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We derive new Poincaré-series representations for infinite families of non-
holomorphic modular invariant functions that include modular graph forms as they
appear in the low-energy expansion of closed-string scattering amplitudes at genus
one. The Poincaré series are constructed from iterated integrals over single holomor-
phic Eisenstein series and their complex conjugates, decorated by suitable combina-
tions of zeta values. We evaluate the Poincaré sums over these iterated Eisenstein
integrals of depth one and deduce new representations for all modular graph forms
built from iterated Eisenstein integrals at depth two. In a companion paper, some of
the Poincaré sums over depth-one integrals going beyond modular graph forms will
be described in terms of iterated integrals over holomorphic cusp forms and their
L-values.
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1 Introduction

The low-energy expansion of string scattering amplitudes at genus one introduced infinite classes
of non-holomorphic so-called modular graph forms (MGFs) [1-3]. The fascinating properties of
modular graph forms include multiple zeta values in their expansion around the cusp 7 — 700,



with 7 the modular parameter of the torus, and intricate networks of algebraic and differential
relations. Accordingly, the study of MGFs has received considerable attention in both the
physics [4-6,1,7,8,2,3,9-32] and mathematics literature [33—41], also see [42] for a review, [43]
for a Mathematica implementation and [44-52] for generalisations to higher genus.

The direct evaluation of world-sheet integrals in closed-string genus-one amplitudes yields
lattice-sum representations of MGFs [4,5,1,2,18]. Their differential equations [3] by contrast
suggest to represent MGFs via iterated integrals over holomorphic Eisenstein series Gy (7) and
their complex conjugates [2,15,27]. The lattice sums refer to the discrete momenta p = m7+n on
a torus world-sheet with m, n € Z, manifest the modular properties and lead to the interpretation
of MGFs as discretised Feynman integrals for a scalar field on the torus. Iterated-Eisenstein-
integral representations in turn expose the entirety of algebraic and differential relations of MGFs
and make the detailed form of their Fourier-expansion accessible. Hence, from their implications
for different properties of MGFs, it is desirable to swiftly translate between the lattice-sum and
iterated-Eisenstein-integral viewpoints.

In this work, we investigate Poincaré-series representations of MGFs and restrict to the
modular-invariant case, i.e. modular graph functions and modular-invariant combinations of
forms. With a Poincaré-series representation we mean a rewriting of a modular-invariant func-
tion in terms of a sum over images under the modular group SL(2,7Z) of a simpler function that
we call its (Poincaré) seed function. As we shall see, our actual space of functions transcends
the space of MGFs in a controlled way related to iterated integrals of holomorphic cusp forms,
a theme that will be explored in great detail in the companion Part II [53].

MGFs associated with one-loop graphs with & > 2 links are known to be given by non-
holomorphic Eisenstein series Ex (7). These cases can be expressed as (iterated) integrals of a
single holomorphic Eisenstein series and hence they all are said to be of depth one. The non-
holomorphic Eisenstein series Ex(7) is known to be proportional to the sum over images of the
simple monomial seed (Im 7)¥, see e.g. [54,55].

Our key results advance and apply the dictionary between lattice sums and iterated Eisen-
stein integrals to the depth-two case, i.e. to iterated integrals of two holomorphic Eisenstein
series. In particular, we generalise the studies of Poincaré-series representations of depth-two
MGFs in [1,16,19, 20, 56, 28] to arbitrary weight. On the one hand, since Poincaré series add
up images of simpler functions (their Poincaré seeds) under the modular group SL(2,7Z), they
manifest the modular properties of the resulting MGFs. On the other hand, we will see from
comparison between the iterated-Eisenstein-integral representations of MGFs and their seed
functions that Poincaré sums effectively add one unit of depth. In fact, iterated Eisenstein in-
tegrals will also play a crucial role to find the system of Laplace equations obeyed by both the
modular invariant MGFs at depth two and by their seed functions.

The notion of depth of an MGF is in general different from the loop order of the graph
defining it. While MGFs corresponding to one-loop Feynman graphs can be represented by
iterated Eisenstein integrals of depth one, the two-loop MGFs do not exhaust all depth-two
modular invariant objects. It was already known that several two-loop MGFs can be reduced
to one-loop ones and odd zeta values [5, 1], which illustrates that the notion of depth and loop
order are not always lined up.



Poincaré seeds for all two-loop MGF's were already derived in [19], and the results of the
present work extend those in the reference in several ways. Firstly, we give a streamlined
SL(2,Z)-representative of the seed functions which does not contain any powers of ¢g, with
q = exp(2miT), in the Fourier expansion and without having to rely on a lattice-sum formulation.
Secondly, we also spell out seed functions for those imaginary combinations of iterated Eisenstein
integrals of depth two which necessitate three- or higher-loop MGFs, see [27] for a simple weight-
five example. Thirdly, although we will not pursue this in detail in the present work, with our
methods we could exploit resurgent analysis, as explained in [20,56], to reconstruct the complete
non-perturbative completion of the MGFs, i.e. the ¢¢ terms, from their perturbative expansion
around the cusp 7 — ioco. However, the iterated-Eisenstein-integral representation that we
shall derive gives a complementary way of obtaining the gg-terms, see section 7.1 for further
comments.

In this work and its companion paper [53], we will give a complete description of the Poincaré
sums of iterated Eisenstein integrals at depth one with Brown’s integration kernels 77Gy/(7)
subject to k > 4 and 0 < j < k—2 [33]. In this way, we recover all MGFs which are expressible
in terms of Brown’s iterated Eisenstein integrals of depth < 2. Moreover, certain Poincaré series
turn out to augment double integrals over holomorphic Eisenstein series by depth-one integrals
over holomorphic cusp forms. These real-analytic modular invariants go beyond MGFs and
will be discussed in the companion Part II. Iterated integrals of holomorphic cusp forms do not
admit the lattice-sum representations with integer exponents characteristic for MGFs. This can
be seen from the fact that repeated 7-derivatives of MGF's give rise to holomorphic Eisenstein
series but not to holomorphic cusp forms [3,25].

Among the real MGF's of depth two, the most prominent instances are the two-loop lattice
sums Cgpo(7) [1] built from integrals over a+b+c closed-string Green functions. At transcen-
dental weight a+b+c = 8, Poincaré sums over real seed functions similar to those of Cgy .(7)
also generate a modular invariant that involves iterated integrals over the Aj9(7) discriminant,
the holomorphic cusp form of modular weight 12. Poincaré sums over imaginary seed functions
already generate iterated integrals over Ajo(7) at transcendental weight 7, see Part II for further
details.

1.1 Laplace systems

The main focus of this pair of papers will be the real and imaginary modular invariant functions

that will be denoted by F:;(Z) and F;EZ), respectively, and labelled by positive integers s, m, k to
—(s)

. ) are even (odd) under the involution 7 — —7
of the upper half-plane. On the one hand, these modular invariant functions Fi(z)

all MGF's of depth two. On the other hand, not all instances of the Fi(z) can be expressed as

)

be explained below. More precisely, the F:L(Z) (F

determine

lattice sums and so they transcend the space of MGFs but still will be expressible in terms of

iterated integrals over holomorphic modular forms (including cuspidal ones) of depth at most
+(s)

m as depth-two modular invariant functions.

two. For this reason we will be referring to F



(s)

The even modular invariant functions F:;Z are characterised by inhomogeneous Laplace

eigenvalue equations similar to those of the two-loop lattice sums MGFs C, . in [1] namely
(A—s(s—1))F/S) =B, By, s€{k—m+2 k—m+4, ... k+m—4,k+m—2} ,  (L1)

where 2 < m < k and E,,, E;, are non-holomorphic Eisenstein series and A = 4(Im 7)20,0-
the SL(2,Z) invariant Laplacian. This differential equation fixes the asymptotics of F;(Z) at the
cusp T — 100 up to two integration constants. The latter will be inferred from Poincaré-series
representations whose seed functions enjoy shift symmetry under 7 — 74+1. We note that the
differential equation is invariant under swap of the numbers s and 1—s and we always take s to
be the larger one of them. Furthermore, the equation is invariant under the swap of m and k
and we label the function F:;(Z) with m < k.

)

iterated Eisenstein integrals at depth one, multiplied by a positive integer power of Imr. If

Moreover, the seed functions of F:L(Z are systematically reduced to real parts of convergent
the resulting modular invariant function involves a double integral over holomorphic Eisenstein
series (Gop, Gox) with m # k, we find that two types of depth-one seed functions lead to the
same Poincaré sums, even if they cannot be related directly by an SL(2,Z) transformation. This
can be thought of as a depth-two generalisation of the standard functional relation between
non-holomorphic Eisenstein series I'(k)Ep = I'(1—k)E;_j which superficially relates the seed

1-k (

functions (Im 7)* and (Im 7) up to proportionality) even though they are not related by an

SL(2,Z) transformation. However, the Poincaré sum of the seed (Im7)!~* is not convergent for
k € N but typically its Poincaré sum is defined by analytic continuation using the functional
relation. In the same way, we shall find different ways of expressing the same modular invariant
function through different seeds, however, only one of the seeds will have a convergent Poincaré
sum.

In a similar fashion we will also introduce odd modular invariant functions of depth two,

denoted by F;(Z), and characterised by inhomogeneous Laplace eigenvalue equations

2(Im )2
s € {k—=m+1,k—m+3, ..., k+m—3,k+m—1} ,

(A —s(s—1))F, ) = (1.2)

with 2 < m < k and Cauchy-Riemann derivatives V = 2i(Im )20, and V = —2i(Im7)20-.
Under the swap of m and k the right-hand side of the equation changes sign and we always

assume m < k for F;n(z) (and in fact F;l(f,zb = 0 for our choice of boundary conditions).

Unlike the F:;(Z), the modular objects F;L(Z) will be cusp forms which do not allow for

integration constants proportional to powers of Im 7. Their corresponding seed functions will
reduce to imaginary parts of convergent iterated Eisenstein integrals at depth one, multiplied
by positive integer powers of Im 7. However, yet again, the resulting odd modular invariant

)

functions F;(Z involve double integrals over holomorphic Eisenstein series (G, Go) [19,27].
The Laplace system (1.2) will provide a generalisation of the cusp forms first discussed in the

references.



The objects Fi(z) together with products of two non-holomorphic Eisenstein series and their
Cauchy—Riemann derivatives generate all modular invariant MGF's of depth < 2. This can be
seen for instance from the generating series of MGFs in [27] which also features certain dropouts
among the iterated Eisenstein integrals at depth > 2 and cannot contain all the Fi(z). These
dropouts can be traced back to Tsunogai’s derivation algebra [57,58] which also gover117s Brown’s
construction of real-analytic modular forms [36]. As will be detailed in Part IT, those F:,;EZ), F;l(z)
beyond MGFs contain iterated integrals of holomorphic cusp forms with ratios of L-values in

their coeflicients.

We note that an equation very similar to (1.1) appeared for the first time in the context
of higher-derivative corrections to the type IIB low-energy effective action where now SL(2,Z)
plays the role of U-duality acting on the axio-dilaton [59]. In this case the indices m and k on the
inhomogeneity E,,, Ej are half-integers, see also [60,61,59,62—65] for further developments and [66]
for recent work in the context of N'=4 super Yang—Mills theory. Our focus is on Poincaré-seed
representations of the solutions and their relation to (single-valued) iterated integrals. One
remarkable outcome of our work is that iterated integrals of cusp forms also play a central role
for modular-invariant solutions to the Laplace equations. One consequence of this is that the

)

Fourier expansion of the solutions Fi(z can also contain terms that are associated, mode-by-
mode, with homogeneous solutions of the Laplace equations, a behaviour that has not been
encountered in the U-duality context yet [62,67,66,68].

Laplace systems akin to (1.1) and (1.2) of special type at depth three have been recently
investigated in [69]. At depth two in turn, iterated integrals of cusp forms have been studied in
relation to so-called higher modular forms in [70]. More specifically, Poincaré seeds built from
depth-one iterated integrals of holomorphic cusp forms have been considered in this reference,
which can be viewed as the cuspidal counterparts of the seeds in this work.

As further motivation for our work, we stress that MGFs appear in the o/-expansion of
closed-string scattering amplitudes at genus one. As such they are crucial ingredients of the
non-perturbatively completed couplings in the Type-IIB low-energy effective action in flat space,
multiplying the higher-curvature corrections R*, D*R* and DSR* known from [60,71,62]. Be-
sides playing a central role for checks of U-duality in Type-I1IB superstrings, these couplings
are also relevant for precisions tests of the AdS/CFT correspondence. On the AdS/CFT side,
recent developments on the flat-space limit of Type-IIB effective actions on AdSs x S° involving
localisation and conformal-bootstrap methods include [72-75,66, 76-78], and the interplay with
correlation functions in N' = 4 super Yang-Mills has for instance been investigated in [79-87].

1.2 Outline

Our work is structured as follows. In section 2, we review the basic notions of modular graph
functions, iterated Eisenstein integrals and Poincaré-series representations. In section 3, we
then show how the central Laplace equations (1.1) and (1.2) arise from iterated Eisenstein
integrals and how they can be solved using the method of Poincaré series. We shall also consider
different bases of Poincaré seeds where the Laplace equations arrange in a step-form system.
The considerations of section 3 are concerned with the leading-depth contributions to modular-



invariant functions, and we explain how to add their lower-depth tails in section 4. While
F+( s)

mk the analogous discussions for the odd

sections 3 and 4 are mostly focussed on the even

F;L(Z) can be found in section 5. Section 6 contains a discussion of alternative seed functions
for the depth-two modular invariant functions and how they are related to the ones derived in
section 3. In section 7, we present possible further directions of investigation. Section 8 contains
concluding remarks. Several appendices collect additional technical details and more involved
examples. In an ancillary file appended to the arXiv submission we enclose a large collection of
data and examples.

2 Review

In this section, we recall the salient features of MGFs and Poincaré sums in order to set the
notation and terminology for our results.

2.1 Modular graph functions

The central objects in this work are modular graph functions [2] that are generated from the
low-energy expansion of the following configuration-space integral relevant to closed-string am-
plitudes! at genus one [4,5]:

Ma(sij, (H/ & ZJ) f[ exp< zn: sijG(zi—zj,T)) (2.1)

1<i<j 1<i<j

Each puncture z; for j > 2 is independently integrated over the torus ¥ = C/(Z + 7Z) with
complex modular parameter 7 subject to Im7 > 0, and one can use translation invariance
on the torus to set z; to an arbitrary value. Upon Taylor-expanding the integrand in the
dimensionless Mandelstam invariants s;; € C, it remains to integrate monomials in closed-string

Green functions
e27rz(mv—nu)

91(2, T) 2
n(7)

2r(Imz)?>  Imr7 Z

G(z,7) = —log =
(m,n)#(0,0)

) (2.2)

Im T T |mT+n|?

with the standard Dedekind eta function 7(7) and odd Jacobi theta function 6;(z,7).? The
Fourier sum in the last step is only conditionally convergent and is understood using the Eisen-
stein summation convention [90]. Such integrals over degree-w monomials in G(z;—z;,T) are
referred to as modular graph functions of weight w, and they are modular invariant since both

"More precisely, the four-point one-loop amplitude of type-II superstrings is proportional to the T-integral of
My(sij,T) over the fundamental domain of SL(2,Z) [88]. The five-point type-II amplitude in turn involves both
M5 (sij,7) and additional configuration-space integrals with singularities as z; — z; in the integrand [89,6].

2These are given by the g-series, where g = ™",

[e')

) _ q1/24 H(l . qn)7 01(,277') — Z (_1)nq(n71/2)2627riz(n71/2) )

n>1 n=-—oo



Figure 1: The graphs corresponding to the one-loop and two-loop modular graph functions E,,
and Cqp.. where a link with a boxed number w indicates w concatenated Green functions.

the Green function (2.2) and the measure in (2.1) are. The integrals over the torus punctures
zj = u;T +v; with u;,v; € R and % = duj dv; are particularly convenient to perform with
the lattice-sum representation of the Green function in (2.2). When visualizing G(2z;—z;,7) as
an edge between vertices ¢ and j, each modular graph function corresponds to a Feynman graph
on the torus. The integrals over z; impose conservation of the lattice momenta

p=mr+neci, N = (Z+72)\ {0} (2.3)

at each vertex and lead to vanishing modular graph functions for one-particle reducible graphs.
Hence, the simplest non-vanishing modular graph functions are non-holomorphic Eisenstein
series of weight w # 1 associated with closed one-loop graphs

Im 7') v 1

Bu(r) = (2 >

followed by two-loop modular graph functions of weight w = a+b+c:

Im 7\ 2tb+e d(p1+p2+p3)
Copel(r) = [ — : 2.5
2el7) <W> PREIPREIPRES (23)

p1,p2,p3EN

The graphs corresponding to the MGFs E,, and C, . are depicted in figure 1.

It is straightforward to represent arbitrary modular graph functions as nested lattice sums,
but it requires more effort to find their algebraic relations. Already the one- and two-loop
modular graph functions in (2.4) and (2.5) obey intricate relations over Q-linear combinations
of multiple zeta values (MZVs)

Coymoomn = > ky™MEks™ k7™, ng €N, np > 2 (2.6)
0<k1<ko<...<kr

starting with [1]

Cria(r) = By(r) +Gs,  Cooi(7) = §E5(T) +33. (2.7)



Another important property of modular graph functions that is not yet readily available from
their lattice-sum representations is their asymptotic expansion around the cusp. In the variables

2miT —2miT

y:ﬂ-ImT7 q:e Y q:e ) (2'8)

the non-holomorphic Eisenstein series (2.4) can be written as the Fourier series

4(2w—3)!Cop—1

Ey(r) = (-1) ). (4y)" + m(‘ly)l_w (2.9)
i = nw—lo_ n F= ny) ¢ F(w+a) n —n
* I'(w) nZ::l 1-20(n) a:0(4 v) a!T'(w—a) (¢" +d")

with Bernoulli numbers Bo,, that are related to even Riemann zeta values by

2w = (—1)¥T1 Boy , w=1,2,3,.... (2.10)

Here, we have assumed that w is a positive integer w > 1 to replace the usual Bessel function
Ky—1/2(27|n|Im 7) appearing in the non-zero Fourier mode by its exact functional form

_ I'w+90)
z -/
Ky1p(2 \/ Z N (2.11)

=> (2.12)

din

Moreover,

denotes a divisor sum over positive divisors of n.

The general form of the expansion of modular graph functions around the cusp follows a
structure similar to (2.9): The coefficients of ¢"¢" with m,n > 0 are Laurent polynomials in
y whose coefficients are Q-linear combinations of MZVs.? The simplest Laurent polynomials of
irreducible two-loop modular graph functions are [5, 1]

4 2
Cana() = s+ S 4 22 8 4 0(g.0), 213
2y° 23y G, T GG, 430G
") R R

pr— O _
155925 © 945 180 | 16,2 248 | 6dyt (¢,q)

and the Laurent polynomials for arbitrary C, ;. are explicitly known [37] in terms of (2,,—1 and
products thereof. Notice that the first non-trivial single-valued MZV (3 5 3 appears in an MGF
of trihedral topology of weight seven [34].

3This follows from the method of Panzer outlined in [91] to express modular graph functions in terms of
elliptic multiple zeta values [92] and their complex conjugates. While Zerbini proved the weaker statement that
the coefficients in the Laurent polynomials are cyclotomic multiple zeta values [34], it is conjectured [34,2] and
supported by a growing body of evidence [21,40] that the coefficients in the Laurent polynomials are single-valued
MZVs [93,94] such as (aw+1 with w € N. Our results show that up to depth two only single-valued MZVs occur.



In contrast to (2.9), the g-series of Cyy . also involves terms ¢™g" with both of m,n # 0,
see [15] for their explicit form at a+b+c < 6 and [19] at general weight. We note that there
can also be terms of the form (gg)" that are independent of Re T and behave as e=2"¥. These
arise as non-perturbative terms already in the zero mode and are subsumed in the O(q,q)
symbol in (2.13). These (¢g)" non-perturbative terms can actually be entirely reconstructed
from the purely perturbative Laurent polynomials, or rather a suitable deformation thereof,
using resurgence analysis, see [20, 56], we will however not discuss such construction in the
present work.

2.2 Iterated Eisenstein integrals

In this section, we briefly review the formalism of iterated integrals over holomorphic Eisenstein
series, leaving the analogous discussion of iterated integrals over holomorphic cusp forms to
Part II.

Modular graph functions can be represented via iterated integrals over holomorphic Eisen-
stein series and their complex conjugates whose coefficients are Q-linear combinations of MZVs
[2,3,15,91,19,25,27]. This follows from their differential equations with respect to the Cauchy—
Riemann operator

V =2i(Im7)%0,, V=-2i(Im7)%):, (2.14)
which maps modular graph functions to non-holomorphic modular forms dubbed modular graph
forms [3], possibly accompanied by holomorphic Eisenstein series

N’
Gk(T): Z%ZQC}C—F%ZO%_KH)L]", k>4, (2.15)
peEN’ n>0
see (2.12) for the divisor sum og_1(n).

The Cauchy-Riemann equations of modular graph functions with known asymptotics at the
cusp can be solved via iterated Eisenstein integrals. This exposes the entirety of their algebraic
relations. There are different ways of defining iterated Eisenstein series integrals [33,95,15]. In
the present work, we require only a subset of the general case and therefore restrict to presenting
the relevant definitions.

2.2.1 Depth-one iterated Eisenstein integrals

The integral for k > 0

(271.2‘)1)+1—k 100
p! .

is said to be an iterated integral of depth one and the notation 0P is a short-hand of p successive

Eo(k,0P;7) = dTl(T—Tl)pGg(Tl) (2.16)

zeros. Higher depth versions, where the iterated integral structure becomes more evident, can
be found in [95,15]. The holomorphic Eisenstein series Gg appearing in the integrand has its
zero mode removed compared to (2.15) and so is defined as
Gg(r) — 2 : k>0, even
Gg(r):{ k(7)) — 20k :

(2.17)
0 . k>0, odd

10



and we additionally define G} = —1.* The integral in (2.16) converges for p > 0 and from the
g-expansion of (2.15) one can deduce [95, 56]

2 0 mk—1 .
&)(lc,()p;r):_W > Wq i 1 = Zm “201_k(m)q (2.18)
" mn=1

2 = -
=G ™ oea(m)g
m=1

This expression can also be considered for arbitrary p. The way we shall use (2.18) is mainly in
the other direction, namely such that we can translate a term involving divisor sums (2.12) into
iterated integrals.

The non-holomorphic Eisenstein series E; from (2.9) can be recast in terms of (2.16) by
using the expansion of the Bessel function (2.11) as [96, 2]

Bu(r) = (1) 2 ) %(@W
Qk kz k+a)) Re & (2k, 0F149; 7)
= (-1 (]jk) ( y)w%( pt (2.19)
[ 27172 [?Ek];])2(4y)l_k /T " dn(r — )P — ) EY () + e
From this formula or the lattice-sum representation (2.4) one can check that [3]
(7Y Ex(r) = r((%f)) (Im ) [2Ga; + G3(7)] = FF(L]?(IW)%G%(T), (2.20)

where the Cauchy-Riemann derivative V was introduced in (2.14) and we record the following
useful identity

(mV)? [iyl_s /200 dri(t — ) Y7 — 1) ()| = 2aT(5)45 L Im )25 £ (7). (2.21)

The integral converges for any function f exponentially decaying for 7 — ioco (without any
assumption on the modular properties), and (2.21) will also be applied to more general f based
on tangential-base-point regularisation of endpoint divergences [33].

4The conditionally convergent and non-modular form Gs (1) does not play any role in our analysis.
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2.2.2 More general iterated Eisenstein integrals

Another key role will be played by certain iterated integrals denoted by 8%V defined in [27]°

; 271'2 . , s o .
ﬁsv[i;T] = k 5= ]{/dTl T— T1 ](7_'—7'1)ij(7'1)— /d7_'1(7'—7_'1)k 2 j(f—fl)]Gk(Tl)}
(2.22)
as well as their depth-two generalisations
k1—2—j1 k2—2—j2 (kl —2— Jl) (k2—2—j2) 9i)—2
sv |1 j P2 j1+p1 je+p2 . (2mi)
p [ki ki T } Z Z 4y ypitpa oz[ w ks Z’T] * (4y )k the—gi—ja—4 (2:23)
p1=0  p2=0
% { / iy (r—79)F2 722 (71 )12Gip (72) / dry (r—r1 )BT =2 (7 Y1 G, (1)
T T2
—/dTQ(T—Tg)kQ 2727 TQ)JQGk2(T2)/dT1(T—T1)k1 A (o Tl)lekl(Tl)
+/d7’1(7’—7’1)k1 = 2(7’ Tl)]lm/dTg(T T2)k2 2= 2(7’ 7'2)]2G]€7(T2)}.
T T1

The objects a[ﬁ iﬂ appearing for depth two are purely antiholomorphic functions which are

determined on a case-by-case basis in [27,97] and preserve the differential equations®

2mi(r—7)20, 5% [ 7] = (k=2-)8 [71137] — j2(r—7)*Gi(r) (2.242)
2mi(r—7)20, 8% [ £257] = (Un—n=2)8% [ 27| + (ka—ja—2) 8 | 12 1% 7]
= 8o a2 (T=T)"2 Gy (1) B [ii ;T} (2.24b)

manifested by the integral definitions above. The antiholomorphic integration constants «[ il ﬁ]
are invariant under 7 — 7+1 and believed to be expressible via (2,41 multiplying antiholomor-
phic iterated Eisenstein integrals (2.16) at depth < 1 [27]. The absence of similar integration
constants at depth one follows from an analysis of the limiting behaviour 7 — i0o0. The simplest

explicit examples include [27]

al}9] =0, ol39] = =L a(d)

39)=226(1), olbfl =~ k6,0 - 66,0, (229
2 2 2

341=2260(4,0), [49] = 22 0(4,0%) + 2260(4),

5The superscript ‘sv’ indicates that these real-analytic functions are conjecturally the single-valued versions
of holomorphic iterated integral 8 defined in [97]. We shall often suppress the argument 7 in order not to clutter
the notation.

%The higher-depth version of these equations can be found in [27].
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and we will discuss them in more detail in sections 4.6 and 5.6. In fact, the methods of this work

lead to new ways of determining the «f ﬁ ii] and we will provide a large number of examples in

an ancillary file. The shuffle property

AR e
places constraints on combinations of the integration constants in the form
ol 2] = —al2] (2:27)

since there are no integration constants at depth one.
Note that we can use the integral representation (2.16) to rewrite (2.22) in the suggestive

form
A T i1 J . _ '
B [i] _ Bk,]'(k k?(k]_);()' 4y)J+ N Z(k—j—Q—i—a)' <i> (4y)2+2]_k_a50(k, 0k—]—2+a)
’ ) a=0
& k—2—j e
+ Y <j+b>!( ’ )<4y>-beo<k, o), (2.28)
b=0

where a tangential base-point regularisation has been used to compute the 7! term of depth
zero, see [33,15,27]. A similar representation, although involving also depth-two iterated inte-
grals, can be derived for (2.23) as well, modulo the presence of these antiholomorphic objects a.
The explicit form of their exponentially suppressed terms will be given in section 7.1, i.e. modes
of the form ¢™g" with both of m,n > 0 due to crossterms .

As a major result of this work, we shall extend the iterated-FEisenstein-integral representa-
tions [27, Eq. (4.9)]

(7V)"Ey, = (_l)m( (2k—1)! )!{_ﬂsv[k—zll;l—m] " : 2Cok—1 }7

4) (k=1)(k—1-m 2k—1)(dy)k—1-m
7V)"E —4)™(2k—1)! T h1om 2ok
(===t Sl R S (2.29)

valid for 0<m<k, to general depth-two MGFs and modular invariant functions. For instance,
the two-loop modular graph functions Cy . in (2.5) will be related to 3% [ﬁ ﬁ} subject to the
modular-invariance condition j1+j, = %(k1+k2—4).

From the definitions (2.22) and (2.23) one can check the following reality and modularity
properties of the 5%V at leading order in depth [27]:

B[] = (dy)* PR M

B[ -1] = %k_z_zjﬁsv[i ;7| mod lower depth (2.30)
and
sV [ii iz : T] _ (4y)4+2j1+2j2_k1_k2ﬁsv [kz—li—jz k1—k21—j1 ;T} mod lower depth,
B [ﬁ ﬁ : _%] — ghitka—4=2j1-2j2 gsv [ii ii : 7-] mod lower depth, (2.31)
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where we recall y = 7 Im 7.

The lower-depth terms in the complex-conjugation properties of 5V [ﬁ ﬁ] can be entirely

attributed to the a[ill ﬁ] in (2.23)

sv|Jt Jg2 | _ 442514252 —k1—k2 gsv | ka—2—j2 k1—2—j1
B |:k‘1 kz] - (4y) p k2 k1

k1—2—3j1 ko —2—j2

N Z Z (1)1 <l<:1—2—j1> <k2—2—j2>a[j1;rlp1 jz;;pz] (2.32)

p1=0  p2=0 b1 p2

.]1 j2 .
_ 4 44251 +2j2—k1—k2—p1—p2 J1 J2 ko2—2—jo+p2 k1—2—j1+p1
(4y) « ke K .

P1=0pa—0 b1 b2

Even though this is not manifest from the above equation, the o and & on the right-hand
side always conspire to produce 5V of depth one, plus possibly depth zero terms. This follows
from the fact that all iterated integrals in the generating series for MGF's [27] can be expressed
exclusively through 5%V, and this property is preserved by complex conjugation.

The examples of a[7! 7] in (2.25) for instance lead to

pYIELT] G
16y2  24y2

€
96y 9693

sV C3
——B%[3;7] - 3160 (2.33)

VLT =

BTl +

and a complete list of 55V [] 11 ]Z} with k1+ke < 28 can be found in the ancillary file.

As in this work we are interested in modular invariant functions, most of the 5% of depth two
appearing in the remainder of the paper satisfy ji+jo = %(k‘l +ko—4). For these values of the
parameters we shall define the following depth-two combinations that shall feature prominently
in the subsequent analysis

ﬁsv:tj ﬁsv[2m 2—j k— m+j] BSV[/H-m 2—j 7 ] (2,34)

2m

with 0 < j < 2m—2. These combinations are modular invariant modulo terms of lower depth
by (2.31). The 8%'F have eigenvalue +1 under complex conjugation modulo lower depth and we
shall refer to them as even and odd combinations, respectively. In (2.34), we have introduced
the integers m = % and k = % and we shall assume, without loss of generality, that m < k
throughout sections 3 to 5. Note that the odd combinations can vanish for some values of
parameters, e.g.

wil=0,  0<j<2k-2. (2.35)

Most 5%V appear in the generating series of all MGFs [27] and therefore possess representations
as (nested) lattice sums over discrete loop momenta of o’-expanded genus-one string amplitudes.
The reality properties of the MGF's can be used to determine most of the integration constants
oz[ill ﬁ], however, there are some cases, controlled by Tsunogai’s derivation algebra [57, 58],
where this is not possible with the methods of [27]. One of our new results here and in Part II

is a determination of all integration constants at depth two even beyond the constraints of the
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derivation algebra since the class of functions we are reaching via Poincaré series is larger than
that of MGFs.

