
+(s)
m,k in (3.39). In the case of F

+(s)
m,k , we can also

obtain an alternative, non-convergent seed by folding Em instead Ek as we did in section 3.3.1

where now k ≥ m. The alternative seed obtained in this way differs from the one obtained

from the step form. However, as we shall show, the difference between the two has a vanishing

Poincaré sum. By performing the same steps as in section 3.3 but folding Em to ym one can

derive the following form for f̃
+(s)
m,k :

f̃
+(s)
m,k = (−1)k+m B2kB2m(4y)k+m

(2k)!(2m)!(µk+m − µs)
− (−1)m 4B2m(2k−3)!ζ2k−1(4y)

m+1−k

(2m)!(k−2)!(k−1)!(µm−k+1 − µs)

− (−1)m 2B2mΓ(2k)

(2m)!Γ(k)

m−1∑

ℓ=1

g+k,m,ℓ,s(4y)
ℓ Re[E0(2k, 0k+m−1−ℓ)] (6.17)

+ (−1)m 2B2mΓ(2k)

(2m)!Γ(k)

0∑

ℓ=m+1−k

g̃+k,m,ℓ,s(4y)
ℓ Re[E0(2k, 0k+m−1−ℓ)] .

We recall µs = s(s−1) and the coefficients g+k,m,ℓ,s were defined in (3.38), but importantly, the

order of m and k in the alternative seed is swapped. The new coefficients appearing in the last

line are given by

g̃+k,m,ℓ,s =

ℓ∑

i=m+1−k

(i)ℓ−iΓ(k+m−i)
(1−s+i)ℓ−i(s+i)ℓ−iΓ(m+1−i)Γ(k+i−m)(µi−µs)

. (6.18)
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Comparing (6.17) to (3.39) we see that the first two lines of (6.17) are simply obtained by the

interchange m↔k but the third line is new and contains non-positive powers of y accompanying

the iterated integrals. We stress that the Poincaré sum over this seed function is not absolutely

convergent, but has to be interpreted with care as we shall explain below.

Applying the formula (6.17) together with (3.50) at m↔ k we obtain the following form of

the examples in (6.8) to (6.10):

yRe[E0(6, 03)] +
1

2

(
Re[E0(6, 04)]− ζ5

5!

)
+

y5

198450
=

3

2
f̃
+(3)
2,3 ,

y2Re[E0(6, 02)]−
y5

39690
= −3

8
(6f̃

+(3)
2,3 + ̃

+[0]
2,3 ) , (6.19)

y3Re[E0(6, 0)] +
y5

17640
=

3

32
(12f̃

+(3)
2,3 + 6̃

+[0]
2,3 + ̃

+[1]
2,3 ) ,

y4Re[E0(6)] −
y5

15120
= − 1

128
(36̃

+[0]
2,3 + 12̃

+[1]
2,3 + ̃

+[2]
2,3 ) ,

as well as

yRe[E0(8, 04)] +
3

2
Re[E0(8, 05)] +

3

4y

(
Re[E0(8, 06)]− ζ7

7!

)
+

y6

35721000
=

3

28
f̃
+(4)
2,4 ,

y2Re[E0(8, 03)]−
3

4
Re[E0(8, 05)]−

3

8y

(
Re[E0(8, 06)]− ζ7

7!

)
− y6

4762800
= − 3

112
(12f̃

+(4)
2,4 + ̃

+[0]
2,4 ) ,

y3Re[E0(8, 02)] +
y6

1360800
=

3

448
(60f̃

+(4)
2,4 + 12̃

+[0]
2,4 + ̃

+[1]
2,4 ) , (6.20)

y4Re[E0(8, 0)] −
y6

680400
= − 1

1792
(360f̃

+(4)
2,4 + 180̃

+[0]
2,4 + 30̃

+[1]
2,4 + ̃

+[2]
2,4 ) ,

y5Re[E0(8)] +
y6

604800
=

1

28672
(1440̃

+[0]
2,4 + 360̃

+[1]
2,4 + 24̃

+[2]
2,4 + ̃

+[3]
2,4 )

and

yRe[E0(8, 05)]−
y7

196465500
+

1

2

(
Re[E0(8, 06)]− ζ7

7!

)
=

9

14
(f̃

+(3)
3,4 − f̃

+(5)
3,4 ) ,

y2 Re[E0(8, 04)] +
y7

18711000
= − 9

28
(3f̃

+(3)
3,4 − 10f̃

+(5)
3,4 ) ,

y3 Re[E0(8, 03)]−
y7

3742200
=

9

224
(12f̃

+(3)
3,4 − 180f̃

+(5)
3,4 − 7̃

+[0]
3,4 ) , (6.21)

y4 Re[E0(8, 02)] +
y7

1247400
=

3

64
(180f̃

+(5)
3,4 + 18̃

+[0]
3,4 + ̃

+[1]
3,4 ) ,

y5 Re[E0(8, 0)] −
y7

665280
= − 3

1024
(1440f̃

+(5)
3,4 + 360̃

+[0]
3,4 + 40̃

+[1]
3,4 + ̃

+[2]
3,4 ) ,

y6 Re[E0(8)] +
y7

604800
=

3

20480
(3600̃

+[0]
3,4 + 600̃

+[1]
3,4 + 30̃

+[2]
3,4 + ̃

+[3]
3,4 ) .

These towers of equations are identical to many of the corresponding equations in (6.8), (6.9),

and (6.10), but some of them are augmented by extra terms involving non-positive powers of y.
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6.3.1 Equivalence of the seed functions in the sectors (2, 3) and (3, 4)

We now compare these different towers and show that they differ merely by ‘red-herrings’,

namely non-vanishing seed functions which, upon Poincaré summation, interpreted via analytic

continuation, give rise to a vanishing modular function, similar to (6.16).

Let us start by comparing (6.8) with (6.19). The difference appears on the first line of (6.19)

and is given by the red-herring

rh1 =
1

2

(
Re[E0(6, 04)]− ζ5

5!

)
. (6.22)

We know that, in both (6.8) with (6.19), we must apply O1 = −1
4∆ to go from the first line to

the second. Consistency of both expressions hinges on the fact that rh1 and its Poincaré sum

lie in the kernel of O1 just like E1, or rather its regulated version E0.

Let us first notice that using (2.18) we can rewrite the iterated integral as

1

2
Re[E0(6, 04)] = −

1

5!

∑

n>0

σ−5(n)
[√

n Im τK0−1/2(2πn Im τ)
(
e2πinRe τ + e−2πinRe τ

)]
, (6.23)

by using the asymptotic expansion of the Bessel function (2.11). Furthermore, we notice the

triviality ζ5
5! =

ζ5
5! y

0. From the usual expansion for the Eisenstein series Ek given in (2.9) and the

above statements, we realise that the red-herring is comprised of two different terms but both

appearing as points (or rather infinite sums thereof) on the Poincaré orbit (2.39) for E0.

It is not surprising then that, by suitable analytic continuation of equations (2.39) and (2.47),

we arrive at

∑

γ∈B(Z)\SL(2,Z)

[
1

2

(
Re[E0(6, 04)]− ζ5

5!

)]

γ

= −1

2

ζ5
5!
(E0 − E0) = 0 . (6.24)

Hence, the two seed systems (6.8) and (6.19) are completely equivalent modulo the very convo-

luted vanishing Poincaré sum over the red-herring (6.22).

The situation is identical when comparing the next towers (6.10) with (6.21) where the only

red-herring appears on the first line and is given by

rh2 =
1

2

(
Re[E0(8, 06)]− ζ7

7!

)
, (6.25)

which again belongs to the kernel of O1 and has a vanishing Poincaré sum thanks to (2.39) and

(2.47). Hence, the seed systems (6.10) and (6.21) are indeed identical.

6.3.2 Equivalence of the seed functions in the sector (2, 4)

Finally when we compare (6.9) with (6.20) we see that two red-herrings appear

rh3 =
3

2
Re[E0(8, 05)] +

3

4y

(
Re[E0(8, 06)]− ζ7

7!

)
, (6.26)

rh4 = −
3

4
Re[E0(8, 05)]−

3

8y

(
Re[E0(8, 06)]− ζ7

7!

)
,
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related by

O1rh3 = rh4 ,

O2rh4 = 0 . (6.27)

From the second equation, and the previous discussion, we anticipate that rh4 is related to E2

(or equivalently E−1), and in fact this turns out to be the case. We notice that the sum of

iterated integrals can be rewritten as

−3

4
Re[E0(8, 05)]−

3

8y
Re[E0(8, 06)] =

2

7!

3

4

∑

n>0

nσ−7(n) (6.28)

×
[√

n Im τK2−1/2(2πn Im τ)
(
e2πinRe τ + e−2πinRe τ

)]
,

while the remaining term in rh4 can be rewritten trivially as 3
8
ζ7
7! y

1−2.

As before we realise that the second red-herring is comprised of two different terms but both

appearing as points (or rather infinite sums thereof) on the Poincaré orbit (2.39) for E2.

We can use (2.47) to perform the Poincaré sum for the Bessel function above and, after that,

analytically continue the Dirichlet sum over n to arrive at

∑

γ∈B(Z)\SL(2,Z)

[
−3

4
Re[E0(8, 05)]−

3

8y

(
Re[E0(8, 06)]− ζ7

7!

)]

γ

=
3

8

ζ7
7!

1

ζ3
(E2 − E2) = 0 . (6.29)

In conclusion, the red-herring rh4 yields a vanishing Poincaré sum, only written in a very convo-

luted way, and we can then safely omit it from the seed functions and from the Laplace system

above. One can similarly get rid of rh3 which is in the kernel of O1 after discarding rh4 such

that the systems (6.9) and (6.20) become completely identical.

6.3.3 General even seed functions without red-herrings

Note that the general situation can quickly appear more complicated, with multiple linearly

independent red-herrings appearing when we compare the alternative folding for the Laplace

system in step form (6.4) and the inhomogenous Laplace system (3.34). We present such an

example in appendix H. However, it is always possible to isolate these red-herring seeds with

non-positive powers of y and show that their Poincaré sums vanish identically as explained

above.

Hence, our construction of the seed functions by following the step form is completely equiva-

lent to (6.17). In fact, the minimal seeds in a step form can be given in closed form by truncating

(6.17) to the terms with positive powers of y,

f̃
+(s)
m,k
∼= (−1)k+m B2kB2m(4y)k+m

(2k)!(2m)!(µk+m − µs)
(6.30)

− (−1)m 2B2mΓ(2k)

(2m)!Γ(k)

m−1∑

ℓ=1

g+k,m,ℓ,s(4y)
ℓ Re[E0(2k, 0k+m−1−ℓ)]

and similarly dropping non-positive powers of y in the prescription (3.50) for j
+[ℓ]
m,k with m↔ k.
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6.4 Relations to earlier odd seed functions

The discussion of the odd case is very similar to that of the even case: On top of the step forms

in (6.12) to (6.14), one can construct alternative seeds for F
−(s)
m,k by analysing the Laplace system

as in section 5.2 and performing the alternative folding of ∇Em and ∇Em with m < k. The

seed one obtains in this way is

f̃
−(s)
m,k = −i(−1)m 2B2mΓ(2k)

(2m)!Γ(k)

m∑

ℓ=1

g−k,m,ℓ,s(4y)
ℓ Im[E0(2k, 0k+m−1−ℓ)] (6.31)

− i(−1)m 2B2mΓ(2k)

(2m)!Γ(k)

0∑

ℓ=m+2−k

g̃−k,m,ℓ,s(4y)
ℓ Im[E0(2k, 0k+m−1−ℓ)] ,

where the coefficients g−k,m,ℓ,s were defined in (5.17) and the new coefficients appearing in the

second line are given by

g̃−k,m,ℓ,s =
ℓ∑

i=m+1−k

(i)ℓ−iΓ(k+m+1−i)
(1−s+i)ℓ−i(s+i)ℓ−iΓ(m−i)Γ(k−1+i−m)(µi−µs)

. (6.32)

Again, the terms in the last line of (6.31) with non-positive powers of y are new in the alternative

folding while the first line is just given by applying m↔k to (5.16). With the general formula

(6.31) and (5.15) for j
−[ℓ]
m,k at m ↔ k, one reproduces the results (6.12) and (6.14) of the step

form in the sectors (m,k) = (2, 3) and (3, 4). In comparison to (6.13), however, one additionally

finds the red-herring

rhodd = Im[E0(8, 05)] (6.33)

in both ̃
−[ℓ]
2,4 and

f̃
−(3)
2,4 =

56i

3
y2 Im[E0(8, 03)] +

280i

3
y Im[E0(8, 04)]− 280i Im[E0(8, 05)] ,

f̃
−(5)
2,4 =

56i

3
y2 Im[E0(8, 03)] + 28iy Im[E0(8, 04)]− 84i Im[E0(8, 05)] . (6.34)

The red-herring (6.33) has a vanishing Poincaré sum because the sum in (2.47) is insensitive to

the sign of the Fourier mode n. Therefore any non-positive powers of y times an imaginary part

of an E0(2k, 0p) can always be arranged into a sum of Bessel functions multiplied by e2πinRe τ −
e−2πinRe τ as in

i Im[E0(8, 05)] = −
1

7!

∞∑

n=1

σ7(n)n
−6(qn − q̄n) (6.35)

= − 2

7!

∞∑

n=1

σ7(n)n
−6
√
n Im τK−1/2(2πn Im τ)(e2πinRe τ − e−2πinRe τ ) .

The Poincaré sum using (2.47) formally just produces the difference of two identical expressions.

Performing the Poincaré sum of these terms for each n > 0 separately using (2.47) leads to

∑

γ∈B(Z)\SL(2,Z)

i Im[E0(8, 05)]
∣∣∣
γ
= − 2

7!

∞∑

n=1

σ7(n)n
−6

(
6σ−1(n)E0

n−1
− 6σ−1(n)E0

n−1

)
= 0 , (6.36)
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where we have used analytic continuation. Doing the calculation this way gives that the Poincaré

sum vanishes Fourier mode by Fourier mode. This is a formal argument since the alternative

Poincaré seed is divergent to start with and only defined by analytic continuation.

7 Further directions

In this section we want to comment on some interesting future directions opened up by our

analysis.

7.1 Exponentially suppressed terms

Let us remind the reader that all the modular objects studied in this work can be written in an

expansion around the cusp of the form

Φ(τ) =
∑

a,b≥0

da,b(Im τ)qaq̄b , (7.1)

where da,b(Im τ) are Laurent polynomials in Im τ . This can also be arranged into a Fourier

expansion with respect to the periodic variable Re τ according to

Φ(τ) =
∑

ℓ∈Z

aℓ(Im τ)e2πiℓRe τ , (7.2)

where the ℓth-Fourier coefficient aℓ(Im τ) takes the form

aℓ(Im τ) = e−2π|ℓ| Im τ
∞∑

n=min{0,−ℓ}

(qq̄)ndℓ+n,n(Im τ) , (7.3)

where (qq̄)n = e−4πn Im τ and we refer to such terms as non-perturbative (at the cusp Im τ →∞)

by slight abuse of terminology. For most of the present work we have focused on the Laurent

polynomial in the zeroth Fourier mode, i.e. the ℓ = 0, n = 0 sector.