The 8%V defined here are expected to be equivalent to the single-valued iterated Eisenstein
integrals defined for arbitrary depth by Brown in [33,35,36]. The tentative analogues of the

integration constants a[::] in Brown’s setup are determined by the modular properties of holo-
morphic iterated Eisenstein integrals.

2.3 Poincaré series

The modular invariant functions appearing in this paper can be expressed as Poincaré series, i.e.
as a sum over images of a so-called seed function under the action of SL(2,Z) [54,55]. Denoting
a modular invariant function by ®(7) and its seed by ¢(7), the Poincaré series is

o(r) = Y. ely-7), (2.36)

~EB(Z)\SL(2,Z)

where

a b at +b

and we assumed that the seed function is periodic in the real direction, ¢(74+n) = ¢(7) for all
n € Z, which explains the (Borel) stabiliser

B(Z) = { <j;1 £1> ‘ ne Z} C SL(2,Z) (2.38)

in (2.36). The Poincaré sum (2.36) is only absolutely convergent for appropriate seeds but can
often be defined in other cases by analytic continuation when ¢ depends on a complex parameter.
The simplest instance of a Poincaré series is

2Cak k
Ey(r) = 22 : .
K(r) =% > (Imy-7) (2.39)
YEB(Z)\SL(2,Z)
that converges absolutely for Re(k) > 1. The seed here is given by ¢(7) = QfF—i’c(Im )k = %yk

and for integer k the prefactor of * becomes the rational number (—1)*~1 4&%{“. For Re(k) < 1,
the non-holomorphic Eisenstein series can be defined by analytic continuation and one has the
functional relation

L(k)Ee(1) = T(1=k)E1_k(7), (2.40)

and in our convention Ey(7) = —1 whereas E;(7) is infinite.

As an MGF, the Eisenstein series Ey is of depth one while its seed in (2.39) is a pure power
of y = wIm 7 which is of depth zero. This exemplifies that the transition to the Poincaré seed
reduces the functional complexity, and this viewpoint was exploited in [1, 16,20, 28] to obtain
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Poincaré-series representations of depth-two MGFs. As an example we recall the Poincaré-series
representation of the two-loop modular graph function Cy 1 in (2.5) from [1]

B 2y v Y -
Co1,1(7) = Z [14175 90 T 90 Z (@™ +q™)
v€B(Z)\SL(2,Z) 2
29 yGs 2
= —_ = - = 4,0% 241
2 [14175 50 15 Rebol, 057 (241)
~y€B(Z)\SL(2,Z) 0
and that of C3 11 from [16]
_ 20 23 5 G\, 2 < m L om
Coa(r) = > [155 535 T o15Y " o\x) a2 7M@)
~EB(Z)\SL(2,Z) p— N
2y° 203 9 G (Y 2y* 2.
— —yf — = =) — =—Re&(4,0% 2.42
2 [155925 To5Y “oolx) " apReb@d )| L (242)
~EB(Z)\SL(2,Z) gl
where the notation [- - -], means that vy acts on all occurrences of 7 inside the bracket using the

fractional linear action (2.37). In the second lines, we have rewritten the g-series in terms of the
real part of an iterated Eisenstein integral (2.16) with g-expansion (2.18).

We note that, as discussed in [16, 20], both of the cases (2.41) and (2.42) require some
care: The Uy 1,1 seed function contains a linear term in y that would lead to a divergence upon
Poincaré summation, see (2.40). By contrast, the C3;; example has, as written, a term y*
whose Poincaré sum goes to a constant after Poincaré summation and use of (2.40). Both of
these cases have to be dealt with using analytic continuation. For the case of C3 ;1 we have
shown this explicitly here using the y© with € — 0 after the Poincaré sum. In the case of C 11
this is slightly more subtle but can be done to arrive at finite Fourier expansions [20]. This is
reviewed in more detail in appendix A.

2.3.1 Laurent polynomials from Poincaré series

While the Poincaré-series representation (2.36) in terms of the seed reduces the depth of the
modular invariant function by one unit, it makes extracting some properties of the modular
invariant function ® more cumbersome. For instance, extracting the Laurent polynomial of the
zeroth Fourier mode of ® involves now additional steps. For Eisenstein series going from (2.39)
o (2.9) is standard [54,55], but for general Poincaré series the analysis is more involved and
relies on certain Kloosterman sums. These were studied in [16,20], where it was shown how
to determine the Laurent polynomial (LP) of the Poincaré sum of seeds that are of the form
oo (0)(4r0)*(Im 7)"(¢* + ¢*), where £ > 0, such as the terms above, where we recall y = 7Im.
This is reviewed in appendix A, where a quantity I(a,b,r) = I(—a,a + b,r) for the Laurent
polynomial of such seeds is given in (A.8b) that converges for Re(r) > 1 and can be analytically
continued to (almost) all a,b,r € C.
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We here note for future reference that

2 o
seed: y*Re&y(k,07) = - (k — 1)|ya Z m P Loy _q(m)(¢™ +q™)
’ m=1
22p+3ﬂ.p+a+1

The contribution of a pure power y® to the Laurent polynomial is simple since this is the case
of Eisenstein series with Rea > 1, which according to (2.9) lead to

2272 (@ = 1/2)C0-1 1_a
M@
(=) 1 2a)!1(20 — 3)!2a—1 1_q
420=2(q — 2)!(ar — 1)!Bag, .

For integer a > 2, all explicit factors of 7 in the second term disappear, leaving a rational

seed: v y* +

=y + (2.44)

number times (oq_1y ™% as shown explicitly.

2.3.2 Examples of Poincaré series

We close this section by recording a few more Poincaré series that will be used in this paper.
The first one expresses the modular invariant (Im 7)*GyGy, as a Poincaré sum according to

(mr)fGGr =2G, Y. [(mr)Gy) . (2.45)
~eB(Z)\SL(2,Z) K

We stress that the SL(2,Z) action here is just on 7, there is no extra factor of automorphy as
one sometimes uses in the ‘slash operator’ for Poincaré-series representations of Gy, alone [55].
The sum converges absolutely for & > 2. Similarly, we will use the generalisations of (2.45) to

kam (2k)!(k—1)! .
2 y " Gam(T)| = =R Gom (V)" Eg (2.46a)
~EB(Z)\SL(2,Z) [ L (—4)FBay (k4+m—1)!

= (4

(2]{:)!(2k—1)!y2m(}2m {55\, [ k—m—1 ] _ 2Cok—1 }
Bor (k+m—1)(k—m—1)! 2k (2k—1)(dy)ktm—1 [
2k)(k—1)! —

k+m~_ [\ N
2 N L 1 Gam (TV) " Eg (2.46h)
WEB(Z)\SL(Q,Z) |: i|'\f (_4) B2k(]§+m_1)

— (—4)~k-m (2k)!(2k—1)!Gom {/st[k+m—1] _ 2Cok—1 _ } 7
Bok (k+m—1)!(k—m—1)! 2k (2k—1)(4y)k—m—1
where y = mIm7. The Poincaré sums in the respective first steps converge absolutely for
k+m > 1 and the rewritings in the respective second lines are obtained using (2.29) and require
0<m<k.
Another Poincaré sum that we shall use was given in [98, Eq. (3.10)]:

. 2s+1/2
Z [\/WKS_VQ(Q?TW Im 7)e?mnRer | — 57_T1 aas—1(|n|)Es(1) '
YEB(Z)\SL(2,Z) v 4|n]s=1cos(ms)T(s+1/2)Cas—1Cos

(2.47)
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This Poincaré sum is over any given non-zero Fourier mode of E4 and is therefore expected to
be proportional to E; again. The sum itself is divergent but the result on the right-hand side
was argued for in [98] by analytic continuation.

3 Laplace equations for even seed functions, MGFs and beyond

In this section, we introduce a method to determine the Laplace equations of modular invari-
ant functions of depth two, expressed through the 5;:;?]‘ defined in (2.34) along with iterated
integrals of depth < 1. In particular, we will focus on the even case in this section and infer the
associated seed functions of the schematic form y® Re & (2m, Ob) witha > 1 and 0 < b < 2m—2.
In the later section 5, similar methods will be applied to infer seed functions y*Im 50(2m,0b)
for odd modular invariant functions and in section 6 we consider non-convergent seeds for other
ranges of a and b.

3.1 Laplacian of modular graph functions and iterated Eisenstein integrals

A prominent feature of MGF's is that they satisfy (possibly inhomogeneous) eigenvalue equations
with respect to the SL(2,Z)-invariant Laplace operator [1,9,13,24]

0? =[1
A = 4(Im 7)2%6% =7V [?wv} : (3.1)

where we recall y = 7 Im7. At depth one, these are the homogeneous eigenvalue equations of
the non-holomorphic Eisenstein series (2.4),

(A —s(s—1))Es(r) =0, (3.2)

while the Laplace action on the two-loop modular graph functions Cy . in (2.5) is known from [1]
to be given by
(A —a(a—1) = b(b—1) — c(c—1))Copc (3.3)
= ab(Ca—1p+1,c + Cat1p-1.6 + Cat1pt1,0-2 — 2Cap+1,c-1 — 2Cat1pc—1) + cyc(a, b, c)

with [1]
Cabo = EoEy —Eqqp, Cap—-1=Eq1Ep + E.Ep_4 (3.4)

and +cyc(a, b, ¢) instructs us to add the remaining two cyclic permutations of (a, b, ¢).

A major goal of this work is to relate the Laplace equations of Cy . to their representations
in terms of Poincaré series and iterated Eisenstein integrals. Poincaré-series representations
for the Cqp . were found in [19] but we shall cover the more general space of depth-two (as
opposed to two-loop) functions Bf;;’j;’j and furthermore seek alternative representatives of the
seed functions without the powers of ¢q in those of the reference.
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Our results on the depth-one seed functions for C, ;. are based on the central claim:

Any Cgp(7) is expressible in terms of the objects ﬁsv+ "/ in (2.34) subject to (3.5)

m+k = a+b+c and modulo combinations of (11, powers of y and 8% of depth < 1

which follows from the following considerations:

o Any Cupc(7) is contained in the generating series Y7 of MGFs [27] whose o/-expansion

comprises %V combined with powers of y~!

and a constant series capturing the 7 — ico
degenerations of MGFs. For instance, all the Cpp(7) are contained in the five-point

instance of Yﬂ at the order of s”, when isolating the component integrals over Kronecker—

Eisenstein coefficients f12 f24 f25 fl(g) f?EZ) f?Eg) (with fi(;l) = f(“)(zi—zj,T) and f@(z, 1) =
(—1)2-t > pen P~ ), where we refer to [27] for the notation.

e The 5 [ﬁ ﬁ - ’i } of depth ¢ < 2 are sufficient to represent the Cyj .: Both of 5%V [ill ﬁ]
and Cgp . reduce to products of holomorphic Eisenstein series and depth-one objects un-
der repeated Cauchy—Riemann derivatives (2.14). This can be seen from the differential

equation (2.24b) of the %V {] ! ”} and the action of V on lattice sums [3]. In particular,

repeated V-derivatives eventually reduce the lattice-sum representations (2.5) of Cyp . to
single lattice sums after applying holomorphic subgraph reduction.

e As can be anticipated from the dictionary (2.29) between Ej and %V at depth one,
the leading-depth terms ﬂs"[]l ]2} entering Cpp . are accompanied by a tail of terms

_O‘ﬁsv[ k] and y~? accompanied by odd zeta values. This is necessary to attain exact
modular invariance beyond the leading-depth term in (2.31).

As a consequence of (3.5), the Laplace equations of E; and C, . can be studied at the level
of the 5%V. The complex-conjugation properties (2.31) together with the differential equations
(2.24b) of the %V fix the leading-depth term in the Laplacian of g5V {] ! 72} In particular, for

the entries j1+js = §(k1+k‘2— ) relevant to Cy 4 ., we find

A (i)

= ((k1—51—2)(j1+1 ko—io—2)(jo+1)) 55V | J1 J2
j1+j2=%(k1+k2—4) (( 171 )(‘71+ ) + ( 27J2 )(‘72+ ))ﬁ [kl kz]
+ j2(k1_j1—2)ﬂsv |:J1k-il-1 Jo— 1] + ]1(k2 j2 2)/st |:j1k:1 j2k-12-1] (3.6)

ﬂsv [y2+1]

— 10y ky—2Gy (T—T )’“25“[” 1} — (k2—72—2)dj, 0 ( )

G, (T—7)F2 mod lower depth,

G

+ 5j27k2—26j170W
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where the third line vanishes for k1 = ko and the last one vanishes for k1 # ko. One can
reformulate (3.6) in terms of the combinations Bf::jg’] introduced in (2.34) for 0 < j < 2m—2 as

ABSV:I:] [‘<2m—j—1>+<m+/<:—2—j)(k—m+j+1)}5jﬁvj
ik =ma ) g (2m =2 = g) (m+ k- - 2) B
 am-a(m— k) [ 2 (457 & Ganr—r 9 ]|
Gor
(2mi)>*

In the following we shall analyse Laplace systems associated with the 3

+ (1 £ 1)8j,2m—2 Om k75 —rg Gar (T— T) mod lower depth.

SVi "/ in more detail and
find Poincaré-series solutions to them. We recall that we assume m < k; throughout without
loss of generality. While the even cases will be discussed in the rest of this section, the odd ones
are relegated to section 5.

3.2 Laplacian of even combinations of 5%

The action of the Laplacian on the depth-two 55Vi 7 in (3.7) is given by a tri-diagonal matrix of

v I we shall focus on the top left corner

size (2m—1) x (2m—1). For the even combinations /5
of size (m—1) x (m—1) corresponding to 0 < j < m— 2. The reason being that for j = m—1, the
expression (2.34) is a pure shuffle according to (2.26) that reduces to a product of Eisenstein

series at leading depth according to (2.29):
+,m-1 __ v —1 k— v [ k— — _ v — v k—
B = B S ] B ) = A e 1 B (3:8)

_ [n—1)-1))°
 (2m—-1)!(2k—1)!

E,,E; mod lower depth.

Similarly, the even BSV+ 'J in the range m < j < 2m—2 are determined by those with 0 < j <
m—2 by the following shuffle relations
ﬁsv—i- yJ +st+ 2m—2—j __ ﬁsv[2j ]5sv[k+m j— 2] ﬁsv[]—l—k m] BSV[2m j— 2] ) (39)
m

For j in the range 0 < j < m—2 we notice moreover that the Kronecker deltas in (3.7) do not
contribute and the Laplace equation can be rewritten as

2
sv+ J SV+ 7 [m'kz'}
Z + 0j.m—2 W E..Ex mod lower depth, (3.10)

. J’_ . .
where the (m—1) x (m—1) matrix M}; is given by

im—j—1)+(m+k—2—j)(k—m+j+1) fori=j,

Jlk—m+3j fori=45—-1,

M = ( .) ) Y (3.11)
(2m—2—])(m—|—k‘—j—2) fori=j5+1,
0 otherwise .
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3.2.1 Completing the %V at depth two

From the structure of the Laplace system (3.7) we can easily see that the shuffle irreducible

ﬁsv+ "/ with 0 < j < m—2 together with repeated Laplace action on the pure shuffle (3.8) at

SV+ I with m < j < 2m—2. For example, the Laplace

sv—i—]ml

J = m~—1 determine the remaining £
sv+ j=m

equation (3.7) for the pure shuffle 3/ will determine the leading-depth part of B

2
in terms of 5SV+ mee

(A—m(m—1)—k(k—1)) 8V E " = (m—1)(k—1) (ﬂsv+ " 2+ﬂsv+ m) mod lower depth. (3.12)

m,k

sv+ m

This equation can be solved for 3 and one obtains an explicit expression if one uses the

Laplacian of the shuffle that can be calculated as

(7VE,) (7 VER) + (7VE,)(mVEy)
y? ’

A (EmEk) =B} AE,, + Ep AE; + (3.13)
The same procedure will allow us to determine all the leading-depth terms for m < j < 2m—2
in terms of the previous 5::4;;’] and higher powers of the Laplacians of the shuffle. The terms in
the higher Laplacians can be expressed in terms of the auxiliary modular invariant objects

V)‘Ep)(nV)'E
371 = Re [((w ) 2)6(77 SB g0, (3.14)
Y
For instance, (3.13) in this language is
(A —m(m—1) — k(k—1))J ) = 251 (3.15)

where we made use of the well-known Laplacian AEy = k(k—1)Ej. The Laplacians on the other

J e ]j can be worked out as a recurrence relation for ¢ > 1:

(A = m(m—1) = k(k—1) + 22) 370 = T (mae-1) (m—0) (k+e-1) (k—0) T (3.16)

that complements (3.15). In order to derive the recurrence one uses

VAV av )1
w(%) _ (k—p)(k+p—1)<vy§TEk (3.17)

and its complex conjugate. We note that the Laplace equation (3.16) does not close on a finite
14

set as it always generates J:; k] for increasing .

The modular functions J:L[ﬂ are directly related to :J,g] with 7 > m—1. From equation

(3.8) we see that
§ C— v ﬁsv+ ™1 mod lower depth , (3.18)

mk_

where

N, DIkl

= e D (k=11 (3.19)
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Using then (3.12) together with (3.15) we obtain

J+[1} N;n,k(

mk_

1)(k-1) (ﬁsv+ ot ﬁsv+ " 2) mod lower depth. (3.20)
We can then keep on exploiting the Laplace system (3.7) combined with (3.16) to find the

general expression for 0 < £ < m-—1

= [ﬁ ] (52’;””“ Ty ﬁsv+ m—t= 1) mod lower depth. (3.21)

mk

Note that here we are assuming that ¢ < m since for £ > m the expression (3.14) can no longer
be written in terms of 5%V but involves holomorphic Eisenstein series by (2.20).
3.2.2 Spectrum of the Laplacian

In order to understand the space of modular-invariant even combinations 3,7 Z’j it is then crucial
to characterise the space of solutions to the system (3.10). As a concrete example we can rewrite
(3.10) for the cases (m,k) = (2,2), (m,k) = (3,4) and (m, k) = (4,4)

1
ABSV+ 0 2BSV+ 04 QE% mod lower depth,

sv+,0 sv+,0
' 10 20 Bs4 1 0
Al S| = — d lower depth 3.22
()= (5 50) (B0 - (o) ottt a0
+,0 +,0

o 6 36 0 e ) 0
A ZVI =11 16 25 ZV4+ o+ 1295 0 | mod lower depth.

ZV4+ 2 0 4 9292 ZV4+ 2 E?L

The matrices above can be diagonalised and have eigenvalues {6,20} in case of (m, k) = (3,4)
and {2,12,30} in case of (m, k) = (4,4).

More generally, we find that the tridiagonal matrix M ;2 in (3.11) has eigenvalues given by
the spectrum (recall m < k)

s(s—1) with s € {k—m+2,k—m+4, ..., k+m—4, k+m—2} (3.23)

and each eigenvalue has multiplicity one. We only have even values for s when the integers m
and k have same parity and odd values otherwise when m and k have opposite parity, and none
of the eigenvalues vanishes since s > 2. This spectrum was found on the basis of a large number
of examples including all m,k with m+k < 28 and is in general conjectural”. We shall next
describe the eigenvalue problem more concretely which also yields the proof of the spectrum for
some infinite families of m and k.

The diagonalisation of M ™ proceeds by writing the linear combination

m—2
B = X vtafmk 21
=0

"A promising strategy for a proof could be to clarify the relation between the 3%V and the single-valued iterated
Eisenstein integrals of Brown [33,35,36] and to then exploit their properties in the references.
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expressed in terms of the eigenvector v ) = (v?s), . ,’UZZ)_2)T of (MT)T with eigenvalues s(s—1),
where (M*)T denotes the transpose of M+ given in (3.11). With (3.24) the Laplace equation
(3.10) reduces to

(A - s(s—l))B(t) = a(s) EnEy, mod lower depth (3.25)

for some rational coefficients ).
Since M is tridiagonal, the eigenvalue equation (M +)TV(S) = 5(s—1)v(,) translates into a
three-term recurrence given by

Mot + (M5 = s(s=1)) vi) + M, vl =0, (3.26)

with the boundary conditions v(_S; = UZ:)_ L' — 0. In order to have a non-zero solution for V(s) We

see in particular that both U?s) and U?;)_ 2 must be non-zero so in particular the constants Q(s)
in equation (3.25) in front of the source term will never vanish.

For generic m < k and s in (3.23) we do not have a closed-form solution. However, for m < k

and s = k—m+2, corresponding to the lowest possible eigenvalue in (3.23), one can prove that
; (—1)}(2m—2i—2)I'(2m—2)

_ 2
Y(s) AT (2m—i—1) ’ (3:27)

where we normalised v?s) =1.

For other configurations of m, k and s one can find closed expressions in a few instances and
we have used them to perform large scans over matrices M ]-Jg given in (3.10) to test that the
claimed spectrum (3.23) seems indeed correct.

As we argued above, our general considerations show that the coefficient «, in (3.25) is
always non-zero. For this reason we shall in the following study the equation

(A—s(s—1))FF) — BBy, s € {k—m+2 k—m+4, ... k+m—4, k+m—2} ,  (3.28)

with integers 2 < m < k, ignoring lower-depth terms in the underlying Laplace equation (3.7)
of the 5%V which will be re-instated in section 4 below. Given the modular invariance of the
Laplacian and the non-holomorphic Eisenstein series, the ultimate goal of this work is to con-

)
in (3.28) exhaust and transcend the real MGF's at depth two and zero modular weights, and the

struct modular invariant solutions to (3.28) as well as to its odd counterpart (5.13). The F:;(Z

discussion of their iterated-integral and Poincaré-series representations in the next sections is a
key result of this work.

Assigning transcendental weights m and k to E,, and Ej, respectively, we deduce that
F;(Z) should have transcendental weight m+k, a fact that will be supported by its Laurent
polynomial (4.11) below. Equation (3.28) allows for the modular-invariant homogeneous solution
Es whose coefficient must be a rational multiple of (,,1%_s by uniform transcendentality and
being at depth two. However, the allowed spectrum for s in (3.28) shows that m+k—s > 0
is always an even integer. As there are no single-valued zeta values with this property, the
homogeneous solution Ej; is therefore disallowed by our assumptions: uniform transcendentality
and maximum depth two.
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We note that the spectrum in (3.28) excludes the cases s = 0 and s = 1 for which the Laplace
eigenvalue would vanish. The cases of vanishing Laplace eigenvalue are the ones where constants
can appear as homogeneous solutions. In the case of MGFs such homogeneous solutions do arise,
see for instance (2.7), where these constants are odd zeta values and can be determined from
the lattice-sum representations [37].

In the even sector, equation (3.28) is the most general one to consider when restricting to
sources built out of J;Eﬂ, since a source with £ > 0 can always be reduced to J:;[’(,? = E,E¢ using

the recursion in (3.15) and (3.16) at the price of redefining the function F:;(Z).

3.2.3 Examples at m =k

For the Laplace equations (3.28) with m = k, the simplest solutions F,J;g:) with & = 2,3 have
already been studied from the perspective of both modular graph functions [1] and iterated
Eisenstein integrals [15]. The eigenvectors of the relevant (k—1) x (k—1) matrices M ;Z' (3.11) in
the normalisation of (3.28) are given by

F;,g) = 183%[2 9] mod lower depth,

F;g) =100(28%V[3 L] — B°[& 2]) mod lower depth, (3.29)
1 0
6l ¢

[
F;§4) =25(88%V[2 ]+ B¢ 9]) mod lower depth.

The combinations of 5%V on the right-hand sides appeared in [27] as the leading-depth terms
of the modular graph functions Eg 2, E3 3, Eg’3 introduced in [15]. On these grounds, a modular
invariant completion of (3.29) by lower-depth terms is furnished by

9
F;é” = —E99=—-Co11+ —Ey4,

10
2 ) 1 13
Fr® 2R, 2R = 2o — O o) 3.30
3,3 983 T 3133 15222 3,21 T 5g 6 (3.30)
1 ) 1 1 1
Fi3 = 5Bss = 5Bhs = 5-Cona — £Chon + (Fo,

and one can confirm from the Laplace equations (3.3) of the Cy . [1] that these examples indeed
satisfy (A — s(s—l))F]J;ES) = E;.
3.2.4 Examples at m < k

For the simplest examples of the Laplace equations (3.28) with m < k, the appropriately nor-
malised eigenvectors of the relevant (m—1) x (m—1) matrices M ;Z' (3.11) are

F;—,:(),g) =30(8%[24] + B°V[2Y]) mod lower depth, (3.31)
F;—,z(;l) =105(8%"[3 2] + £%[$ 3]) mod lower depth.
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The $% can again be identified as leading-depth terms [27] of the modular graph functions Eg 3
and Eg 4 [15]. Hence, a modular invariant completion of (3.31) by lower-depth terms is given by

1 (s 1 43 (s
F+(3):__E 22 —F — == .32
3 1723 750~ O T g T gy (3:32)
1 1 1 13
|, ) —Chpy— —C c E
2.4 512 T T 222 T pts21 - 411+54 6 5
2 o ensures that the zeta constant in (A —6)Ey3 = $ _ 4E,E5 does

not appear in (A — 6)F;':(,) ) = EqE;3.

3.3 Solution to even Laplace equations via Poincaré series

In the examples (3.29) and (3.31) of F;(Z) with m~+k < 6, the basis of modular graph functions
is known from [12], and the lower-depth terms could be inferred from [27,43]. As a main result
of this work, we shall now introduce an alternative method to determine the modular invariant

F:;(Z) at arbitrary m, k without any recourse to earlier expressions for the MGFs at these weights.
(s)

Our method relies on Poincaré-series representations of F:; i
the methods of [16,20]. We make the ansatz

Frm = Y i) (3.33)

~€B(Z)\SL(2,Z)

to be derived in this section from

in terms of an even (under 7 — —7) and periodic (under 7 — 7+41) seed function f:;f,j) and
also replace Ei on the right-hand side of (3.28) by its Poincaré series (2.39), usually dubbed as
folding Er. We shall assume without loss of generality here that k > m, and we replace Ej, rather
than E,, by its Poincaré series in order to obtain an f k ) whose Poincaré sum is absolutely
convergent for m < k and hence modular invariant by construction. For m = k, the resulting
Poincaré seed produces a divergent sum (due to the presence of a term linear in y in the seed,
similar to E;). However, as explained in [16,20], this case can be treated by considering k — k+e¢
in the final expressions (e.g. for the Laurent polynomial), and taking the limit e (—)> 0 at the end,
S

see also appendix A, thereby reaching the modular-invariant diagonal case FZ' i - Alternative

seeds where the Eisenstein series E,,, with m < k is folded will be discussed in section 6.2.

3.3.1 Deriving the seed function

With the above Poincaré-series ansatz, we reduce (3.28) to

(A= (=111 = (<) S ) )
= (—1)k+m%(4 )k+m _ (‘Uk ElB2)k(( ))( Com )1 (4y)k+1_m
2Boy (4 s m— i —a m+a
U iy 2 a6+ ) X ) S
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where we have used the truncating Fourier expansion (2.9) for E,, and emphasise that the
coefficients of y™*, (19 TF™™ and y*~%(¢" + @) are rational. Since k > m, all powers
of y that occur are positive. We shall solve this equation by Fourier decomposing the periodic

function
£ = )+ enly)@” + ) (3.35)
n=1
and assuming that ¢, (y) for n > 0 is a Laurent polynomial
k—1
)= Y cnat’ (3.36)
a=k—m+1

of the same form as the right-hand side of the differential equation (3.34). Note that the power
y* is absent in the ansatz compared to the right-hand side of the differential equation. The
ansatz (3.35) makes a choice of boundary conditions and, by the relative coefficient of ¢" and
¢", has a built-in evenness under 7 — —7. We furthermore take real coefficients ¢, 4, so that
f;(]‘j) is real under complex conjugation.

Substituting the ansatz for the seed into the differential equation (3.34) then leads to a
second-order differential equation for cy(y) and to recurrence relations for the coefficients ¢, 4.

We solve these equations by

k+m _ )| k+1—m
Co(y) — (_1)k+m B2kB2m(4y) . (_1)k 4B2k)(2m 3)<2m—1(4y) ,
(Zk)!(Zm)!(:uk-i-m - ,us) (Zk)!(m_Z)!(m_l)!(,uk—m—i-l - ,us)
9By k—1
2 m—k—
cn(y) = (—1)kW01—2m(n)n kot Z gr—ir—L,k,Z,s(Zlny)Z? (3.37)
) l=k—m+1
with s = s(s—1) and rational coefficients
LT ’“Z‘:l ((+1—5);_ (T (s+i)T(m+k—i—1) (338
Imbts = D(lts) &~ T(h—)L(i+ DL (m—k+itl) '

where (a), = a(a+1)--- (a+n—1) = Fgf‘(z)") is the (ascending) Pochhammer symbol.

In the zero mode ¢y (y) we have only used the powers of the right-hand side of the differential
equation and set the homogeneous powers y* and y'~* to zero, which again is our choice of
boundary conditions. Given that s > 2 by (3.28), the second homogeneous solution y'~* clearly
leads to a divergent Poincaré sum, but one that is formally related to E; by (2.40) and that
corresponds to the Poincaré sum of the first homogeneous solution y* (2.39). These corrrespond
to 8% at depth one and which we would like to disentangle from the F:;(Z) at depth two. For
this reason we impose that they vanish in the seed.

Using the relation (2.18) between g¢-series over divisor sums and iterated integrals, we can
therefore write the Poincaré seed of F;(Z) as
& 2Bor'(2m)

k—1
(k)T (m) > G kes(Ay) Reo(2m, 051 (3.39)

l=k—m+1

£ = eoly) - (-1)
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with ¢o(y) given by (3.37) and the constants g:r'b’u’s in (3.38). Given that this result for &k > m
has been obtained from folding Ej instead of E,, for the sake of a convergent Poincaré sum,
the seed function only involves iterated Eisenstein integrals over Go,,. In section 6.2 we shall
consider divergent Poincaré sums whose seeds feature iterated integrals over Gop with k > m
instead. The evenness of f;(]‘j) under 7 — —7 here is reflected in the reality of the coefficients
and the occurrence of Re &.