We now want to turn our attention to two different type of exponentially suppressed correc-

tions: firstly analysing the (qq̄)n terms in the zeroth Fourier mode, i.e. the ℓ = 0, n 6= 0 sector,

and secondly the perturbative coefficients in the non-zero mode, i.e. the ℓ 6= 0, n = 0 sectors

in (7.3).

7.1.1 Non-perturbative terms in the Fourier zero mode

Let us start with the (qq̄)n terms in the zero-mode sector a0(Im τ) =
∑∞

n=0(qq̄)
ndn,n(Im τ).

Firstly, from the integral representation (2.23), we can easily see that the only term possibly

containing powers of both q and q̄ is given by

βsv
[
j1 j2
k1 k2

] ∣∣∣
q>0q̄>0

⊂ − (2πi)−2

(4y)k1+k2−j1−j2−4
(7.4)

×
i∞∫

τ

dτ2(τ−τ2)k2−j2−2(τ̄−τ2)j2Gk2(τ2)

−i∞∫

τ̄

dτ̄1(τ−τ̄1)k1−j1−2(τ̄−τ̄1)j1Gk1(τ1) .
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With the notation q>0q̄>0 we mean all terms in the expansion that have positive q and q̄ powers,

although not necessarily the same.

After some algebra we can rewrite these integrals and make use of (2.16) to isolate all the

terms containing both q and q̄, arriving at

βsv
[
j1 j2
k1 k2

] ∣∣∣
q>0q̄>0

=

j2∑

A=0

k1−j1−2∑

B=0

(k2−j2−2+A)!(j1+B)!

(
j2
A

)(
k1−j1−2

B

)
(7.5)

× (4y)2+2j2−k2−A−BE0(k2, 0k2−j2−2+A) E0(k1, 0j1+B) .

Using our definition (2.34) we can write

βsv±, j
m,k

∣∣∣
q>0q̄>0

= βsv
[
2m−2−j k−m+j

2m 2k

] ∣∣∣
q>0q̄>0

± βsv
[
k+m−2−j j

2k 2m

] ∣∣∣
q>0q̄>0

=

j+k−m∑

A=0

j∑

B=0

(4y)2+2j−2m−A−B(k+m+A−j−2)!(2m+B−j−2)! (7.6)

×
(
j+k−m

A

)(
j

B

)(
E0(2k, 0k+m+A−j−2)E0(2m, 02m+B−j−2)± c.c.

)
.

Following the discussion in sections 4.2 and 5.5, it is clear that lower-depth terms cannot possibly

contain both q and q̄ in F
±(s)
m,k . Hence, we have that F

±(s)
m,k |q>0q̄>0 can only come from its depth-two

part, given by a suitable rational linear combination of βsv±, j
m,k .13

In particular, from (7.6) we notice that for all Fourier modes, the (qq̄)n terms contain only

rational coefficients times powers of y. For example we have

F
+(2)
2,2

∣∣∣
q>0q̄>0

=
9

2y2
E0(4, 02) E0(4, 02) ,

F
+(3)
2,3

∣∣∣
q>0q̄>0

=
45

2y3

(
y E0(6, 03) E0(4, 02) + E0(6, 04) E0(4, 02) + c.c.

)
, (7.7)

F
−(2)
2,3

∣∣∣
q>0q̄>0

= − 45

2y2

(
8y2 E0(6, 02) E0(4, 0) + 4y E0(6, 02) E0(4, 02) + 12y E0(6, 03) E0(4, 0)

+ 3E0(6, 03) E0(4, 02) + 6E0(6, 04) E0(4, 0) − c.c.
)
.

Furthermore, from the q-series representation (2.18), it is very simple to isolate the purely (qq̄)n

terms in the zeroth Fourier mode, given by

βsv
[
j1 j2
k1 k2

] ∣∣∣
(qq̄)>0

=

∞∑

n=1

4j1!(k2−j2−2)!
(k1−1)!(k2−1)!

σk1−1(n)σk2−1(n)(qq̄)
n (7.8)

× (4y)j1+j2+2U(j1+1, k1; 4ny)U(k2−j2−1, k2; 4ny) ,

with U(j, k; z) Kummer’s confluent hypergeometric function, which reduces to a polynomial of

degree k−1 in 1/z for j, k ∈ N such that 0 ≤ j ≤ k−2. The notation |(qq̄)>0 on the left-hand side

13The possible homogeneous contributions H+ and H− in the Cauchy–Riemann equation never contribute to

qn1 q̄n2 with n1, n2 > 0 either as will become clearer in Part II, i.e. the results of this subsection apply equally to
qF
±(s)
m,k and F

±(s)
m,k .
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of (7.8) and below refers to terms that contain (qq̄)n with n > 0 but no other separate powers

of q or q̄ such that this is the non-perturbative part of the Fourier zero mode.

From the previous expression (7.6), we can then obtain the (qq̄)n terms appearing in the

zeroth Fourier mode of βsv+, j
m,k

βsv−, j
m,k

∣∣∣
(qq̄)>0

= βsv
[
2m−2−j k−m+j

2m 2k

] ∣∣∣
(qq̄)>0

− βsv
[
k+m−2−j j

2k 2m

] ∣∣∣
(qq̄)>0

= 0 , (7.9a)

βsv+, j
m,k

∣∣∣
(qq̄)>0

= βsv
[
2m−2−j k−m+j

2m 2k

] ∣∣∣
(qq̄)>0

+ βsv
[
k+m−2−j j

2k 2m

] ∣∣∣
(qq̄)>0

=
8(2m−j−2)!(k+m−j−2)!

(2m−1)!(2k−1)!
∞∑

n=1

σ2m−1(n)σ2k−1(n)(qq̄)
n (7.9b)

× (4y)k+mU(2m−j−1, 2m; 4ny)U(k+m−j−1, 2k; 4ny) .

Thanks to these equations we then deduce that the (qq̄)n Fourier zero mode sector of any F
±(s)
m,k

can be written as a finite polynomial in 1/y with rational coefficients involving the product of

two divisors sums. This also follows from inspection of (7.5).

In particular we have

F
−(s)
m,k

∣∣∣
(qq̄)>0

= 0 , (7.10)

so that the full Fourier zero mode, perturbative and non-perturbative, of F
−(s)
m,k vanishes identi-

cally, which is of course expected from the fact that F
−(s)
m,k should be odd under the involution

τ → −τ̄ . For the even modular invariant functions, by contrast, we have for example

F
+(2)
2,2

∣∣∣
(qq̄)>0

= −C2,1,1

∣∣∣
(qq̄)>0

=

∞∑

n=1

σ−3(n)
2

2y2
(qq̄)n , (7.11)

F
+(3)
2,3

∣∣∣
(qq̄)>0

= −4C3,1,1

∣∣∣
(qq̄)>0

=
∞∑

n=1

σ−3(n)σ−5(n)

4y3
(1 + ny)(qq̄)n ,

reproducing precisely the results of [15,19], as well as [20] where resurgent analysis was used to

reconstruct the (qq̄)n sector from a suitable analytic continuation of the asymptotic perturbative

Laurent expansion. It would be very interesting to extend the discussion of [20] to the general

seeds (3.39) presented in this work.

7.1.2 Non-perturbative terms in the Fourier non-zero mode

In a similar fashion we can also derive the non-zero mode perturbative coefficients, i.e. the

ℓ 6= 0, n = 0 sectors following the Fourier decomposition (7.3). To proceed we can take the

integral representation for the depth-two part (2.23) and isolate all the terms containing only q

(or alternatively only q̄), similarly to (7.5) just discussed. For the α[· · · ] we can use the explicit

representation in terms of E0, with q-series given by (2.18), as discussed in section 4.6.
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Finally, for the depth-one part, we can use (2.28) to write directly

βsv
[
j
k

] ∣∣∣
q>0q̄0

=

j∑

A=0

(k−j−2+A)!

(
j

A

)
(4y)2+2j−k−AE0(k, 0k−j−2+A) ,

βsv
[
j
k

] ∣∣∣
q̄>0q̄0

=

k−j−2∑

B=0

(j+B)!

(
k−j−2

B

)
(4y)−BE0(k, 0j+B) . (7.12)

Here, the notation means that only terms with positive powers of q but no powers of q̄ are

considered in the general expansion. A term with qℓq̄0 is in the ℓ-th Fourier mode and its

coefficient is perturbative with respect to y, i.e. it does not include the non-perturbative terms

with (qq̄)n = e−4ny for n > 0.

Putting all these pieces together we can present examples such as

F
+(2)
2,2

∣∣∣
q>0q̄0

= q
(
− y

45
− 1

30
− 1

60y
+

ζ3
2y2

)
+ q2

(
− y

40
+

77

160
+

397

640y
+

4 + 9ζ3
16y2

)
+O(q3) ,

F
+(3)
2,3

∣∣∣
q>0q̄0

= q
(
− y2

1890
− y

180
− 37

2520
− 1

56y
− 1 + 14ζ3

112y2
+

ζ3 + ζ5
8y3

)

+ q2
(
− y2

1680
− 11y

960
+

4033

26880
+

1307

3584y
+

4891 + 1848ζ3
14336y2

+
32 + 33ζ3 + 36ζ5

256y3

)
+O(q3) ,

F
−(2)
2,3

∣∣∣
q>0q̄0

= q
(2y3
945
− 8y2

945
− y

30
− 11− 60ζ3

252
− 11 + 192ζ3

504y
− 3ζ3 − 6ζ5

8y2

)
(7.13)

+ q2
( y3

210
− 3y2

70
− 11y

160
+

5(37 + 96ζ3)

896
+

1977 − 6912ζ3
3584y

+
3(16 − 33ζ3 + 72ζ5)

128y2

)
+O(q3) ,

where obviously we have F
+(s)
m,k |q0q̄>0 = +F

+(s)
m,k |q>0q̄0 while F

−(s)
m,k |q0q̄>0 = −F−(s)

m,k |q>0q̄0 .

7.1.3 Preview to Part II: L-values in the Fourier expansion

Unlike for the (qq̄)n sector, we notice now that due to the presence of the α[· · · ] integration
constants, the perturbative coefficients in the non-zero Fourier mode sectors are not purely

rational any longer and contain also single-valued zetas. Furthermore, as already anticipated in

section 3.6 and presented in full detail in Part II, whenever we consider a Poincaré sum such

that F
±(s)
m,k 6= qF

±(s)
m,k the difference F

±(s)
m,k − qF

±(s)
m,k will involve some special iterated integral of

holomorphic (and antiholomorphic) cusp forms. This is already evident from the perturbative

coefficients in the non-zero Fourier mode sectors of these modular objects F
±(s)
m,k 6= qF

±(s)
m,k which

will now involve special completed L-values. As an appetiser for Part II we have for example:

F
+(6)
4,4

∣∣∣
q>0q̄0

= q
[
− y3

85050
− y2

56700
− y

113400
− 11

10800
+

7λ

20730
+
(
− 11

1440
+

7λ

2764

)
y−1

+
(
− 77

2880
+

49λ

5528

)
y−2 +

(
− 77

1440
+

49λ

2764

)
y−3 +

(
− 77

1280
+

441λ

22112
+

5ζ7
192

)
y−4

+
(
− 77

2560
+

441λ

44224
+

29ζ7
384

)
y−5 +

25ζ7
384

y−6
]
+O(q2) , (7.14)
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where for compactness we use the shorthand λ = Λ(∆12, 13)/Λ(∆12 , 11) for a ratio of completed

L-values14 for ∆12(τ), the Ramanujan cusp form of modular weight 12.

As a final comment for this section we want to stress that, given the general seeds (3.39) and

(5.16), it is in principle possible to reconstruct the whole Fourier mode decomposition (7.1) for

the corresponding F
±(s)
m,k and not just its Laurent polynomial. The mapping from seed to generic

Fourier mode is given in (A.2). However, the careful reader will notice the presence of some

challenging Kloosterman sums (A.3) in this integral transform thus considerably complicating

the story. At the present time no general result is known for the non-zero Fourier modes,

unlike our general formula for Laurent polynomial (A.8b). Our previous discussion implies

that a careful analysis of these Kloosterman sums should produce zeta values as well as more

complicated ratios of completed L-values amongst the perturbative coefficients in the non-zero

Fourier mode sectors. Needless to say it would be extremely interesting to explore this direction.

7.2 Even cusp forms at depth two

Given the results for the Laurent polynomials of F
+(s)
m,k in section 4.3, we can construct infinite

families of real cusp forms, i.e. modular invariants that are even under τ → −τ̄ . These com-

plement the imaginary or odd cusp forms F
−(s)
m,k , J

−[ℓ]
m,k (along with their antecedents in [19, 27])

and the first even cusp forms identified in [43]. The construction is based on a simple counting

argument for the dimension of the vector space given by the Laurent polynomials appearing for

the even modular invariants discussed so far at a given weight.

From our analysis (4.13) we know that each F
+(s)
m,k with m < k contains five different Laurent

monomials, and four for m = k. The products J
+[ℓ]
m,k of depth-one objects defined in (3.14) for

ℓ ≥ 0 contribute the same types of Laurent monomials (with m < k)

J
+[ℓ]
m,k mod O(q, q̄) ←→ ym+k , ζ2m−1y

k−m+1 , ζ2k−1y
m−k+1 ,

ζ2m−1ζ2k−1

yk+m−2
,

J
+[ℓ]
k,k mod O(q, q̄) ←→ y2k , ζ2k−1y ,

ζ22k−1

y2k−2
, (7.15)

though their relative coefficients will differ from those of F
+(s)
m,k , and the terms ζm+k+s−1y

1−s of

the latter are absent. The exact general formula for m ≤ k similar to (4.11) is here

J
+[ℓ]
m,k =

(−4)k+mB2mB2k(k)ℓ(m)ℓ
(2m)!(2k)!

yk+m − (−1)k42−m+kB2k(2m−3)!(1−m)ℓ(k)ℓζ2m−1

(m−1)!(m−2)!(2k)! y1−m+k

− (−1)m42−k+mB2m(2k−3)!(1−k)ℓ(m)ℓζ2k−1

(k−1)!(k−2)!(2m)!
y1−k+m (7.16)

+
44−m−k(2m−3)!(2k−3)!(1−m)ℓ(1−k)ℓζ2m−1ζ2k−1

(m−1)!(m−2)!(k−1)!(k−2)! y2−k−m +O(q, q̄) ,

14The completed L-function of a holomorphic cusp form ∆(τ ) =
∑

n>0 a(n)q
n of modular weight 2s is defined by

Λ(∆, t) = (2π)−tΓ(t)
∑

n>0

a(n)n−t
,

where the sum converges absolutely for Re(t) > s+ 1
2
[104,105] and can be extended to a meromorphic function.
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where the middle two terms coalesce for m = k.

From the admissible values of s in (3.28), the collection of all Laurent polynomials (4.13) of

F
+(s)
m,k , appearing at a fixed weight w = k+m, involves degrees (2−w, 3−w, 5−w, . . . , w−3, w).

Most of the coefficients were found to be rational multiples of odd zeta values

VF+⊕J+(w)=spanQ

{
F
+(s)
m,k , J

+[ℓ]
m,k

∣∣∣w = k +m
}
→
LP

ζ3y
w−3, ζ5y

w−5, . . . , ζ2w−5y
5−w, ζ2w−3y

3−w

(7.17)

except for the purely rational coefficient of yw and products ζ2m−1ζ2k−1 multiplying y2−w in any

F
+(s)
m,k or J

+[ℓ]
m,k with k+m = w. More precisely, there are ⌊w2 ⌋ − 1 distinct products ζ2m−1ζ2k−1

compatible with 2 ≤ m ≤ k and fixed weight k+m = w. Together with yw and the w−2 Laurent

monomials in (7.17), we arrive at a total of

nQ

F+⊕J+
(w) = w +

⌊w
2

⌋
− 2 (7.18)

Q-independent monomials in the Laurent polynomials of all even modular invariants F
+(s)
m,k and

J
+[ℓ]
m,k of weight k+m = w, see table 6 for examples. This counting is based on the standard

transcendentality conjectures for MZVs [106], i.e. we have assumed that all odd zeta values and

their bilinears are linearly independent over Q.

weight w zeta values of depth ≤ 1 bilinears in ζ2k−1 nQ

F+⊕J+
(w)

4 1, ζ3, ζ5 ζ23 4

5 1, ζ3, ζ5, ζ7 ζ3ζ5 5

6 1, ζ3, ζ5, ζ7, ζ9 ζ3ζ7, ζ25 7

7 1, ζ3, ζ5, ζ7, ζ9, ζ11 ζ3ζ9, ζ5ζ7 8

8 1, ζ3, ζ5, ζ7, ζ9, ζ11, ζ13 ζ3ζ11, ζ5ζ9, ζ27 10

9 1, ζ3, ζ5, ζ7, ζ9, ζ11, ζ13, ζ15 ζ3ζ13, ζ5ζ11, ζ7ζ9 11

10 1, ζ3, ζ5, ζ7, ζ9, ζ11, ζ13, ζ15, ζ17 ζ3ζ15, ζ5ζ13, ζ7ζ11, ζ29 13

Table 6: Zeta values occurring in the Laurent polynomials of even modular invariants of depth

two.

However, similar to the discussion in section 3.6, the total number of F
+(s)
m,k and J

+[ℓ]
m,k appearing

at a fixed weight k+m = w follows the very simple counting

dimVF+(w) =

w−2∑

s=2

dimVF+(w, s) =
1

2

( ⌊w
2

⌋2
−
⌊w
2

⌋)
,

dimVJ+(w) =
⌊w
2
⌋∑

m=2

m =
1

2

(⌊w
2

⌋2
+
⌊w
2

⌋
− 2
)
. (7.19)

We have used equation (3.71) for dimVF+(w, s), while we simply counted the number of depth-

two J
+[ℓ]
m,k with 0 ≤ ℓ < min(m,k) at fixed weight. By comparing with the counting of Q-
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independent Laurent monomials in (7.18), we conclude that

dimVF+⊕J+(w) := dimVF+(w) + dimVJ+(w) =
⌊w
2

⌋2
− 1 (7.20)

≥ nQ

F+⊕J+
(w) = w +

⌊w
2

⌋
− 2 , w = 6 or w ≥ 8 ,

so for weight w = 6 and w ≥ 8, we have more depth-two modular invariant objects than possible

Laurent polynomials. This means that for sufficiently large weights, the space of even modular

invariants spanned by the linearly independent functions F
+(s)
m,k and J

+[ℓ]
m,k must contain some even

cusp forms, see table 7.

For odd w, there is the additional possibility of adding the constant ζw to the space of (single-

valued) modular invariants which corresponds to the vanishing eigenvalue of the Laplacian.

Instances of the appearance of ζw can be seen in (3.74) and (3.77). To take this into account,

we introduce the following notation for the combined bookkeeping

dimVF+⊕J+⊕ζ(w) = dimVF+⊕J+(w) + w − 2
⌊w
2

⌋
= dimVF+⊕J+(w) +

{
1 w odd ,

0 w even .
(7.21)

In fact, the difference

dimVF+⊕J+⊕ζ(w)− nQ

F+⊕J+(w) =
⌊w
2

⌋2
− 3

⌊w
2

⌋
+ 1 (7.22)

is a lower bound on the number of cusp forms at fixed w = k+m. Larger numbers are conceivable

since it is not a priori clear if the Laurent polynomials of the relevant F
+(s)
m,k and J

+[ℓ]
m,k are linearly

independent over Q. We have tested up to and including weight w = 28 that the bound is

saturated, i.e. that (7.22) is the actual number of even cusp forms. At odd weight w ≥ 7,

an additional cusp can be formed by adding a rational multiple of ζw to the general Q-linear

combination of F
+(s)
m,k and J

+[ℓ]
m,k .

weight w dimVF+(w) dimVJ+(w) dimVF+⊕J+⊕ζ(w) nQ

F+⊕J+
(w) #(cusp forms)

4 1 2 3 4 0

5 1 2 4 5 0

6 3 5 8 7 1

7 3 5 9 8 1

8 6 9 15 10 5

9 6 9 16 11 5

10 10 14 24 13 11

Table 7: Extracting the minimum number of even cusp forms at weight w by comparing the

counting of Laurent monomials in table 6 with the total number of F
+(s)
m,k and J

+[ℓ]
m,k. At each

odd weight w ≥ 7, an additional even cusp form can be formed by adding multiples of ζw to the

combinations of modular invariants at depth 2.
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• For example at weight w = 6 we have dimVF+(6) + dimVJ+(6) = 8 while the dimension

over the rationals of the possible Laurent polynomials is nQ

F+⊕J+
(6) = 7. Since the latter

are linearly independent over Q, we obtain a single cusp form which is fairly simple to

construct by cancelling the Laurent polynomials of F
+(s)
m,k and J

+[ℓ]
m,k in the combination

S
(6)
2 = −54F+(4)

2,4 −
162

25
F
+(2)
3,3 +

720

7
F
+(4)
3,3 −

269

50
J
+[0]
3,3 −

3739

2100
J
+[1]
3,3 +

1

840
J
+[2]
3,3 +

9

4
J
+[1]
2,4 .

(7.23)

This is one of the even cusp forms of weight 6 presented in equation (9.8b) of [43]15, where

additional cusp forms at that weight have been constructed from admixtures of modular

graph forms of depth three.

The counting in table 7 leads to the following further examples based on the fact that Q-

linear combinations of F
+(s)
m,k and J

+[ℓ]
m,k span the whole set of admissible Laurent polynomials.

This is checked on a case-by-case basis at weight w ≤ 28:

• At weight w = 7 we have dimVF+(7) + dimVJ+(7) = 8 = nQ

F+⊕J+
(7) so we would not

expect any even cusp at depth two if it was not for the possibility of combining ζ7 with

F
+(s)
m,k and J

+[ℓ]
m,k . Hence, a single even cusp form can be found

S
(7)
1 = 23ζ7 − 37635840F

+(3)
3,4 + 230519520F

+(5)
3,4 − 102453120F

+(5)
2,5 (7.24)

− 10869120J
+[0]
3,4 − 1773180J

+[1]
3,4 + 2034J

+[2]
3,4 + 2561328J

+[1]
2,5 .

• At weight w = 8, the space of even cusp forms at depth two is five-dimensional by

dimVF+(8) + dimVJ+(8) = 15 and nQ

F+⊕J+
(8) = 10, and one can pick the following basis:

S
(8)
1 = F

+(4)
4,4 −

F
+(2)
4,4

7
−

9501862F
+(4)
3,5

63035
−

142086685F
+(6)
2,6

529494
+

2436903800F
+(6)
3,5

3744279
−

5F
+(6)
4,4

14

−
17440506049J

+[0]
3,5

655248825
+

28417337J
+[1]
2,6

6353928
−

27880409152J
+[1]
3,5

9828732375
+

482042723J
+[2]
3,5

117944788500
,

S
(8)
2 =

20

7
F
+(2)
4,4 +

2046167552F
+(4)
3,5

567315
+

5115418880F
+(6)
2,6

794241
−

5311016000F
+(6)
3,5

340389
− 90

7
F
+(6)
4,4

+
37987131796J

+[0]
3,5

59568075
+J

+[0]
4,4 −

255770944J
+[1]
2,6

2382723
+
60832177033J

+[1]
3,5

893521125
−
525859921J

+[2]
3,5

5361126750
,

S
(8)
3 = −120

7
F
+(2)
4,4 −

4778052136F
+(4)
3,5

189105
−

11945130340F
+(6)
2,6

264747
+

12420404800F
+(6)
3,5

113463
(7.25)

− 720

7
F
+(6)
4,4 −

88794207428J
+[0]
3,5

19856025
+

597256517J
+[1]
2,6

794241
−

142388765144J
+[1]
3,5

297840375

+ J
+[1]
4,4 +

613427464J
+[2]
3,5

893521125
,

15The identification of (7.23) with (9.8b) of [43] relies on the change of basis (cf. (3.30) and (3.32))

E2,4 = −54F
+(4)
2,4 , E3,3 = −

18

5
(F

+(2)
3,3 − F

+(4)
3,3 ) , E′

3,3 = −
27

25
F

+(2)
3,3 +

12

25
F

+(4)
3,3 .
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S
(8)
4 =

1920

7
F
+(2)
4,4 +

17886117392F
+(4)
3,5

37821
+

223576467400F
+(6)
2,6

264747
−

232237840000F
+(6)
3,5

113463

− 3600

7
F
+(6)
4,4 +

332347746616J
+[0]
3,5

3971205
−

11178823370J
+[1]
2,6

794241
+

532024449268J
+[1]
3,5

59568075

−
2503432058J

+[2]
3,5

178704225
+ J

+[2]
4,4 ,

S
(8)
5 = 2880J

+[0]
4,4 − 180J

+[1]
4,4 − 36J

+[2]
4,4 + J

+[3]
4,4 .

Note that only four linear combinations spanned by S
(8)
1 , . . . ,S

(8)
5 are expressible in terms of

MGFs since F
+(6)
4,4 ,F

+(6)
3,5 and F

+(6)
2,6 carry admixtures of holomorphic cusp forms detailed in

Part II that cancel from the combinations (4.23).

By the linear independence of the βsv+, j
m,k of depth two entering via F

+(s)
m,k , J

+[ℓ]
m,k , none of

the even cusp forms in the counting of this section vanishes. Moreover, they do not satisfy any

obvious Laplace-type equations. This is due to the fact that we are using J
+[ℓ]
m,k with ℓ < min(m,k)

which do not close under (∆−λ) for any eigenvalue λ, see section 3.2.1. Despite all of these cusp

forms having vanishing perturbative expansion, i.e. vanishing Laurent polynomials, we believe

it still should be possibly to use a similar resurgent analysis as described in [20,56], to suitably

deform the perturbative expansion and use it to retrieve all of the non-perturbative, i.e. (qq̄)n

terms. In particular we note that, unlike what happens in (7.10) for odd cusp forms F
−(s)
m,k , these

new even cusp forms will generically have non-vanishing (qq̄)n terms in the zeroth Fourier mode.

Note that Ca,b,c and Ew do not add any even cusp forms to the Q-span of ζw,F
+(s)
m,k and J

+[ℓ]
m,k:

First, Ca,b,c can be rewritten in terms of ζw,F
+(s)
m,k and Ew with w = m+k = a+b+c according

to (3.73). Second, the Laurent monomial ζ2w−1y
1−w of Ew in (2.9) cannot be compensated by

any of ζw,F
+(s)
m,k , J

+[ℓ]
m,k , so the coefficients of Ew in the cusp forms of interest must be zero. Third,

products ζaEw−a with odd a ≥ 3 also introduce additional bilinears ζaζ2w−2a−1 into the Laurent

polynomials which do not arise from F
+(s)
m,k and J

+[ℓ]
m,k such that their Q-coefficients have to vanish

separately in cusp forms.16

As a final comment, we notice that additional even cusp forms can be formed from Q[MZV]-

linear rather than Q-linear combinations of ζw,F
+(s)
m,k and J

+[ℓ]
m,k . For instance, an additional even

cusp form built from F
+(s)
m,k , J

+[ℓ]
m,k at m+k = 6 beyond (7.23) and those in [43] is given by

S̃2 = ζ25

(9
2
F
+(2)
3,3 −

3069

1400
J
+[0]
3,3 +

673

2800
J
+[1]
3,3 +

1373

5600
J
+[2]
3,3 −

45

4
J
+[0]
2,4 −

45

16
J
+[1]
2,4

)

+
7ζ3ζ7
32

(
72J

+[0]
3,3 + 8J

+[1]
3,3 − J

+[2]
3,3

)
. (7.26)

Although the τ -dependence is carried by modular graph forms of depth two and weight six,

the cusp form (7.26) should be understood as having depth four and weight sixteen by the

coefficients in Q[ζ25 ] and Q[ζ3ζ7].

16This can be seen as follows: The combined weight of ζaζ2w−2a−1 due to ζaEw−a is 2w−a−1 ≤ 2w−4 (since

a ≥ 3) which is strictly lower than the weight 2w−2 of the ζ2k−1ζ2m−1 from F
+(s)
m,k and J

+[ℓ]
m,k.
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7.3 Overly integrated seed functions

From the comprehensive collection of seed functions and their associated Poincaré series in tables

1 to 5, one might wonder about the cross signposts × in the remaining cells: What type of seed

functions and corresponding modular objects correspond to the black crosses filling the right

side, and the red crosses (and beyond) on the top left corner?

Let us first discuss the infinite class of modular objects associated with seed functions that

exceed the maximum number of zeros Re[E0(2m, 02m−2)] encountered in earlier sections,

yaRe[E0(2m, 0b)] , a ≥ 1 , b > 2m−2 , (7.27)

i.e. the black crosses left as signposts for the infinitely extended right side of the tables. We

shall address the red crosses and beyond in the next section. The class of seeds (7.27) will be

informally referred to as “overly integrated” iterated Eisenstein integrals: The term “overly”

is understood in comparison with the iterated Eisenstein integrals over kernels τ jGk(τ) with

0 ≤ j ≤ k−2 [33, 35, 36], where the restriction on j ensures nice modular properties in terms

of iterated integrals of the form Re[E0(2m, 0b)]. There is nothing wrong per se in considering

overly integrated iterated integrals, however, their modular S-transformation involves an infinite

series of E0(2m, 0c) with no upper bound on c [56].

The modular invariant functions associated with the overly integrated seeds (7.27) can be

understood from our discussion in section 3.5 of the Laplace system in steps form. We can

go from the rightmost columns in tables 1 to 5 to the neighbouring columns on their left by

considering

Oa

(
yaRe[E0(2m, 02m−2)]

)
= ya+1 Re[E0(2m, 02m−3)] , (7.28)

see (3.63) for the shifted Laplacians Oa and as depicted in table 8 for the m = 2 case.

m = 2:

a
b

0 1 2 3

1

2

3

4

5

6

7

×
×

βsv, j≤2
2,2

βsv, j≤2
2,3

βsv, j≤2
2,4

βsv, j≤2
2,5

βsv, j≤2
2,6

×
βsv, j≤1
2,2

βsv, j≤1
2,3

βsv, j≤1
2,4

βsv, j≤1
2,5

βsv, j≤1
2,6

βsv, j≤1
2,7

βsv, j=0
2,2

βsv, j=0
2,3

βsv, j=0
2,4

βsv, j=0
2,5

βsv, j=0
2,6

βsv, j=0
2,7

βsv, j=0
2,8

×
×
×
×
×
×
×

ւO1

ւO2

ւO1

ւO2

ւO3

ւO1

ւO2

ւO3

ւO4

ւ. . .