From the general expression (3.39) we notice that there are only two terms accompanied

k=m+1 " One is coming from the unique odd zeta (a,,—1 due to co(y), as in the

by the power y
first line of (3.37). The other is coming from the non-zero Fourier modes’ contribution with
¢ = k—m-+1 which brings the iterated integral Re &y(2m, 0>™~2).

As we shall be explaining later on from a different perspective, the unique odd zeta value and
the maximal iterated integral are interlocked and always appear in a very specific combination.
Isolating the two terms with y*~™+1 in (3.39) we have

—1)F4k=m+2B,, (2m—3)!(2m—1)!

+(s) _ ( : 2m—2 C2m—1
T )| s = R = sy — o) L 000 = o |- (3:40)

3.3.2 Examples at m =k

For the examples of F+( *) in (3.29) and (3.30) with k& < 3, the general formula (3.39) for the
seed function yields

4
+@ _ Y Y8 Y 2
22 50250 90 15 Re[5°(4 01

6
+2) _ _ Y yS , 2y° 3L 2 .
33 T 251175 1260 + Re[50(6 0%)] + Re[50(6 091, (3.41)
OB e

33 7 8037225 7560 +2 63 " RelE(6.0%] + 63 2 Re[£o(6, 0],

also see [1,20] for f;r 2(2) and [16, 20, 28] for f; 352), ; 354). The simplest Poincaré seeds for F+(S)
beyond the state of the art read

8 2
+@) y oy 4P a7 5\, Y 6
Jid™ = Toosssaman ~ o120 13 oo 0OI 27 Relfo(8,00)] + 5 Relfo(8. 00
8
+(4) y yCr 4y 1 5 y 6
= - Y 42
8 2
+(6) Yy yCr 4y a2y N 6
14" = 530166250 ~ 226800 T 135 (elE0(8: 001+ = Rel€o(8, 07)] + - Rel&o(8, 07)]

A seed related to f; 4(2) was given in [28].
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3.3.3 Examples at m < k

For the examples of F;(Z) in (3.31) and (3.32) with (m, k) = (2,3) and (2, 4), the general formula

)

(3.39) for the seed function yields

5 2 2
+(3) Yy Y3y 2
- S L AN 4 4
2,3 207675 1890 | 315 Rel&(4,0%]. (3.43)
6 3 3
Y = - L U Relg(4,07)],

24 7 3827250 28350 @ 4725

see also [16,20]. We shall give the complete set of seed functions f;;(,j) for the modular invariant
functions of weight m+k < 8,

53 = 4633;725 N 37y:§;0 - 62y3470 Re[£o(4, 0%)), (344)
8 5 5
20 = 3735%%10%1875 B 31%92;%4%75 105?:;/125 Reféo(4, 0]
as well as
= 491?(:375 N 1??330 + % Ref£ (6, 0°)] + % Ref£(6, 0]
AP 803?;;250 - 2%2%’0 + % Re[€0(6,0%)] + % Re[o(6,0%)], (3.45)
i = 11492;/283175 N 14%2%580 + 632/;7 Re[£o(6,0)] + % Ref£ (6, 0)),
= 9725%2225 - 3;/25;0 * 612/;7 Rel£o(6,0%)] + 622—%37 Re[£0(6, 0]

(s)

Performing the Poincaré sum of these seeds produces F;z which are modular invariant and

even under 7 — —7 by construction.

3.4 Seed functions for even shuffles

In (3.39) we saw that the seed functions of the F;(Z) can be expressed in terms of iterated

integrals 3¢ Re & (2m, 0¥+~ ~1) with k—m+1 < ¢ §7k‘—1 such that we only span the iterated
integrals Re &(2m,0P) with m < p < 2m—2. In order to exhaust the remaining cases with
0 < p < m, we recall that the (m, k) sector of real modular invariants also contains the (sums
of) shuffles J:;Eﬁ in (3.14) built from E,,, Ej and their derivatives. We shall now determine the
corresponding seed functions for 0 < ¢ < m anc}l see that they contain the missing) iterated

integrals. This turns out to be simpler as the J:L[’i are sums of shuffles unlike the F:L(Z .

As we shall see, the seed functions of the modular invariant functions F:;(Z), J :1[52 at depth two
are both built from rational combinations of y+* or y*~"+1¢,,, | and yk“’”_l_p 7Re[€0(2m, 07)]
with 0 < p < 2m—2. Hence, the transition from the modular invariant functions to their Poincaré
seeds once more reduces the depth of the contributing iterated Fisenstein integrals by one unit

just like in (2.39).
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3.4.1 Seed functions of J:L[ﬁ
+[4]

We want to derive a seed function Ik 1D
14 14
o= e, (3.46)
YEB(Z)\SL(2,Z)

for the objects J;EQ(T) with ¢ > 0 defined in equation (3.14). We recall that we are working
under the assumptions m < k without loss of generality. Starting from ¢ = min(m,k) = m
we then generate holomorphic Eisenstein series Go,, according to (2.20). Hence, the J +[f] with
¢ > m are going beyond the Q[y™', MZV] combinations of ﬁsv[ill ﬁ - ]i] with j; < k; 2 that

form the backbone of MGFs and the modular invariant functions Fi(k) here studied.
Using the seed representation (2.39) for Ej, we can easily obtain

k
e —4)"(k)eBaor - =
G — —%yk H(aV)! + (7)) By (3.47)
7 2(2k)!
For the regime ¢ < m that we are considering, this seed is indeed convergent.
Then, using the explicit expression (2.9) for the non-holomorphic Eisenstein series, we have

to compute

: ¢
@) (10" + ) = [l S0 () (o imtann].
s=0

T (a4 ) = @+ 7 1) (eroar], ey
s=0

which one can prove by induction. We also note (7V)y® = (7V)‘y® = (a)y*+*.

Putting everything together we obtain

[0 ( 1)k+m BorBam ( )g(k‘) (4y)k+m_4(_1)k+5 B2k(2m 3)'C2m 1 (k‘) (4y)k+1—m

e = 2r)2m) " (2k) ! (m—2)/(m—1—0)!
B k(k)é S m— n —n s —a F(m+a)
_ (_1)k+zm(4y)k;n Yo1_om(n)(¢" + ") ;(zmy) (=) (3.49)

[a+1 eg+z< > (at+1—0),- s(4ny)]

The g¢-series over the divisor sums can again be written in terms of iterated Eisenstein integrals
over Goy, of different lengths and multiplied by different powers of y by using (2.18):

Bak (2m—3)!¢om—1

i 1)k+mM(m)e(ky)é(4y)k+m—4(—1)k+£ (k) (4y)t i

(2k)!(2m)! (2k)!(m—2) (m~1-1)!
m—1
+(_1)k+ng(k2(kk;‘eFF (2m) kza'r”;jaa at1—0); (4y)~* Re[€o(2m, 0" 1))
a=0

l
+3 <€> (a+1—0)0—s (4y)** Re[Eo(2m, 0™ Ho=="1)] | . (3.50)

S
s=0
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When combined with (3.39), this shows that the expressions

yk+m—1—b Re & (2m, ()b) for 0 <b<2m-2 , (3.51)

k+m

together with y and y* ™% 1¢y,,_1 from the Fourier zero mode, provide a basis of the Poincaré

seeds for the modular invariants built from 577, Note that 0 < J < 2m—2 so that the counting

m,k
m k—m+1

agrees. The Fourier zero-mode contributions y*+™ and y appear only in such a way to

produce the correct Laplace equations and are lower depth than the iterated integrals.

As in (3.39), the odd zeta value in (3.50) always occurs with the same relative coefficient
Re[&(2m, 02~ 2)] — (gfgfll)!. This can be easily seen from (3.50) where the only instances of the
maximally integrated Re[£y(2m, 0" 2)] occur for a = m—1 and s = 0, so isolating the unique

odd zeta value and the two maximal iterated integrals we have

(] _ (SRR By (2m—3)!(2m—1)\(k)
Ik | o (2k)[(m—2)!(m—1—0)!

m— Com—
¢ Re[&y(2m, 0™ 2)] — 7(2;_11)!] ;

(3.52)
upon using the Legendre duplication formula. This very same combination, with a different
rational prefactor, was found in (3.40) when we discussed the seed functions for the F:;(Z). We
shall come back to this observation in section 3.5.

3.4.2 Examples at m =k

The simplest examples of the seed functions (3.50) related to bilinears in Eg and Eg are

4

[0 Y ZI_C?) _ @ . 2_@1 2
4 3 2
+1 4yt 2y 16y 8y~ 4y 2
and
6 3 2
4o 4T oy 16y 2y _ 8Y° sy _ W 4
6 4 3
) AT yGs | 32y 16y 2
2
- mTy Re[&£(6,0%)] + 87y Re[&y(6,0%)], (3.54)
G 64° | dyGs 5120 _ 5124° 128y° 5
j373 = 99225 105 21 RG[EQ(G)] 21 Re[So(G,O)] Re[Eo(G,O )]
32y

— - Rel£n(6,0%)] — =7 Rel€o(6,0%)]

respectively. By combining these seeds with those for F,ﬁ:) in (3.41), we can isolate the iterated

Fisenstein integrals in the linear combinations

4
Y 2 _9 _ +(2)
ey Rel6o(4,0%)] - 2) = 156517
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4

_4y5_0 4" Rel£(4,0)] = —§(2f2+,§2) + 335, (3.55)
% + 1P Re[&y(4)] = 1—2(23‘;%0] +j;f£”) ,
and
_89:;/;25 + y<Re[50(6’04)] - %) = %( AR A O
113(6)70 + 4" Rel£0(6,0°)] = _%(f?f?@ —6£53").
_% +y” Rel€(6,0%)] = —%(12f§§4) + 7380, (3.56)
17y0610 +y" Reléo(6,0)] = %(%f 35"+ 9538+ iash,
—% +4° Re[&(6)] = —%(72;';5,0} + 165740 + 77 ).

Similar relations between Poincaré sums over Re[€y(8,0P)] and Fié(f) can be found in ap-

pendix C.1.

3.4.3 Examples at m < k
. . +(3) wt() . . T -
One can similarly combine the seeds for Fy 3, Fy ;7 in (3.43) with the following j, ', from (3.50),

5 2 3 2
0] 2y 2y°Cs 8y Rel&n (4 4y 2
= - 0)] — =o- Re[&(4,0
s = Tosas T oa5 315 eto(h 0] = gz Reléo(4,0%)].

5 2 4 3 2
+n A0 297G | 16y 8y~ 4y 2

105 105
6 3 4 3
+[0] Y Yo 4y 2y 2
- . 4.0) - 2L 4 .
J24" = 91og05 t qras  1a75 Relbo(d 0)] = s Rel&o(4,07)], (3.57)
6 3 5 4 3
1] 8y 4y°Cs | 32y 16y 8y 2
- - N+ 2L 4 Y 4
J24 = 51695 ~ amas T 1575 Nelbo(d] + 15z Relfo(4, 0)] + o Rel€o(4, 0]

and thereby isolate the iterated Eisenstein integrals in the linear combinations

5
I+ 7 (Relo(4,0%)] - %) =315/,

945
5 315 ,
_4@/2_0 4" Rel£(4,0)] = —7(45?53) + 335, (3.58)
5
y 105 ol an

and

6
I+ (Reléo(4,0%)] - %3) = 4725f, Y,

810
o 1575 ‘
05 T ¥ Reléo(,0)] = =2 (65,57 + 3317, (3.59)
6
y 1575 1ol
360 +y° Rel&(4)] = W(Zl ;AE] + ;AE]).
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Similar relations between Poincaré sums over Re[&y(2k,0P)] and F; és),F; és),F;f),FJF(S) an

be found in appendix C.2. Comparing (3.55) with (3.58) and (3.59) illustrates once more that

+H with m < k derived above only feature iterated Eisenstein

the seed functions f;(k and j,
integrals over Go,, rather than G%. Still, k leaves a fingerprint in the structure of the seed

function through the power of y in the terms y*+™~7~1 Re[&,(2m, 0P)].

3.5 Laplace equations of even combinations in step form

The above results motivate an alternative organisation of the system of Laplace equations
at each (m,k) where seeds of the form in (3.51) take center stage. We will now describe a

)

procedure to directly construct the combinations of F:;(Z in the Poincaré sums over a given
y*tm=P=1 Re[&y(2m, OP)).
As noted in (3.40) and (3.52), all the seed functions f k ) and jm[,j feature a term involving

Y (Re[E(2m, 02 2)] - (gfr’f_ll)! ), i.e. the iterated Eisenstein integral Re[€y(2m, 0?™2)] with

the maximal number of zeros. Both the seed y*~™%! Re[€y(2m,0%"2)] and its Poincaré sum

require the maximum number 2m—1 of Laplace actions until a holomorphic Eisenstein series is

sv+ i

generated. For given (m, k), there is a unique real depth-two combination 3/ which shares

sv+ 0

this property, as can be seen from the Laplace system (3.7), namely 5 Therefore we

conclude

Z yk—m+1<Re[50(2m’ 02m=2)] — ﬂ) = pPm, kﬁsv+ % mod lower depth
(2m—1)!
YEB(Z)\SL(2,2) K

(3.60)
with rational prefactor
—4)ym=k=1(2F)1(2k—1)!
2Bok (k-+m—2)1(k—m)!(2m—2)!’
k(2k—1)2

such that in particular py, = — . The combination (3.60) is the only choice, where the

4By,
occurrence of the holomorphic Eisenstein series is maximally delayed to the (2m—1)" power
of the Laplacian, i.e. to A?m~1 5SV+ =0 n order to generate the Poincaré sums over shorter
iterated Eisenstein integrals ~ Re[€0(2m 02m=2-7)], we apply combinations of Laplace operators

to both sides of (3.60). From Ay™ = n(n—1)y™ and

n n+1
A(y" Reféo(2m)]) = (42732,)% Re[G2 ] + n(n—1)y" Rel&o(2m)] (3.62)
A(y" Rel&(2m, Op)]> = —4dny" T Re[€(2m, 0P~ 1)] + n(n—1)y" Re[Ey(2m, OP)] p#0,

we deduce that the operator (for ¢ > 0)

Op = —— (A —£(-1)) (3.63)

1
i
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has the property

Okttt <yk+m—b—1 Re &(2m, ob)) — P Re & (2m, 007Y) (b > 0), (3.64a)
k+m
O <yk+m_1 Re 80(2m)> - —(gﬂw ReGY . (3.64b)

It therefore can be used to reduce the number of zeros of an iterated integral while increasing
the power of y in exactly the same way as they appear in the Poincaré seeds studied in the
previous sections.

However, the seeds (2.45) of the holomorphic Eisenstein series generated from ABSV+ am=2
involve the full Go,, = GY . + 2o, rather than GY = seen in (3.64b). Hence, we have to combine

the Re & (2m, 0P) term with a power of y as in

k+m

9Born
Ok+m_1<yk+m_1Re€o(2m)— 2 yk+m): Y ReCon, (3.65)

(2m)! (27i)2m
where we used the relation between the even (-value in terms of Bernoulli numbers given
n (2.10). This fixes the coefficients of the pure powers of y in the seeds of the last lines in
(3.55) to (3.59) — they ensure that no additional E,, ; are generated in the respective Poincaré
sums.

From the above arguments, the Poincaré sums over individual iterated Eisenstein integrals
yield modular forms with the following leading-depth terms (r = 1,2,...,2m—2)

Z |:arm7kyk+m + yk—m—i-l—i-r Re[&](Zm, 02m—2—r)]] (3.66)
~EB(Z)\SL(2,Z) K

0
~ Op—mtrOk—mir—1 -+ Op—my20k— m+1ﬁsv4r mod lower depth.

The product of operators (3.63) can be straightforwardly evaluated via (3.7) and results in a

sv+ 0 sv+ 1 sv+ 2 sv+ r k
+ B, + B, m

combination of 5, ;" . The coefficient of y in (3.66) is given by

g ..

. 2(—4)?m=27" By, (k+m—2)!(2k+r—1)!
U g = — 7o = (3.67)
2m)!(k—m+r)!(2m—1—r)!(2k+2m—3)!

and ensures that the terms of lower depth do not include any E,,, ;. Note in particular that the

2m—1 possibilities of inserting j = 0,1,2,...,2m—2 zeros into the seed Re[€y(2m, 07)] precisely

match the number of leading-depth-two terms ﬁf:;;g’j for real modular invariants, cf. (2.34).
Based on (2.46), we deduce the following Poincaré sum over (3.65),

(2ml')2m > [?JHm Re(Gom(7)) (3.68)
y€B(Z)\SL(2,Z) v

_ CRN(k-1)! {sz
T 2(—4)FBy L (k+m) | (2mi)2m

(r V)", + <wv>mEk} ,

G2m
(2mi)2m
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or alternatively

1 k)-i- (2k)' GQk —\2k
, " Re(Gam = —0km : —7)"G
(2mi)2m veB(z%L(zz) [y o(C: (T))]'Y M g2k By (2772)2k(T 7" G
(2k)!(2k_1)!(k_m) =\2m sv [ k—m— Gom sV m—
A BT ) ()t | ) CamP A Gripm” ]
mod lower depth . (3.69)

The Poincaré sum converges for k+m > 1 and the rewriting using (2.29) in terms of 3%V requires
0<m<k.

3.6 Comparison to C,;. MGF's

In the examples (3.30) and (3.32) we expressed some of the F:L(Z) that are determined by (3.28)

in terms of the two-loop modular graph functions Cpp . defined in (2.5), together with E,,
and possibly (p4+r. This was possible because the C, . that appeared contained the same
inhomogeneous terms E,,Ej in their Laplace equations. We shall take the appearance of E,, Ey
as the defining feature of what we call the (m, k) depth-two sector obtained from double integrals
of holomorphic Eisenstein series (Gay,, Gox) as in section 2.2. Thinking of the F;;(’Z) as the most
general real and shuffle-irreducible depth-two objects in the (m, k) sector, a natural question
is how they relate in general to the Cg .. In the following discussion we restrict to only even
F:;(,Z)? a similar analysis can be done for the odd ones which relate to cuspidal MGFs.

From the general analysis of [1], we know that the C, . are closed under the action of the
Laplacian at fixed weight w = a+b4c up to source terms of the form E,,E; with w = m+k and
E., as was recalled in (3.3) and (3.4). This closure condition is not met by the modular invariants
J:L[ﬁ with ¢ < m defined in (3.14), so the F:;(Z) are the appropriate choice of modular invariant
functions at depth two to represent the C,p .. Moreover, the dimension of the vector space,
Vo(w, s), of Cqypc at a given weight w = a+b+c and given eigenvalue s(s—1) was determined
in [1] to be

[=£2] for 1 < s <w-—2 and s, w of same parity,
dim VC(U), s) = (3.70)
0

otherwise.

)

We can perform a similar counting of the number of independent F :;(Z
in (3.28) and find

using the spectrum

L%J for 2 < s < w—2 and s,w of same parity,
dim Vp+ (w, s) = (3.71)

0 otherwise,

where w = m—+k. We note that the only difference in the allowed values of s occurs when w is
odd and s = 1 which corresponds to vanishing Laplace eigenvalue. The corresponding modular
invariant solution is a constant. For Cg; . it is known that this must be ¢, times a rational
number [37].
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Comparing the dimensions (3.70) and (3.71) we see that the F:L(Z) are in general more
numerous than the Cpp .. The first deviations occur at

dim Ve (w, s) < dim Vp+ (w,s),  at s =6,8,9,10,... i.e. w=8,10,11,12,... , (3.72)

i.e. at weight w = 8 and at any weight w > 10, the number of independent F;(Z)

is strictly
larger than that of C ;.. Hence, there exist even and modular invariant combinations involving
B% at depth two which cannot be represented in terms of two-loop MGFs C,; .. However, we
are not claiming that the “missing” modular invariant functions are built from genuine MGFs
in that they possess a lattice-sum representation. We will come back to this point at the end of
this section.

Given that the C, . span a subspace of the depth-two objects in the (m, k) sector, we can

expand

LEJ w—2
Cape=D. > alaboF0)  +7(ab By +Mab o),  (3.73)

m=2 s=w—2m+2

(s)

for some rational® coefficients v, \, aun’, with s running in steps of 2, and the ¢,, only occur for
odd values of w = a+b+c. The Laplace system of the C, ;. given in (3.3) and (3.4) shows that
the only possible source term linear in Eisenstein series is E,, and therefore this term can arise
in (3.73), with a rational coefficient due to uniform transcendentality. An argument similar to
the one below (3.28) can be used to exclude any other term linear in Eisenstein series. From the
spectrum (3.70), Es could also arise from a homogeneous solution; uniform transcendentality
and depth two would require its coefficient to be a rational multiple of (,_s. Since w and s
have the same parity by (3.70), no such single-valued zeta exists for s > 1. For s = 1 (which is
possible only for odd w) we can use the Eisenstein functional equation for s — 1—s to obtain
the term (,Eg = (,, indeed present in the decomposition (3.73).

At fixed weight w = a+b+c, we can substitute this ansatz in the Laplace system for the
Cap,c in (3.3) and, using the defining equation (3.28), solve for the unknown rational coefficients

)

to be determined in section 4.3, it will also be possible to determine the coefficient A of (,,. An

aﬁf}, 7. By comparing the Laurent polynomials of C, ;. known from [37] with those of the F:;(Z

inverse change of basis is in general not possible.
This procedure reproduces the examples in sections 3.2.3 and 3.2.4, e.g.

43 (s
Cia1=E Capq = —4FS®) 4 g >
11,1 3+G3, 31,1 03 + 5555 T 500
9 2 G5
— FP+—F = “Es+ 2
Ca,1,1 02 + T (2,1 s + 30

8The coefficients appearing in the Laplace system (3.3) and (3.4) for the C, . are all integers, furthermore
+(s)

m,w—m

(3.74)

from (3.28) we know that the action of the Laplacian on an(,i?fm produces linear combinations of F and

EnEw—m with integer coefficients, hence this problem reduces to a linear system for the coefficients a£3)7 ¥, A
with integer coefficients. If a solution exists it must be rational.
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as well as

9 b g 5 7
2 Ly 18 L 11
Cs21 = _gFg,:(), ) - gng(), '+ ﬂEm (3.75)
2 4@ 2.+@ Ly 167
Cia1 = gng(s )~ gFg,;(), Y g 26 E

Moreover, we obtain the following new decompositions at weight seven

24 108 23
C399 —F;—(g) —F;—(s) E; + Gr

22T A T s T T 630
Cs31 = %F;f’) - gF;f) + §E7 + 442—707
Cyo1 = —2—;11:;,:4(13) - gF;E{B) + g 7— 643—70’ (3.76)
Cs11 = %Fg;f’) - 1—72Fg;§f) —8F; ) + %m - 2§—;0 :
where the coefficients of (7 are based on the results of [37] (see section 4.3) and
U331+ C3292 = %E7 + ;:5—72 . (3.77)

Weight eight is then the first instance where the five linearly independent Cj . modulo Eg do
+(s)

not suffice to span the space of six I, "/,

+(6) [+(6) p+©)
03,3,27 C'4,2,2, C'4,3,1 } . { F474 7F375 7F276 (3.78)

Cs2,1, Cs1,1 Fif)’ F:—;gl)’ sz)

From [1] it is known that the Laplacian on the five Cy . of weight eight can be diagonalised

with eigenvalues {2,4,4,6,6}, so that only a co-dimension one subspace of combinations of F; 26),

F;?) and FZEF) can be expressed through the Cy; . at leading depth. The representations of
%) and Eg analogous to (3.74) to (3.76) can be found in

m,8—m

Cap,c at weight eight in terms of F
appendix B.1.

These first instances of discrepancy in the counting occur for eigenvalue s = 6 consistent
with (3.72). Our results in Part II imply that all these discrepancies in counting are due to
relations in Tsunogai’s derivation algebra. We know that the generating series of MGF's intro-
duced in [27] relates MGF's to expressions in terms of the 85'; furthermore this generating series
contains a conjectural matrix realisation of Tsunogai’s derivation algebra [57,58] and therefore
there are combinations of the 85 that do not arise in the generating series due to relations in
the algebra. This means that there are modular invariant completions of the 5 for which no
lattice-sum representation is currently available and none is expected.

As explained in detail in Part II, the modular invariant Fi(z) beyond MGFs cannot be
represented solely in terms of Q[y*!, MZV] combinations of 5%V. The 3 are(it)erated Eisenstein

integrals and it turns out that the representation of all modular invariant Fi Z also requires the
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inclusion of iterated integrals of holomorphic cusp forms. From (3.72) we see that discrepancies
arise whenever s is half the weight of a holomorphic cusp form. In particular, we can prove that
the difference

[25] -1 2s=2 mod 12,
dim Vp+ (w, s) — dim Ve (w, s) = dim Sps = 0 . (3.79)
LEJ otherwise

matches the dimension of the space Sos of holomorphic cusp forms with even modular weights
(2s,0) [90]. The second part of this paper [53] is dedicated to clarifying these points by explicitly
constructing the necessary additions of iterated integrals of cusp forms.

4 Reinstating lower depth

In the previous section we found a map between the F+(k and ﬁsv+ 'J that is based on diagonal-

ising the Laplace equation (3.7) at leading depth. While the F (k) constructed from Poincaré

series are modular invariant by construction, this is not the case for the pure depth-two 5SV+ 25

We shall now describe a procedure to add lower-depth 8%V to the leading-depth expression of the

F+(k) in terms of the depth-two 5SV+ *J that is based on Cauchy—Riemann equations. In many
(s)

cases this leads to modular-invariant expressions for the F:; 5

(s)

between F_%’ and ﬂ: ;’j along with the lower-depth terms in the odd case can be found in

through %v. The analogous map

section 5

As already indicated at the end of the previous section, cases where a completion only in
terms of 5%V is not possible are tied to iterated integrals of holomorphic cusp forms and will be
treated in detail in Part II. Once this is achieved, we have the full Fourier expansions of the
Fi(s) at our disposal, see section 7.1 for comments on this. An alternative route would be to
explore the Fourier expansion from the Poincaré series using resurgence [20,56] but we shall not

follow this approach here.

4.1 Cauchy—Riemann equations

The Laplace equation (3.28) was studied in detail in the previous section and now we will look
at Cauchy—Riemann equations that are compatible with it. On any function F we have for any
p > 0 that

(7V) [y (aV)PF] =y 2PV (@V)P (A = p(p-1)) F] (4.1)

with V defined in (2.14). We can use this for p = s together with the Laplace equation (3.28) to
determine a Cauchy-Riemann equation (of order s) compatible with the Laplace equation for
F:;(Z) The value p = s is the lowest value where genuine depth-two terms (that are not products
of depth-one terms) disappear and this case is the generalisation of the condition (2.20) for depth
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one. We take the ansatz’
(7V mk = ch V) B (7V)* By 4 (7V) HT (4.2)

in terms of products of Cauchy—Riemann derivatives of the constituent Eisenstein series and
possible homogeneous solutions H of the Laplace equation. A consistent modular transformation
of the equation requires (7V)*H™ to have modular weight (0,—2s), however, this does not
require H T itself to be modular invariant. If one were to require modular invariance of HT, the
only option would be H* o E; but this would be too restrictive, in particular there would be
no odd analogue.

Acting with 7V on the ansatz and using (3.28) and (4.1) leads to the relations

1 1

" m(m-1)’ o1 = k(k—1)’ 4

[m(m—1) —i(i+1)] ¢, + [k(k—1) — (s—i)(s—i—1)] ¢ = (3

) > for1 <i<s—2
i
for the coefficients cj’ that can be solved for recursively. The complex conjugate of the Cauchy—
Riemann equation (4.2) can be obtained straightforwardly.
As examples of such Cauchy-Riemann equations we have

1
(nV)?F3 ) = —(wVE2)2 , (4.4)
(nV)°F3Y = (7TV)E2(7TV) Es + (Im7)*G4(7V)E;,

which are equivalent to [15, Eqgs. (4.29), (4.35)]. In the second one we have used (2.20) to write
(7V)2E; in terms of the holomorphic Eisenstein series G4. In general, the term (7V)’E,, in (4.2)
can also contain derivatives of (Im 7)2™Gs,, since s—1 may be larger than m.

In the two examples above one can check from the g-expansion or modular invariance that
there are no homogeneous solutions Ht present. Cases when H™ # 0 do occur and will be
explored in detail in Part II.

Note that the 8° representations of a variety of Cauchy-Riemann derivatives (WV)pFi(S)

and (ﬂ'V)me(k) are discussed in section 5.6 and examples are gathered in appendix G and all
derivatives for m + k < 14 are collected in the ancillary file.

4.2 Reinstating depth-one terms

The Cauchy—Riemann equation (4.2) can be used to obtain (candidate) expressions for F:;(Z)
in terms of the 5%V of various depths. The depth-two part was fixed by the diagonalisation
procedure in section 3.2.2. However, acting with the Cauchy—Riemann derivative on the depth-

two terms does not generate only terms of the correct type.

%Contributions i = 0 and i = s to the sum in (4.2) are absent since V acting on this equation would be

inconsistent with the Laplace equation of FHS)
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The differential equation (2.24b) that we reproduce here in rewritten form for convenience
—arv B [ | = =i =28 [ |+ (a8 [ 1 407
— a2 (T—7) 2 G (1) | 1157 (4.5)

shows that we obtain the holomorphic Eisenstein series Gy, as instances of (7V)¥2Ey, according
to (2.20) but they are multiplied by %V of depth one that are not of the (7V)*E, type as is
required by (4.2). (A related statement is that the 5% are not lattice sums.)

The connection between the depth-one ﬁsv[i] and (7V)*E, was given in (2.29) and involves
additional depth-zero terms of the form (os_1y7t27%. Looking back at this equation, we can
therefore improve the Cauchy—Riemann derivative of the depth-two 85 by considering

o ~ T o 20k, 1 .
A R L A e =L TR
These combinations obey the differential equation
~4nVB | 27| = (i =208 [ | + (ha—de-2)B | 307 (4.7)

st (4] - )

where the Gy, (7) on the right-hand side is accompanied by one of the modular graph forms
(2.29) of depth one. For the depth-two combinations 55Vi "/ in (2.34) relevant to the modular
5)

invariants Fm(k , the analogue of (4.6) is

o B = o B ¢ G L
(4.8)
Performing this substitution for the depth-two %V that arise in the diagonalisation (3.24) of
the Laplacian therefore leads to an object whose Cauchy—Riemann derivatives are completely
expressed in terms of depth-two BSV [ﬁ ii} and products of (7V)*E
The products on the right-hand sides of the repeated Cauchy—Riemann derivatives (4.2) lead

to shuffle combinations of depth-two 85V in the schematic form

4Com—1C2k—1

BSV[%Ilc 2]731] + BSV[;SI %1]6] = #(ﬂ'V)’Em(TI’V)'Ek + (Qm_l)(Zk_l)(4y)2m+2k—4—j1—j2 ’ (49)

where the substitution rule (4.6) captures the depth-one terms. However, the depth-zero terms
~ Cok—1Cam—1 (i-e. pure powers of y) need to be modified to obtain the correct Laurent polynomial
of F:L(Z) that we shall describe next.

4.3 Reinstating Laurent polynomials

From the modular properties of Cauchy—Riemann derivatives, we have derived the substitution

rule (4.8) that allows us to reconstruct the depth-one additions to the defining depth-two %"
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(Z)_
that has the correct Cauchy—Riemann and Laplace equations up to terms of depth zero given

terms in F:; In this way, we have obtained a combination of depth-two and depth-one 3%V
by pure powers of y. The missing pure y-power terms can be conveniently inferred from the
Poincaré seeds fnt(,j) we have constructed as a solution to the Laplace equation with our choice

(s)

of boundary conditions: The Laurent polynomials of F;z can be computed from the Poincaré
seeds in (3.39), using the conversion rules (2.43) and (2.44).

In order to determine the additional y-powers that need to be added to the depth-two and
depth-one 5*V in order to match those of F:;L(Z), the only information we need are the Laurent-

)

polynomial contributions of the 85 and the Laurent polynomial of F:L(Z) The former are given
by [27]

Bkljl!(k’l—Z—jl)!(_zly)jl-i-l B
k! (k1 —1)! +0(¢:9),
By, Br, (j14j2+1)! (ky —2— 7o) | (—4y) 71 t72+2
(j1+1)k1 ko (ko +71)!

1+j1, 2+j1+72, 2+j1—Fk1 . =
X 3F2[ org itk 31 T0(@d),

5 | f57]

st |:i11 ]Jé ;,7_:| (410)

where 3F5 denotes a generalised hypergeometric function which, in the present case, always
evaluates to a finite sum, yielding a rational number.

The Laurent polynomial of F;(Z) is determined from the explicit solution (3.39) by using
(2.43) and (2.44) together with the general formula (A.8b) for the Laurent polynomial of Poincaré

seeds. As a result we obtain the Laurent polynomial for 2 < m < k,

+(s) _ (=" Bay Boy, yhtm 2(=1)m A By T2k =1 k=1 14—k
mk T (k+m—s)(k+m-+s—1)(2m)!(2k)! L'(k)L(k)(m—k+s)(m—k—s+1)(2m)!

_ 2(_1)k41+k_mB2kP(2m_1)C2m—1 1+k—m (4 11)
L'(m)I'(m)(k—m+s)(k—m—s+1)(2k)! '
43mRD (2m—1)D(2k—1)Com-1Cok-1 29— k—m | (s) 1—s _

+ [F(m)F(k:)P(k:—l—m—s—l)(k‘—l—m—l—s—Z) Y + Cm7k<k+m+8—ly + O(qv q)

with the rational coefficient
—s m+s min(k—1,s)
C(s) _ 42 (—1) + +1B5+m_kBk+m—sBk+s—m(28)! Z (—1)£g+ F(£+S—1) (4 12)
mk T (s+m—k)T'(m)T(s)Bas (k+m—s)! (k+s—m)! Mok, ’

t=k—m+1 L0 (s=0)!

in terms of the rational numbers g:;b o defined in (3.38). For m = k the terms y' ™=k and
1+k—m vty
Y

the zeta values they contain, except for the one proportional to y' =%, can be directly traced back

are both linear in y and have the same coefficient that just doubles. All terms including

to the Laurent polynomials of the source E,,Er. We summarise the structure of the Laurent
polynomial schematically as (recalling that m < k)

+ _ _ - Com-1C2k—1  Cmikts—1
Fm(z) mod O(q,q) <+— y"™*", Gum-1y™ ™, Copory™ 1, ZHM_Q ; mys_ls )

2
Gr—1  Cokts—1

+ _
Fk,SgS) mod O(q7q) — y2k7 CQk—1y7 y2k—2 5 ys_l )

(4.13)
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where all terms have rational coefficients. This means that all terms in the Laurent polyno-
mial (4.11) have the same transcendental weight m+#k, where both ¢, and y" are assigned
transcendental weight n.

We also note that the term chi?kgm+k+ s—1 along with y' =% in (4.11) is an instance of a multiple
modular value associated with the 85V at depth two [33,35,36,99] that we discuss in more detail
in the companion Part II. We shall always display these as the last terms in the examples below.
Obtaining these correctly from the Poincaré-series approach is one of the central results of this
paper.

The final step in constructing a combination of 5% that solves the Laplace equation (3.28) is
then adding terms to the Laurent polynomial obtained from depth two and depth one via (4.10)
such that the correct Laurent polynomial (4.11) is obtained. We summarise the steps by

1. For a given choice of m < k, and s in the spectrum (3.23), take the combination of B:Z’j

obtained from the diagonalisation (3.24). This solves the Laplace equation at depth two.

2. Replace the ﬁSVJ“j by BT as defined in (4.8). This solves solves the Laplace equation

m,k m,k
at depths two and one.

3. Modify the pure y-power terms such that the correct Laurent polynomial (4.11) is obtained.
After this step an exact solution to the Laplace equation is obtained.

We denote the resulting combination of 55 of depths two, one and zero by I*V“:;(Z).

Note that the second and third terms ~ Cop_19* ™%, Cop_1y™*+1 in (4.13) do not solve
the homogeneous Laplace equation (A — s(s—1))F = 0 for the values of s in the spectrum
(3.28) of even F:;(Z). Hence, their coefficients are always determined by the source term in the

Laplace equations (3.28). The situation changes in the odd case, and will see that Laurent

k—m—+1

monomials (o, 1Y signal additional solutions of the homogeneous Laplace equation, i.e.

(s)

the eigenvalue coincides with k—m+1, in the 8% representations of F;Z to be constructed in

)

section 5.5.

4.4 Combinations F:;(Z) of 3% versus modular invariants F:;(Z)

The notation F;(Z) introduced above indicates that the combination of 8%V does not need to

be identical to F:;(Z) but could be a ‘downgraded’ version. Both F:L(Z) and F;(Z) are solutions
(s)

to the same Laplace equation. However, while F:;Z is modular invariant by construction as

a Poincaré series, this is not necessarily true for F;(Z) as it is built out of £V that can have

complicated modular S-transformation properties [27]. By the lower-depth terms in the modular
transformations (2.31), it is not guaranteed that the combinations F;(Z) obtained in this way

are exactly modular.
Another way of understanding this is to reconsider the Cauchy—Riemann equation (4.2) that
is satisfied by F:;L(Z) and that is compatible with the Laplace equation. From the way that F;(Z)

)
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was constructed, it satisfies

s—1
(@)L =N e (1Y) En(7V)*Ey, (4.14)

7
i=1

which has vanishing homogeneous term H*. Even though the right-hand side of this equation
has good modular properties and transforms with weight (0, —2s) under SLa(Z), there is no
guarantee that there is a modular invariant primitive to this equation. In fact, the Eichler—
Shimura theorem [100, 101] shows that in general the homogeneous term is needed, see for
instance the discussion in the work of Brown [33,35].

After multiplication by y~2%, the homogeneous term (7V)*H™ in (4.2) must be a modular
form of weight (2s,0) and it must be holomorphic in order to be annihilated by 7V, see (4.1).
Thus we arrive at the strong requirement that

(xV) HY = y>f (4.15)

with f a holomorphic modular form of weight (2s,0). The space of holomorphic modular forms
is very well studied and decomposes into holomorphic Eisenstein series Gos and cusp forms that
arise for 2s € {12,16,18, ...}, see e.g. [90].

However, since l*v“:;(z) is already engineered to match the Laurent polynomial (4.11) of F:;(,Z)v
both HT and therefore f has to vanish at the cusp. Hence, there is no room for the zero mode
of Gos = 225 + O(q), and f cannot be a ho)lomorphic Eisenstein series.!” Therefore, the case

. . +(s
f o< Gog cannot arise for even functions Fm(k .

We therefore conclude that the only cases when F;(Z) # F:;(Z) is possible are associated with
(s)

holomorphic cusp forms of weight (2s,0), and in those cases the function 1\5:;2 will not necessarily
be modular invariant. This can also be understood as follows. The generating series of MGFs
introduced in [27] implements conjectural matrix representations of Tsunogai’s derivations [57]
and therefore does not contain certain depth-two combinations of %Y. The relations in the
derivation algebra are known to be associated with holomorphic cusp forms as well [58]. This

)

modular graph functions C, . discussed in section 3.6 at the relevant weights.

The non-modular invariance of some F;(Z)

)

discrepancy between MGF's and the F:;(Z is also hinted at by the different counting of two-loop
can moreover be traced back to the multiple
modular values from the % of depth two that can go beyond MZVs and involve L-values of
holomorphic cusp forms [102].

():F;()canbe

In this paper we shall restrict to the modular invariant cases where lj“:,;z Z

identified with MGFs. Cases with 1\5:;(2) # F:L(Z) in turn will be the subject of Part II where
iterated integrals of holomorphic cusp forms will play a key role.

9Choosing f to be a holomorphic Eisenstein series would make the relation (4.15) identical to (2.20) and H™
would become an iterated integral of Gas. Since we do not require HT to be modular invariant, it could differ
from E;. However, HT would necessarily contain a term of the form y* from the differential equation which is
incompatible with the fact that the Laurent polynomial of F:;(Z) is already accounted for by F;(Z)
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4.5 Examples

We now give a few exemplary instances of the construction of the lower-depth terms and how
the F;(Z) can be expressed in terms of the 55V.

4.5.1 Examples at m =k

By applying the procedure outlined around (4.8) and (4.10) to the simplest examples of F,ﬁ:),

we find the following completion of (3.29),

+(2) SV sV C3 5C5
Foo’ =186%[19] - 12{5[]"‘@—@
20 2 5
Fy Y = 100283 §] — B¢ R]) + 4068 (9] - Cs =G [§]+ —3224 - —28%2 , (4.16)
+(4) _ sv sv N sv 20C5 sv 9(5? . 35(9
Fis' =25(88% (3 6]+ B™[§8]) — 1068 (8] — » —= B [§] + 1287~ 11524%

in agreement with the results for E272,E3,3,Eg73 in [27]. As an example of our new results for

F,ﬁ:), the Poincaré sums over the seed functions (3.42) yield

Fi87 = 490657 (8] - 457 (3] + 7188)) - 140G ]
| 140G7 17547 o 5C2 5Co
— B[] - B3]+ 5125 ~ 38885 (4.17)
490 140
Frg = Eﬂwﬁﬂ]—%ﬂ 4= BV 188D + -G )
70C7ﬂSV[ = 175C7 (2] 4 5¢2 711

442 384y6  6912y3

where the terms ~ (g/y and (11/9° in the kernel of (A — s(s—l))Fif) are related to multiple
modular values at depth two.
Reinstating the lower-depth terms for the final eigenfunction with s = 6 leads to

~ 98 28
i = S (587 431+ 2487 [34] + 87 188) - S 6B (2l

56C7BSV[1] 175C7 [2] 25C$ B 5005(13
y 817 gy TN 68y6 T 530688y5

(4.18)

with (13/y° in the kernel of (A — s(s—1)) at s = 6. This function can be checked to be
non-invariant under modular transformations and is one of the simplest examples outside the
realm of MGFs where iterated integrals of cusp forms need to be added. The relation of the
expression (4.18) to Tsunogai’s derivation algebra will be explored in Part II.

)

The examples in (4.17) are modular invariant which is why we write them as F:L(Z rather

than I*V“:;(Z). The Laurent polynomials of (4.16) to (4.18) resulting from (4.10) are gathered in
appendix D.1.
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4.5.2 Examples at m < k

Similarly, the above procedure to reinstate lower-depth terms leads to the completion of (3.31) by

3 7
F;i()’?:) — ?’()(/BSV[?l (13] + BSV[% 2]) . 20C355v%] CSBSV[ ] 3C650 + C83yC5 64_2727 (4.19)
sV SV SV 15C SV C 5C C 25C
P340 = 1055 (33]+ AVT84D) — 10667 3]~ 3 BV (41 + 50, + Gt~ T3

in agreement with the results for Eg 3, Eg 4 in [27]. The simplest cases that go beyond the state
of the art include the Poincaré sums over the seeds (3.44)

21(9 /BSV[ ] Cg + 7C3C9 . 77C11
640y2  128y>  2048y*’

(4.20)

Fy &) = 378(8°(3 3] +871 3 9]) — 252G:8% [ )] —

and those over the seeds (3.45),
35(s

Fi$) = 175267 [32] - B[4 4] + 2674 4] - BVI52)) + 0GB [ 4] — —2673)
25(7 sv 257 v 5¢7 5C5C7 49¢y
5 [61- Wﬁ [é]+18144+256y5_11520y2’
Fé,ﬁi5)—7o<5ﬁ“[% [+ B AY] + 587 4] + B R 9)) — 28GA (3] — 35;55“[51

5G7 ey 25C7 oov Cr 3CCr T
5 T = P~ 55505 T Gays ~ To0syT (4.21)
126
Falt = 63026 3 1] — ™4 1+ 267 [ 41— 6718 §1) + 252658 [ ] — o 4 )

35C9 o 7C5Co 5C11

L 35 “
T s 0 Lo+ 1320y | 51246 230447

Moreover, the above procedure yields two further examples of 5%V combinations that are not

BSV[ ]

modular invariant at eigenvalue s = 6 and weight m+k = 8,

63C11
64y*

Byl — 1386(8 (2 4] +67[ 5 9]) — 92487 4] —

7C11 21¢3¢11  9955Ci3
5760y3 512y6 35379215’

F$) = 31548 (3 ] + 518 )+ 48715 )+ 68716 §) — 12668 [ 7] -

IBSV[ ]

(4.22)

126
12665 govi

—— B8] — 5 [6] — g~ 5
- 8y2 24192y 1024y 5660672y

Still, the counting of C’a,b,c in section 3.6 with two Laplace eigenfunctions at s = 6 and weight
a+b+c = 8 implies that two linear combinations of Fif),F;é ),F+(6) must be modular graph
functions. Indeed, the linear combinations

w6 6 =16 +6) 6 4

F2,((a )~ 35F4z(1 )= F2,((a )~ £F4,4(1 ) ) (4.23)

FrO) T 56 _ ptr©) | D 5t

3,5 112 44 — +35 E 4,4 >
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seen in the expressions (B.1) for Cqp . at weight 8 can be recovered from the generating se-
ries [27] after taking the relations among Tsunogai’s derivations into account. We have con-
firmed the modular invariance of (4.23) both numerically from the g-expansions of the iterated
Eisenstein integrals in (4.18), (4.22) and analytically from the multiple modular values in the
S-transformation of the 5%V. We are indebted to Francis Brown for providing us with extensive
data relevant for demonstrating this [103].

The complete list of 5%V-representations of F:;(Z) and 15:;(2) with m < k and m+k < 14 can
be found in an ancillary file in the arXiv submission of this paper. The Laurent polynomials of
(4.19) to (4.22) resulting from (4.10) are gathered in appendix D.2.

4.6 The integration constants «
)

On the one hand, a major motivation to derive the above 3%'-representations of Fi(z is to infer
their Fourier expansion from those of the contributing iterated Eisenstein integrals. On the other
hand, the expression (2.23) for the 85 at depth two still involves antiholomorphic integration
constants a[ill ﬁ] that are only known up to k;+ks2 = 12 in the earlier literature [97].

)
y" Im &y in the odd case studied later) imply that the iterated Eisenstein integrals at all depths

However, the Poincaré-series representations of F,in(z with seeds of the form y",y" Re &y (or

add up to even or odd combinations, respectively. Since the holomorphic iterated Eisenstein
integrals entering the 5°[} {*] are completely explicit from (2.23), the o[} 2] contributing to
)

the Fi(z) are determined by their reality properties. Hence, the 5°V-representations of F:;(Z such

as (4.17), (4.20) and (4.21) yield new examples of oz[ill ﬁ], and additional integration constants
()

will be inferred from the F;Z in section 5.6. The examples of F:;(Z) we gathered at m+k < 14

point towards the conjectural closed formula in appendix F.2 for all even integration constants
at arbitrary weight.

4.6.1 Examples at m =k

Reality of Fif),FZf) in (4.17) and 1?1:4(16) in (4.18) determines the integration constants

al {31 =0, ol§8] = 2 0(8)

al{d) =0, al§4] = 26 £0(5,0)

a3l =0, 0[§3] = 3G &0(8,0%), (4.2

a[33] =0, a[gg]:%@go(s,o?’),

algdl =0, ol§ 4] = T &30,

alg ] =0, ol§3] = 22 £0(s,0%),
with a[glk %i] = —a[%i glk] and no information on cases with j;+j2 < 6. Similarly, the non-
vanishing [} 2] with 8 < ji4j2 < 16 and a[4} 42] with 10 < ji+j2 < 20 identified from the
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reality of F71” with s = 2,4,6,8 and Fg ¢ with s = 2,4,6,8,10 are

. 2 , .
aljp ] =510 E10,0),  0<j<T, (4.25)
. 2 , ‘
ol ] = 17N &(12,07),  0<5<9.

Both the known cases of oz[%llC fk] in the ancillary file of [97] and the new results (4.24), (4.25)

point towards the closed formula

2Gok—1 ; ok .
a[zgf gjk] ok_1 1 7€ (2k,07) = _O‘[gjk 2I;k2] ) 0<j<2k-3, (4.26)
Oé[%ll€ %i] =0, 2k—2 < j1+jo < 4k—4 with ji,j0 < 2k—3.
On the one hand, the above strategy does not yield any constraints on the o/ %}g fk] with j1+72 <
2k—2. On the other hand, we expect the so far undetermined oz[g}C %2] with ji1+j2 < 2k—2 to
vanish based on transcendentality arguments: Given that 5“[%2 %i] and y have transcendental
weight j1+j2+2 and 1, respectively, the weight of oz[g}€ %i] is fixed to be j1+j2+2 by (2.23).
Hence, the transcendental weight of the undetermined a[g}f %2] is < 2k—1, but reality of the
+(s)

underlying F ;" requires a factor of (3,1 multiplying an antiholomorphic function that vanishes
at the cusp. Since £y(2k,0P) carry transcendental weight p+1, there are no such functions of

) to assemble the ol 2] with

weight < 0 compatible with the differential equations of F,ﬁ: % o

J1+72 < 2k—2, that is why they are expected to vanish.
4.6.2 Examples at m < k

For the integration constants that become accessible from the reality of F:L(Z) with m < k, it
will be convenient to employ the shorthands

0,
Qg = a5 R ) al M2 (4.27)

for the combinations that mimic the ﬁsv+ 7 i (2.34). Moreover, by analogy with repeated
Cauchy—Riemann derivatives (4.5) of the ﬂs", we furthermore introduce

; N! 1(k+m—2—j)! - -
Njg _ J J 2m—2—j+a k—m+j+b
Yk = Z T{ o) i 2m o (4.28)
it ald! | (j—a)/(k+m—2—;—b)!
(k—m~+j)!(2m—2—j)! a[k+m—2—j+a j+b]
(k—m+j—a)!(2m—2—;—0)! 2k 2m 27
subject to shuffle relations a%’i = —aﬁ’im_%j . As will be exemplified below and in appendix F,

reality of F+(k) will fix all instances of o k in (4.28) with N > 0. In particular, the examples

Qg ’ = —C350(6 0), a = —C350(8 02 ),

a2’3 =4(3 50(6, 0 ) + %Cg, 50(4) R a2 4 = 163 50(8 0 ) (4.29)
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8 4
ag’g = 163 50(6, 03) + gC5 5()(4, 0) , ag:g = 160(3 50(8, 04) + ?C7 50(4) ,

24
oy = 9603 £(8,0°) + (7 €0(4,0),
and a;’:g = 0/21:2 = 0 resulting from reality of (4.19) are consistent with the known expressions
for a[7! 2] and a[’}! Jg] [27,97]. Beyond this, reality of (4.20) to (4.22) yields new results that

4176
are spelt out in appendix F.1 and line up with the conjectural closed formulae

2Co)—
Oéé\’[]’go = 2Ck2;k_11 {51\[7]@_2(]{7—2)!50(4) + 5N,k—12(k7_1)!50(47 0)}

2(3 (k—2)!(k—1+N)! N2
o > < N < k—
3 (k—1—N)! &o(2k, 0 )s k>3, 0<N<k-1
2(op—
2_(5 (k—3)!(k—2+N)

! k+N-3
5 N g @O k24, 0S N <k

2Cok—
ol = %{(k—z)!&v,k_ﬁo(ﬁ, 0) -+ 6(k—1)1dn10(6,0%) + 12k13x 1 E0(6,0%) |

2C5 N (k—2)!(k—2+N)!

m— Eo(2k, OF N3 k>4, 0<N<k
+ 5 (k—N)' 0( ) ) ) = = = =Ny
where ag’g, 0/54];171 and algzl’o - 2a§7€1’1 vanish by shuffle relations. We have tested (4.30), and

the later generalisation (F.4), to hold for all cases of a%i with m+k < 14.

However, the combinations (4.28) only span a subspace of the a[g% %i] since we did not
yet investigate cases with j1+jo < m+k—2 or imaginary cusp forms at depth two. As will be
detailed in section 5.6, the imaginary cusp forms associated with double integrals over (Gy, Gg)

introduce terms of the form (3 & (4, 07) into some of the af7} Jg] [27] which are absent in (4.29).

The a%’i determined by the reality of 1?:;(2) are exclusively built from (9,,—1 & (2k,0P) and

Cok—1 &0 (2m, OP) whereas more general oz[zjéb %i] may also involve different combinations of zeta

values and iterated Eisenstein integrals at depth one.
The expression for a2 9] in (2.25) exemplifies that a[zj;;b %i] with ji+j2 < m+k—2 may be
non-zero. Indeed, m # k does not admit any transcendentality argument for the vanishing of

a[erln ;i] that do not occur in Fi(z). Already in the even case, the lowest-weight integration

constant ag:g = %Cg &0(6,0) contributing to F; g?’) still has a non-trivial analogue (3&y(6) of
lower transcendental weight which does occur in a9 2] [27].

5 Laplacian, seed functions and lower-depth terms for F;l(z)

(s)

We shall now extend the analysis of the even modular invariants F:;Z

)

to their odd counterparts F;(Z .

)

in the previous sections
As we will see, the absence of Laurent polynomials in the
expansion of F;(Z and their Poincaré seeds around the cusp will simplify certain steps. At the

same time, the iterated-integral representations of odd modular invariants will turn out to pose
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additional challenges and introduce more diverse integration constants «f...] as compared to the

even case.

5.1 Laplacian of odd combinations of 3*V

In the previous sections, we have solved the Laplace system (3.7) for the even combinations

/BSV+7 .]

mk D terms of Poincaré seeds f+(s). We now turn to the odd combinations ﬁf’; ;’j with

SV— 7.7

m < k and 0 < j < 2m—2, since for m = k all 3 vanish. One difference to the even case

is that while ﬁsv+ ™1 was a pure shuffle accordmg to (3.8), this is no longer true for the odd
combination. Instead we now find that

/Bfr\;’;,m . Tsr\;;,m—2 — st[m—2] st[2kk] - BSV[2rTan] st[k;2]
_ (k=DN(k=2)/(m=1)Y(m=2)! (7V)E(7V)Ey, — (7V)Ep, (7V)Ey,
(2k—1)!(2m—1)! Y2
mod lower depth

is a combination of shuffles. In the second step we have used (2.29) to express this in terms of
Cauchy—Riemann derivatives of E,;, and Ej.
More generally, we define in analogy with (3.14) for £ > 1

—1g _ (@) En(nV) By, — (7V) Ex(7V)‘E
Jm,k - 2y2£ 3

(5.2)

which is the odd combination of the gradients of the Eisenstein series. It is purely imaginary
and we have from (5.1)
(k—D)!(k—=2)/(m—1)1(m—2)!
(2k—1)!(2m—1)!
0]

which serves as the substitute for source term J :;[ i = EnEy appearing for the even combinations
B~ in (3.8). More generally, the odd counterpart of the dictionary (3.21) between 35V*

m,k

and J;Eﬁ is (for 1 < £ <m—1)

ﬁSV_ m_ ﬁsv_ m=2_ _9 J [1] mod lower depth, (5.3)

¢
—[€] (2m 1 ! 2k 1 ! sv—, m—~_0—1 sv—, m+4—1
e = B, -8B, mod lower depth (5.4

* Sl “3 =) (0 ) o4

and the recurrence (3.16) immediately carries over to the odd case upon replacing J:@[ﬁ — Jr_n[’g
on both sides of the equation for ¢ > 1 (noting that J T_n[?j =0).

We take Bf,f: ;’j in the range 0 < j < m—1 as shuffle-independent representatives which is
one value more than in the even case studied in section 3.2. The range for the superscripts j
is again such that the holomorphic Eisenstein series in (3.7) never contribute to the Laplacians

of st I As a consequence of (3.7), the first time the source term J;ﬁj is introduced by the

sv—,m—1

Laplacian is Aﬁ . The Laplace system is now given in terms of an m x m matrix M;; as

sv—,] SV— i [( _1)'(k_1)']2 ) —[1]
Z (2m—1)!(2k—1)!5j’m_1vak mod lower depth (5.5)
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with 0 < j <m—1 and

i@m—j—1)+(m+k—-2—j)(k—m+j+1) fori=j,

i(k—m+7)+dim_1(m—1)k—-1 fori=5—-1,

YR 7) + djma(m = 1)(k — 1) j 56)
(2m—2—j)(m+k—j—2) fori=j+1,
0 otherwise .

The contribution §; ,,,—1 in the second line of (5.6) is due to having to form the combination (5.3)
for the source.
Examples of (5.5) for small m < k are

sv—,0 sv— ,0
1
A 25’_ 1 66 SV_ 1] —= [ mod lower depth,
2.3 4 8 90 2.3
sv—,0 SV ,0
1
A < gvj_ 1) _ (162 184) ( 24 1) -0 < ) mod lower depth, (5.7)

SV—70 SV— 0
5 10 20 0\ (/55

A 53?4_’; =12 16 12 53V4_; TOO 0[1} mod lower depth .
By’ 0 12 18) \By, T34

The matrix M ;i can be diagonalised and a large number of examples suggests that the spectrum
in the case of odd modular invariant combinations is given by

s(s—1) with s € {k—m+1,k—m+3,... k+m—3, k+m—1} . (5.8)

As we have m < k the value s = 1 never occurs. Comparing with the spectrum (3.23) in the case

)

, we see that odd modular invariants F_(s) have the opposite

5)

of even modular invariants F+(Z

correlation between s and the transcendental weight w = k4+m: The F+(k

5)

At odd weight m+k = 5, for instance, the eigenvalues are characterised by odd s = 3 in case of

F; gg) but by even s = 2,4 in case of F2 (2) F2_ 54). Conversely, even weight m+k = 6 gives rise

of even (odd) weight

w = k+m have even (odd) s whereas Fm(k of even (odd) weight w = k+m have odd (even) s.

to even s =4 for F;g ) and odd s = 3,5 for Fz_’f’), Fz_’é(f’).
We can proceed similarly to (3.24) and study the diagonalisation of M~ by writing the linear

combination
m—2 ' )
B = 3 vl 5.9)
=0

expressed in terms of the eigenvector v ) = (v? RS ,v?;) 2)T of (M~)T. With (5.9) the Laplace
equation (5.5) reduces to

(7V)E, (7V)Ey — (7V)ER(7V)E

/7 ™ mod lower depth (5.10)

<A - 8(8—1))5(;) = Q)

for some rational coefficients o).
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Again, since M~ is tridiagonal, the eigenvalue equation (M _)TV(S) = s(s—1)v(,) translates
into a three-term recurrence given by

My ot + (M = s(s=1)) vfyy + My, v =0, (5.11)

3 (22 (3

with the boundary conditions v(_S; = U?;) = 0. In order to have a non-zero solution for v, we

see that both v?s) and U?;)_ ! must be non-zero so in particular the constants Q(s) In equation
(5.10) in front of the source term will never vanish.

As it happened in the even case, also in the odd sector and for generic m < k and s in (5.8)
we do not have a closed-form solution. However, for m < k and s = k—m+1, corresponding to
the lowest possible eigenvalue in (5.8), one can prove that

(—1)'T(2m—1)

Y T AT @m—i—1)(1+0im1) ’ (5:12)

where we normalised v?s) = 1 obtaining an expression extremely similar to the even eigenvector
(3.27) corresponding to the lowest eigenvalue.

For other configurations of m, k and s one can find closed expressions in a few instances
and we have used them and large scans over matrices M; given in (5.6) to test the claimed
spectrum (5.8) in numerous cases.

In conclusion, similarly to (3.28), we now study the solutions to the Laplace problem

(7V)E (7V)E), — (7V)Eg(7V)Ey,
22
s € {k—=m+1,k—m+3, ..., k+m—3,k+m—1} ,

(A= s(s—1))F, ) = (5.13)

[

2] for definiteness. As suggested by the notation we are

)

where we wrote out the source J;b

)

looking for modular invariant solutions F;(Z that are odd under 7 — —7. The source term
on the right-hand side has transcendental Vx;eight m-+k which is also the transcendental weight
of F;(Z).