ւO3

ւ. . .

ւ. . .

Table 8: Filling in the chessboard with the action of the operators Oℓ defined in (3.63).
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7.3.1 Example in the (2, 3) sector

For example using table 1, together with the results of section 3.5, we can construct the tower

of equations relevant for βsv
2,3

O2

[
y2
(
Re[E0(4, 02)]−

ζ3
6

)
+

y5

945

]
= y3 Re[E0(4, 0)] −

y5

420
,

O3

[
y3Re[E0(4, 0)] −

y5

420

]
= y4 Re[E0(4)] +

y5

360
, (7.29)

O4

[
y4Re[E0(4)] +

y5

360

]
= − y5

(2πi)4
ReG4 ,

or equivalently after Poincaré summation:

O2

(
315F

+(3)
2,3

)
= −315

8

(
F
+(3)
2,3 + J

+[0]
2,3

)
,

O3

[
− 315

8

(
F
+(3)
2,3 + J

+[0]
2,3

)]
=

105

16

(
3J

+[0]
2,3 + J

+[1]
2,3

)
, (7.30)

O4

[105
16

(
3J

+[0]
2,3 + J

+[1]
2,3

)]
= −315

256

(
G4(π∇)2E3 +G4(π∇)2E3

)
.

These towers can be seen as being generated by moving along a diagonal of table 8, starting

from the top right corner.

With a similar reasoning we can then start populating the crosses on the infinite right side

of all these tables. For example to determine the top right cross in table 8 we want to find a

seed f subject to the Laplace equation

O1f = y2
(
Re[E0(4, 02)]−

ζ3
6

)
+

y5

945
, (7.31)

which is for instance solved by

f = yRe[E0(4, 03)] +
ζ3
3
y2 − y5

4725
, (7.32)

and, as expected, we start generating overly integrated iterated integrals.17

Alternatively, the modular function F defined by the Poincaré summation over this seed f

must obey

O1F = −1

4
∆F = 315F

+(3)
2,3 . (7.33)

Interestingly enough, we can still use equations (2.43) and (2.44) applied to the seed (7.32) to

obtain the perturbative expansion for this new modular function

F = − y5

4725
+

ζ3
3
y2 +

735 ζ7
32y2

− 105 ζ3ζ5
8y3

− 7 ζ5
2

[
log
( y

π2

)
+

ζ ′2
ζ2

+
ζ ′4
ζ4
− ζ ′5

ζ5

]
+O(q, q̄) . (7.34)

17The modular invariant solutions to the homogeneous version O1f = 0 of (7.31) include constants, so that we

could in principle add zeta values to the solutions (7.32). We do not include them here as we have no other means

to determine them and our focus is on displaying the overly integrated integrals.
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To obtain these results we have taken the limits in the order discussed in appendix A. Note that

we can rewrite (7.33) making use of the known Laplace equation for F
+(3)
2,3 arriving at

∆F
+(1)
2,3 = E2E3 with F

+(1)
2,3 =

1

210
F + F

+(3)
2,3 , (7.35)

thus effectively extending from below the spectrum (1.1) all the way to s = 1.

7.3.2 Example in the (2, 4) sector

As an extension of the previous example, we can continue filling in the rightmost column of

table 1 diagonal by diagonal. For example for the next two crosses on the diagonal of βsv
2,4 just

below the one considered, we must have two new seeds f1 , f2 satisfying

O1f1 = f2 ,

O2f2 = y3
(
Re[E0(4, 02)]−

ζ3
6

)
+

y6

810
, (7.36)

with solutions

f1 = yRe[E0(4, 04)]−
2ζ3
9

y3 +
2y6

42525
,

f2 = y2Re[E0(4, 03)] +
ζ3
3
y3 − y6

2835
. (7.37)

Alternatively, this diagonal can be understood from the modular functions F1 and F2 constructed

from such seeds f1 and f2 via Poincaré summation:

O1F1 = −
1

4
∆F1 = F2 , (7.38)

O2F2 = −
1

8
(∆ − 2)F2 = 4725F

+(4)
2,4 .

These equations can be rewritten as an inhomogeneous Laplace system by making use of the

known Laplace equation satisfied by F
+(4)
2,4 :

(∆ − 2)F
+(2)
2,4 = E2E4 with F

+(2)
2,4 =

1

3780
F2 + F

+(4)
2,4 , (7.39a)

∆F
+(0)
2,4 = E2E4 with F

+(0)
2,4 =

1

7560
F1 +

1

3780
F2 + F

+(4)
2,4 . (7.39b)

Just like in the previous example we see that these overly integrated seeds produce modular in-

variant objects which allow us to extend from below the spectrum (1.1) with the new eigenvalues

s ∈ {(k−m) mod 2, . . . , k−m−2, k−m}, in this case s ∈ {0, 2}. Note, however, that although

these new modular objects are solving very similar inhomogenous Laplace equations, they are

very different in nature from all the F
+(s)
m,k studied so far as once can easily anticipate from their

expansions near the cusp.
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Once again we can use equations (2.43) and (2.44) applied to the seed (7.37) to obtain the

perturbative expansion for these new modular functions, and for the functions F1 and F2 just

presented we obtain

F1 =
2y6

42525
− 2 ζ3

9
y3 − 10 ζ3ζ5

3
− 875 ζ9

12y3
+

525 ζ3ζ7
16y4

(7.40a)

+
35 ζ7
y

[
1 + log

( y

π2

)
+ 2

ζ ′4
ζ4
− ζ ′7

ζ7

]
+O(q, q̄) ,

F2 = −
y6

2835
+

ζ3
3
y3 +

875 ζ9
4y3

− 2625 ζ3ζ7
16y4

(7.40b)

+
35 ζ7
2y

[1
2
− log

( y

π2

)
− 2

ζ ′4
ζ4

+
ζ ′7
ζ7

]
+O(q, q̄) .

Note that the expansions near the cusp y ≫ 1 for these new modular objects (7.34) and (7.40)

are not Laurent polynomials any longer due to the appearance of new logarithmic contributions.

Furthermore, the coefficients feature new interesting combinations related to the derivatives of

the Riemann zeta, e.g. ζ ′4/ζ4 and ζ ′7/ζ7 above. Such combinations ζ ′k/ζk have appeared from

the integration over modular parameters in genus-one amplitudes of closed strings [5, 1, 23] and

open strings [107]. Moreover, the transcendentality properties of these terms and accompanying

harmonic sums have been discussed in [23].

Both these novelties appeared in [56] precisely in the context of the perturbative expansion

for overly integrated iterated Eisenstein integrals. It would be tempting to interpret these

modular objects in terms of an extension of the βsv, j
m,k in (2.34) to j ≤ −1. However, we should

stress that the βsv
[
j1 j2
k1 k2

]
in (2.23) have not been defined for such extensions and in fact never

appear in the configuration-space integrals of closed-string genus-one amplitudes. Nonetheless,

it would be extremely interesting to understand better their properties and whether they play

any role in string theory.

7.4 “The red crosses and beyond”

As a final comment on our discussion of seed functions, we want to give further details regarding

the seeds and associated modular functions related to the top left diagonal with red crosses in

tables 1–5 and what lies beyond that. From our general discussion it follows that the seeds

associated with the red crosses are all of the form

yaRe[E0(2m, 0m−a)] , a ≥ 1 . (7.41)

However, if we try to apply our formula (2.43) to obtain the Laurent polynomials from these

seeds we immediately face the obstacle that these diverge when a tends to an integer. The reason

for this divergence lies in the fact that we are now starting to explore, as already discussed in

section 6.2, the realm of non-convergent Poincaré sums which have to be interpreted as analytic

continuations.

To better understand what is going on we can focus on the whole red-cross diagonal whose

starting-point seed would be naively given by y0Re[E0(2m, 0m)]. This putative seed is not present
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in the tables 1–5 but would appear just one check-box higher along the red-cross diagonal. From

this seed, it would be tempting to apply O0 to generate y1Re[E0(2m, 0m−1)] if it was not for O0

being ill-defined. However, the above discussion suggests an approach to fix this by analytically

continuing the power a of y away from integers, i.e. by studying

Oǫ

(
yǫRe[E0(2m, 0m)]

)
= − 1

4ǫ
[∆ − ǫ(ǫ−1)] yǫ Re[E0(2m, 0m)] = y1+ǫRe[E0(2m, 0m−1)] . (7.42)

As explained in appendix A, we regulate such seeds by analytically continuing the overall power

of y only. The key point is that the Poincaré sum and the ǫ → 0 limit do not commute, in

particular

lim
ǫ→0

∆
∑

γ∈B(Z)\SL(2,Z)

[
yǫRe[E0(2m, 0m)]

]
γ
6=

∑

γ∈B(Z)\SL(2,Z)

∆ lim
ǫ→0

[
yǫRe[E0(2m, 0m)]

]
γ
. (7.43)

It is easy to see that

∆ lim
ǫ→0

yǫRe[E0(2m, 0m)] = 0 , (7.44)

while with the use of (2.43) we were able to deduce that

∑

γ∈B(Z)\SL(2,Z)

[
Re[E0(2m, 0m)]

]
γ
=

6(m−2)!
m(2m−1)!Em , m > 2 . (7.45)

We believe it should be possible to prove this identity by a similar analytic continuation that

led to the proof [98] of (2.47), and we have checked that the Laurent polynomials match for

3 ≤ m ≤ 20. However, this does not exclude that the two expressions differ by some cusp form.

The case m = 2 is particular. The reason is that with the use of (2.47) we can prove that

∑

γ∈B(Z)\SL(2,Z)

[
Re[E0(2m, 02m−2)]

]
γ
=

ζ2m−1

(2m−1)!E0 , m > 2 . (7.46)

For m = 2 we notice that 2m−2 = m such that equations (7.45) and (7.46) become degener-

ate, and the correct answer is the sum of the two expressions (which notably violates uniform

transcendentality):
∑

γ∈B(Z)\SL(2,Z)

[
Re[E0(4, 02)]

]
γ
=

1

2
E2 +

ζ3
3!

. (7.47)

We do not have a proof for the above statement, but we have checked that indeed the Laurent

polynomial we produce is the correct one.

With these results at hand we can go back to our analytically continued diagonal action (7.42)

and we can understand why the red-crosses diagonal gives rise to divergent Laurent polynomials

∑

γ∈B(Z)\SL(2,Z)

[
y1+ǫRe[E0(2m, 0m)]

]
γ
= − 1

4ǫ
∆

∑

γ∈B(Z)\SL(2,Z)

[
yǫRe[E0(2m, 0m)]

]
γ
+O(ǫ0)

= − 3

2ǫ

(m−1)!
(2m−1)!Em +O(ǫ0) , (7.48)
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which again we have checked at the level of Laurent polynomials using (2.43) regularised via

analytic continuation for the power of y in the seed.

It would be tempting to interpret the red crosses as originating from βsv, j
m,k with k ≤ 1 which

one may relate to the depth-two versions of the iterated integrals (2.16) containing G2, and,

as we move further up from the red crosses diagonal, G0 , G−2 and so on, all intended as their

associated q-series, similarly to the discussion in [56]. There is no evidence for these strange

objects to appear in any direct perturbative string-theory computation.

8 Conclusions

In this work, we have systematically extended the representation of non-holomorphic Eisenstein

series Ek as Poincaré sums over (Im τ)k to even and odd modular invariants of depth two. The

notion of depth refers to the iterated-Eisenstein-integral representations, i.e. we exhaust the

modular invariant functions built from double-integrals over holomorphic Eisenstein series. Our

depth-two targets are spanned by modular invariant bilinears in Ek and their Cauchy–Riemann

derivatives together with solutions F
±(s)
m,k to inhomogeneous Laplace eigenvalue equations of the

same type that are known from two-loop modular graph functions [1]. We stress that the

modular invariants constructed in this work extend beyond the realm of modular graph forms.

As will be further explored in Part II, this is reflected in the depth-one integrals of holomorphic

cusp forms contributing to some of the F
±(s)
m,k . While the results in this work apply to integer

m,k, generalisations to half-odd integer values of the Laplace equations under discussion play

an important role for string dualities [59,62,66].

These depth-two modular invariants F
±(s)
m,k are obtained from Poincaré sums over iterated

Eisenstein integrals at depth one over a single kernel τ jGk with 0 ≤ j ≤ k−2 [33]. In fact,

these seed functions are organised according to the real or imaginary parts of the convergent

iterated Eisenstein integrals, where the cuspidal combination G0
k(τ) = Gk(τ)− 2ζk is integrated

between 1 and k−1 times. In this way, we expose Fourier decompositions of the seeds with all

non-zero modes in the form of (qn± q̄n) with q = e2πiτ , bypassing the powers of qq̄ in earlier seed

functions for two-loop modular graph forms [19]. Our results support the general expectation

that Poincaré-series representations of modular invariants at depth ℓ admit seed functions built

from iterated Eisenstein integrals at depth ℓ−1 and below, which is here worked out for ℓ = 2.

Our work contributes to a structural understanding of the interplay between non-holomorphic

modular forms and iterated integrals. At the same time, the new Poincaré-series representa-

tions of modular invariants are useful for practical calculations, to integrate over the modular

parameter τ in the low-energy expansion of closed-string genus-one amplitudes in flat spacetime.

Poincaré series play a prominent role in the Rankin–Selberg–Zagier method for such τ -integrals

of modular-invariant functions [108, 109, 4, 110, 111]. We emphasise that infinite families of the

F
±(s)
m,k go beyond the two-loop modular graph functions all of which have been integrated over

τ in [22]. The basis F
±(s)
m,k of functions gives an alternative method for determining their τ -

integrals by exploiting their simple Laplace equations (1.1) and (1.2). We also anticipate that

our approach based on Poincaré seeds will be useful for higher-depth generalisations.
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This work suggests various directions of follow-up research. A first problem is to connect the

combinations βsv of iterated Eisenstein integrals [27] used in this work to Brown’s construction

of non-holomorphic modular forms [33, 35, 36]. In this way, the organisation of modular graph

forms in Brown’s work via tensor products of SL(2) representations may have an echo at the

level of the seed functions in Poincaré-series representations at arbitrary depth.