Sifnilar to the even sector, equation (5.13) is the most general one to consider in the odd case
when restricting to sources built out of Jr_n[ﬁ, since a source with £ > 1 can always be reduced
to J;n[}f] using equation (3.16) adapted to the odd case and after redefining the function F;n(z)

5.2 Solution to odd Laplace equations via Poincaré series

The strategy for solving (5.13) will be the same as in section 3.3, i.e. we shall construct a

)

its complex conjugate (see section 6.4 for the alternative folding) a solution to (5.13) can be

Poincaré seed fT;(,j) for Fr_n(z and recall our assumption m < k. After having folded VEj and

obtained in terms of an absolutely convergent Poincaré sum by solving

(A= ss=D) 5 =i (5.14)
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where one has to insert the ¢ = 1 instance of the Poincaré seed

[€] (—4)k(k‘)€B2k k—¢

jﬂ_wg - Wy N ((Wv)z — (WV)Z)Em
0 m—1
:( 1)k+é+l (2]?;{:2]?;22 nz: Ul 2m )(q _q GEZ:O 4ny aFéZl+jL2L)
l
X [ (a+1— eg-%§§:<8> (a+1—6),_ 44ny)} (5.15)
s=0
par Bk (k)T (2m) L D(m+ta)

=i(=1) (%w()(w oIl (m—a)

xZ( > a+1—0)_g (4y)* = Im[Ey(2m, 0™ T2—571y]

of J;L[ﬁ with £ < m—1 obtained in analogy with section 3.4. Note that there is no Laurent-
polynomial part as this would be incompatible with being odd under 7 — —7 (that exchanges
q <> ¢ and keeps y invariant).
The solution of (5.14) proceeds as in section 3.3 except for that there is no zero mode cy(y).
We find
k

_ Bok(2m— 1
s . k 2k k+m—~—1
F = =D ST E;n G0 (4y) T E(2m, 0F =41 (5.16)
with
k .
_ (l+1—5);— ' (s+i)T'(m+k—1)
= 1
.t E—I—S ZZ: (k—i+1)T(i+1)T(m—Fk+i) (5:17)
see (3.38) for the analogous coefficients g; k0,5 11 the even seed functions.
5.2.1 Examples of source terms at m +k <7
The simplest examples of the seeds jﬂ_@[g in (5.15) with £ < m—1 are given by
—[1] 16iy* 81y
= Im & Im & (4,0
J2,3 105 0(4) + 105 m &y (4,0),
—[1] _ 32iy° Im 16iy* I 4 1
T2 = g7y &) + Toe Im&(4,0), (5.18)
—[1] 16iy5 8iy®
= Im&y(4) + —=1 4
J25° = Gagr mo(d) + gz Tm&o(4,0),
as well as
—[] 64i7° 32zy 9 16dy3 3
= Im & Im &(6,0 Im &y(6,0 5.19
J3.4 315 0( ) 105 0( ’ ) 105 0( ) )7 ( )
_ 256 256 644 32iy3
hEZ_G?hwmy-éym&@m—Zym&@w— YU Tm &(6,0%).
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5.2.2 Examples of Poincaré seeds at m + k <7

The simplest examples of the seed functions (5.16) of the F;(Z) resulting from the expressions

(1]

for j, ', in the previous section are given by

= g0 - Lm0t g0 = -2 g0,
W = 12;3;51 £o(4,0) — %Imé’o(él 02), fol?) = 12;3;5 Tm&(4,0),  (5.20)
0 I 00 - L tme(400), 0 = - gy (0).
as well as
Fo? = 3 (6.0 - 29 1 £ 6.0%) — 2 1 6,01,
£ = ‘;ﬁ.} Tm (6, 0%) — 211‘2’5 Im &(6, 0%) (5.21)
fi® = ?1?’5 Tm £,(6, 02) — 2315 Tm £,(6,0°).

5.3 Step form for odd Laplace system

We shall now extend the step form of the Laplace equations in section 3.5 to odd seed functions.
The simplest examples for the step form in the odd case are obtained by regrouping the results
for seed functions in (5.18) to (5.21),

Y2 Tm[Eo(4,0%)] = 63i(fo1” — o),

3150
y3 Im[Ey(4,0)] = e sV, (5.22)
3150 ,—(qy 105i ._p1
v () =~~~ S
as well as
y* Tm(€(4,0%)] = 675i(f” — foui”).
1575t ,—
y* Im[&(4,0)] = £, (5.23)
1575¢ 5y 15750 _pp
y® Im[&y(4)] = — 1 fg,i - 39 Jg,p ,
and the analogous examples with m+k = 7,8 can be found in appendix C.3.
The analogous step form involving f _(,j) and j _[g at general m < k follows the logic of the

even case in section 3.5: The starting point is the j = 0 case of 8 ’J

in (2.34) which requires
the maximum number of Laplace actions until a holomorphic Elsensteln series can be factored

out. As the odd counterpart of (3.60), we have

Z [yk_mﬂ Im[Eo(2m, 0*™ )] | = ipmi ﬁ:’;’o mod lower depth (5.24)
~EB(Z)\SL(2,Z) K
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with the same rational prefactor p,, ; given by (3.61) as in the even case. Starting from (5.24),
repeated action of the shifted Laplace operator Oy = —1;(A—£¢(¢—1)) introduced in (3.63) yields
yF T Im[E(2m, 02~277)] on the left-hand side. This follows from

A(y" Im[50(2m)]) _ Ay Im([Gan] + n(n—1)y" Im[Ey(2m)] (5.25)
(2mi)2m ’

A (5" 1mléo(2m, 07)]) = —dny™ Tnfgo(2m, 7)) + n(n-1)y" Imléo(@m, 07)],  p#0,
with Im[Ga,,] = Im[GY,], see (3.62) for the even counterpart. On the right-hand side, we obtain
a sequence of O, acting on BZ:;;O which can be simplified via (3.7), (r =1,2,...,2m—2)

> [ g em, 02 (5.26)
gl

~€B(Z)\SL(2,Z)

,0

~ Ok—marOk—mar—1--- Ok_m+2(’)k_m+1ﬁ:’; mod lower depth

with 7 = 1,2,...,2m—2, see (3.66) for the even counterpart. After 2m—1 Laplace actions on
(5.24), one arrives at the following analogue of (3.68) and (3.69),

O [ @)

(2mi)2m -
YeB(Z)\SL(2,Z)
i(2k)!L (k) Gom ( =vm Gom -
2(—4)’“szr(k+m){(27r§)2m (V)" By — W (7V) Ek} (5.27)

i(2k)!(2k—1)!1(k—m —\2m v T o [
- _2(_4)(k+731](32kr(]2_£m)(k)_m)! {(T_T)2 Gom [k 2k 1] - m [k+2k 1}}

mod lower depth,

where we used (2.29) in the last step.

5.4 Comparison with cuspidal MGFs
)

In the same way as the F:L(Z were compared with the modular graph functions Cy . in section

(s)

3.6, we shall now relate the simplest F;nz

thereby cuspidal MGFs have been identified in [19,27]. Due to the absence of F;n(z) at weight
m-+k = 4 (the source vanishes) we will spell out the seed functions for their bases at m+k = 5, 6.

to imaginary MGFs. A variety of imaginary and

5.4.1 Weight m+k =5

At weight m+k = 5, the shuffle irreducible imaginary MGF's are spanned by the quantities B 3
in section 5 of [27] and A; 25 in section 6 of [19] subject to the Laplace equations

(A —2)(2By3 + 3A41 9.5) = 42A1 25,
(A = 6)A125 = 2(3A125 — 55, (5.28)
_ 3 — __
(A =12)BA125 — 13} = = 5 (Ga(xV)*Es — Gi(nV)?E)
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see in particular equations (5.19a) and (5.19b) of [27]. This can be lined up with the Laplace
equations (5.7) of the BSV_’J at (m, k) = (2,3), consistent with the °V-representations (see [27]
for the lower-depth terms)

2B2g + 3A1 5 = 1260( 87 (3 §] - 673 ]

Ar = 180(8~43] - B3 4])

8125 — I3 = 180(8~193] - AVI43)) +540(87 (4 3) - B3 4] (5.29)
+180( 8 (3 4] - 84 9] ) mod lower depth.

) mod lower depth,

+ 120 (55" §1=B7129] > mod lower depth,

)

By translating the right-hand side into the leading-depth terms of the Fr_n(z , we identify

21 @ 6

Aigs=—2F55",  Bysz=-F,} 5F2(4). (5.30)

S5
Moreover, (5.28) matches the Laplace system of the seed functions in (5.22), which suggests the
Poincaré-series representations

7 152
Z [y2 Im[Ey(4,0?)] 5 ——(2B23 +3A12;5),
yEB(Z)\SL(2,Z) -

7 3157
S [Pmisn )] = ~ Az, (5.31)
yEB(Z)\SL(2,7) )

] 1057 _
> |yt mig@)] = A - 158
~eB(Z)\SL(2,Z) -

Note that (5.30) can be solved to express the Laplace eigenfunctions via imaginary combinations
of lattice sums

- 1 i (Im7\° 5(p14+po+
1*“27£())4):——-»412-52——<—7T ) Im Z —(pl 2 pg),

b bl 2 3 73 72
2 3 p1,p2,p3€N PaP3P1P3
_ 1 5
F2,§2) = ——«41 2:5 T ﬁBz 3, (5.32)
5 1] ImT S(p1+p2+p3+pa) d(p1+pa+p3)
:@JZ:& +ﬁ Im 5 Z 2. 9- - 3 Z 2. 3-3-2 :
™ D2p3piP1P2Py pop3pPiP3

P1,p2,03,pa €N p1,p2,p3EN

By the exhaustive scan of weight-five MGF's in [43], the quadruple sum over four lattice momenta

2)

P1, P2, P3, P4 in F2_ g cannot be reduced to simpler lattice sums over < 3 momenta.

5.4.2 Weight m+k =206

The same kind of discussion applies to the imaginary cusp forms in the (m, k) = (2,4) sector:
The imaginary parts of the complex modular graph forms By 4 and B’274 introduced in section
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9.2 of [43] obey a Laplace system'!

A(Bz,y — Bay) = 20(Baa — Boy) + 4154, (5.33)
A(Bhy — Bhy) = 6(Byy — Byy) — 180(Bay — Ba),

consistent with the Poincaré-series representations

7 1052 —
Z [yg Im[Eo(4,0%)]| = T( b4 — B/2,4) )
yEB(Z)\SL(2,Z) -
7 15757 —
> [t ml&@.0)]] = g (Baa ~Baa). (5.34)
~€B(Z)\SL(2,Z) 7
7 15752 — -
> | miE]] =B Bas ).

~EB(Z)\SL(2,Z)
Note that the Laplace action on the last lines of (5.31) and (5.34) yields

> [)ma) = ﬁ((ﬁ(ﬁ)% T V)Es) (5.35)

~EB(Z)\SL(2,2) v 18
Z [(—y6) Im G4}’Y = % <G4(7Tv)2E4 - G_4(7Tv)2E4> )
v€B(Z)\SL(2,Z)

consistent with (5.27). Unfortunately, it currently appears challenging to confirm (5.31) and
(5.34) by direct computation: From [54,55] we know that the Poincaré sums over the seeds
y* Im[&y(2m, Ob)] must involve more complicated Kloosterman sums and, in particular, the re-
sults of [20] cannot be applied to directly determine these imaginary cusp forms. For the moment,
we leave them as conjectures supported by their consistency with the Laplacian which commutes
with the convergent Poincaré sum over y®Im[£y(4,0°)].

5.5 Reinstating lower depth for odd modular invariants

Our next step is to reinstate the 85 of depth < 1 into the iterated-integral representation of

the odd functions F ;(Z), following an extension of the strategy for the even case in section 4. At

leading depth two, the F;(Z) are expressed in terms of the 5SV_’j as we showed in section 5.1 by

m,k
diagonalising the corresponding Laplace system (5.13). The Fr_n(z) must have vanishing Laurent
polynomial (and in fact vanishing Fourier zero mode, see also section 7.1) since they are by
definition odd under the transformation 7 — —7 that sends y — y and ¢ < ¢.

In order to determine the lower-depth %V in compliance with a vanishing Laurent poly-
nomial we again resort to the Cauchy—Riemann equation that is compatible with the Laplace

system (5.13). The generalisation of (4.2) to the odd case is

@V F, =3 e (1Y) En(nV) By + (rV)*H (5.36)
=0

"YWe are grateful to Jan Gerken for providing the Laplace equations of Bz 4 and Bb4.
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where H™ is a homogeneous solutions to the Laplace equation (A — s(s—1))H~ = 0 that is not
required to be modular invariant on its own, only its s Cauchy-Riemann derivative has to be
modular.

The coefficients ¢; appearing in (5.36) now have to satisfy

COZ—— CS:

[m(m=1) —i(i+1)]c;y + [k(k—1) = (s—i)(s—i~1)]¢c; = <§> <j:i> - @) (j;i)

for 0 < i < s—1. These equations can be solved by iteration.

; (5.37)

DO =

In order to write a solution to the Laplace equation that is expressed in terms of the 8% at all
depths, we proceed as in section 4. Starting from the depth-two terms B::: ;’] that come from the

diagonalisation of the Laplacian, we first perform the substitution ﬁ:’;’j — B\:;] from (4.8).
This substitution generates a specific set of depth-one terms that are constructed so that the
Cauchy—Riemann derivative gives modular expressions (7V)*E,, compatible with (5.36). This
produces a solution to the Laplace equation at depths two and one.

We then compute the Laurent polynomial of this combination of depth-two and depth-one
terms using the degeneration limits (4.10) of the 85. We know that F;(Z) has a vanishing Laurent
polynomial since it is odd and therefore all depth-zero y-powers coming from the combinations
of the Bf;j;] must be cancelled.

Non-positive powers of y can simply be cancelled by adding their negatives to the 5:,3
combinations since they are in the kernel of (7V)®. This is also consistent with the fact that
non-positive powers of y are ubiquitous in the generating series of MGFs (see [25,27]).

If the Laurent polynomial of the A:’;’j features positive powers of y, the only possibility
compatible with the Laplace and Cauchy—Riemann equations is y°. Since the generating series
of MGF in [27] does not introduce positive powers of y in isolation'?, the appropriate way of
removing y° from the Laurent polynomial is to add a suitable multiple of 3% [52_31]- Indeed,

the depth-one contributions in the substitution rule (4.8) applied to a single E::;] in F;(Z)

k—m—+1

introduces the positive power (op,_1Yy at the cusp. This power s = k—m-1 is part of the

spectrum (5.13) in the odd case but does not occur in the even spectrum (3.28). That is why only

the odd functions F;l(i_mﬂ) require corrections of the Laurent polynomial via 8%V [%EEZ" +2],

(s)

and we did not encounter such terms for the even F:;L g8

As we know from (2.29), 8%V [32_51] is proportional to E; up to a term involving Cos_1y'™%.
This power of y is in the kernel of both (A — s(s—1)) and (7V)* such that an extra term
proportional to BSV[SQ_SI] will add a contribution with (7V)*H~ o y?*Ggs to the Cauchy-
Riemann equation (5.36). As already anticipated, apart from holomorphic Eisenstein series, we
will also find iterated integrals of holomorphic cusp forms in the homogeneous solutions H ™
relevant to F;(Z) with s > 6 to be discussed in Part II.

Since we are seeking an odd function with vanishing Laurent polynomial, the addition of the

o5 [ 82_31] needs to be combined with antiholomorphic corrections £y(2s,0P) from the integration

2The coefficients of 3% in the expansion of the generating series Y™ in [27] involve non-positive powers of y

from the operator exp(—Z—‘;) acting on a suitable initial value at 7 — ioo.
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constants a[il ]2] at depth two. As will be detailed in section 5.6, the «f...] contributing to

Fm(]]z ™) are tailored to effectively flip the sign of the &(2s,0P) in (2.19) for E;. In this
-)

way, the ¢, g-terms of ﬁs"[sij] are promoted to the odd analogue Eg of the non-holomorphic

Eisenstein series E4 (2.19) which we define as

s—l

—a S+a) s— a,
Z e )Im50(2s,0 a. 7). (5.38)

a=0

These odd functions solve the desired eigenvalue equation (A — s(s—l))Eg_) = 0 but are not

modular invariant. In summary, for all values of m < k considered, the subtraction of 5V [ 82_31]
needed for a vanishing Laurent polynomial of F;(Z) is associated with (pip— sEg_) and occurs

only for the eigenvalue s = k—m+1.

)

In case of the even F;(Z , the matching of the Laurent polynomial with the results from the

Poincaré series in section 4.3 could be achieved solely in terms of non-positive powers of y. For

the MGF's among the F:;(Z), one can give a heuristic explanation of why the even case did not

involve any analogue of the above 5%V [ o’y 1] beyond the substitution rule (4.6): We have checked

up to m+k < 14 that all the F:;L(Z) with an MGF representation are expressible in terms of
Cap,c, Es and (2,1, i.e. in terms of sums over no more than three lattice momenta. The space

(s )

of F+(k) with an MGF representation differs from the space of all F+ by iterated integrals

of holomorphic cusp forms (cf. Part II), and the counting in (3.79) therefore suggests that at

5)

arbitrary weight, all F+(k in the MGF subspace are expressible in terms of Cpp .. While all

even F:L(k) that enjoy lattice-sum expressions must therefore admit a representation in terms of

)

four or more lattice momenta as in the weight-five example (5.32). These extra momenta give

three lattice momenta, the lattice-sum representations of the odd F;(Z in turn may necessitate

room for the additional complexity of having 55"[8 1] e.g. via independent appearances of E;
and (5,1 in the Cauchy—Riemann derivatives of certain Fm(k).

In conclusion, performing the above steps we arrive at ‘a combination of 5%V that we call
F ( ) that is odd under 7 — —7 and solves the correct Laplace equation. As in the even case,
we are not guaranteed that the function is invariant under modular transformations and so it

s)

may differ from the modular invariant Fr_n(k that was constructed from the Poincaré seed. In

the present work we shall focus on cases where F;n(z) = F;n(z) and relegate the other cases to the

companion Part II.

5.5.1 Examples at weight m+k =5

We shall now apply the prescription above to the simplest odd functions with Poincaré-series
representations in section 5.4. At weight five, one arrives at

By = 00 (5 [h3] - 67 138) - 671341+ A [3)

— 6055‘/[%] (s + 15C3 ﬁsv[ ] 9¢s ﬁsv[ ] 945 5C3

Sy - 2,

e AHE =
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Fos) = —30 (36" [} 2] + 267 (3 4] - 36%(21] - 26 [29)) (5.39)

+406s8 3] + 26 [3) - S26G) - 3674 + o

Where the terms beyond the reach of the substitution rule (4.6) are —@ﬁsv[}l] - j—g for Fy :(,)2)
4

and % for Fy 3 - The multiples of (5 are examples of the non-positive powers of y which are
added by hand to the 5%'-representations of F_(s) The other term (35°V[}] in the second line of
(5.39) together with the antiholomorphic mtegratlon constants af. . .| ] to be detailed in section 5.6

conspire to the desired multiple of (332 and the odd quantity CgEé in (5.38) to get a vanishing
Laurent polynomial for F2_ 5,2). In the resulting Cauchy—Riemann equation

_ 1 1
(7V)?F, ) = 5 (TVE2)(TVE;) - §E2(7TV)2E3 + (Im7)*Gy <3E3 + %) , (5.40)

the last term ~ (3(Im 7)*Gy4 corresponds to (7V)?H ~ in the notation of (5.36). The appearance
(2)

of such extra terms is consistent with the quadruple lattice sum for F, 3~ in (5.32) while the

simpler 5%V representation of F2_ :(,)4) without any analogue of Eg_) lines up with the sum over

three lattice momenta in (5.32). Note that (5.39) reproduces the 5°V representations of the odd
MGFs By 3 and Aj; 2.5 in [27] through the dictionary (5.30).
5.5.2 Examples at weight m+k =6

The next examples are

Fy ' = —420 (BV[13] - BV[22] - A2 1]+ BV[LY))

7OC SV 15C SV 15C SV SV 7C SV C
y35 [%HW% [21—@3% (4] - 2805~ (3] — 5 B™ (3] - @,
Fz_,f’) = —4203°V[} §] — 3156°V[3 3] +4208% [ }] + 3153°Y[§ 9] (5.41)
SV 7OC3 SV 45C7 SV 15C7 SV C7
+ 200657 [3] + = AR - g 2 - g B+ g

The Laurent polynomials are adjusted to vanish by means of the last two terms —%C?’BSV[%] — S

48y
in Fy 513) and the last term 2§§y in Fy 515). As detailed in section 5.4 all these functions given here

are modular invariant and expressible in terms of the MGF's By 4 and B’274 introduced in section
9.2 of [43]

(Baa — Ba4), (5.42)

»lle

—(3 1 7 =/ —(5
F2,4(1 ) = Z(BM B2 4) 360( /2,4 - B2,4), F2,z(1 )=

and reinstating their real parts Re By 4 = —6F+(4) EsE4 and Re B’274 = 180F;514) — 3(3E3 [43]
leads to

9 225 125
GG Gr G3Gr 125G ’ (5.43)
42 4y 16y4 1293

sv sv sv 28043 sv Cr 35C3C7 . 25Cy
Boy = —16805 [ ] — 12608 [ ] + 840(33 [525] —j [ ] — 180y — 3247 2 .

b4 = 378008°[3 2] — 25200(35%[2] —
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The lattice-sum representations of B 4 and B’274 given in section 9.2 of [43] involve three and

four lattice momenta, respectively. The quadruple sum in B’2’4 only enters F2_ 513) (but not F2_ 515))
via (5.42) and can be viewed as triggering the term ~ (38%[2] in the second line of (5.41)

associated with the odd non-modular Laplace eigenfunction Eé_).

5.5.3 Higher weight

Examples at weight m+k = 7,8 are spelt out in appendix E. Starting from weight m+k = 7,
the odd Laplace eigenfunctions may involve eigenvalues s > 6 associated with holomorphic cusp
forms in the Cauchy-Riemann equation (5.36). Indeed, the Poincaré series Fy gj) and Fy 516)
cannot be individually identified with MGFs. The combinations of 5°¥ in appendix E.1 instead
refer to ﬁz_ éﬁ) and 1\5?? 516) and only the particular combination

3F, O + By = 3F, Y + By (Y (5.44)

is modular invariant and expressible via MGFs. The individual modular invariant completions
F2_ 26) and Fg 516) via primitives of the holomorphic cusp form at weight 12 are discussed in Part II.

All the Fr_n(z) at m+k = 8 with 55V-representations in appendix E.2 are MGFs whereas each
weight m+k > 9 features at least one Laplace eigenvalue s with iterated integrals of holomorphic
cusp forms in the modular invariant completion discussed in Part II. The 8%V representations

of all the F;(Z) up to and including weight m+k = 14 are given in an ancillary file in the

arXiv submission of this work. Note that higher-weight examples starting from F2_ gﬁ) may have

contributions from both Eg_) and holomorphic cusp forms.

5.6 Completing integration constants a at depth two

The combined spectra of F:L(Z) and F;n(z) in (3.28) and (5.13) with given m < k involve
all eigenvalues s € {k—m+1,k—m+2,..., k+m—1} with multiplicity one, leading to the to-
tal number of 2m—1 even or odd modular invariants. By imposing the reality properties

Fi(z) = j:Fi(Z) on their 5%V sector I*V“i(z), we can solve for all the antiholomorphic integra-
tion constants a[g;n %i] = —a[gz 2]rln] at depth two with ji+j2 > m+k—2, thereby filling some

of the gaps in section 4.6.

(s)

In the previous subsection, some of the odd functions F,_ Z were seen to feature odd Laplace
eigenfunctions (15— sEg_), signalled by the need to cancel Laurent monomials y® via 55V [52_51 ]
The antiholomorphic £y(2s,0°) in the expression (5.38) for these E{™) receive essential contri-

butions from the oz[2jn11 %i] which violate the pattern of the aﬁ’i (4.28) in the even case: All the

terms in a%k are of the form (o,,—1&0(2k,0P) or (ox—1&0(2m,0P) which clearly differ from the
additional terms (4 k—s€0(2s, 0P) related to ppp— sEg_) in the odd case. These additional terms
occur for Laplace eigenvalue s = k—m+1 and thereby introduce iterated Eisenstein integrals
Cmak—s€0(28,0P) = Com—1&0(2k—2m+2,0P). The simplest examples are the terms (3€y(4, 0P) in

20—y | 26557
—ﬁgo(él, 02) + ?50(4) (5.45)

a[%g]:_—50(470)7 a[ég]:
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due to CgEg_) in F;g) since they deviate from the ingredients (3 (6,0P) and (5E0(4,0P) of the

N0 .
even cases iy 5 seen in (4.29).

5.6.1 The missing cases with ji+js < m—+k—2

As a next step, it remains to determine the «f 2]7; %i] with j1+j2 < m+k—2. These only occur in

the antiholomorphic derivatives (ﬂv)pFi(Z) with 0 < p < s. Since there is no simple differential
)

equation for V action on the 5%V, the antiholomorphic derivatives of Fi(z have to be determined
on the basis of the Laplace equations: For this purpose, we use a variant of (4.1) that can also

be viewed as the depth-two extension of (3.17),

o TVPELY NGl P CAD LR
™V T = (s—p)(s+p—1) T + T
(xV)PF, &) CavA ks NN O vAT 2 I

£(s)

These equations serve as a recursion to determine higher antiholomorphic derivatives V'F,

+(s)
m,k
Since we are here interested only in the 5%V part that contains the integrations constants,

(s)

the following discussion is solely based on the $°V-solutions ﬁiz
and the fact that sometimes Fi(? #+ Fi(z) does not affect the conclusions. We shall write Fi(z)
(s)

for simplicity even though the whole argument only relies on l\fiz .

. . o =Pt
In the first place, (5.46) only gives the V-derivative of the initially unknown (Vme(’Z)) Jy?P
in terms of the (p—1)-th derivative. By making an ansatz for the depth-one and depth-two

=p—1 . .
from lower ones V' F and the known (%V-representations of the derivatives of the sources.

to the differential equation

terms in (vai(’Z)) /y?P constructed out of 5%V and products of derivatives of Eisenstein series,
we can fix a solution at depth one and depth two if the right-hand side is known. For p = 1,
we have construced [°V-representatives of the right-hand sides of (5.46) in sections 4 and 5.5,
respectively, and in general we shall use (5.46) to determine the antiholomorphic derivatives
iteratively.

The remaining information required for fixing a unique B°-representative of (V‘DFi(’Z)) Jy*P
at any step are the depth-zero terms that are fixed by the known Laurent polynomial and

@VPF ) = @vpEE 10, @V)PF,S =0, (5.47)

m,k T

(s)

see (4.11) for the Laurent polynomials of F:,;Z while those of F;(Z) vanish.

By equating the full 85V representations of
VPFES = pyrptl) (5.48)

m, m,k

one can determine the complex-conjugation properties of the depth-two 85V occurring in this
relation. Considering this equation for fixed m < k but all possible values of s and 0 < p < s
shows that all 5sv[2j;1 %2] with j14jo < m+k—2 occur and their exact complex-conjugation
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properties are then fixed by (5.48). Since complex conjugation reflects the range of (j1,j2),
see (2.31), and squares to one, we can use this to determine the exact complex-conjugation
properties of all 85 for fixed m and k. The resulting formule for the complex conjugation of
the 5% are presented up to ki+ko < 28 in the ancillary file.

By comparing these complex-conjugation properties with the abstract (2.32), we can then

(s)

fix the antiholomorphic «[...] in (2.23). A variety of representative examples of VpFiZ and

VPFi(,S) can be found in appendix G, and all Cauchy—Riemann derivatives for m—+k < 14 are
given in the ancillary file. We note that for p > m, antiholomorphic Eisenstein series and their
derivatives can appear explicitly in (5.48).

This strategy gives access to all the oz[2j71n %2] at depth two, for any 2 < m < k as well as
0 <71 <2m—2 and 0 < jo < 2k—2. The case with m = k is considerably simpler than the
generic one with m < k, and the associated integration constants have already been determined
in section 4.6.1. The complete set of such a[2jr1n %i] with m+k < 14 and m < k can be found as
an ancillary file which also repeats the cases with m+k < 6 from the arXiv submission of [97]

for completeness.

5.6.2 A conjectural pattern among the «

Investigating the outcome of the above algorithm leads to the following conjectural identity

— —— L —— _
- @a[ﬁ l=nal’ 2]+ jealyl 3, ] mod GY (5.49)

that we have checked for k1+ky < 28 and all admissible values of j1, jo. The differential operator
on the left-hand side simply removes the terminal zero of

- Eo(2k,07) = & (2k, 00~ 1),  p>1 (5.50)

and acts for p =0 as

vV ———— GY,
IR Eo(2k) = — (%?f?k . (5.51)

In order not to keep track of the antiholomorphic Eisenstein series in ng we have added the
disclaimer mod Gg in (5.49). For instance, this amounts to dropping the last term ~ G in

TV 26 GY
407 — 4o[30 4
— 4y2a[6 ql =4a[t]] - 5 @mit (5.52)
see (5.45) for the «f...] on both sides. We expect a simple explanation of the observation

(5.49) once the 5%V and their integration constants are related to Brown’s single-valued iterated
Eisenstein integrals [33,35, 36].
In fact, the conjectural identity (5.49) can be exploited to generate higher af...]. As the

differential operator lowers the j-labels on [...] we can determine lower labels from higher
labels mod G%. As the high labels with ji+jo > m-+k—2 are fixed by the reality properties
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of Fi(k), this allows us to bypass the investigation of the reality property (5.48) for p > 0

which requires constructing the Cauchy-Riemann derivatives of F_. *(s ) first. Since the af...]
never contain unintegrated antiholomorphic Eisenstein series, the conjectural identity (5.49)
fixes them completely in terms of & (2k, 0P).

6 Exhausting the seed functions
+(s)

In section 3, we have constructed Poincaré seed functions for the Fok by folding the Eisenstein
series, i.e. replacing it by its Poincaré series (2.39), of higher weight & > m in the inhomogeneous
term J :;[?j and J ;ﬁj of the Laplace equation (3.28) and (5.13), respectively. This choice of folding
leads to convergent Poincaré sums, and we have given similar seeds for the other Ji[ﬁ at higher
values of . When consistently folding the Eisenstein series of higher weight in the even case,
the resulting seed functions (3.39) and (3.50) turn out to exhaust the y® Re[€(2m, 0°)] with
a+b>2m—1and a > 1, b > 0, see (3.66) and (3.67) for the accompanying term ~ y*T™. A
similar statement holds for the odd case and seeds of the form y®Im[Ey(2m,0%)], see (5.15) and
(5.16).

In this section, we will discuss the role of certain y® Re[€(2m, 0°)] and y¢ Im[Ey(2m, 0°)] with
a>1, b >0 but at+b < 2m—1 as alternative seed functions for Fi(z) and Ji[ﬁ with m # k.
These cases arise from folding the Eisenstein series of lower weight m < k in the source term of

the Laplace equation (3.28) and (5.13) for Fi( °)

6.1 Overview of seed functions with convergent Poincaré sums

Tables 1 to 3 below give samples of the leading-depth terms BSVi’j in (2.34) that were found to
arise from seed functions y® Re[€y(2m, 0°)] and y® Im[Ey(2m, Ob)] The (red) crosses in the tables

SVi 7 and we shall comment on what kind of modular

refer to cases that cannot be covered by 3
objects these are and their more general Seeds in section 7.4.

The (m, k) sectors of iterated Eisenstein integrals over Go,, and Ggj are spread out across
the diagonals a+b = m+k—1 > 2m—1 of the tables. For instance, the 33% referring to double
integrals over G4 and Gg as in (2.34) cover the diagonal with a+b = 4 in table 1, bounded by

0 < b < 2. The inequalities in the superscripts of 35’57~ <1 or ;ng =2 in table 1 are a shorthand for

the specific linear combinations of Fm(k) in (3.66) that are generated by the Poincaré sums over
the y?&(4,0°) in question. From the step forms for even Poincaré seeds in (3.55) and (3.58),
for instance, we can read off

; 15 135

;VQ’]Sl — —Z(ZF;? + J;[QO}) = —7( svb0 255V+ 1) mod lower depth, (6.1)
j 1 472

;7V§]<2 05 (3J+[0] + JHH) ! 5( AR 3BSV+ 't ﬁSVJF %) mod lower depth

4

and their counterparts in the odd case follow from step forms as in (5.22) and (5.23).
The same notation applies to tables 2 and 3 to indicate the schematic form of the Poincaré
sums over y*£y(6,0%) and 3%&£y(8,0°), leading to B5% and fB1%, respectively. In the following
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b
a 0 1 2 3
1 X < o) B0 | x
2 X 0, S,Vg’j%z ;,V?ljzo X
s | BB e |
m =2 4 sv,j<24 osv,i<19 osv,;j=0

2,3 04 P24 ", | Pos X
2 v e il e
o | e |
AT

Table 1: Leading-depth terms ﬁ;v,;j obtained from Poincaré sums over y*Ey(4,0), together with
the action of the operators Oy defined in (3.63).

subsections, we will discuss the fields marked by 7 in the diagonal a+b = 4 of table 2 and the
two diagonals a+b = 5,6 of table 3 for which we have not yet spelt out a Poincaré series. The
black and red cross signposts will be discussed in sections 7.3 and 7.4, respectively.

a b 0 1 2 3 4 5
1 X X X ? O sv,7=0 X
1 3,3

2 x x 7 0 B350 BTV | x

m—3 3 X ?' O3 gj/éjg(%s gj/éi]g(l?s §Y57]:0 X
4 7 04 835750 ByiTSh) BisSl| BreTT0 | x

b || 8357500 Bail=0) Bag?=T| BRIt BT | x

6 | 83370 Bou’=| Bag=T| Bt BTV | x

7 || BTSN BT BaTS | eeTS | B T | x

Table 2: Leading-depth terms ﬁ;V,;j obtained from Poincaré sums over y*Ey(6,0), together with
the action of the operators Oy defined in (3.63).

6.2 Alternative folding

In order to propose a Poincaré series for the ?-fields in tables 2 and 3 (corresponding to seeds of
the form 3% Re[£y(2m,0%)] with @ > 1, b > 0 but in particular a+b < 2m—1), we will generalise
the step form of Laplace equations in section 3.5. By repeated action of the Laplace operator,
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b
a 0 1 2 3 4 5 6 7
sv, 7=0
1 X X X X ? ? 0, ﬂ X
SV ,71<1 sv,jf()
2 X X X ? 7 0, O2| P45 x
sv, 1<2 sv,]gl sv, 1=0
— 3 X X ? ? 04 44 Oz P45 O3 P46 X
— sv, 1<3 sv, <2 sv, <1 sv, =0
4 X ? ? Os B Os B O4 B4,6 . B X
SV ]<4 SV,]SS SV,]SQ sv, <1 sv,jf()
5 7 7 0s Os| Pa5" " Os| Pae™ .. | Par 4,8 X
sv ]<5 sv ]<4 sv, 1 <3 sv, 1<2 sv, <1 sv, 7=0
6 7 0 Og Og| Pa6" " | Paz 4,8 1,9 X
sv, 7<6 SV _7<5 SV j<4 sv,7<3 sv, j<2 sv, j<1 sv, =0
7 14" "0 Bag =04 Bag'~ .| Ba7 Bas Bag Bato X
sv,j<6 sv,]§5 sv,]§4 sv, <3 SV,]§2 SV,]Sl sv, j=0
8 4.5 4,6 4,7 4,8 4,9 4,10 4,11 X

Table 3: Leading-depth terms ﬁZV,;j obtained from Poincaré sums over y*Ey(8,0), together with
the action of the operators Oy defined in (3.63).

seed functions y®Re[€y(2m, 0%)] with such @ > 1, b > 0 but a+b < 2m—1 can be eventually
mapped to

R

VEB(Z)\SL(2,Z)
_ (2k)!(k—1)!(m—1)!
2(—4)k+m By (k+m—1)!(2m—1)ly?m
_ (2k)!(k—1)!(m—1)! gl
(D) m By (k+m—1)!(2m—1)!

v

[(W)mEm(W)mEk + (1Y) Eg (1Y) By,

(6.2)

The Poincaré sum converges for k+m > 1. Here, k+m = a+b+1 by (3.62) which, thanks to the
bound a+b < 2m—1, implies that £ = a+b+1—m < m. The resulting functions J:’EZL} defined
in (3.14) with m > k crucially depart from the earlier cases throughout sections 3 to 4. Given
that (7V)™Ey in (6.2) with m > k involves derivatives of Gy, a rewriting in terms of 5%V is no
longer possible as opposed to (3.69).

The seed function on the left-hand side of (6.2) stems from Opim—1(y* ™ 1 Re &(2m) —

282m k+m
em)Y )

defined in (3.63). The seed function —

according to (3.65), where the shifted Laplace operators Op ~ A — {({—1) were

k+m

(2m)2m Re Gy, (7) is the endpoint of the cascade of Oy

operators with adjacent values of ¢ described around (3.66). Even though J km Il i ot expressible

+[s]

in terms of ﬁsv+ *Jthe number s of Cauchy—Riemann derivatives of J, .~ grows by one with each

[m]

Oy, see (3.16), so we can attain the term sz
ﬁsv—i- k—1

]

in m steps from J;:[m which corresponds to
modulo lower depth. The latter in turn is generated in k—1 steps of applying suitable

Oy to ﬂsv+ 0 so we know that the cascade of Laplace equations for the associated seed functions
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that terminates with (6.2) has length k+m—1,

k+m

Ok1m-10k1m—2...030, (bm7kym+k + yRe [50(2m, Ok+m_2)]> = — y Re Ggm(T) . (6.3)

(2mi)2m
In this expression, it is important that m > k for Re [y(2m, 0k+m_2)] to be a standard iterated
integral since we would otherwise violate the bound p < 2m—2 of £y(2m, 0P) of Brown’s iterated
integrals (see section 7.3 for a brief discussion of such cases with p > 2m—2). The subscripts
of the O, are engineered such that the terms ~ n(n—1)y™ in (3.62) drop out. In the first
0 < r < 2k—1 steps, the Poincaré series

ST [+ g RelEg(2m, 082 (6.4)
~eB(Z)\SL(2,Z) 7

~ 0pOp_1 ... 050187 % mod lower depth

m,k

is expressible in terms of the real modular invariants FZ_S) and Jz[ﬁ with £ < k at depth two.

The rational prefactors in (6.3) and (6.4) are given by
2(—4)k+m=2B,, . (k+m—2)!

by =00 1 = — .
&= O @) (2h2m—3) (65)
r_ 2(=4)Fm 2By, (k+m—2)!(k+mtr—1)!

mk r1(2m)! (k+m—r—1)!(2k+2m—3)! ’

see (3.66) and (3.67) for the counterparts in the earlier choice of folding. The depth-one part
of the seed functions in (6.4) is always of the form y® Re[£y(2m,0°)] with a+b = k+m—1 which
obeys indeed a+b < 2m—1 as advertised above since k < m. For the same reason, the iterated
Eisenstein integral & (2m,0*™~2) with the maximal number of zeros which is combined with
Com—1 in (3.60) does not occur in (6.3) and (6.4).

The same strategy applies in the odd case, based on a variant of (5.27) with m > k. The
cascade of shifted Laplacians then reads

k+m

Ok+m—10k+m—2 .. 004 (y Im [50(2777,, 0k+m_2)]) = — Y Im Ggm(T) R (66)

(2mi)?m
3 [Im[goum,o“m—?—f)]} ~ 0,0, 1... 00157 mod lower depth
~EB(Z)\SL(2,Z) 7

instead of (6.3) and (6.4), without the term ~ y™** in the seed.

6.2.1 Even examples

Based on (6.2), (6.3) and (6.4), there is a unique proposal for the Poincaré sums over even
seeds b;l7kyk+m + y'*" Re[€o(2m, 0¥+™=2=")] with k < m which is consistent with the Laplace
equations. Although from their defining relations (3.28), (5.13), (3.14) and (5.2) we have that
Fi(z) and Ji[ﬁ are symmetric under the interchange of m and k, we shall adopt the convention
that we write the smaller value first in the subscript. According to this convention, the notation
F®) then signals that m > k.

k,m

65



The Poincaré sums over the iterated integrals discussed then can be seen to provide alterna-

tive seed functions f+(5 and NH@ of
s FE(s
F;f,En’ (m= Y e, (6.7)

~€B(Z)\SL(2,Z)

V4
Ty = Y. e,

~EB(Z)\SL(2,Z)

where 2 < k < m. In the simplest cases within this range, the above reasoning leads to

5
3 .
Y 4 yRe[&(6,0%)] = 3 ;?Eg),

198450
~Jac90 + ¥ Rel6o(6,0%)] = - §(6 AU os)
17y6540 + 4 Re[€0(6,0)] = 332(12f+(3 + 6755 + 735,

_% + 4" Re[£0(6)] = —@(%ggﬂ Faopll )

where we have indicated through the equivalence relation = holds up to terms that sum to
zero under the Poincaré sum in (6.7), this will become important for comparison with the seed
functions to be presented in sections 6.3 and 6.4 below. Examples at higher weight m+k = 6
and 7 include

6
¥y 4~ 3 FH)
35721000 ¥ RelEo(® 00 = 5o
6
- By _ 3 FH4) | =+ 0]
Troason Y Reléo®,0%)] = —5 (12,07 + 1500).
6
Y 3 2 ~ 3 +(4) +[0] 4[]
Re[&y(8,0 = 60 1273 6.9
1360800 ¥ Rel€o(8,07)] 448( foa  + 12554 +02a7), (6.9)
y’ 1 Re[€0(8,0)] = 360 1807101 4 g7+l 4 5+
“ 680400 Y Re[£o(8,0)] = — 1792( f24 + 180754 +30J54" + T4 )
6
Y 5 ~ ~+[0] 1] +[2] , ~+[3]
= 144 2
604800 +vy Re[50(8)] 28672( 0]2 + 360]2 + T4 _1_]24 ),
as well as
7
R 5] A +(5)
106465500 ¥ TRelbo(8,07)] = (f34 ),
7
yi 2 4 ~ - ~—|— +(5
Ts711000 ¥ Reléo(8,00)] = (3f3,4 — 107,
s U RelE(8.0)] & ] 12/ 1807 — 1) (6.10)
s7ag00 ¢ ool U= oo (e ls 10y, _
7
Yy 4 2 ~ 3 +(5 [0] ~+[1]
Toaraop TV Reléo(8,00)] = = (180f54™ + 187547 +J5a°)

7
3 ~ ~ - -
Y P Re[60(8,0)] = — (1440 f; ") + 36077 1 + 40771 + 771,

1

665280 102 1
7
Y 6 & (0] ~+[1] 2] | ~+[3]
504300 +y° Re[&(8)] = 20480 (36005 4 + 60034 + 30755 + 54
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Note that the Poincaré sums (6.7) of j; g},j; f},jﬂg], j;f} in last line of (6.8) and (6.10) as well
as the last two lines of (6.9) involve explicit appearances of holomorphic Eisenstein series, e.g.
J+[2] . (FV)2E2(7TV)2E3 + (FV)2E3(7TV)2E2 3
23 —

27 = (Gu(nV)Es + Ga(nV)°Es)  (6.11)

as a consequence of (2.20). The examples of this section exhaust the fields marked by ? in tables

2 and 3 as we can see in tables 4 and 5. The quotation marks of “st’j <37 in tables 4 and further

cells of table 5 are a reminder that the definition (2.34) leads to %V {J ! Jz] with j; outside the

admissible range 0 < j; < k;—2 and that we get (derivatives of) holomorphic Eisenstein series
as in (6.11).

a b 0 1 2 3 4 5
1 X X X 0, B2’ 0 BT | X
2 X X 0 Bos’=0) B5a’=0) B’ | X
3 X 0 ;véjé(%?, gvé]§%3 2?/47]%})3 ;ISJZO X
4 “st ]<377 SV, j<(394 IBSV j<2 ;:/E;jg.l. . ;j/éj:O «
5 573;1%5 574‘%5 2,“5;‘.2. L Bag’= ] BT |
e e Rl e X - W
7 ;Yéj§4 IBSV ,71<3 IBSV ,7152 IBSV ,i<1 IBSV ,3=0 >

Table 4: Leading-depth terms ﬁgvléj , or alternatively ﬁzvéj , obtained from Poincaré sums over
y*E0(6,0°) including the alternative folding seeds.

6.2.2 0Odd examples

As similar step-form strategy applies to the odd case (6.6) as well for deriving a unique proposal
to the odd Poincaré sums over '™ Im[£y(2m, 0¥+~ 277)] with k < m that preserves the Laplace

equatlons of . (s) and J,_ [f] . For the simplest cases (k, m) = (2,3), (2,4), (3,4), the seed functions

F—(s)

k,m

and 7, s } deﬁned in (6 7) are determined by

,m

L 3iz(2) B3ir @
yTmlEn(6,0%)] = — 15 f55” + 15 oy’
31— 9%~
y* Tm[€(6,0°)] = 3= PR ol @, (6.12)
~ 92 3t —[1
yﬁmmwmn=8f§>32£%

|I2

y I (6)] & ——(72/, 5V + 127, 1 + 7, 7)),

128
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b

a 0 1 2 3 4 ) 6 7
sv, 7=0 sv, 7=0 sv, j=0

1 X X X X 0 /62,4 Oy /63,4 O /6 X
sv 7<1 sv ,7<1 sv ,7<1 sv,370

2 x x X0 (@ [ Oa| P45 X
sv, <2 sv,j§2 sv,y§2 sv,jgl sv, j=0

3 X X O3] Poa” 05 P34" 05 Paa” ~Os Pas ~.. | Pae x
« @SV j<377 5\ j<3 5\ j<3 sv, <2 sv,j<1 sv, 7=0

4 X 04“Ba4 B3.4” =04 Baa’=0u Bag =" | Bug Baz X
( QSV ]<477 sv 7<4 sv j<4 sv,j§3 sv, <2 sv, <1 sv, j=0

5 |Boa Os Os| Pas’ = | Pag 47 48 X
( QSV j<577 sv,j§5 sv,j§4 sv, <3 sv, <2 sv,j<1 sv, j=0

6 (B34 0| Paa 04 Bas ~..| Bag 4,7 4.8 4,9 X
5\ j<6 sv, 7<5 sv, j<4 sv, 7<3 sv, 7<2 sv,j<1 sv, 7=0

T || By’ "0 Bas T | Bag Baz Bus Bug Bato X

sv,j§6 sv,j§5 sv,j§4 sv,j§3 sv,j§2 sv,j§1 sv, j=0 %

8 4,5 4,6 4,7 4,8 4,9 4,10 4,11
Table 5: Leading-depth terms 54 , or alternatively ﬁk , obtained from Poincaré sums over

y*E0(8,0°) including the alternative seeds.

as well as
yIm[50(8,04)] = —@fé 196f24 )
¥ Tm[£o (8, 0°)] = %f_(?’) _ % 2—#&5) 7
P TmlE(8, 07)] 2~ Fy ) 4 oo o)y Sl (6.13)
o tmieo(5,01 2 553 o7~ g~ gl
y® ImfEo(8)] = oo (2880f, 17 + 36075 ) + 2473, + 7, 1)
and
ymiso(s,0°) = =i i+ 35 fid” - 5l
y? Im[Ey(8,0%)] = 28Of34 f—éf;f‘) + %f;ﬁﬁ) ;
v mfeo(s,0)] = 5 ) - R0, (6.14)
v Tl (8,0°)] = — e i + Al + gl
V7 Tm[£0(5,0)] = —% PR 1128 - o,
¥ Im[€0(8)) = o 480(7200f3 w6007, + 30750 + 55

~

The equivalence relation =2 again indicates that the statements hold up to terms that sum to
zero under the Poincaré sums (6.7), we will presently give more details on this issue.
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6.3 Relations to earlier even seed functions

The arguments above yield seed functions whose Poincaré sums agree with those of the seeds
found in section 3.3.1. The non-uniqueness of seed functions is well-known. Since a Poincaré
series is a sum over images under SL(2,7Z), any of the images is in principle equally well suited
since

Yo ey = > ©(1077) (6.15)

YE€B(Z)\SL(2,Z) YE€(vy ' B(Z)70)\SL(2,Z)

for any vy € SL(2,Z). However, as shown this will in general change the stabiliser in the
Poincaré sum to a conjugate Borel subgroup. Other seeds with the same Borel stabiliser can be
constructed if one allows for divergent seeds that are to be interpreted via analytic continuation.
According to (2.40), the seeds y* and y'~* both yield Poincaré series that are proportional to Es,
although only one of the Poincaré sums is convergent. Nevertheless, one could formally write
down the seed

— S 7T2S_1/2F(8_1/2)<2s—1 1—s
P(7) =" - F)6. T (6.16)

which has vanishing Poincaré sum, if we sum the two terms individually and combine them after
analytic continuation using (2.40). Here, y'~* is not a single SL(2, Z) image of y* but an infinite
sum of images.

The seed functions f +(s) deduced from the Step form of the Laplace system are of the same

nature as y' =% in the example when compared to f k ) in (3.39). In the case of Fm( k), we can also
obtain an alternative, non-convergent seed by foldlng E,, instead Ej; as we did in section 3.3.1
where now k > m. The alternative seed obtained in this way differs from the one obtained
from the step form. However, as we shall show, the difference between the two has a vanishing

Poincaré sum. By performing the same steps as in section 3.3 but folding E,, to y™ one can

derive the following form for f, " +(S
FHO _ (L pyem BotBom (4y)* 1" (—1) 4Bop, (2k—3)1(op—1 (4y)™ 1=k
mk (Zk)!(Zm)'(:uk-i-m - /Ls) (2m)!(k_2)!(k_1)!(,um—k+l - /Ls)
m—1
2B2m ( k+m—1—4
— (=)™ W Z .5 (4y)" Re[€o(2K, 0 )] (6.17)
+ (=)™ m 2BamI( Z G5, (4y)  Re[&(2k, 0FFm—1=6)] .
2m 'P km,l,s

m+1—k

We recall ps = s(s—1) and the coefficients g;7 . were defined in (3.38), but importantly, the
order of m and k in the alternative seed is swapped. The new coefficients appearing in the last
line are given by

14

T (i) oD (k+m—i)
Frimitos = Z.:g:l_k (1—s+0)r—i(s+1)— D (m+1—0)T (k-+i—m) (i—ps) - (6.18)
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Comparing (6.17) to (3.39) we see that the first two lines of (6.17) are simply obtained by the
interchange m<k but the third line is new and contains non-positive powers of y accompanying
the iterated integrals. We stress that the Poincaré sum over this seed function is not absolutely
convergent, but has to be interpreted with care as we shall explain below.

Applying the formula (6.17) together with (3.50) at m <> k we obtain the following form of
the examples in (6.8) to (6.10):

1 5 3.
yRe[€0(6,0%)] +  (Re[£n(6,0")] — ) + Y Sh.

198450 2
5
Yy 3 2H(3) . 4]0
v Rel€0(6,0°)] — oot = — (67,57 + 715, (6.19)
5
Yy 3 (3 0] 1
¥’ Re[£n(6.0)] + tes = 55(12F57 +6335" + 75
4 y° Lot | qotl] | ~+[2]
y" Re[€0(6)] — 15120 —@(3632,3 +12) 5"+ Jas ),
as well as
3 3 6 3 .
4 o 5 9 6\ Cr Y _ 2 +M®
yRe[£0(870 )] + 9 Re[gO(&O )] + 4y (Re[gO(&O )] 7!) + 35721000 28f2,4 )
3 3 s 3 = -
2 3y 2 5y 9 6\1 _ Cr\ __ 2 +(4) | (0]
6
Yy 3 (4 0] 41
y® Re[€0(8, 0%)] + e = m(fj()f;i P e, (6.20)
1 RelEy(8,0)] — —Y° — _ L3607+ 1 180510 4 30570 4 52
y° 0] 2] | 03]

y° Re[£(8)] +

- 0 N
604800 — 28672 40724 +3607, 5 +24735 + Ty

and
Y Rel0(8.07)] — — 4+ L(Releo(s.0] - §) = 2 (7 - FHO)
1% 196465500 @ 2 1% )T 14034 34

7

2 Y9 e B 0

y~ Re[&p(8,07)] + 13711000 28(3f3,4 10f347),
7

3 sy Yy 9 HB3) o0 fH5)  Ha0]

v’ Reléo(8,0%)] — o= o = 502 (127557 — 18075757 — 733, (6.21)

7
Y 3 (5 ~+[0] | ~[1
1247400 6_4(180f 374( '+ 18«73@] + 33,5:}),
oy 3
665280 1024

y7

604800 20480

y Re[&y(8,0%)] +

(1440757 + 36071 + 0751 + 7117,

y5 Re[g(] (87 0)]

(360075 + 600771 + 30572 4 5.

yS Re[£0(8)] +

These towers of equations are identical to many of the corresponding equations in (6.8), (6.9),
and (6.10), but some of them are augmented by extra terms involving non-positive powers of y.
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6.3.1 Equivalence of the seed functions in the sectors (2,3) and (3,4)

We now compare these different towers and show that they differ merely by ‘red-herrings’,
namely non-vanishing seed functions which, upon Poincaré summation, interpreted via analytic
continuation, give rise to a vanishing modular function, similar to (6.16).

Let us start by comparing (6.8) with (6.19). The difference appears on the first line of (6.19)
and is given by the red-herring

rh; = - (Re[&y(6,0%)] — &). (6.22)

DO =

We know that, in both (6.8) with (6.19), we must apply O = —1A to go from the first line to
the second. Consistency of both expressions hinges on the fact that rh; and its Poincaré sum
lie in the kernel of O just like Eq, or rather its regulated version Eg.

Let us first notice that using (2.18) we can rewrite the iterated integral as

= Re[€0(6 0] ZO‘ 5(n [anm TKo_1/2(2mnIm7) (e%i”RCT + e_%mRCTﬂ , (6.23)

! n>0

by using the asymptotic expansion of the Bessel function (2.11). Furthermore, we notice the
triviality gﬁ’ = %5, y". From the usual expansion for the Eisenstein series Ej given in (2.9) and the
above statements, we realise that the red-herring is comprised of two different terms but both
appearing as points (or rather infinite sums thereof) on the Poincaré orbit (2.39) for Eo.

It is not surprising then that, by suitable analytic continuation of equations (2.39) and (2.47),
we arrive at

> [%(36[50(6704)] ~9)| = -18m - By —o0. (6.24)
Y

2 5!
~EB(Z)\SL(2,Z)

Hence, the two seed systems (6.8) and (6.19) are completely equivalent modulo the very convo-
luted vanishing Poincaré sum over the red-herring (6.22).

The situation is identical when comparing the next towers (6.10) with (6.21) where the only
red-herring appears on the first line and is given by

thy = %(Re[SO(S,OG)] <y (6.25)

which again belongs to the kernel of O; and has a vanishing Poincaré sum thanks to (2.39) and
(2.47). Hence, the seed systems (6.10) and (6.21) are indeed identical.

6.3.2 Equivalence of the seed functions in the sector (2,4)

Finally when we compare (6.9) with (6.20) we see that two red-herrings appear
thy = 5 Refgo(s,0°)] + %(Re[é’o(&oﬁ)] Y (6.26)

rhy = —% Re[€0(8,05)] - %(Re[‘s’(](&o(i)] B %) )
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related by

Olrhg = I‘h4 s
Ogrh4 =0. (627)

From the second equation, and the previous discussion, we anticipate that rhy is related to Eo
(or equivalently E_;), and in fact this turns out to be the case. We notice that the sum of
iterated integrals can be rewritten as

—§Re[50(8 0%)] — iRe[go(s 0%)] 7, ° 2 S o q(n (6.28)

n>0

X [ \/WK2_1/2(27W Im7) (ezmn Rer 4 o—2min RCT)] ,

3 1-2
daryl-2,

As before we realise that the second red-herring is comprised of two different terms but both

while the remaining term in rhy can be rewritten trivially as

appearing as points (or rather infinite sums thereof) on the Poincaré orbit (2.39) for Es.
We can use (2.47) to perform the Poincaré sum for the Bessel function above and, after that,
analytically continue the Dirichlet sum over n to arrive at

> [—g Re[€0(8,0°)] — %(Re[é’o(&Oﬁ)] -4 = §9—(E2 —E2)=0. (629

I
~eB(Z)\SL(2,2) 87! (3

In conclusion, the red-herring rhy yields a vanishing Poincaré sum, only written in a very convo-
luted way, and we can then safely omit it from the seed functions and from the Laplace system
above. One can similarly get rid of rhy which is in the kernel of O; after discarding rhy such
that the systems (6.9) and (6.20) become completely identical.

6.3.3 General even seed functions without red-herrings

Note that the general situation can quickly appear more complicated, with multiple linearly
independent red-herrings appearing when we compare the alternative folding for the Laplace
system in step form (6.4) and the inhomogenous Laplace system (3.34). We present such an
example in appendix H. However, it is always possible to isolate these red-herring seeds with
non-positive powers of y and show that their Poincaré sums vanish identically as explained
above.

Hence, our construction of the seed functions by following the step form is completely equiva-
lent to (6.17). In fact, the minimal seeds in a step form can be given in closed form by truncating
(6.17) to the terms with positive powers of v,

(s BorBoy, (4y)F+m
FH) o (q)ktm 6.30
e =0 <2k>!<2m>'<uk+m—us> (6.:30)
9Byl (2k)

— (=™ ngmh@y) Re[€(2k, 0FFm=176)]

2m)IT'(k

and similarly dropping non-positive powers of y in the prescription (3.50) for j [,j with m < k.
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6.4 Relations to earlier odd seed functions

The discussion of the odd case is very similar to that of the even case: On top of the step forms

)

in (6.12) to (6.14), one can construct alternative seeds for F;(Z by analysing the Laplace system
as in section 5.2 and performing the alternative folding of VE,, and VE,, with m < k. The

seed one obtains in this way is

=) _ —1 mw - AT 9k Qktm—1-¢ 1
fm,k Z( ) (2m)'F(k) ;gk7m7£’8( y) m[g(]( k? 0 )] (63 )
, 2By, I(2k) <~ p 10
— (=) Tromv.s(4y)" Im[Ey(2k, 07 T™ ,
( ) (2m)'F(k‘) P k,m,L, ( ) [ 0( )]

where the coefficients g, , , . were defined in (5.17) and the new coefficients appearing in the
second line are given by

ZZ: (8)¢—il (k+m—+1—1) | (6.3

(L=s+1)¢—i(s+7)e—i L' (m—8)I' (k—14i—m) (pi—ps)

gl;m,é,s =

i=m+1-k

Again, the terms in the last line of (6.31) with non-positive powers of y are new in the alternative

folding while the first line is just given by applying m<«k to (5.16). With the general formula

(6.31) and (5.15) for j;{g at m <> k, one reproduces the results (6.12) and (6.14) of the step

form in the sectors (m, k) = (2,3) and (3,4). In comparison to (6.13), however, one additionally
finds the red-herring

rhoaq = Im[&(8,0°)] (6.33)

in both J, ‘[f] and

3 . 280
Fof? = 200 Tl (8,0%)] + 2%y Tnfgo(8,0°)] — 2801 [ (8, 0°)]
) = %gf Tm([Eo(8, 0%)] + 28iy Im[Ey (8, 0%)] — 844 Im[Ey (8, 07)] . (6.34)

The red-herring (6.33) has a vanishing Poincaré sum because the sum in (2.47) is insensitive to
the sign of the Fourier mode n. Therefore any non-positive powers of y times an imaginary part

of an &y(2k,0P) can always be arranged into a sum of Bessel functions multiplied by g2minRet _
e—27rin Rert as in
. 1 & e
iTm[Ey(8,0°)] = o > o) t(¢" - 7") (6.35)
n=1
p . .
=0 Z o7(n)n~%vnIm TK_/5(2mn Im T)(e?inRer _ o=2minReT)
‘n=1

The Poincaré sum using (2.47) formally just produces the difference of two identical expressions.
Performing the Poincaré sum of these terms for each n > 0 separately using (2.47) leads to

Y ilm[50(8,05)]‘ - —3' im(n)n_ﬁ <60‘1(”)E° - 6”‘1(”)E°> —0, (6.36)
y T

n-1 n-1
+eB(Z)\SL(2,2Z)
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where we have used analytic continuation. Doing the calculation this way gives that the Poincaré
sum vanishes Fourier mode by Fourier mode. This is a formal argument since the alternative
Poincaré seed is divergent to start with and only defined by analytic continuation.

7 Further directions

In this section we want to comment on some interesting future directions opened up by our
analysis.

7.1 Exponentially suppressed terms

Let us remind the reader that all the modular objects studied in this work can be written in an
expansion around the cusp of the form

O(r) = Y dap(Im7)q"q’, (7.1)
a,b>0

where dg,(Im7) are Laurent polynomials in Im7. This can also be arranged into a Fourier
expansion with respect to the periodic variable Re 7 according to

o(1) = Z ag(Im 7)™ Ret (7.2)
LeZ
where the /!"-Fourier coefficient a;(Im 7) takes the form
ap(Im7) = e 274 N (4g)"dy iy (ImT) (7.3)
n=min{0,—¢}

—4mnImT and we refer to such terms as non-perturbative (at the cusp Im7 — oo)

where (¢q)" =€
by slight abuse of terminology. For most of the present work we have focused on the Laurent
polynomial in the zeroth Fourier mode, i.e. the £ = 0,n = 0 sector.

We now want to turn our attention to two different type of exponentially suppressed correc-
tions: firstly analysing the (¢g)"™ terms in the zeroth Fourier mode, i.e. the £ = 0,n # 0 sector,
and secondly the perturbative coefficients in the non-zero mode, i.e. the £ # 0,n = 0 sectors

in (7.3).