Another important follow-up question concerns the generalisation of modular graph forms to

single-valued functions of torus punctures z1, z2, . . ., so-called elliptic modular graph functions

[48,50,30,31,112]. It would be interesting to investigate Poincaré-series representations of elliptic

modular graph functions, where the seed functions will depend on the co-moving coordinates

(uj , vj) ∈ R2 of zj = ujτ+vj. In particular, one may speculate about similar correlations between

the depth of iterated-integral representations of both the elliptic modular graph functions and

their Poincaré seed.
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A From Poincaré seeds to Laurent polynomials

In this appendix, we review how to obtain the Fourier expansion of a modular function from

that of its seed, with particular emphasis on the zero-mode sector. Given the Fourier expansions

Φ(τ) =
∑

ℓ∈Z

aℓ(τ2)e
2πiℓτ1 =

∑

γ∈B(Z)\SL(2,Z)

ϕ(γτ) , (A.1a)

ϕ(τ) =
∑

ℓ∈Z

cℓ(τ2)e
2πiℓτ1 , (A.1b)

with τ1 = Re τ and τ2 = Im τ , the Fourier modes aℓ(τ2) can be reconstructed from the cℓ(τ2)

using the well-known result [54,55]:

aℓ(τ2) = cℓ(τ2) +
∞∑

d=1

∑

n∈Z

S(n, ℓ; d)

∫

R

e
−2πiℓω−2πin ω

d2(τ2
2
+ω2) cn

( τ2
d2(τ22 + ω2)

)
dω . (A.2)

Here S(n, ℓ; d) denotes in general a Kloosterman sum

S(n, ℓ; d) =
∑

r∈(Z/dZ)×

e2πi(nr+ℓr−1)/d , (A.3)
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which is a finite sum over all 0 ≤ r < d that are coprime to d, such that r has a multiplicative

inverse, denoted by r−1, in (Z/dZ)×.

In particular we have that the zero-mode a0(τ2) can be expressed as

a0(τ2) = c0(τ2) +
∞∑

d=1

∑

n∈Z

∑

r∈(Z/dZ)×

e2πinr/d
∫

R

e
−2πin ω

d2(τ2
2
+ω2) cn

( τ2
d2(τ22 + ω2)

)
dω . (A.4)

We split this expression into a0 = I0 + I, where the first contribution I0 entirely stems from the

zero-mode c0 of the seed function

I0 = c0(τ2) + τ2

∞∑

d=1

∑

r∈(Z/dZ)×

∫

R

c0

( 1

τ2d2(1 + t2)

)
dt , (A.5)

and the second contribution I comes from all the non-zero modes cn with n 6= 0

I = τ2

∞∑

d=1

∑

n 6=0

∑

r∈(Z/dZ)×

e2πinr/d
∫

R

e
−2πn it

τ2d
2(1+t2) cn

( 1

τ2d2(1 + t2)

)
dt , (A.6)

where in both integrals we changed variables ω = τ2 t.

In all the cases we will discuss, the Fourier modes of the seed functions will be of the form

c0(y) = (πτ2)
r = yr , (A.7a)

cℓ(y) = σa(|ℓ|)(4π|ℓ|)bτ r2 e−2π|ℓ|τ2 = σa(|ℓ|)(4π|ℓ|)b(y/π)re−2|ℓ|y , (A.7b)

with a, b, r ∈ C and y = πτ2, or finite linear combinations of these seeds. In order to compute

the Laurent zero-mode for the associated modular form we need to use18

I0(r) = yr +
(−16)1−r(2r)!(2r−3)!

B2r(r−2)!(r−1)!
ζ(2r−1)y1−r , (A.8a)

I(a, b, r) =
23−2r+2bπ

Γ(r)

( y
π

)1+b−r
[
y

π2

Γ(b+1)Γ(2r−b−2)
Γ(r−b−1)

ζ(2r−a−2b−2)ζ(1−a)
ζ(2r−a−2b−1)

+
( y

π2

)a+1 Γ(a+b+1)Γ(2r−a−b−2)
Γ(r−a−b−1)

ζ(2r−a−2b−2)ζ(a+1)

ζ(2r−a−2b−1)

+

(
π2

y

)b∑

n≥0

(−π2

y

)n
Γ(2r+n−1)
n! · Γ(r+n)

(A.8b)

× ζ(−b−n)ζ(−a−b−n)ζ(2r−a−b+n−1)ζ(2r−b+n−1)
ζ(2r+2n)ζ(2r−a−2b−1)

]
,

where I(a, b, r) was derived in [20] (note that the variable y used in the reference corresponds

to τ2 and not the current y = πτ2). The expression for I0 is proportional to the usual Laurent

polynomial of non-holomorphic Eisenstein series Er, see (2.9), and we shall refer to the term

18In this equation, we write the Riemann zeta function as ζ(s) instead of ζs in order to make the various

different arguments more legible.
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with y1−r as the Weyl reflected term in the following, due to its origin in the general theory of

Eisenstein series.

A few comments are in order. First to derive both I0(r) and I(a, b, r) we assumed that

Re(r) > 1 for the integral and the Dirichlet series over n in (A.6) to both be convergent. We

will, however, encounter cases for which this is not true. For example when considering seeds for

“diagonal” modular invariant functions, i.e. solutions to (∆− λ)F = E2
k, we will see that r = 1.

In this case I0(r) diverges because the Dirichlet series over n produces ζ(2r−1) → ζ(1). The

correct way to proceed would be to introduce a regulator so that we fold (∆−λ(ǫ))F = EkEk+ǫ

effectively shifting r = 1+ǫ, thus regulating I0, see [20] for the details.

Similarly, we can produce divergent sums when we consider seeds for “non-diagonal” modular

invariant functions, i.e. solutions to (∆ − λ)F = EmEk with m < k. We can obtain a seed by

folding Em instead of Ek and this will effectively gives us r = 1+m−k ≤ 0 and hence the integral

in I0(r) will be divergent. This divergence is due to the Weyl reflected term which for r ∈ Z

with r ≤ 0 contains a Γ(r) and ζ(2r) at denumerator. Again a regulator is needed so that

r = 1+m−k+ǫ, as we mentioned for the case r = 1, so that the Weyl reflected term produces a

finite result. The Weyl reflected term ∝ y1−r in I0(r) combines with the n = 0 term in (A.8b).

For the regulated zero mode these terms cancel.

The contribution I(a, b, r) from the non-zero modes contains a term linear in y in the first

line of (A.8b), and it corresponds to what Zagier calls the Riemann term [113]. Its importance

was discussed in [20], extending [16].

We should also stress that the expression (A.8b) for the contribution I(a, b, r) coming from

the non-zero modes is in general an infinite, asymptotic series. However, in all the cases which

we will be discussing here it will actually truncate. The reason for this truncation comes from

the fact that the parameter a, b will always be integers for us, in particular since we are dealing

with Eisenstein series and their iterated integrals, we will always encounter integers powers of

ℓ and divisors functions with odd indices, i.e. a, b ∈ Z and a odd in (A.7b). By means of the

functional identity I(a, b, r) = I(−a, a+b, r) we can always arrange for the second argument

to be odd provided that a is odd. The infinite series in expression (A.8b) then contains the

combination ζ(−b−n)ζ(−a−b−n) which identically vanishes for n large enough when a and b

are integers of opposite parity.

When specialising (A.8b) to integer values of its parameters we can directly plug in the value

for a, while b should always be considered as a limit. At the very end, if necessary as discussed

above, we can take the integer-value limit for the last parameter r.

Note that the asymptotic nature of this series is nonetheless of crucial importance for deriving

the non-perturbative corrections to the zero-mode using resurgence methods, see [20,56], we will

not however discuss this issue here.

B Two-loop modular graph functions at weight eight

In this appendix, we gather higher-weight examples of the discussion of two-loop modular graph

functions Ca,b,c in sections 3.6 and 4.3.
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B.1 Expansions in terms of F
+(s)
m,k at weight 8

By comparing the Laplace equations (3.3) and (3.28) of the Ca,b,c and F
+(s)
m,k , we find the following

relations

C3,3,2 = −
9

5
F
+(2)
4,4 +

54

5
F
+(4)
4,4 −

1

3
E8 ,

C4,2,2 =
18

35
F
+(2)
4,4 −

16

3
F
+(4)
3,5 −

74

5
F
+(4)
4,4 +

64

3
F
+(6)
3,5 +

100

7
F
+(6)
4,4 −

115

66
E8 ,

C4,3,1 = −
9

35
F
+(2)
4,4 +

8

3
F
+(4)
3,5 −

8

5
F
+(4)
4,4 −

32

3
F
+(6)
3,5 −

50

7
F
+(6)
4,4 +

107

66
E8 , (B.1)

C5,2,1 =
27

70
F
+(2)
4,4 −

16

3
F
+(4)
3,5 +

7

5
F
+(4)
4,4 −

8

3
F
+(6)
3,5 −

25

14
F
+(6)
4,4 +

37

44
E8 ,

C6,1,1 = −
9

70
F
+(2)
4,4 +

8

3
F
+(4)
3,5 +

1

5
F
+(4)
4,4 − 10F

+(6)
2,6 −

8

3
F
+(6)
3,5 −

1

14
F
+(6)
4,4 +

2573

1716
E8 .

As elaborated around (3.72), these relations do not suffice to express all the F
+(s)
m,8−m at weight

eight in terms of Ca,b,c and Ew.

B.2 Laurent polynomials at weight 6 and 7

In this appendix, we gather the Laurent polynomials of Ca,b,c with a+b+c = 6 and 7 which

are known from [37] and partially from [5, 12]. The decompositions in (3.75) and (3.76) along

with the Laurent polynomials of the F
+(s)
m,k in sections 4.5.1 and 4.5.2 reproduce the weight-six

expressions

C2,2,2 =
38y6

91216125
+

ζ7
24y
− 7ζ9

16y3
+

15ζ25
16y4

− 81ζ11
128y5

+O(q, q̄) ,

C3,2,1 =
43y6

58046625
+

yζ5
630

+
ζ7

144y
+

7ζ9
64y3

− 17ζ25
64y4

+
99ζ11
256y5

+O(q, q̄) , (B.2)

C4,1,1 =
808y6

638512875
+

y3ζ3
4725

− yζ5
1890

+
ζ7

720y
− 15ζ3ζ7

32y4
+

23ζ9
64y3

− ζ25
64y4

+
167ζ11
256y5

+O(q, q̄) ,

and the following ones at weight seven:

C3,2,2 =
4y7

127702575
+

ζ7
756

+
7ζ9

480y2
− 33ζ11

128y4
+

21ζ5ζ7
32y5

− 253ζ13
512y6

+O(q, q̄) ,

C3,3,1 =
8y7

127702575
+

ζ7
378
− 7ζ9

480y2
+

33ζ11
128y4

− 21ζ5ζ7
32y5

+
11ζ13
16y6

+O(q, q̄) ,

C4,2,1 =
46y7

638512875
+

y2ζ5
6300

− ζ7
1512

+
7ζ9

480y2
+

11ζ11
256y4

− 3ζ5ζ7
16y5

+
11ζ13
32y6

+O(q, q̄) , (B.3)

C5,1,1 =
244y7

1915538625
+

2y4ζ3
93555

− y2ζ5
18900

+
ζ7

7560
− ζ9

2880y2
+

253ζ11
768y4

− 7ζ3ζ9
16y5

− 3ζ5ζ7
64y5

+
661ζ13
1024y6

+O(q, q̄) .
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C Examples of Poincaré seed functions up to weight 8

In this appendix, we complement the examples in the main text to gather seed functions of

depth one for all the F
±(s)
m,k and J

±[ℓ]
m,k with m+k ≤ 8 and ℓ < m.

C.1 Cases with F
+(s)
m,k at m = k = 4

By combining the seed functions (3.42) with those in (3.50), we can isolate iterated Eisenstein

integrals over G8 as follows:

y8

1277025750
+ y
(
Re[E0(8, 06)]−

ζ7
7!

)
=

3

7
(9f

+(2)
4,4 − 14f

+(4)
4,4 + 5f

+(6)
4,4 ) ,

− y8

91216125
+ y2Re[E0(8, 05)] = −

9

14
(3f

+(2)
4,4 − 28f

+(4)
4,4 + 25f

+(6)
4,4 ) ,

y8

13513500
+ y3Re[E0(8, 04)] = −

45

4
(2f

+(4)
4,4 − 5f

+(6)
4,4 ) ,

− y8

3243240
+ y4Re[E0(8, 03)] =

45

16
(4f

+(4)
4,4 − 40f

+(6)
4,4 − j

+[0]
4,4 ) , (C.1)

y8

1179360
+ y5Re[E0(8, 02)] =

45

128
(360f

+(6)
4,4 + 24j

+[0]
4,4 + j

+[1]
4,4 ) ,

− y8

655200
+ y6 Re[E0(8, 0)] = −

9

512
(3600f

+(6)
4,4 + 600j

+[0]
4,4 + 50j

+[1]
4,4 + j

+[2]
4,4 ) ,

y8

604800
+ y7 Re[E0(8)] =

3

4096
(7200j

+[0]
4,4 + 900j

+[1]
4,4 + 36j

+[2]
4,4 + j

+[3]
4,4 ) .

C.2 Cases with F
+(s)
m,k at m < k

Similarly, the seed functions (3.44) and (3.45) together with those in (3.50) allow us to isolate

various iterated Eisenstein integrals as follows:

2y7

1485
+ y4

(
Re[E0(4, 02)]−

ζ3
6

)
= 62370f

+(5)
2,5 ,

− y7

396
+ y5 Re[E0(4, 0)] = −

31185

8
(8f

+(5)
2,5 + j

+[0]
2,5 ) , (C.2)

y7

360
+ y6 Re[E0(4)] =

6237

16
(5j

+[0]
2,5 + j

+[1]
2,5 )

and

y8

702
+ y5

(
Re[E0(4, 02)]−

ζ3
6

)
=

1064188125

1382
f
+(6)
2,6 ,

− y8

390
+ y6Re[E0(4, 0)] = −

212837625

5528
(10f

+(6)
2,6 + j

+[0]
2,6 ) , (C.3)

y8

360
+ y7Re[E0(4)] =

70945875

22112
(6j

+[0]
2,6 + j

+[1]
2,6 ) ,
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as well as

− y7

467775
+ y2

(
Re[E0(6, 04)]− ζ5

5!

)
= 270(f

+(3)
3,4 − f

+(5)
3,4 ) ,

y7

93555
+ y3Re[E0(6, 03)] = −

135

2
(2f

+(3)
3,4 − 9f

+(5)
3,4 ) ,

− y7

31185
+ y4Re[E0(6, 02)] = −

315

8
(18f

+(5)
3,4 + j

+[0]
3,4 ) , (C.4)

y7

16632
+ y5Re[E0(6, 0)] =

315

64
(72f

+(5)
3,4 + 12j

+[0]
3,4 + j

+[1]
3,4 ) ,

− y7

15120
+ y6 Re[E0(6)] = −

63

256
(120j

+[0]
3,4 + 20j

+[1]
3,4 + j

+[2]
3,4 )

and

− 2y8

675675
+ y3

(
Re[E0(6, 04)]− ζ5

5!

)
= 4158(f

+(4)
3,5 − f

+(6)
3,5 ) ,

y8

81081
+ y4 Re[E0(6, 03)] = −2079(f+(4)

3,5 − 4f
+(6)
3,5 ) ,

− y8

29484
+ y5 Re[E0(6, 02)] = −

6237

16
(24f

+(6)
3,5 + j

+[0]
3,5 ) , (C.5)

+
y8

16380
+ y6Re[E0(6, 0)] =

6237

160
(120f

+(6)
3,5 + 15j

+[0]
3,5 + j

+[1]
3,5 ) ,

− y8

15120
+ y7 Re[E0(6)] = −

2079

1280
(180j

+[0]
3,5 + 24j

+[1]
3,5 + j

+[2]
3,5 ) .

C.3 Cases with F
−(s)
m,k at m+k = 7, 8

In this appendix, we provide additional examples for the discussion in section 5.3. The step

form for odd seed functions in (5.22) and (5.23) generalises as follows to weight m+k = 7,

y4 Im
[
E0(4, 02)

]
= 6930i(f

−(4)
2,5 − f

−(6)
2,5 ) ,

y5 Im
[
E0(4, 0)

]
=

31185i

4
f
−(6)
2,5 , (C.6)

y6 Im
[
E0(4)

]
= −31185i

8
f
−(6)
2,5 − 6237i

16
j
−[1]
2,5

and

y2 Im
[
E0(6, 04)

]
= 27if

−(2)
3,4 − 42if

−(4)
3,4 + 15if

−(6)
3,4 ,

y3 Im
[
E0(6, 03)

]
=

105i

2
f
−(4)
3,4 − 105i

2
f
−(6)
3,4 ,

y4 Im
[
E0(6, 02)

]
= −105i

4
f
−(4)
3,4 + 105if

−(6)
3,4 , (C.7)

y5 Im
[
E0(6, 0)

]
= −945i

8
f
−(6)
3,4 − 315i

64
j
−[1]
3,4 ,

y6 Im
[
E0(6)

]
=

945i

16
f
−(6)
3,4 +

315i

64
j
−[1]
3,4 +

63i

256
j
−[2]
3,4 .
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The analogous expressions at weight m+k = 8 are given by

y5 Im
[
E0(4, 02)

]
=

96744375i

1382
f
−(5)
2,6 − 96744375i

1382
f
−(7)
2,6 ,

y6 Im
[
E0(4, 0)

]
=

212837625i

2764
f
−(7)
2,6 , (C.8)

y7 Im
[
E0(4)

]
= −212837625i

5528
f
−(7)
2,6 − 70945875i

22112
j
−[1]
2,6

and

y3 Im
[
E0(6, 04)

]
= 297if

−(3)
3,5 − 486if

−(5)
3,5 + 189if

−(7)
3,5 ,

y4 Im
[
E0(6, 03)

]
= 567i(f

−(5)
3,5 − f

−(7)
3,5 ) ,

y5 Im
[
E0(6, 02)

]
= −567i

2
f
−(5)
3,5 +

8505i

8
f
−(7)
3,5 , (C.9)

y6 Im
[
E0(6, 0)

]
= −18711i

16
f
−(7)
3,5 − 6237i

160
j
−[1]
3,5 ,

y7 Im
[
E0(6)

]
=

18711i

32
f
−(7)
3,5 +

6237i

160
j
−[1]
3,5 +

2079i

1280
j
−[2]
3,5 .

D Examples of Laurent polynomials of F
+(s)
m,k

In this appendix, we gather the Laurent polynomials of all modular invariant F
+(s)
m,k withm+k ≤ 8

that can be obtained from the general formula (4.11). For F
−(s)
m,k the Laurent polynomial vanishes

identically.

The expressions below also represent the Laurent polynomials of qF
+(s)
m,k even when these

functions are not modular invariant. This follows from our method for reinstating the lower-

depth terms in section 4.3, engineered so that qF
+(s)
m,k yields the same Laurent polynomials as

F
+(s)
m,k . The only possible discrepancy between qF

+(s)
m,k and F

+(s)
m,k lies fully in the O(q, q̄) sector. In

other words, the expressions below can also be obtained by taking the degeneration limit (4.10)

of the βsv.

D.1 Cases with F
+(s)
m,k at m = k

The expressions for F
+(s)
k,k with k ≤ 3 in (4.16) lead to the Laurent polynomials

F
+(2)
2,2 =

y4

20250
− yζ3

45
+

ζ23
4y2
− 5ζ5

12y
+O(q, q̄) ,

F
+(2)
3,3 =

y6

6251175
− yζ5

630
+

ζ25
32y4

− 5ζ7
288y

+O(q, q̄) , (D.1)

F
+(4)
3,3 =

2y6

8037225
− yζ5

3780
+

9ζ25
128y4

− 35ζ9
1152y3

+O(q, q̄) ,

95



equivalent to those of E2,2,E3,3,E
′
3,3 the literature, and the examples (4.17) at k = 4 yield

F
+(2)
4,4 =

y8

1205583750
− yζ7

7560
+

5ζ27
512y6

− 5ζ9
3888y

+O(q, q̄) ,

F
+(4)
4,4 =

y8

982327500
− yζ7

45360
+

5ζ27
384y6

− 7ζ11
6912y3

+O(q, q̄) , (D.2)

F
+(6)
4,4 =

y8

580466250
− yζ7

113400
+

25ζ27
768y6

− 5005ζ13
530688y5

+O(q, q̄) ,

where the Laurent polynomial of the βsv-combination qF
+(6)
4,4 is identical to that of the modular

invariant F
+(6)
4,4 .

D.2 Cases with F
+(s)
m,k at m < k

The expressions for F
+(s)
m,k with m+k ≤ 6 in (4.19) reproduce the known Laurent polynomials

F
+(3)
2,3 =

y5

297675
− y2ζ3

1890
− ζ5

360
+

ζ3ζ5
8y3
− 7ζ7

64y2
+O(q, q̄) , (D.3)

F
+(4)
2,4 =

y6

3827250
− y3ζ3

28350
− ζ7

720y
+

5ζ3ζ7
64y4

− 25ζ9
432y3

+O(q, q̄) ,

equivalent to those of E2,3,E2,4. At weight seven, (4.20) and (4.21) lead to the expressions

F
+(5)
2,5 =

y7

46309725
− y4ζ3

374220
− ζ9

1152y2
+

7ζ3ζ9
128y5

− 77ζ11
2048y4

+O(q, q̄) ,

F
+(3)
3,4 =

y7

80372250
− y2ζ5

25200
− ζ7

4536
+

5ζ5ζ7
256y5

− 49ζ9
11520y2

+O(q, q̄) , (D.4)

F
+(5)
3,4 =

y7

49116375
− y2ζ5

113400
− ζ7

15120
+

3ζ5ζ7
64y5

− 77ζ11
4608y4

+O(q, q̄) ,

and the weight-eight combinations of βsv in (4.21) and (4.22) yield

F
+(6)
2,6 =

691y8

373530031875
− 691y5ζ3

3192564375
− 7ζ11

11520y3
+

21ζ3ζ11
512y6

− 9555ζ13
353792y5

+O(q, q̄) ,

F
+(4)
3,5 =

y8

972504225
− y3ζ5

374220
− ζ9

8640y
+

7ζ5ζ9
512y6

− 5ζ11
2304y3

+O(q, q̄) , (D.5)

F
+(6)
3,5 =

2y8

1149323175
− y3ζ5

1496880
− ζ9

24192y
+

35ζ5ζ9
1024y6

− 63063ζ13
5660672y5

+O(q, q̄) ,

where the Laurent polynomials of the βsv-combinations qF
+(s)
m,k are identical to those of the mod-

ular invariants F
+(s)
m,k .

E Examples of βsv representations of F
−(s)
m,k

In this appendix, we spell out the βsv-representation of further F
−(s)
m,k besides the examples

(5.39) and (5.41) at weights m+k ≤ 6. The complete list for weights m+k ≤ 14 can be found
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in the ancillary file. When the combination of βsv is not modular invariant, we denote the

corresponding function by qF
−(s)
m,k in accordance with the discussion in section 5.5.

E.1 Examples at m+k = 7

At weight m+k = 7, the βsv representations of F
−(s)
m,k constructed from the prescription of section

5.5 are given by

F
−(4)
2,5 = −1890βsv[ 1 4

4 10 ] + 1890βsv[ 2 3
4 10 ] + 1890βsv[ 4 1

10 4 ]− 1890βsv [ 5 0
10 4 ]

− 175

11
βsv[ 38 ] ζ3 − 1260ζ3β

sv[ 3
10 ] +

315ζ3
y

βsv[ 4
10 ] +

105ζ9
16y3

βsv[ 04 ]−
105ζ9
64y4

βsv[ 14 ]−
7ζ9

384y2
,

qF
−(6)
2,5 = −1890βsv[ 1 4

4 10 ]− 1512βsv[ 2 3
4 10 ] + 1890βsv[ 4 1

10 4 ] + 1512βsv [ 5 0
10 4 ] (E.1)

+ 1008ζ3β
sv[ 3

10 ] +
315ζ3
y

βsv[ 4
10 ]−

21ζ9
4y3

βsv[ 04 ]−
105ζ9
64y4

βsv[ 14 ] +
7ζ9

1920y2
,

as well as

F
−(2)
3,4 = −2100βsv[ 2 3

6 8 ] + 2800βsv[ 3 2
6 8 ] + 2100βsv[ 3 2

8 6 ]− 700βsv[ 4 1
6 8 ]− 2800βsv[ 4 1

8 6 ]

+ 700βsv[ 5 0
8 6 ]−

ζ5
12

βsv[ 14 ] + 280ζ5β
sv[ 18 ]−

280ζ5
y

βsv[ 28 ] +
105ζ5
2y2

βsv[ 38 ]

− 50ζ7
y

βsv[ 06 ] +
50ζ7
y2

βsv[ 16 ]−
75ζ7
8y3

βsv[ 26 ]−
5ζ7
1512

,

F
−(4)
3,4 = −2100βsv[ 2 3

6 8 ] + 1050βsv[ 3 2
6 8 ] + 2100βsv[ 3 2

8 6 ] + 1050βsv[ 4 1
6 8 ]− 1050βsv[ 4 1

8 6 ]

− 1050βsv[ 5 0
8 6 ]− 420ζ5β

sv[ 18 ]−
105ζ5
y

βsv[ 28 ] +
105ζ5
2y2

βsv[ 38 ] (E.2)

+
75ζ7
y

βsv[ 06 ] +
75ζ7
4y2

βsv[ 16 ]−
75ζ7
8y3

βsv[ 26 ] +
5ζ7
6048

,

qF
−(6)
3,4 = −2100βsv[ 2 3

6 8 ]− 2100βsv[ 3 2
6 8 ] + 2100βsv[ 3 2

8 6 ]− 210βsv[ 4 1
6 8 ] + 2100βsv[ 4 1

8 6 ]

+ 210βsv[ 5 0
8 6 ] + 84ζ5β

sv[ 18 ] +
210ζ5
y

βsv[ 28 ] +
105ζ5
2y2

βsv[ 38 ]

− 15ζ7
y

βsv[ 06 ]−
75ζ7
2y2

βsv[ 16 ]−
75ζ7
8y3

βsv[ 26 ]−
ζ7

15120
.

E.2 Examples at m+k = 8

The weight-eight instances of F
−(s)
m,k in terms of βsv are given by

F
−(5)
2,6 = −8316βsv[ 1 5

4 12 ] + 8316βsv[ 2 4
4 12 ] + 8316βsv [ 5 1

12 4 ]− 8316βsv[ 6 0
12 4 ]

− 22803ζ3
325

βsv[ 4
10 ]− 5544ζ3β

sv[ 4
12 ] +

1386ζ3
y

βsv[ 5
12 ]

+
189ζ11
32y4

βsv[ 04 ]−
189ζ11
128y5

βsv[ 14 ]−
21ζ11
1280y3

, (E.3)

F
−(7)
2,6 = −8316βsv[ 1 5

4 12 ]− 6930βsv[ 2 4
4 12 ] + 8316βsv [ 5 1

12 4 ] + 6930βsv[ 6 0
12 4 ]

+ 4620ζ3β
sv[ 4

12 ] +
1386ζ3

y
βsv[ 5

12 ]−
315ζ11
64y4

βsv[ 04 ]−
189ζ11
128y5

βsv[ 14 ] +
7ζ11

1920y3
,
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as well as

F
−(3)
3,5 = −9450βsv[ 2 4

6 10 ] + 12600βsv [ 3 3
6 10 ]− 3150βsv[ 4 2

6 10 ] + 9450βsv [ 4 2
10 6 ]− 12600βsv[ 5 1

10 6 ]

+ 3150βsv [ 6 0
10 6 ]−

35ζ5
88

βsv[ 26 ] + 1260ζ5β
sv[ 2

10 ]−
1260ζ5

y
βsv[ 3

10 ] +
945ζ5
4y2

βsv[ 4
10 ]

− 175ζ9
4y2

βsv[ 06 ] +
175ζ9
4y3

βsv[ 16 ]−
525ζ9
64y4

βsv[ 26 ]−
5ζ9

1728y
,

F
−(5)
3,5 = −9450βsv[ 2 4

6 10 ] + 3780βsv [ 3 3
6 10 ] + 5670βsv[ 4 2

6 10 ] + 9450βsv[ 4 2
10 6 ]− 3780βsv[ 5 1

10 6 ]

− 5670βsv [ 6 0
10 6 ]− 2268ζ5β

sv[ 2
10 ]−

378ζ5
y

βsv[ 3
10 ] +

945ζ5
4y2

βsv[ 4
10 ] (E.4)

+
315ζ9
4y2

βsv[ 06 ] +
105ζ9
8y3

βsv[ 16 ]−
525ζ9
64y4

βsv[ 26 ] +
ζ9

864y
,

F
−(7)
3,5 = −9450βsv[ 2 4

6 10 ]− 10080βsv [ 3 3
6 10 ]− 1260βsv[ 4 2

6 10 ] + 9450βsv [ 4 2
10 6 ] + 10080βsv[ 5 1

10 6 ]

+ 1260βsv [ 6 0
10 6 ] + 504ζ5β

sv[ 2
10 ] +

1008ζ5
y

βsv[ 3
10 ] +

945ζ5
4y2

βsv[ 4
10 ]

− 35ζ9
2y2

βsv[ 06 ]−
35ζ9
y3

βsv[ 16 ]−
525ζ9
64y4

βsv[ 26 ]−
ζ9

8640y
.

F Integration constants α[. . .] for even functions

This appendix is dedicated to the combinations αN,j
m,k of antiholomorphic integration constants

defined in (4.28) that enter the even F
+(s)
m,k .

F.1 Examples at m ≤ 3

We shall now gather the remaining instances of the closed formula (4.30) for the αN,j
m,k with

m ≤ 3 that are determined from reality of F
+(s)
m,k with m+k ≤ 8.