7.1.1 Non-perturbative terms in the Fourier zero mode

Let us start with the (¢q)" terms in the zero-mode sector ag(Im7) = >7° ((¢q)"dprn(Im 7).
Firstly, from the integral representation (2.23), we can easily see that the only term possibly
containing powers of both ¢ and ¢ is given by
N\ —2
st [ii ﬁ] (2772)

o0 = (4y)krthz—j1—j2—4 (7.4)

—100

« / dry(7— )P~ 22 (F— 73} Gy, (72) / A7 (771 )~ 2 (77, ) G ().
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With the notation ¢°G>° we mean all terms in the expansion that have positive ¢ and § powers,
although not necessarily the same.

After some algebra we can rewrite these integrals and make use of (2.16) to isolate all the
terms containing both ¢ and ¢, arriving at

o Jo ki—j1—-2 o ki—j1—2
ﬁsv[ﬁ iﬂ q>oq>ozz > (/<;2—j2—2+A)!(j1+B)!<A>< J ) (7.5)

A=0 B=0
X (4y)2+2j2 ha= A= Bg (k270k2_j2_2+A) 80(k170j1+B) .

Using our definition (2.34) we can write

svt, j sV 2m 2 —j k—m+j sV k+m 2—j g
5m,k 00 =8 [ 2k ] ¢>0g>0 +8 [ 2m] ¢>0g>0
Jtk—m j
4y 2+2j 2m—A— B(kz—i—m—i—A —j— 2) (2m+B j— 2) (76)
A=0 B=0
k— ; : -
X (j +A m> (}73 > (50(2k:,0k+m+A_]_2)50(2m, 02m+B—j=2) £ c.c.> .

Following the discussion in sections 4.2 and 5.5, it is clear that lower-depth terms cannot possibly

i(S) +(s) %)

contain both g and gin I, ';”. Hence, we have that I /’|,>05>0 can only come from its depth-two

part, given by a suitable ratlonal linear combination of BSVi J 13
In particular, from (7.6) we notice that for all Fourier modes, the (¢gq)™ terms contain only

rational coefficients times powers of y. For example we have

+(2) _9 N T T2
F2,2 ¢>05>0 - 2y250(470 )50(470 )7
45 — —
Pyt oo = 538 <y £0(6,0%) & (4, 02) + £0(6,01) & (4, 02) + c.c.) , (7.7)
4
F, I (By £0(6,0%) Ey(4,0) + 4y £(6,0) Ey(4, 02) + 12y £y(6,0%) Ey(4, 0)
2,3 >G>0 2 922

+380(6,0%) Eo (4, 02) + 60(6,0%) &y (4, 0) — c.c.> .

Furthermore, from the g-series representation (2.18), it is very simple to isolate the purely (¢gq)"
terms in the zeroth Fourier mode, given by

ﬁsv J1 J2
k1 ko

_004j (k—j—2) —\N
} ‘(qé)” = ;W%l 1(n)or,—1(n)(qq) (7.8)

x (4y) " TRPRU (G141, ks dny)U (ke —jo—1, ko; dny)

with U(j, k; z) Kummer’s confluent hypergeometric function, which reduces to a polynomial of
degree k—1in 1/z for j, k € N such that 0 < j < k—2. The notation ’(qq)>0 on the left-hand side

13The possible homogeneous contributions H+ and H~ in the Cauchy-Riemann equation never contribute to
q"'q"? with ni,n2 > 0 either as will become clearer in Part II, i.e. the results of this subsection apply equally to
Fi(s and Fi(z)

A2
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of (7.8) and below refers to terms that contain (¢g)" with n > 0 but no other separate powers
of ¢ or ¢ such that this is the non-perturbative part of the Fourier zero mode.
From the previous expression (7.6), we can then obtain the (¢g)" terms appearing in the

zeroth Fourier mode of ﬂsv+ J

sv—, ] sv [ 2m— 2 —j k—m+j SV k—l—m 2—j =0 7.9
Bﬂ%k‘ ‘(qq B [ 2k ] ‘(qq) B [ 2m] ‘(qq)>0 ’ ( a)
sv+,j sV 2m 2 —j k—m-+j sv[k+m—2—j5 j
8(2m—j—2)/(k+m—j—2)! n
= Gm—1)I(2h-1)] g 02m—1(n)oox—1(n)(qq) (7.9b)

X (4y)k+mU(2m—j—1, 2m; Any)U (k+m—j—1, 2k; dny) .
Thanks to these equations we then deduce that the (¢q)"™ Fourier zero mode sector of any Fi(z)
can be written as a finite polynomial in 1/y with rational coefficients involving the product of
two divisors sums. This also follows from inspection of (7.5).
In particular we have

F, ~0, (7.10)
* 1(gg)>0

(s)

so that the full Fourier zero mode, perturbative and non-perturbative, of ', ;” vanishes identi-

(s)

cally, which is of course expected from the fact that F,_ '’ should be odd under the involution
7 — —7. For the even modular invariant functions, by contrast, we have for example

+(2> L C&os(n)?
"2 ‘(qti)>° B C2’1’1‘( = nZ::l 22 (¢9)" (7.11)
7 a0 1 (g0 i 4y’ YA

reproducing precisely the results of [15,19], as well as [20] where resurgent analysis was used to
reconstruct the (¢g)™ sector from a suitable analytic continuation of the asymptotic perturbative
Laurent expansion. It would be very interesting to extend the discussion of [20] to the general
seeds (3.39) presented in this work.

7.1.2 Non-perturbative terms in the Fourier non-zero mode

In a similar fashion we can also derive the non-zero mode perturbative coefficients, i.e. the
¢ # 0,n = 0 sectors following the Fourier decomposition (7.3). To proceed we can take the
integral representation for the depth-two part (2.23) and isolate all the terms containing only ¢
(or alternatively only §), similarly to (7.5) just discussed. For the a[---] we can use the explicit
representation in terms of &, with g-series given by (2.18), as discussed in section 4.6.
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Finally, for the depth-one part, we can use (2.28) to write directly

J .
sv[J - i J 2+2j—k—A k—j—2+A
2| = D200 () 0005 0720
' k—j—2 _j2
4] P00 BEZ:O (J+B)!< B >(4y)_350(/<:,0j+3). (7.12)

Here, the notation means that only terms with positive powers of ¢ but no powers of ¢ are
considered in the general expansion. A term with ¢‘q® is in the ¢-th Fourier mode and its
coefficient is perturbative with respect to y, i.e. it does not include the non-perturbative terms
with (¢q)" = e~* for n > 0.

Putting all these pieces together we can present examples such as

11 G y 7T 397 4+9G
Fr® _ <_ﬁ____ 53 2<__ s O3
2| >0q0 1530 60y ) + 10 T 160 610y T 16,2 ) +0(d),
DA :q<_ >y 37 _i_1+14C3 C3+C5)
23 >0 1890 180 2520 56y 1122 8y3
2 11 4033 1307 4891 + 1848 32 4 33(3 + 36
+q<_ v Uy n n 2(3 C33 C5> 0,
1680 960 26880 = 3584y 14336y 256y
e _ <2y _%_i_11—6043_11+192<3_3g3—6<5) (713)
3 00— “\045 945 30 252 504y 8y2 '
N 2<y_3 C3y® 1y | 5(37T+96¢) | 1977 —6912¢3  3(16 —33¢ + 72g5)) o)
T\210 ~ 70 ~ 160 896 3584y 1282 7
where obviously we have Fm yt \q 050 = +F:,;(z)]q>oqo while F;(Z)\qo(?o = _F;z(z)’q”q‘)-
7.1.3 Preview to Part II: L-values in the Fourier expansion
Unlike for the (¢q)™ sector, we notice now that due to the presence of the «f - -] integration

constants, the perturbative coefficients in the non-zero Fourier mode sectors are not purely
rational any longer and contain also single-valued zetas. Furthermore, as already anticipated in
section 3 6 and presented in full detail in Part II, whenever we consider a Poincaré sum such
that F ;é Fi(s the difference Fi(s) an(z) will involve some special iterated integral of
holomorphlc (and antiholomorphic) cusp forms. This is already evident from the perturbatlve
coefficients in the non-zero Fourier mode sectors of these modular objects F ;é Fi( which
will now involve special completed L-values. As an appetiser for Part 11 we have for example

0

)

q>0q0

s

y? Y y 11 A 11 AN\ 1
S e
85050 56700 113400 10800 ' 20730 1440 ' 2764
( 49/\) _2+< 7 . 49)\> _3+< 7 n 441\ . 5C7> 4
2880 * 5503 )Y 1280 ' 22112 ' 192/Y

1440 2764
441)\ 29(7 25C7 —6
( 2560 44224 384) + 384 ] +O(q ) (7.14)
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where for compactness we use the shorthand A = A(A12,13)/A(A12,11) for a ratio of completed
L-values'* for A1o(7), the Ramanujan cusp form of modular weight 12.

As a final comment for this section we want to stress that, given the general seeds (3.39) and
(5.16), it is in principle possible to reconstruct the whole Fourier mode decomposition (7.1) for

(s)

the corresponding Fiz and not just its Laurent polynomial. The mapping from seed to generic

Fourier mode is giveli in (A.2). However, the careful reader will notice the presence of some
challenging Kloosterman sums (A.3) in this integral transform thus considerably complicating
the story. At the present time no general result is known for the non-zero Fourier modes,
unlike our general formula for Laurent polynomial (A.8b). Our previous discussion implies
that a careful analysis of these Kloosterman sums should produce zeta values as well as more
complicated ratios of completed L-values amongst the perturbative coefficients in the non-zero

Fourier mode sectors. Needless to say it would be extremely interesting to explore this direction.

7.2 Even cusp forms at depth two
()

Given the results for the Laurent polynomials of F:;Z in section 4.3, we can construct infinite
families of real cusp forms, i.e. modular invariants that are even under 7 — —7. These com-
plement the imaginary or odd cusp forms F;L(’Z), J r_n[g (along with their antecedents in [19,27])
and the first even cusp forms identified in [43]. The construction is based on a simple counting
argument for the dimension of the vector space given by the Laurent polynomials appearing for

the even modular invariants discussed so far at a given weight.

)

monomials, and four for m = k. The products J:L[’g of depth-one objects defined in (3.14) for

From our analysis (4.13) we know that each F:;(Z with m < k contains five different Laurent

¢ > 0 contribute the same types of Laurent monomials (with m < k)

m—tt1  G2m—1C2k—1

k—m+41
T Cok-1y ) Wa

J;Eﬁ mod O(q,q) +— Y Como1y

2

_ Cop
J—]:’Ef] mod O(q7Q) — y2k7 CQk—lyu %7 (715)

(s)

though their relative coefficients will differ from those of F;z , and the terms Cpqpqs—1y'~° of

the latter are absent. The exact general formula for m < k similar to (4.11) is here

v (O BonBok (B)e(m)e gy (D)2 By (2m=3)!(1—m)e(k)i€om—1_1-mik
mhe (2m)!(2k)! Y (m—1)I(m—2)!(2k)! y
-1 m42—k+mB . 2%k —3N(1—k),(m C - .
_ ( ) (k_21)'((k_2))'((2m)')€( )f 2k lyl k4 (716)

44_m_k(2m—3)!(2k—3)!(1—m)g(1—k‘)g<2m_1<2k_1 9 ke
(m—1){(m—2)!(k—1)l(k—2)! 4

J

+

+0(q,9) ,

' The completed L-function of a holomorphic cusp form A(7) = 37 __ a(n)¢"™ of modular weight 2s is defined by

n>0

A(At) = (2m)'T(t) > a(n)n™",

n>0

where the sum converges absolutely for Re(t) > s+3 [104,105] and can be extended to a meromorphic function.
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where the middle two terms coalesce for m = k.

From the admissible values of s in (3.28), the collection of all Laurent polynomials (4.13) of
F:L(k), appearing at a fixed weight w = k+m, involves degrees (2—w,3—w,5—w, ..., w—3,w).
Most of the coefficients were found to be rational multiples of odd zeta values

Vp+gy+ (w)=spang {F;(Z : J+ ¥ ‘w k + m} — Gy Gy Cwsy Y, Cowsy® Y

(7.17)
except for the purely rational coefficient of 4 and products Camm—1Coi—1 multiplying y?>~% in any
F:L(Z) or J:;Eﬁ with k+m = w. More precisely, there are L%J — 1 distinct products (om—1Cok_1
compatible with 2 < m < k and fixed weight k+m = w. Together with y* and the w—2 Laurent

monomials in (7.17), we arrive at a total of

ng+®J+(w) =w+ L%J -2 (7.18)

(s)

Q-independent monomials in the Laurent polynomials of all even modular invariants F:,; . and

J:L[g of weight k+m = w, see table 6 for examples. This counting is based on the standard
transcendentality conjectures for MZVs [106], i.e. we have assumed that all odd zeta values and

their bilinears are linearly independent over Q.

weight w zeta values of depth <1 bilinears in (or_1 ng eyt (W)
4 1, 3, G5 (3 4
5 1, C3, G5y C7 (3G 5
6 1, 3, G5, (75 Go (3C7, 2 7
7 1, (3, G5y (75 Co, (11 (3C9, C5(7 8
8 1, (3, G55 G5 Go, C11, C13 (3¢11, (5o, CF 10
9 1, ¢35 G55 Cry Gos G115 €135 C15 (313, C5C11, C7Co 11
10 1, G3, G, 7y Coy Gty Ci3y Giss Gir | G3Gass G5Gis, GrCan, G2 13

Table 6: Zeta values occurring in the Laurent polynomials of even modular invariants of depth
two.

F+(3)

However, similar to the discussion in section 3.6, the total number of F'| '/ I +[ }

and J ‘. appearing

at a fixed weight k+m = w follows the very simple counting

dim Vp+ (w Z dim Vp+ (w, s) = ;( L%Jz — L%J ) )

dim Vy+ (w Z m= —( L—JQ + L%J -2). (7.19)

We have used equation (3.71) for dim Vp+ (w, s), while we simply counted the number of depth-
two J:L[ﬂ with 0 < ¢ < min(m,k) at fixed weight. By comparing with the counting of Q-

79



independent Laurent monomials in (7.18), we conclude that

2
dim Ve g+ (w) == dim Vs (w) + dim Vys (w) = L%J 1 (7.20)
zngﬂeﬁ(w):w—i—L%J—Z w=6 or w>3§,

so for weight w = 6 and w > 8, we have more depth-two modular invariant objects than possible
Laurent polynomials. This means that for sufficiently large weights, the space of even modular
invariants spanned by the linearly independent functions F;(Z) and J :;[2 must contain some even
cusp forms, see table 7.

For odd w, there is the additional possibility of adding the constant (,, to the space of (single-
valued) modular invariants which corresponds to the vanishing eigenvalue of the Laplacian.
Instances of the appearance of (,, can be seen in (3.74) and (3.77). To take this into account,

we introduce the following notation for the combined bookkeeping

. . w . 1 wodd,
dim Vp+ gytac(w) = dim Vet gy (w) +w — 2 LEJ = dim Vp+ g+ (w) + 0w even (7.21)
In fact, the difference
. w |2 w
dim VF+€BJ+€BC(Q‘U) - ng+®J+ (w) = \;EJ -3 \;EJ + 1 (722)

is a lower bound on the number of cusp forms at fixed w = k+m. Larger numbers are conceivable
since it is not a priori clear if the Laurent polynomials of the relevant F:;(Z) and J :1[52 are linearly
independent over Q. We have tested up to and including weight w — 28 that 7the bound is
saturated, i.e. that (7.22) is the actual number of even cusp forms. At odd weight w > 7,
an additional cusp can be formed by adding a rational multiple of (,, to the general Q-linear

combination of F;(Z) and J:;[ﬁ.

weight w || dim Vp+(w) | dim Vy+ (w) | dim Vet g+ (w) ng+®ﬁ (w) | #(cusp forms)
4 1 2 3 4 0
5) 1 2 4 ) 0
6 3 ) 8 7 1
7 3 ) 9 8 1
8 6 9 15 10 )
9 6 9 16 11 )
10 10 14 24 13 11

Table 7: Eztracting the minimum number of even cusp forms at weight w by comparing the
2. At each

odd weight w > 7, an additional even cusp form can be formed by adding multiples of (y, to the

counting of Laurent monomials in table 6 with the total number of F:L(Z) and J:L[

)

combinations of modular invariants at depth 2.
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e For example at weight w = 6 we have dim Vp+(6) 4+ dim V;+(6) = 8 while the dimension
over the rationals of the possible Laurent polynomials is ng g+ (6) = 7. Since the latter
are linearly independent over Q, we obtain a single cusp form which is fairly simple to
construct by cancelling the Laurent polynomials of F:;(Z) and J Hé} in the combination

© _ +(4) 162 12) | 72044y 269 _ypg 3739 +U +[2] +m
Sy = —54Fz 25 55 33 7 F33 50 33 2100‘]3’3 840J33 + J :
(7.23)

This is one of the even cusp forms of weight 6 presented in equation (9.8b) of [43]'?, where
additional cusp forms at that weight have been constructed from admixtures of modular
graph forms of depth three.

The counting in table 7 leads to the following further examples based on the fact that Q-

®) and 1714

linear combinations of F:,; . and span the whole set of admissible Laurent polynomials.

This is checked on a case-by-case ba81s at weight w < 28:

o At weight w = 7 we have dim Vp+(7) + dimVy+(7) = 8 = F+®J+ (7) so we would not
expect any even cusp at depth two if it was not for the possibility of combining (; with

F:;(Z) and J +[ } Hence, a single even cusp form can be found
S(” = 23(; — 37635840F ) + 230519520F5 " — 102453120F; " (7.24)
— 1086912015 1 — 177318055 + 2034J+[2} +256132815 1.
e At weight w = 8, the space of even cusp forms at depth two is five-dimensional by

dim Vp+(8) 4+ dim Vy+(8) = 15 and nF+€BJ+ (8) = 10, and one can pick the following basis:

+(2 +(4 +(6 +(6 +(6
Fi ¢ 0501862F; L) 142086685F;«  2436903800F, )  5F "

s® = Fr B B . B
7 63035 529494 3744279 14
1744050604007 7 28417337550 2788040015205 1) 48204272375 7
655248325 6353928 9828732375 117944788500 °
G _ 2050 2046167552F; . N 5115418880F3 53110160007 (" 904
2 74 567315 794241 340389 7 4
3798TI31796J3 L) o 25577004413 6083217703375 1) 52585992177
50568075 A4 9332723 893521125 5361126750
® _ 120 o) ATTS052136F5 1" 11945130340F] ) 12420404800F; ¢ 725)
5 7 189105 264747 113463 '

720 () 8879420742871

59725651715 ¢ 142388765144J+ o
74 19856025 t o241 297840375
oy 613427464777

44 1 303501125

5The identification of (7.23) with (9.8b) of [43] relies on the change of basis (cf. (3.30) and (3.32))

18 27 12
Ep 4 = —54F5 (", Es3 = —E(F;,(SZ) —-Fi5), Ej 3 = —gF?t(sz) + 5 —Fi.
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) _ 1920 o) 17886117302 (" 223576467400F3 (" 232237840000F; {*

Sit == Fa 37821 * 264747 113463
3600 o) 332347746616J; 1) 11178823370J; ) 532024449268J; 5
7 A4 3971205 794241 59568075
2503432058135 L1
178704225 44

&) = 2880511 — 1805} 1 — 363 4 371,

8 g®

Note that only four linear combinations spanned by S;™,..., S are expressible in terms of
MGFs since FI&6),F§:§‘6) and F; é6) carry admixtures of holomorphic cusp forms detailed in

Part IT that cancel from the combinations (4.23).

sv+j +(s) J+H

m,k > m,k>
the even cusp forms in the counting of thls Section vanishes. Moreover, they do not satisfy any

By the linear independence of the 3 of depth two entering via F none of
obvious Laplace-type equations. This is due to the fact that we are using J :;[i] with ¢ < min(m, k)
which do not close under (A — \) for any eigenvalue A, see section 3.2.1. Despite all of these cusp
forms having vanishing perturbative expansion, i.e. vanishing Laurent polynomials, we believe
it still should be possibly to use a similar resurgent analysis as described in [20, 56], to suitably
deform the perturbative expansion and use it to retrieve all of the non-perturbative, i.e. (¢q)"
terms. In particular we note that, unlike what happens in (7.10) for odd cusp forms F;EZ), these
new even cusp forms will generically have non-vanishing (¢¢)" terms in the zeroth Fourier mode.

Note that C, . and E,, do not add any even cusp forms to the Q-span of ¢, F+(Z) and J HZ]

First, Cyp . can be rewritten in terms of ¢y, F+(k) and E,, with w = m+k = a+b+c accordmg
o0 (3.73). Second, the Laurent monomial (a,_1y'~% of E,, in (2.9) cannot be compensated by

any of (,, F m, k), Jo, +[f] , so the coefficients of E,, in the cusp forms of interest must be zero. Third,

products ( Ey—q w1th odd a > 3 also introduce additional bilinears (,(2,,—24—1 into the Laurent

polynomials which do not arise from F:;(Z) and J :;[i] such that their Q-coefficients have to vanish

separately in cusp forms.'%

As a final comment, we notice that additional even cusp forms can be formed from Q[MZV]-

linear rather than Q-linear combinations of (,,, F+(S) and J HZ]. For instance, an additional even

cusp form built from F:,;EZ), g ] at m+k = 6 beyond (7.23) and those in [43] is given by

pr@ _ 3069 pop | 673 copyy 1373 iy 45 4jo) 45 4
<5(2 55 77400753 T 28007%% T 5600733 4724 1502 )
7C3C7 (72J;f P sl - afl). (7.26)

Although the 7-dependence is carried by modular graph forms of depth two and weight six,
the cusp form (7.26) should be understood as having depth four and weight sixteen by the

coefficients in Q[¢2] and Q[(3¢7]-

16This can be seen as follows: The combined weight of (aCow—2a—1 due to (aEw—q is 2w—a—1 < 2w—4 (since
a > 3) which is strictly lower than the weight 2w—2 of the (2r—1(2m—1 from F;(;) and Jjn[ye,l.
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7.3 Overly integrated seed functions

From the comprehensive collection of seed functions and their associated Poincaré series in tables
1 to 5, one might wonder about the cross signposts x in the remaining cells: What type of seed
functions and corresponding modular objects correspond to the black crosses filling the right
side, and the red crosses (and beyond) on the top left corner?

Let us first discuss the infinite class of modular objects associated with seed functions that
exceed the maximum number of zeros Re[€(2m,02™~2)] encountered in earlier sections,

Y Re[&(2m,0%)], a>1,  b>2m—2, (7.27)

i.e. the black crosses left as signposts for the infinitely extended right side of the tables. We
shall address the red crosses and beyond in the next section. The class of seeds (7.27) will be
informally referred to as “overly integrated” iterated Kisenstein integrals: The term “overly”
is understood in comparison with the iterated Eisenstein integrals over kernels 7/Gyg(7) with
0 < j < k-2 [33,35,36], where the restriction on j ensures nice modular properties in terms
of iterated integrals of the form Re[€(2m,0%)]. There is nothing wrong per se in considering
overly integrated iterated integrals, however, their modular S-transformation involves an infinite
series of & (2m,0°) with no upper bound on ¢ [56].

The modular invariant functions associated with the overly integrated seeds (7.27) can be
understood from our discussion in section 3.5 of the Laplace system in steps form. We can
go from the rightmost columns in tables 1 to 5 to the neighbouring columns on their left by
considering

Ou (y Re[&(2m, o2m—2)]) — 2+ Re[€)(2m, 02™3)] | (7.28)

see (3.63) for the shifted Laplacians O, and as depicted in table 8 for the m = 2 case.

b
a 0 1 2 3
1 X X0 ;VQJ g)l X (931/
2 < 0, sz’jg@ ﬁsv] oy
N e e R
4 373;3%4 574’3?1.. S,Vsj ]~
5 | 8= o= B |
O e i
Y e e A B

Table 8: Filling in the chessboard with the action of the operators Oy defined in (3.63).
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7.3.1 Example in the (2,3) sector

For example using table 1, together with the results of section 3.5, we can construct the tower
of equations relevant for 3%

5 - 5
2 402 -8 L Y] s Lon— 2
On[y? (Reléo(4,0%)) = 22 ) + 2= | = v Rel€(4,0)] - 55
3 Y] _ i Refo(4)] + 2 7.29
O3 [y Re[&0(4,0)] — 120 =Y e[€o(4)] * 360 (7.29)
4 Yo T y°
M+ L=
Oy [y Re[&(4)] + 260 Gt Re Gy,
or equivalently after Poincaré summation:
315
0y (3157357 = =22 (B35 + 931
_ 31 @) | H01\] _ 105 (o i0] g
105 /o o] | +0\] _ 315 S2n. L& 2
04[ 16 (3(]273 +J273 >] = 956 <G4(7TV) E3+G4(7TV) Eg) .

These towers can be seen as being generated by moving along a diagonal of table 8, starting
from the top right corner.

With a similar reasoning we can then start populating the crosses on the infinite right side
of all these tables. For example to determine the top right cross in table 8 we want to find a
seed f subject to the Laplace equation

OLf = y2<Re[50(4 02)] — C—3) L (7.31)
’ 6 945’
which is for instance solved by
(3 o y5
=yRe[6(4,0°)] + 2y? — —— 7.32
f = yReléod,0%) + Ly? - L, (732

and, as expected, we start generating overly integrated iterated integrals.'”
Alternatively, the modular function F' defined by the Poincaré summation over this seed f
must obey

1
O\F = —AF = 315F5 5. (7.33)

Interestingly enough, we can still use equations (2.43) and (2.44) applied to the seed (7.32) to
obtain the perturbative expansion for this new modular function

v’ G oo, 735G 105G

= a3V T g 8y°
7Cs Y G o G G ~
- [log <P) + & + 4G +0(q,q) . (7.34)

1"The modular invariant solutions to the homogeneous version O; f = 0 of (7.31) include constants, so that we
could in principle add zeta values to the solutions (7.32). We do not include them here as we have no other means
to determine them and our focus is on displaying the overly integrated integrals.
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To obtain these results we have taken the limits in the order discussed in appendix A. Note that

we can rewrite (7.33) making use of the known Laplace equation for F;gg) arriving at

1
AR = BBy with FjY) = P+ Fp (7.35)

thus effectively extending from below the spectrum (1.1) all the way to s = 1.

7.3.2 Example in the (2,4) sector

As an extension of the previous example, we can continue filling in the rightmost column of
table 1 diagonal by diagonal. For example for the next two crosses on the diagonal of 55" just
below the one considered, we must have two new seeds fi, fo satisfying

Oif1 = fa,
6

- S

Osfs =y <Re[50(470 )] 6 > t 810"’ )
with solutions
- ay) _ 263, 3 24"

fi=yRel€o(4,00] - ==’ + T
f2 _ y2 Re[50(4 03)] + 9 3 y_ﬁ . (737)

Alternatively, this diagonal can be understood from the modular functions F; and F5 constructed
from such seeds fi; and fo via Poincaré summation:

1

O1F1 = _ZAFl = Fy, (738)
1

OsFy = (A — 2)Fy = 4725 Fy .

These equations can be rewritten as an inhomogeneous Laplace system by making use of the
known Laplace equation satisfied by F; 514):

(A —2)F; Y = EsE4 with Fj () = TR Py, (7.39)
AF2,4(1 ) = BBy with F2,4(1 )= %ﬂ + %Fb + Fg,é(l ). (7.39b)

Just like in the previous example we see that these overly integrated seeds produce modular in-
variant objects which allow us to extend from below the spectrum (1.1) with the new eigenvalues
s € {(k—m) mod 2,...,k—m—2,k—m}, in this case s € {0,2}. Note, however, that although

these new modular objects are solving very similar inhomogenous Laplace equations, they are
+(s)

very different in nature from all the F "/

studied so far as once can easily anticipate from their
expansions near the cusp.
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Once again we can use equations (2.43) and (2.44) applied to the seed (7.37) to obtain the
perturbative expansion for these new modular functions, and for the functions F; and F5 just
presented we obtain

2%  2¢3 3 10¢3¢s  875¢y | 525(3(v

A R - S UV B T (7.40)
L3 /
y<7[1+1 < >+2%—%}+O(q,<j),
6
y (3 3, 875Cy  2625(3(7
[ G _ 7.40b
2= Toggs T3V T 167 (7.40b)
B (V)G
Ty {2 log (71'2> G gJ +0(9,9).-

Note that the expansions near the cusp y > 1 for these new modular objects (7.34) and (7.40)
are not Laurent polynomials any longer due to the appearance of new logarithmic contributions.
Furthermore, the coefficients feature new interesting combinations related to the derivatives of
the Riemann zeta, e.g. (j/Cs and (;/(7 above. Such combinations (; /(; have appeared from
the integration over modular parameters in genus-one amplitudes of closed strings [5,1,23] and
open strings [107]. Moreover, the transcendentality properties of these terms and accompanying
harmonic sums have been discussed in [23].

Both these novelties appeared in [56] precisely in the context of the perturbative expansion
for overly integrated iterated Eisenstein integrals. It would be tempting to interpret these
modular objects in terms of an extension of the ﬁflkj in (2.34) to 7 < —1. However, we should

stress that the g%V [ill ﬁ] in (2.23) have not been defined for such extensions and in fact never
appear in the configuration-space integrals of closed-string genus-one amplitudes. Nonetheless,
it would be extremely interesting to understand better their properties and whether they play
any role in string theory.

7.4 “The red crosses and beyond”

As a final comment on our discussion of seed functions, we want to give further details regarding
the seeds and associated modular functions related to the top left diagonal with red crosses in
tables 1-5 and what lies beyond that. From our general discussion it follows that the seeds
associated with the red crosses are all of the form

y* Rel[&(2m, 0™ )], a>1. (7.41)

However, if we try to apply our formula (2.43) to obtain the Laurent polynomials from these
seeds we immediately face the obstacle that these diverge when a tends to an integer. The reason
for this divergence lies in the fact that we are now starting to explore, as already discussed in
section 6.2, the realm of non-convergent Poincaré sums which have to be interpreted as analytic
continuations.