At m = 2, the examples that are not yet covered by (2.25) and (4.29) read

α0,0
2,5 = 4ζ3 E0(10, 03) , α0,0

2,6 = 16ζ3 E0(12, 04) ,
α1,0
2,5 = 80ζ3 E0(10, 04) , α1,0

2,6 = 480ζ3 E0(12, 05) ,
α2,0
2,5 = 1440ζ3 E0(10, 05) , α2,0

2,6 = 13440ζ3 E0(12, 06) , (F.1)

α3,0
2,5 = 20160ζ3 E0(10, 06) +

4

3
ζ9 E0(4) , α3,0

2,6 = 322560ζ3 E0(12, 07) ,

α4,0
2,5 = 161280ζ3 E0(10, 07) +

32

3
ζ9 E0(4, 0) , α4,0

2,6 = 5806080ζ3 E0(12, 08) +
48

11
ζ11 E0(4) ,

α5,0
2,6 = 58060800ζ3 E0(12, 09) +

480

11
ζ11 E0(4, 0) .
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At m = 3, the simplest examples are

α0,0
3,4 =

2

5
ζ5 E0(8, 0) , α0,1

3,4 = 0 ,

α1,0
3,4 = 4ζ5 E0(8, 02) +

2

7
ζ7 E0(6) , α1,1

3,4 =
4

5
ζ5 E0(8, 02) ,

α2,0
3,4 = 48ζ5 E0(8, 03) +

16

7
ζ7 E0(6, 0) , α2,1

3,4 =
96

5
ζ5 E0(8, 03) +

4

7
ζ7 E0(6, 0) ,

α3,0
3,4 = 576ζ5 E0(8, 04) +

144

7
ζ7 E0(6, 02) , α3,1

3,4 =
1

2
α3,0
3,4 , (F.2)

α4,0
3,4 = 4608ζ5 E0(8, 05) +

1152

7
ζ7 E0(6, 03) , α4,1

3,4 =
1

2
α4,0
3,4 ,

as well as

α0,0
3,5 =

4

5
ζ5 E0(10, 02) , α0,1

3,5 = 0 ,

α1,0
3,5 =

72

5
ζ5 E0(10, 03) , α1,1

3,5 =
12

5
ζ5 E0(10, 03) ,

α2,0
3,5 = 288ζ5 E0(10, 04) +

4

9
ζ9 E0(6) , α2,1

3,5 = 96ζ5 E0(10, 04) , (F.3)

α3,0
3,5 = 5760ζ5 E0(10, 05) +

16

3
ζ9 E0(6, 0) , α3,1

3,5 = 2592ζ5 E0(10, 05) +
4

3
ζ9 E0(6, 0) ,

α4,0
3,5 = 96768ζ5 E0(10, 06) + 64ζ9 E0(6, 02) , α4,1

3,5 =
1

2
α4,0
3,5 ,

α5,0
3,5 = 967680ζ5 E0(10, 07) + 640ζ9 E0(6, 03) , α5,1

3,5 =
1

2
α5,0
3,5 .

Note that shuffle relations imply the vanishing of α5,0
2,5, α

6,0
2,6, α

5,0
3,4, α

6,0
3,5 as well as the combinations

α3,0
3,4 − 2α3,1

3,4, α
4,0
3,4 − 2α4,1

3,4 and α4,0
3,5 − 2α4,1

3,5, α
5,0
3,5 − 2α5,1

3,5.

F.2 Conjectural closed formula

The closed formula (4.30) for the combinations αN,j
m,k of antiholomorphic integration constants

in (4.28) is proposed to generalise to

AN,j
m,k =

N !

(k−m−N+2j+1)!

{
2ζ2m−1

2m−1
(k−m+j)!(N+k−m+1)!

(N−j)! E0(2k, 0N+k−m) (F.4)

+θN+m−k≥0
2ζ2k−1

2k−1
j!(N+m−k+1)!

(N+m−k−j)! E0(2m, 0N+m−k)

}
,

with j ≤ m−2 and

AN,j
m,k =

m−2−j∑

ℓ=0

(−1)ℓ(2m−2−2j−2ℓ)(2m−3−2j)!
ℓ!(2m−2−2j−ℓ)! αN,ℓ+j

m,k . (F.5)

All instances of this formula with m+k ≤ 14 can be derived from the reality of F
+(s)
m,k , and its

validity at higher weight is conjectural. The step function θN+m−k≥0 in (F.4) is defined by

θM≥0 =

{
1 : M ≥ 0

0 : M < 0
(F.6)
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and ensures the absence of negative numbers of zeros in E0(2m, 0m−k+N ). Moreover, the inverse

factor of (k−m−N+2j+1)! causes AN,j
m,k with N ≥ k−m+2j+2 to vanish. One can easily check

that (F.4) and (F.5) reduce to (4.30) for m = 2, 3 and j = 0, 1.

G Cauchy–Riemann derivatives of F
±(s)
m,k

In this appendix, we list representative examples of Cauchy–Riemann derivatives ∇p and ∇p

of F
±(s)
m,k for 0 < p < s. As explained in section 5.6, their βsv-representations are fixed from

those of F
±(s)
m,k together with their Laurent polynomials and Laplace equations. The case p = s

removes all irreducible depth-two terms and was treated in sections 4.1 and 5.5, respectively.

The ancillary file contains all cases with m+k ≤ 14.

G.1 Derivatives of even F
+(s)
m,k

The first derivatives of F
+(2)
2,2 in (4.16) are given by [27]

(π∇)F+(2)
2,2

y2
= −144βsv[ 1 0

4 4 ] +
24ζ3
y

βsv[ 04 ]−
ζ3
15
− ζ23

2y3
+

5ζ5
12y2

,

(π∇)F+(2)
2,2 = −9βsv[ 2 1

4 4 ] + 6ζ3β
sv[ 14 ]−

ζ23
2y

+
5ζ5
12

, (G.1)

whereas the second derivatives are determined by depth-one data, (π∇)2F+(2)
2,2 = 1

2(π∇E2)
2.

The analogous derivatives of F
+(3)
2,3 in (4.19) are [27]

(π∇)2F+(3)
2,3

y4
= 960βsv[ 0 1

4 6 ] + 1920βsv[ 1 0
4 6 ] + 2880βsv[ 1 0

6 4 ]−
320ζ3
y

βsv[ 06 ]−
40ζ3
y2

βsv[ 16 ]

− 18ζ5
y3

βsv[ 04 ]−
2ζ3
189

+
ζ5

30y2
+

3ζ3ζ5
4y5

− 7ζ7
32y4

,

(π∇)F+(3)
2,3

y2
= −240βsv[ 1 1

4 6 ]− 120βsv[ 2 0
4 6 ]− 360βsv[ 2 0

6 4 ] + 80ζ3β
sv[ 06 ] +

40ζ3
y

βsv[ 16 ]

+
9ζ5
y2

βsv[ 04 ]−
ζ5
60y
− 3ζ3ζ5

8y4
+

7ζ7
32y3

, (G.2)

(π∇)F+(3)
2,3 = −45

2
βsv[ 2 2

4 6 ]− 15βsv[ 3 1
6 4 ]−

15

2
βsv[ 4 0

6 4 ] + 15ζ3β
sv[ 26 ]

+ 3ζ5β
sv[ 04 ] +

3ζ5
2y

βsv[ 14 ]−
3ζ3ζ5
8y2

+
7ζ7
32y

,

(π∇)2F+(3)
2,3 =

45

4
βsv[ 2 3

4 6 ] +
15

4
βsv[ 3 2

6 4 ] +
15

2
βsv[ 4 1

6 4 ]−
15

2
ζ3β

sv[ 36 ]

− 3ζ5β
sv[ 14 ]−

3ζ5
8y

βsv[ 24 ] +
3ζ3ζ5
4y
− 7ζ7

32

with higher derivatives determined by (π∇)3F+(3)
2,3 = 1

2(π∇E2)(π∇)2E3 + (Im τ)4G4π∇E3.
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For F
+(4)
2,4 in (4.19) we have

(π∇)3F+(4)
2,4

y6
= −80640βsv[ 0 1

4 8 ]− 80640βsv [ 1 0
4 8 ]− 161280βsv [ 1 0

8 4 ] +
(π∇)2E2(π∇)E4

12y6

+
13440ζ3

y
βsv[ 08 ] +

3360ζ3
y2

βsv[ 18 ] +
45ζ7
y5

βsv[ 04 ]−
ζ3
135
− ζ7

16y4
− 15ζ3ζ7

8y7
+

25ζ9
72y6

,

(π∇)2F+(4)
2,4

y4
= 3360βsv[ 0 2

4 8 ] + 13440βsv [ 1 1
4 8 ] + 3360βsv [ 2 0

4 8 ] + 20160βsv [ 2 0
8 4 ]− 2240ζ3β

sv[ 08 ]

− 2240ζ3
y

βsv[ 18 ]−
140ζ3
y2

βsv[ 28 ]−
45ζ7
2y4

βsv[ 04 ] +
ζ7

24y3
+

15ζ3ζ7
16y6

− 25ζ9
72y5

,

(π∇)F+(4)
2,4

y2
= −840βsv[ 1 2

4 8 ]− 840βsv[ 2 1
4 8 ]− 1680βsv[ 3 0

8 4 ] + 560ζ3β
sv[ 18 ] +

140ζ3
y

βsv[ 28 ]

+
15ζ7
2y3

βsv[ 04 ]−
ζ7

80y2
− 5ζ3ζ7

16y5
+

25ζ9
144y4

, (G.3)

(π∇)F+(4)
2,4 = −105βsv[ 2 3

4 8 ]−
105

2
βsv[ 4 1

8 4 ]−
105

2
βsv[ 5 0

8 4 ] + 70ζ3β
sv[ 38 ]

+
15ζ7
4y

βsv[ 04 ] +
15ζ7
16y2

βsv[ 14 ]−
ζ7
480
− 5ζ3ζ7

16y3
+

25ζ9
144y2

,

(π∇)2F+(4)
2,4 =

315

4
βsv[ 2 4

4 8 ] +
105

8
βsv[ 4 2

8 4 ] +
105

2
βsv[ 5 1

8 4 ] +
105

8
βsv[ 6 0

8 4 ]−
105

2
ζ3β

sv[ 48 ]

− 15

4
ζ7β

sv[ 04 ]−
15ζ7
4y

βsv[ 14 ]−
15ζ7
64y2

βsv[ 24 ] +
15ζ3ζ7
16y2

− 25ζ9
72y

,

(π∇)3F+(4)
2,4 = −315

8
βsv[ 2 5

4 8 ]−
315

16
βsv[ 5 2

8 4 ]−
315

16
βsv[ 6 1

8 4 ] +
35

4
βsv[ 48 ] (π∇)2E2

+
105ζ3
4

βsv[ 58 ] +
45ζ7
8

βsv[ 14 ] +
45ζ7
32y

βsv[ 24 ]−
5ζ7
32y2

(π∇)E2 −
15ζ3ζ7
8y

+
25ζ9
72

.

The third derivatives feature (π∇)2E2 = 6(Im τ)4G4 and its complex conjugate. For other

functions also derivatives of the (anti-)holomorphic Eisenstein series can arise, but we shall only

write out the derivatives to the orders where they do not for simplicity.

For F
+(s)
3,3 in (4.16), the derivatives which go beyond products of depth one are given by

(π∇)F+(2)
3,3

y2
= −2400βsv[ 2 1

6 6 ] + 800βsv[ 3 0
6 6 ]−

80ζ5
y

βsv[ 06 ] +
60ζ5
y2

βsv[ 16 ]−
ζ5
189
− ζ25

8y5
+

5ζ7
288y2

,

(π∇)F+(2)
3,3 = −150βsv[ 3 2

6 6 ] + 50βsv[ 4 1
6 6 ]− 20ζ5β

sv[ 16 ] +
15ζ5
y

βsv[ 26 ]−
ζ25
8y3

+
5ζ7
288

, (G.4)

as well as

(π∇)3F+(4)
3,3

y6
= −76800βsv[ 0 1

6 6 ]− 268800βsv [ 1 0
6 6 ] +

1680ζ5
y3

βsv[ 06 ]

+
120ζ5
y4

βsv[ 16 ] +
5ζ5

126y2
− 27ζ25

16y7
+

35ζ9
192y6

,
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(π∇)2F+(4)
3,3

y4
= 19200βsv [ 1 1

6 6 ] + 24000βsv [ 2 0
6 6 ]−

600ζ5
y2

βsv[ 06 ]

− 120ζ5
y3

βsv[ 16 ]−
5ζ5
378y

+
27ζ25
32y6

− 35ζ9
192y5

, (G.5)

(π∇)F+(4)
3,3

y2
= −2400βsv[ 2 1

6 6 ]− 1200βsv[ 3 0
6 6 ] +

120ζ5
y

βsv[ 06 ]

+
60ζ5
y2

βsv[ 16 ] +
ζ5
756
− 9ζ25

32y5
+

35ζ9
384y4

and

(π∇)F+(4)
3,3 = −150βsv[ 3 2

6 6 ]− 75βsv[ 4 1
6 6 ] + 30ζ5β

sv[ 16 ] +
15ζ5
y

βsv[ 26 ]−
9ζ25
32y3

+
35ζ9
384y2

,

(π∇)2F+(4)
3,3 = 75βsv[ 3 3

6 6 ] +
375

4
βsv[ 4 2

6 6 ]−
75

2
ζ5β

sv[ 26 ]−
15ζ5
2y

βsv[ 36 ] +
27ζ25
32y2

− 35ζ9
192y

, (G.6)

(π∇)3F+(4)
3,3 = −75

4
βsv[ 3 4

6 6 ]−
525

8
βsv[ 4 3

6 6 ] +
105

4
ζ5β

sv[ 36 ] +
15ζ5
8y

βsv[ 46 ]−
27ζ25
16y

+
35ζ9
192

,

whereas higher derivatives yield products of depth one (π∇)2F+(2)
3,3 = 1

6(π∇E3)
2 as well as

(π∇)4F+(4)
3,3 = 3

4 [(π∇)2E3]
2 + 20(Im τ)6G6π∇E3.

G.2 Derivatives of odd F
−(s)
m,k

The first Cauchy–Riemann derivatives of F
−(s)
2,3 in (5.39) are given by

(π∇)F−(2)
2,3

y2
= 360βsv[ 0 2

4 6 ]− 720βsv[ 1 1
6 4 ]− 360βsv[ 2 0

4 6 ] + 720βsv[ 2 0
6 4 ] +

20

7
ζ3β

sv[ 04 ]

+ 240ζ3β
sv[ 06 ]−

15ζ3
y2

βsv[ 26 ]−
18ζ5
y2

βsv[ 04 ] +
9ζ5
2y3

βsv[ 14 ] +
ζ5
20y

,

(π∇)F−(2)
2,3 = 45βsv[ 1 3

4 6 ]− 45βsv[ 2 2
4 6 ]−

45

2
βsv[ 2 2

6 4 ] +
45

2
βsv[ 4 0

6 4 ] +
5ζ3
28

βsv[ 24 ] (G.7)

+ 30ζ3β
sv[ 26 ]−

15ζ3
2y

βsv[ 36 ]− 9ζ5β
sv[ 04 ] +

9ζ5
16y2

βsv[ 24 ]

and

(π∇)F−(4)
2,3

y2
= 360βsv[ 0 2

4 6 ] + 1200βsv [ 1 1
4 6 ]− 720βsv[ 1 1

6 4 ] + 240βsv[ 2 0
4 6 ]− 1080βsv [ 2 0

6 4 ]

− 160ζ3β
sv[ 06 ]−

200ζ3
y

βsv[ 16 ]−
15ζ3
y2

βsv[ 26 ] +
27ζ5
y2

βsv[ 04 ] +
9ζ5
2y3

βsv[ 14 ]−
ζ5
30y

,

(π∇)F−(4)
2,3 = 45βsv[ 1 3

4 6 ] +
135

2
βsv[ 2 2

4 6 ]−
45

2
βsv[ 2 2

6 4 ]− 75βsv[ 3 1
6 4 ]− 15βsv[ 4 0

6 4 ]− 45ζ3β
sv[ 26 ]

− 15ζ3
2y

βsv[ 36 ] + 6ζ5β
sv[ 04 ] +

15ζ5
2y

βsv[ 14 ] +
9ζ5
16y2

βsv[ 24 ] , (G.8)
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whereas the second derivatives introduce G4 as for instance seen in (5.40). The first derivatives

of F
−(s)
2,4 in (5.41) read

(π∇)F−(3)
2,4

y2
= 1680βsv[ 0 3

4 8 ] + 1680βsv[ 1 2
4 8 ]− 3360βsv[ 2 1

4 8 ]− 5040βsv[ 2 1
8 4 ] + 5040βsv[ 3 0

8 4 ]

+ 28ζ3β
sv[ 16 ] + 2240ζ3β

sv[ 18 ]−
280ζ3
y

βsv[ 28 ]−
70ζ3
y2

βsv[ 38 ]

− 45ζ7
2y3

βsv[ 04 ] +
45ζ7
8y4

βsv[ 14 ] +
ζ7

16y2
, (G.9)

(π∇)F−(3)
2,4 = 315βsv[ 1 4

4 8 ]− 315βsv[ 2 3
4 8 ]− 105βsv[ 3 2

8 4 ]− 105βsv[ 4 1
8 4 ] + 210βsv[ 5 0

8 4 ]

+
7

4
ζ3β

sv[ 36 ] + 210ζ3β
sv[ 38 ]−

105ζ3
2y

βsv[ 48 ]−
15ζ7
y

βsv[ 04 ]

+
15ζ7
8y2

βsv[ 14 ] +
15ζ7
32y3

βsv[ 24 ] +
ζ7
48

and

(π∇)F−(5)
2,4

y2
= 1680βsv[ 0 3

4 8 ] + 7560βsv[ 1 2
4 8 ] + 2520βsv[ 2 1

4 8 ]− 5040βsv[ 2 1
8 4 ]− 6720βsv[ 3 0

8 4 ]

− 1680ζ3β
sv[ 18 ]−

1260ζ3
y

βsv[ 28 ]−
70ζ3
y2

βsv[ 38 ] +
30ζ7
y3

βsv[ 04 ] +
45ζ7
8y4

βsv[ 14 ]−
5ζ7

144y2
,

(π∇)F−(5)
2,4 = 315βsv[ 1 4

4 8 ] + 420βsv[ 2 3
4 8 ]− 105βsv[ 3 2

8 4 ]−
945

2
βsv[ 4 1

8 4 ]−
315

2
βsv[ 5 0

8 4 ] (G.10)

− 280ζ3β
sv[ 38 ]−

105ζ3
2y

βsv[ 48 ] +
45ζ7
4y

βsv[ 04 ] +
135ζ7
16y2

βsv[ 14 ] +
15ζ7
32y3

βsv[ 24 ]−
ζ7
288

,

where second derivatives again introduce G4.

H A more convoluted example of red-herrings

Following the discussion in section 6.3, we want to present here a more convoluted example of the

apparent discrepancy between two representations of alternatively folded seed functions: The

expressions in (6.4) obtained from the Laplace system in step form turn out to yield the same

Poincaré sums as their counterparts derived from the inhomogeneous Laplace system (3.34),

where we take our formulæ (3.39) and (3.50) extended to m > k.

Let us consider the seeds for F
+(s)
2,5 and J

+[ℓ]
2,5 derived from (3.39) in the alternative folding:

yRe[E0(10, 05)] +
y7

7780033800
+ rha =

1

168
f̃
+(5)
2,5 ,

y2 Re[E0(10, 04)]−
y7

740955600
+ rhb = −

1

672
(20f̃

+(5)
2,5 + ̃

+[0]
2,5 ) , (H.1)

y3Re[E0(10, 03)] +
y7

148191120
+ rhc =

1

2688
(180f̃

+(5)
2,5 + 20̃

+[0]
2,5 + ̃

+[1]
2,5 ) ,
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and

y4 Re[E0(10, 02)]−
y7

49397040
= − 1

32256
(2520f̃

+(5)
2,5 + 540̃

+[0]
2,5 + 54̃

+[1]
2,5 + ̃

+[2]
2,5 ) , (H.2)

y5Re[E0(10, 0)] +
y7

26345088
=

1

516096
(20160f̃

+(5)
2,5 + 10080̃

+[0]
2,5 + 1512̃

+[1]
2,5 + 56̃

+[2]
2,5 + ̃

+[3]
2,5 ) ,

y6 Re[E0(10)] −
y7

23950080
= − 1

10321920
(100800̃

+[0]
2,5 +20160̃

+[1]
2,5 +1120̃

+[2]
2,5 +40̃

+[3]
2,5 +̃

+[4]
2,5 ) .

These do not match exactly with the seeds we would have obtained from the Laplacian system

in step form discussed in section 6.2 which would only contain a single term y6−pRe[E0(10, 0p)]
with 0 ≤ p < 6 per line. We see that a multitude of red-herrings appears in (H.1), namely

rha = 3Re[E0(10, 06)] +
15Re[E0(10, 07)]

4y
+

15

8y2
(
Re[E0(10, 08)]− ζ9

9!

)
,

rhb = −
15Re[E0(10, 06)]

4
− 45Re[E0(10, 07)]

8y
− 45

16y2
(
Re[E0(10, 08)]− ζ9

9!

)
, (H.3)

rhc =
15Re[E0(10, 06)]

8
+

45Re[E0(10, 07)]
16y

+
45

32y2
(
Re[E0(10, 08)]− ζ9

9!

)
,

related by the Laplace system

O1rha = rhb ,

O2rhb = rhc , (H.4)

O3rhc = 0 .

Following our discussion in section 6.3, it follows that rhc being in the kernel of O3 should be

related to E3. To see that we can first rewrite the combination of iterated integrals in rhc as

15Re[E0(10, 06)]
8

+
45Re[E0(10, 07)]

16y
+

45

32y2
Re[E0(10, 08)] (H.5)

= − 2

9!

15

8

∞∑

n=1

n2σ−9(n)
[√

n Im τK3−1/2(2πn Im τ)
(
e2πinRe τ + e−2πinRe τ

)]
,

while the remaining term can be rewritten trivially as −45
32

ζ9
9! y

1−3.

Unsurprisingly this red-herring is comprised of two different terms both of which appear as

points (or rather infinite sums thereof) on the same Poincaré orbit (2.39) for E3. Using (2.47)

we can compute the Poincaré sum over the Bessel function and then perform the analytically

continued Dirichlet series in n to arrive at

∑

γ∈B(Z)\SL(2,Z)

[
rhc

]
γ
= −15

4

2ζ9
9!

1

ζ5
(E3 − E3) = 0 . (H.6)

Clearly since rhb = −2rhc we have that rhb is also a red-herring, a very convoluted way to write

0 as the difference between two non-vanishing Poincaré sums. However, we see that we have
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not quite eliminated all the red-herrings since rha is not a multiple of rhc. Nonetheless we can

easily rewrite its Laplace equation as

∆

(
rha −

4

3
rhc

)
= 0 , (H.7)

hence we expect the combination

rha −
4

3
rhc =

1

2
Re[E0(10, 06)] , (H.8)

to generate, upon Poincaré summation, an element in the kernel of O1, i.e. E0.

Following a reasoning very close to section 6.3, we can rewrite this iterated integral as

1

2
Re[E0(10, 06)] = −

1

9!

∞∑

n=1

n2 σ−9(n)
[√

n Im τK0−1/2(2πn Im τ)
(
e2πinRe τ + e−2πinRe τ

)]
.

(H.9)

We can perform the Poincaré sum over this Bessel function using (2.47) arriving at19

∑

γ∈B(Z)\SL(2,Z)

[
1

2
Re[E0(10, 06)]

]

γ

= − 1

9!

∞∑

n=1

π2s+1/2n2 σ−9(n)σ2s−1(n)

ns−1 cos(πs)Γ(s+1/2)ζ(2s−1)
Es(τ)

2ζ(2s)
, (H.10)

where we kept the Bessel index s as a regulator, taking the limit s→ 0 only at the end.

To perform the Dirichlet sum over n we make use of Ramanujan identity

∞∑

n=1

σa(n)σb(n)

ns
=

ζ(s)ζ(s−a)ζ(s−b)ζ(s−a−b)
ζ(2s−a−b) , (H.11)

finally obtaining

∑

γ∈B(Z)\SL(2,Z)

[
1

2
Re[E0(10, 06)]

]

γ

= − 1

9!
lim
s→0

π2s+1/2ζ(−2−s)ζ(7−s)ζ(s−3)ζ(6+s)

cos(πs)Γ(s+1/2)ζ(2s−1)ζ(4)
Es(τ)

2ζ(2s)

= 0× E0 . (H.12)

So the Poincaré sum over the remaining red-herring rha − 4
3 rhc is indeed proportional to E0 as

expected from its Laplace equation. However, the proportionality constant, which is effectively

given by the Dirichlet series above, vanishes upon analytic continuation.

We see in this more convoluted example that in general, when we compute the alternative

folding seeds (6.17) starting from the inhomogeneous Laplace system (3.34), we will generate a

variety of red-herrings at different levels. However, these red-herring seeds such as (H.3) give

rise to vanishing Poincaré sums even though they are obviously non-vanishing functions. Hence,

the Laplace system written in step form as presented in section 6.2 leads to considerably simpler

representatives of the seeds, see (6.30).

19Similar to appendix A, we write the Riemann zeta function as ζ(s) instead of ζs in order to make the various

different arguments more legible.
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[104] E. Hecke, “Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher

Produktentwicklung. I,” Math. Ann. 114 (1937) no. 1, 1–28.

[105] P. Deligne, “La conjecture de Weil. I,” Inst. Hautes Études Sci. Publ. Math. (1974)

no. 43, 273–307.

[106] J. I. B. Gil and J. Fresán, “Multiple zeta values: from numbers to motives,” Clay

Mathematics Proceedings, to appear.

[107] S. Hohenegger and S. Stieberger, “Monodromy Relations in Higher-Loop String

Amplitudes,” Nucl. Phys. B925 (2017) 63–134, arXiv:1702.04963 [hep-th].

[108] D. Zagier, “The Rankin-Selberg method for automorphic functions which are not of

rapid decay,” J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981) no. 3, 415–437 (1982).

[109] D. Bump, “The Rankin-Selberg method: an introduction and survey,” in Automorphic

representations, L-functions and applications: progress and prospects, vol. 11 of Ohio

State Univ. Math. Res. Inst. Publ., pp. 41–73. de Gruyter, Berlin, 2005.

[110] C. Angelantonj, I. Florakis, and B. Pioline, “A new look at one-loop integrals in string

theory,” Commun. Num. Theor. Phys. 6 (2012) no. 1, 159–201,

arXiv:1110.5318 [hep-th].

[111] C. Angelantonj, I. Florakis, and B. Pioline, “One-Loop BPS amplitudes as BPS-state

sums,” JHEP 06 (2012) 070, arXiv:1203.0566 [hep-th].

[112] E. D’Hoker, A. Kleinschmidt, and O. Schlotterer, “Elliptic modular graph forms. Part I.

Identities and generating series,” JHEP 03 (2021) 151, arXiv:2012.09198 [hep-th].

113

http://dx.doi.org/10.1007/JHEP03(2018)100
http://arxiv.org/abs/1712.02793
http://arxiv.org/abs/2009.09885
http://dx.doi.org/10.1007/BF01258863
http://dx.doi.org/10.2969/jmsj/01140291
http://arxiv.org/abs/1904.00179
http://dx.doi.org/10.1007/BF01594160
http://dx.doi.org/10.1016/j.nuclphysb.2017.09.020
http://arxiv.org/abs/1702.04963
http://dx.doi.org/10.1515/9783110892703.41
http://dx.doi.org/10.4310/CNTP.2012.v6.n1.a4
http://arxiv.org/abs/1110.5318
http://dx.doi.org/10.1007/JHEP06(2012)070
http://arxiv.org/abs/1203.0566
http://dx.doi.org/10.1007/JHEP03(2021)151
http://arxiv.org/abs/2012.09198


[113] D. Zagier, “Appendix: The Mellin transform and other useful analytic techniques,” in E.

Zeidler: Quantum Field Theory I: Basics in Mathematics and Physics. A Bridge

Between Mathematicians and Physicists, pp. 305–323. Springer, Berlin-Heidelberg-New

York, 2006.

114

http://dx.doi.org/10.1007/978-3-540-34764-4

	1 Introduction
	1.1 Laplace systems
	1.2 Outline

	2 Review
	2.1 Modular graph functions
	2.2 Iterated Eisenstein integrals
	2.3 Poincaré series

	3 Laplace equations for even seed functions, MGFs and beyond
	3.1 Laplacian of modular graph functions and iterated Eisenstein integrals
	3.2 Laplacian of even combinations of betasv
	3.3 Solution to even Laplace equations via Poincaré series
	3.4 Seed functions for even shuffles
	3.5 Laplace equations of even combinations in step form
	3.6 Comparison to C(a,b,c) MGFs

	4 Reinstating lower depth
	4.1 Cauchy–Riemann equations
	4.2 Reinstating depth-one terms
	4.3 Reinstating Laurent polynomials
	4.4 Combinations checkFplus(s,m,k) of betasv versus modular invariants Fplus(s,m,k)
	4.5 Examples
	4.6 The integration constants alpha

	5 Laplacian, seed functions and lower-depth terms for Fminus(s,m,k)
	5.1 Laplacian of odd combinations of betasv
	5.2 Solution to odd Laplace equations via Poincaré series
	5.3 Step form for odd Laplace system
	5.4 Comparison with cuspidal MGFs
	5.5 Reinstating lower depth for odd modular invariants
	5.6 Completing integration constants alpha at depth two

	6 Exhausting the seed functions
	6.1 Overview of seed functions with convergent Poincaré sums
	6.2 Alternative folding
	6.3 Relations to earlier even seed functions
	6.4 Relations to earlier odd seed functions

	7 Further directions
	7.1 Exponentially suppressed terms
	7.2 Even cusp forms at depth two
	7.3 Overly integrated seed functions
	7.4 ``The red crosses and beyond''

	8 Conclusions
	A From Poincaré seeds to Laurent polynomials
	B Two-loop modular graph functions at weight eight
	B.1 Expansions in terms of Fplus(s,m,k) at weight 8
	B.2 Laurent polynomials at weight 6 and 7

	C Examples of Poincaré seed functions up to weight 8
	C.1 Cases with Fplus(s,m,k) at m=k
	C.2 Cases with Fplus(s,m,k) at m<k
	C.3 Cases with Fplus(s,m,k) at m+k=7,8

	D Examples of Laurent polynomials of Fplus(s,m,k)
	D.1 Cases with Fplus(s,m,k) at m=k
	D.2 Cases with Fplus(s,m,k) at m<k

	E Examples of betasv representations of Fminus(s,m,k)
	E.1 Examples at m+k=7
	E.2 Examples at m+k=8

	F Integration constants alphabar for even functions
	F.1 Examples at m<=3
	F.2 Conjectural closed formula

	G Cauchy–Riemann derivatives of Fplusminus(s,m,k)
	G.1 Derivatives of even Fplus(s,m,k)
	G.2 Derivatives of odd Fminus(s,m,k)

	H A more convoluted example of red-herrings