To better understand what is going on we can focus on the whole red-cross diagonal whose
starting-point seed would be naively given by y° Re[€y(2m,0™)]. This putative seed is not present
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in the tables 1-5 but would appear just one check-box higher along the red-cross diagonal. From
this seed, it would be tempting to apply Op to generate y' Re[£y(2m, 0™ 1)] if it was not for O
being ill-defined. However, the above discussion suggests an approach to fix this by analytically
continuing the power a of y away from integers, i.e. by studying

O, (y Re[&(2m, om)]) - —i[A — e(e—1)] ¥ Re[€(2m, 0™)] = y'*+< Re[€(2m, 0 1)]. (7.42)

As explained in appendix A, we regulate such seeds by analytically continuing the overall power
of y only. The key point is that the Poincaré sum and the ¢ — 0 limit do not commute, in
particular

imA 3 [yﬁRe[go(zm,om)]L# > Alim [yERe[50(2m,Om)]]y. (7.43)
~EB(Z)\SL(2,Z) ~EB(Z)\SL(2,Z)

It is easy to see that
A li_)l% y* Re[&p(2m,0™)] =0, (7.44)
while with the use of (2.43) we were able to deduce that
6(m—2)!

om, 0m)]| =~ g 2. 4
3 [Re[&]( m, 0 )]]V e m > (7.45)
~eB(Z)\SL(2,Z)

We believe it should be possible to prove this identity by a similar analytic continuation that

led to the proof [98] of (2.47), and we have checked that the Laurent polynomials match for

3 < m < 20. However, this does not exclude that the two expressions differ by some cusp form.
The case m = 2 is particular. The reason is that with the use of (2.47) we can prove that

S [Re[€0(2m,02m_2)]] _ Sl s (7.46)
+EB(Z)\SL(2.2)

For m = 2 we notice that 2m—2 = m such that equations (7.45) and (7.46) become degener-
ate, and the correct answer is the sum of the two expressions (which notably violates uniform

transcendentality):

> [Rel&o@,0?)] ~1p &

LT3 a1 (7.47)
~EB(Z)\SL(2,Z)
We do not have a proof for the above statement, but we have checked that indeed the Laurent
polynomial we produce is the correct one.
With these results at hand we can go back to our analytically continued diagonal action (7.42)

and we can understand why the red-crosses diagonal gives rise to divergent Laurent polynomials

S [y Releo(em,0m)] Ay [y Reléo(2m, 0™)]] +0()
e BZ)BL2.2) K ¢ eB@)SLRZ) !
_ 3 =) o (7.48)
2¢ 2m—1)I" " ’ '
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which again we have checked at the level of Laurent polynomials using (2.43) regularised via
analytic continuation for the power of y in the seed.

It would be tempting to interpret the red crosses as originating from Bf;:k] with £ <1 which
one may relate to the depth-two versions of the iterated integrals (2.16) containing Go, and,
as we move further up from the red crosses diagonal, Gg, G_o and so on, all intended as their
associated ¢-series, similarly to the discussion in [56]. There is no evidence for these strange
objects to appear in any direct perturbative string-theory computation.

8 Conclusions

In this work, we have systematically extended the representation of non-holomorphic Eisenstein
series E as Poincaré sums over (Im7)* to even and odd modular invariants of depth two. The
notion of depth refers to the iterated-Eisenstein-integral representations, i.e. we exhaust the
modular invariant functions built from double-integrals over holomorphic Eisenstein series. Our
depth-two targets are spanned by modular invariant bilinears in E; and their Cauchy—Riemann

(s)

derivatives together with solutions Fiz to inhomogeneous Laplace eigenvalue equations of the

same type that are known from two-loop modular graph functions [1]. We stress that the
modular invariants constructed in this work extend beyond the realm of modular graph forms.

As will be further explored in Part II, this is reflected in the depth-one integrals of holomorphic
£(s)
m,k *
m, k, generalisations to half-odd integer values of the Laplace equations under discussion play

cusp forms contributing to some of the F While the results in this work apply to integer

an important role for string dualities [59,62, 66].

)

These depth-two modular invariants F i(z are obtained from Poincaré sums over iterated
Eisenstein integrals at depth one over a single kernel 77G;, with 0 < j < k-2 [33]. In fact,
these seed functions are organised according to the real or imaginary parts of the convergent
iterated Eisenstein integrals, where the cuspidal combination G(7) = Gy (7) — 2(}, is integrated
between 1 and k—1 times. In this way, we expose Fourier decompositions of the seeds with all
non-zero modes in the form of (¢" £¢") with ¢ = €?™7 bypassing the powers of ¢ in earlier seed
functions for two-loop modular graph forms [19]. Our results support the general expectation
that Poincaré-series representations of modular invariants at depth ¢ admit seed functions built
from iterated Eisenstein integrals at depth /—1 and below, which is here worked out for ¢ = 2.

Our work contributes to a structural understanding of the interplay between non-holomorphic
modular forms and iterated integrals. At the same time, the new Poincaré-series representa-
tions of modular invariants are useful for practical calculations, to integrate over the modular
parameter 7 in the low-energy expansion of closed-string genus-one amplitudes in flat spacetime.
Poincaré series play a prominent role in the Rankin—Selberg—Zagier method for such 7-integrals
ofjE I(n)odular-invariant functions [108,109,4,110,111]. We emphasise that infinite families of the
F S

m,k
7 in [22]. The basis Fi(z) of functions gives an alternative method for determining their 7-

)

go beyond the two-loop modular graph functions all of which have been integrated over

integrals by exploiting their simple Laplace equations (1.1) and (1.2). We also anticipate that
our approach based on Poincaré seeds will be useful for higher-depth generalisations.
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This work suggests various directions of follow-up research. A first problem is to connect the
combinations [3*V of iterated Eisenstein integrals [27] used in this work to Brown’s construction
of non-holomorphic modular forms [33,35,36]. In this way, the organisation of modular graph
forms in Brown’s work via tensor products of SL(2) representations may have an echo at the
level of the seed functions in Poincaré-series representations at arbitrary depth.

Another important follow-up question concerns the generalisation of modular graph forms to
single-valued functions of torus punctures zi, zo, ..., so-called elliptic modular graph functions
[48,50,30,31,112]. It would be interesting to investigate Poincaré-series representations of elliptic
modular graph functions, where the seed functions will depend on the co-moving coordinates
(uj,vj) € R? of zj = ujT+v;. In particular, one may speculate about similar correlations between
the depth of iterated-integral representations of both the elliptic modular graph functions and
their Poincaré seed.
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A From Poincaré seeds to Laurent polynomials

In this appendix, we review how to obtain the Fourier expansion of a modular function from
that of its seed, with particular emphasis on the zero-mode sector. Given the Fourier expansions

O(7) =) ag(rp)e™ ™ = Y e, (A.1a)

ez ~€B(Z)\SL(2,Z)
p(1) = co(m)e”™ (A.1b)

Lel

with 71 = Re7 and 7 = Im7, the Fourier modes ay(72) can be reconstructed from the c¢;(72)
using the well-known result [54,55]:

e 2w —2TIN
ag(r2) = co(ma) + )Y S(n, ¢ d)/ e d2<73+w2)cn<2;72)dw. (A.2)
d=1nez R d?( )

Here S(n,¢;d) denotes in general a Kloosterman sum

S(TL, Iz d) _ Z e27ri(m"+€r’1)/d, (A3)
re(Z/dL)
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which is a finite sum over all 0 < r < d that are coprime to d, such that r has a multiplicative
inverse, denoted by r~!, in (Z/dZ)*.
In particular we have that the zero-mode ag(72) can be expressed as

, omin——
(7.2 — CO ,7_2 + Z Z Z 27rzn?“/d/ e ”1"d2(73+w2)0n<ﬁ)dw- (A4)
d=1n€Zre(Z/dL) R ToTW

We split this expression into ag = Iy + I, where the first contribution I entirely stems from the
zero-mode ¢y of the seed function

Iy = co(r2) + 72 / e ) (A.5)
and the second contribution I comes from all the non-zero modes ¢,, with n # 0
_ p2minr/d —2mn s 1
= 222 Z Tinr /Re 2d2(1442) ¢, (7T2d2(1 —|—t2))dt7 (A.6)
d=1n#0re(Z/dZ)*

where in both integrals we changed variables w = 7o t.
In all the cases we will discuss, the Fourier modes of the seed functions will be of the form

co(y) = (mme)" =9y, (A.7a)
coly) = aa(|€) (4rle))0r5e 27 = oy (|€]) (4r]e))" (y /)2 (A.7Db)

with a,b,r € C and y = 77, or finite linear combinations of these seeds. In order to compute

the Laurent zero-mode for the associated modular form we need to use'®

(—16)'"(2r)!(2r—3)!

Iy(r)=vy"+ B (1—2)1 (r— 1] C(2r—1)yt ", (A.8a)
287y sy 14b—r |y D(0+1)T(2r—b—2) ((2r—a—2b—2)((1—a)
Ha:b,m) = =55 <E) [P T(r—b—1) C(2r—a—2b—1)
y \ot! I'(a+b+1)T'(2r—a—b—2) {(2r—a—2b—2)¢(a+1)
+ () T(r—a—b-1) C2r—a—2b—1)

2\ b
L —T ['(2r4+n-1)
+<y> %( Y ) nt-L(r+n) (A:80)
" ((=b—n)¢(—a—b—n)((2r—a—b+n—1)((2r—b+n—1)
¢(2r+2n)¢(2r—a—2b—1) ’

where I(a,b,r) was derived in [20] (note that the variable y used in the reference corresponds
to 7o and not the current y = 779). The expression for Ij is proportional to the usual Laurent
polynomial of non-holomorphic Eisenstein series E,., see (2.9), and we shall refer to the term

8In this equation, we write the Riemann zeta function as ¢(s) instead of (s in order to make the various
different arguments more legible.
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with y!=" as the Weyl reflected term in the following, due to its origin in the general theory of
Eisenstein series.

A few comments are in order. First to derive both Iy(r) and I(a,b,r) we assumed that
Re(r) > 1 for the integral and the Dirichlet series over n in (A.6) to both be convergent. We
will, however, encounter cases for which this is not true. For example when considering seeds for
“diagonal” modular invariant functions, i.e. solutions to (A — \)F = E2, we will see that r = 1.
In this case Ip(r) diverges because the Dirichlet series over n produces ((2r—1) — ((1). The
correct way to proceed would be to introduce a regulator so that we fold (A — A(€))F = EpEj..
effectively shifting r = 1+e¢, thus regulating I, see [20] for the details.

Similarly, we can produce divergent sums when we consider seeds for “non-diagonal” modular
invariant functions, i.e. solutions to (A — A\)F = E,,,E; with m < k. We can obtain a seed by
folding E,,, instead of E; and this will effectively gives us r = 1+m—k < 0 and hence the integral
in Io(r) will be divergent. This divergence is due to the Weyl reflected term which for r € Z
with 7 < 0 contains a I'(r) and ((2r) at denumerator. Again a regulator is needed so that
r = 14+m—k+e, as we mentioned for the case r = 1, so that the Weyl reflected term produces a
finite result. The Weyl reflected term o< y'=" in Iy(r) combines with the n = 0 term in (A.8b).
For the regulated zero mode these terms cancel.

The contribution I(a,b,r) from the non-zero modes contains a term linear in y in the first
line of (A.8b), and it corresponds to what Zagier calls the Riemann term [113]. Its importance
was discussed in [20], extending [16].

We should also stress that the expression (A.8b) for the contribution I(a,b,r) coming from
the non-zero modes is in general an infinite, asymptotic series. However, in all the cases which
we will be discussing here it will actually truncate. The reason for this truncation comes from
the fact that the parameter a, b will always be integers for us, in particular since we are dealing
with Eisenstein series and their iterated integrals, we will always encounter integers powers of
¢ and divisors functions with odd indices, i.e. a,b € Z and a odd in (A.7b). By means of the
functional identity I(a,b,r) = I(—a,a+b,r) we can always arrange for the second argument
to be odd provided that a is odd. The infinite series in expression (A.8b) then contains the
combination ((—b—n){(—a—b—n) which identically vanishes for n large enough when a and b
are integers of opposite parity.

When specialising (A.8b) to integer values of its parameters we can directly plug in the value
for a, while b should always be considered as a limit. At the very end, if necessary as discussed
above, we can take the integer-value limit for the last parameter r.

Note that the asymptotic nature of this series is nonetheless of crucial importance for deriving
the non-perturbative corrections to the zero-mode using resurgence methods, see [20,56], we will
not however discuss this issue here.

B Two-loop modular graph functions at weight eight

In this appendix, we gather higher-weight examples of the discussion of two-loop modular graph
functions Cy . in sections 3.6 and 4.3.
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B.1 Expansions in terms of F;(Z at weight 8

By comparing the Laplace equations (3.3) and (3.28) of the C, p . and F () we find the following

relations e
Cs32 = §F451 )+ 554F+(4) - %Eg,
Cion = ;§F+(2) - %;g@ - 754F;f§1 )+ 634F;§, )+ 1(7)0ij1 ) — %Eg,
R LR P 332 Fpl® - 2F0 4 T, B1)
Cs521 = %FJF@) - ?FH@ gFif) 3 ;éﬁ) - %Figﬁ) i—ZEs
Coi1 = 790F4§1 )+ 3F+(4) + éF;g ) —10F; )~ gF;@ = 1—14 7o) % 8.

As elaborated around (3.72), these relations do not suffice to express all the F;(g)_m at weight
eight in terms of Cgp . and Ey,.

B.2 Laurent polynomials at weight 6 and 7

In this appendix, we gather the Laurent polynomials of C, . with a+b+c = 6 and 7 which
are known from [37] and partially from [5,12]. The decompositions in (3.75) and (3.76) along
with the Laurent polynomials of the F;(Z) in sections 4.5.1 and 4.5.2 reproduce the weight-six

expressions

380 Cr 6 152 81¢n _
C222 = gio16125 T 24y~ 1657 T 1657 1omy7 T 00D
43y" yGs Cr 7 17¢2 | 99 _
C Y - o) B.2
321 = 55016625 T 630 T Tady T 647 odyt T 2567 T 00D (B.2)
_ 808y° v wGs . G 15Gs¢r | 23¢ G2 167¢n )
4,1,1 — - + - 1 3 4 5 + O(qv )7
638512875 | 4725 1890 ' 720y  32y% | 64y 64yt | 256y
and the following ones at weight seven:
4y7 Cr 7Co 33C11 | 21(s5¢7  253(13 _
Cagg= —0 4 ST _ _ 0
322 = To7702575 T 756 T 4802 12847 T 32,5 Biags T O D)
8y’ Cr 7Co 33C11 21¢s5¢7 | 113 _
Cagg= ——F L ST _ o)
331 = To7702575 T 378 4802 T 12y7 325 T 160 T 0D
46y" Y2 Cr 7C9 11¢11 3¢s5¢7 | 1113 _
Cioq = - - o) B.3
121 = 533519875 T 6300 1512 T 8057 T 26,8 1655 T 338 T O@ D (B3I
24497 2y 2 253
Ciq = . G Y n ¢r Go Cu1

T 1915538625 ' 93555 18900 ' 7560  2880y2 | 768y*

TG 3¢s¢r | 661C3 _
0(q,7) .
1655 645 | 102445 T (9,9)
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C Examples of Poincaré seed functions up to weight 8

In this appendix, we complement the examples in the main text to gather seed functions of
depth one for all the Fi(s) and an[ﬁ with m—+k < 8 and £ < m.

C.1 Cases with F;(Z) atm=k=14

By combining the seed functions (3.42) with those in (3.50), we can isolate iterated Eisenstein

integrals over Gg as follows:

8

¥y 6 Cr () o)
ooz + Y (Reléof8,0)) = 1) = @fp; —u4f Y 519,
8
S 5V = — L +(4) +(6)
o1216105 T Y Reléo(8,07) 14(314A —28f 4 + 25517,
8
Y8 35 @) )
3513500 T ¥ Relbo(8,00)] = ——(2fys” —5f1a7),
8
— Yy 4 3 +(4) . +(6 +[0}
3&Bmo+y1“w“&0” @f 40144 ) (C.1)
8
T179360 —2 (360f, 245
v 6 Re[£(8,0 3600 600710 4 5001 4 (2]
655200 Y e[&0(8,0)] = 512( f44 +600j,4" +50j,4 + 744 )
8
. ! +10) +[1] +[2] | +03]
2 .
604300 + 1y Re[&(8)] = 4096(7 00]4 +900]4 _1_36]44 _1_]44 )

C.2 Cases with F:;(Z) at m <k

Similarly, the seed functions (3.44) and (3.45) together with those in (3.50) allow us to isolate
various iterated Eisenstein integrals as follows:

2
ué5+y(Rﬂ&k%yﬂ_l%):6%“M§mv
y' 31185
—ggg*-y Re[€o(4,0)] = ———— (8557 + jai") (C.2)
7
y 6237
%-i-y Re[€o(4)] = W@ 25[)0]4‘ 25[)1])
and
8
y 1064188125
ﬁﬁ+y<R¢M4@ﬂ >:_f@§_‘%®’
y° 212837625, () . 4[]
—ﬂﬁyM%@w g 10fag t+iag ) (C.3)
y® 70945875 ,
% +y" Re[€(4)] = W(()‘J;féo} +];g])7
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as well as

7
Y 4y (Rel€o(6,0%)] — &) = 270(f5 P — 15y,

467775
7
y X 135 o)
oarEE =
gaes T v Relén(6.0%)] = =2 - 9£37).
y’ 315
it U Rel€0(6,0%) K (18f54" +isa ) (C.4)
i +(5) 0] , 1)
16632 +y° Re[£y(6,0)] = (72f +12j50 + 5 4),
7
- 6 — _ﬁ +[0] +[1] | +[2)
5o T Y Relbo(6)] = —5- (1207547 + 20754 +Js4”)
and
2" 3 4 +(4) +(6)
e T (Rel&(6,0%)] — &) = 4158(f, Y — £119),
8
Y 4 3 _ +(4)
g10s1 T Y Relfo(6,07)] = 2079( /58" — 4157,
8
Y 2y 6237 e
soas1 Y7 Rel€o(6.0%)] = — = (4,57 + 33", (C.5)
8
y 6 6237 wo
agag U Rel€o(6,0)] = - (120455 + 155557 4+ i)
8
- 2079 +[0] +1] 42
15120 '’ Re[&y(6)] = 1280(180 35 T24J35 I35 )-

C.3 Cases with F;L(Z) at m+k=17,8

In this appendix, we provide additional examples for the discussion in section 5.3. The step
form for odd seed functions in (5.22) and (5.23) generalises as follows to weight m+k = 7,

y*Im [€9(4,0%)] = 6930i(f55" — f557),

I [£0(4,0)] = 2710 ()
*m [Eo(@)] = ~ 252 50 2Ty
and
y?Im [£9(6,01)] = 27if; P — 42if5 (Y + 15if; (7,
y3 Im [£6(6,0°)] :@fg, % —@f?ﬂ :
y*Tm [£4(6,07)] = 105ng4 +105i 5", (C.7)
7 I [£0(6,0)] = 945zf34 _3;22 g
T [£0(6)] = 945Z A0+ 2y i,
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The analogous expressions at weight m+k = 8 are given by

96744375 ,_(5) 967443750 ,_(7)

y° Im [£o(4,0%)]

1382 726 1382 U260 ¢
i 0] = 2T e
] - 2 T
and
y* Im [€9(6,0)] = 207i f; " —486@f35 +189if,3"
y* Im [£9(6,0%)] 7i(f3_5 - 3557))’
y° Tm [£6(6,0%)] = — 567Zf35 85§5i ) (C.9)
0 m [6(6,0)] = —%“ - T,
I [£0(6)] = oL L 0 4 0Ty | 2000

. +(s)
D Examples of Laurent polynomials of Eok

In this appendix, we gather the Laurent polynomials of all modular invariant F:;(Z) with m+k <8

that can be obtained from the general formula (4.11). For F;(Z) the Laurent polynomial vanishes

identically.
5)

The expressions below also represent the Laurent polynomials of F :;(k even when these

functions are not modular invariant. This follows from our method for reinstating the lower-

P

depth terms in section 4.3, engineered so that ﬁ‘ +( yields the same Laurent polynomials as

F ::L(Z) The only possible discrepancy between 1\5:;( ) and F+( %) Jies fully in the O(q, ) sector. In

other words, the expressions below can also be obtained by taklng the degeneration limit (4.10)
of the 55V.

D.1 Cases with F:L(Z) at m==k

The expressions for F,Jgg:) with £ < 3 in (4.16) lead to the Laurent polynomials

4

5Cs5 _

P _ Y Y C_g__ 0

22 = 90950 45 1y T 0@
6 5C7

et _ Y wG & G D.1

3376251175 630 | 32yt 288y+ (9,9), (D-1)
2y0 yC 9¢? 35¢ _

Fys = P S 1 0(0,9),

8037225 3780 ' 128y" 115243
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equivalent to those of Eq 2, E3 3, Eg73 the literature, and the examples (4.17) at k = 4 yield

8 52 5
F+(2) = Y _ yC? T 9 O _
14~ 1205583750 7560 | 51245 3888y (9.9),
8 5<2 7<
FrW = y Y& 7 Cn _ .2
44~ 982327500 45360 | 38440 6912y3'+‘?(q’Q)7 (D.2)
+(6) y° yGr 25¢2 50053

Fio = _ N Ola.c
11 = 550466250 113400 " 768y8 ~ 530cssys | O\ D)

where the Laurent polynomial of the 5%V-combination Fiiﬁ) is identical to that of the modular

. . 6
invariant F Ifl ).

D.2 Cases with F:L(Z) at m <k

The expressions for F :;(Z) with m+k < 6 in (4.19) reproduce the known Laurent polynomials

5 2 7C
pr® _ Y yes G 66 T g .
25 = 397675 1800 360 T &  oay? T O@ D (D.3)

@ _ ¥ PG G L DGs¢r 25y
24773827250 28350 720y = 64yt 432y3

+0(q,9) ,

equivalent to those of Eg 3, Eg 4. At weight seven, (4.20) and (4.21) lead to the expressions

P 5 _ 3/7 _ y4C3 _ Co e _ 77¢11 L 0.0,
25 746309725 374220  1152y2 ' 128y5 2048yt 4
! 2 5C5C 49¢,
F+(3) _ Y Y s . C7 567 9 0 ~ D4
34~ 30372250 25200 4536  256y5 1152057 (9.9), (D.4)
’ ? 3¢ T7¢
pre) _ Y S S 561 U O(0.a
34 T 19116375 113400 15120  6dy> 460857 | (9.9),
and the weight-eight combinations of 5% in (4.21) and (4.22) yield
e 691y°  691y°Gs  TCn 21¢3¢in 955513 +0(g,9)
267 373530031875 3192564375 11520y = 51246  353792y° 4:4)
3 3
+(4) Yy ¥°Cs Co 7¢5C9 5C11 Ola.d
- - - - D.5
35 = O7o504225 374220 8640y | 51245 23047 (¢,7), (D.5)
2y° § 35 63063
5 : v S 35656 SEROT

35 7 1149323175 1496880 24192y ' 1024y°  5660672y5
(s)

where the Laurent polynomials of the 8%V-combinations 1\5:,;2

(s)

. . —+(s
ular invariants Fm7 i

are identical to those of the mod-

E Examples of 3 representations of F;L(Z)

(s)

In this appendix, we spell out the S%-representation of further F;lz besides the examples
(5.39) and (5.41) at weights m+k < 6. The complete list for weights m+k < 14 can be found
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in the ancillary file. When the combination of 8% is not modular invariant, we denote the

—(s) +

corresponding function by F ok accordance with the discussion in section 5.5.

E.1 Examples at m+k =7

At weight m+k = 7, the 85 representations of F__ (k) constructed from the prescription of section
5.5 are given by

F, " = —189055V[ 47418908 [2 3] + 18908° [ 4 1] — 18908°[ 5, 9]

sv sV 315C3 sV 105C9 sV 105¢9 sv 7Co
— 2816 - 126068 o]+ 205 ]+ S ) - TSR] -
By ¥ = —18008% [} {4] — 151265 (3 8] + 18906“[10 U4 1512/3“[10 9 (E.1)
315@, 21¢o 105¢ o
SVl 3 SV SvViQ SV[1
+100sco (] + 22 gy - By - gy 4 0
as well as
F?:z(f) = —21005%[§ §] + 28008 [§ §] + 210083 Z] — 700> [§ § ] — 28005 [§ § ]
280 105
_‘_7005“[2%] C5BSV[ ]+280C ﬁsv[ ] <5ﬁsv[ ]+ C5ﬁsv[ ]
50(7 sv 50(7 svil 75(7 sv 5(7
206 g (9] 4+ 7 goy) - DT gy - 2T
F, " = —2100/3SV[6 3]+ 10508%[3 2] + 2100/3“[ 2] 4 105085 [4 L] — 10508°[4 {]
105 105
10508 [§ 0] — 420657 [L] - yC5 B3] + 2;5 B3] (E.2)
754’7 sviOQ 754’7 SVl 754’7 SV[2 5—{7
” — B8+ = B[] - 855 3P [6]+60487
B¢ = —21008%2 ]—2100ﬁSV[ 2] 4 21008%[3 2] — 2108% [4 1] + 21008° [ 4 L]
210 105
+ 21087 (58] + 84,87 [}] + 45/3“[ 1+ 2t
15C7 sv 75C7 svil 75(7 N
E.2 Examples at m+k =8
The weight-eight instances of F;n(z) in terms of 8% are given by
Foy) = —83160°[1 ] + 83166 (2 4] + 831657 [, 1] — 83165 ¢
22803 1386
- R 5 ] - 55U ] + T ]
189C11 sv 189C11 ,gv(q 21C11
AR TR (3
Fag = —83165% [} ] — 693053 ] + 83165 5 §] + 69308  §]
138643 315¢11 189¢11 7C11
SV[ 4 SV SVi0] __ SV
+ 46206387 [ (5] + ——==B"[ 1] - 64y B[4 128,75 =0 [1]+ 19203 °
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as well as

F;g?o = —94508%[2 414 126008 [3 3] — 315085 [& 3] + 94508 {4 2] — 126008°"[ £ ]

12 4
+ 31505 8] — L2831+ 12606587 [ ] - 2] + 226 )
175g9 o) 4 L7560 o 525Co .. 5Co
Fis = —9450ﬁ“[6 i1+ 37808 [} {] + 56708 [¢ )] + 94505 [} 3] — 37808 [ {, §]
- 56706° (8] = 2268651 ] — 2] + 2 26" [ ] (E4)
315g9 - 105y ey 52549 ov Co
T8+ s () - s [%H@,
Fg(”——9450/3“[610]—10080/3“[%130]—1260/3“[ 21+ 94508 [ {4 2] + 100805%[ 3 &
1008 945
+ 12003 0]+ 504G ] + 08 y] + 25067 )
35(9 sv 35C9 sy 5259 sy Co
——5 B8] - " ——3*[§] - 64y45 [%]—m-

F Integration constants «f...] for even functions

This appendix is dedicated to the combinations aan’{z of antiholomorphic integration constants

defined in (4.28) that enter the even F:;(Z).

F.1 Examples at m <3

We shall now gather the remaining instances of the closed formula (4.30) for the aﬁ’ k with

m < 3 that are determined from reality of F:;(Z) with m+k < 8.
At m = 2, the examples that are not yet covered by (2.25) and (4.29) read

ay? = 4¢3 £(10,0%), a26 — 163 £(12,0%),

ay’s = 80G3 £(10,0%), aylg = 480C3 £(12,0°)

a5’y = 14403 £(10,0%) a5l = 13440¢3 £o(12,0°), (F.1)
4

o) = 201603 £(10,0%) + 3 E(4), adg = 3225603 £(12,07),

ayly = 161280C3 £9(10,07) + —Zgg £0(4,0),  aylg = 5806080Cs £o(12,0°) + @150( ),

alg = 580608003 &(12,07) + HC” £0(4,0).
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At m = 3, the simplest examples are

= —<5 £0(8,0), agy =0,
= 4¢5 £0(8,0%) + %@ &o(6), ayy = %cs £0(8,0%),
a3y =48G5 €0(8,0%) + 547 £0(6,0), gy = %Cs £0(8,0%) + é@ £0(6,0),
o’y = 576(5 En(8,0) + %47 £0(6,0%), iy = %ag;g, (F.2)
o2 = 46085 £(8,0°) + 1—@ £9(6,0%), o} = 2ol
as well as
ayy = é@ £0(10,0%), gl =0,
gy = %Cg’, £0(10,0%), ayy = %cs £0(10,0%),
039 = 288G £0(10,0") + 5o £0(6), 021 = 96G; £9(10,01), (k.3
o'y = 57605 £(10,0%) + 1—36@ £0(6,0), o'y = 25925 £(10,0%) + cg £(6,0),
o'y = 967685 £o(10,0%) + 64y £(6,0%), ayy = %og;g ,
as'y = 9676805 £(10,07) + 640C9 £o(6,07) ayy = %ag;g :
Note that shuffle relations imply the vanlshlng of a2 5, ag g, agﬁ, ag:g as well as the combinations
3,0 4,0

g’y — 2a34,a34 2a34anda35 204357 35 235

F.2 Conjectural closed formula

The closed formula (4.30) for the combinations aﬁ’ k of antiholomorphic integration constants
in (4.28) is proposed to generalise to

AN _ N! 2(om—1 (k—m~+j)!(N+k—m~+1)!
mk T (k—m—N+2j+1)! | 2m—1 (N—j)!

2Cok—1 JH(N+m—Fk+1)! Ntm—k
2
1 (Nam—k—j) om0 s

Eo(2k, 0N FF=m) (F.4)

+ON£m—k>0

with 7 < m—2 and

m—2—j ¢ . .
—1)*(2m—2-2j—-20)(2m—3-25)! N+,
AN = ( o F.
ok ;_% 0N(2m—2—2j—1)! Yk (F.5)
All instances of this formula with m+k < 14 can be derived from the reality of F:;(Z), and its

validity at higher weight is conjectural. The step function Onn,—r>0 in (F.4) is defined by

1 : M>0
9M20={ 0 M;O (F.6)
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and ensures the absence of negative numbers of zeros in & (2m, 0™~ FTN). Moreover, the inverse
factor of (k—m—N+2j+1)! causes A 4 with N > k—m+2j+42 to vanish. One can easily check

that (F.4) and (F.5) reduce to (4.30) for m=2,3and j =0,1.

G Cauchy-Riemann derivatives of F;_;(Z)

In this appendix, we list representative examples of Cauchy—Riemann derivatives VP and A
of Fi( $) for 0 < p < s. As explained in section 5.6, their %V-representations are fixed from

those of mek) together with their Laurent polynomials and Laplace equations. The case p = s
removes all irreducible depth-two terms and was treated in sections 4.1 and 5.5, respectively.
The ancillary file contains all cases with m+k < 14.

G.1 Derivatives of even F:;(Z)

The first derivatives of F;-éz) in (4.16) are given by [27]

(WV)F;,?) (19 24(3 wior_ G G 5G
2
)

(VY = ~95"3 ]+6<3ﬁsvm—g—3+§, (G.1)
whereas the second derivatives are determined by depth-one data, (WV)2F;:§2) = I(7VEy)2.
The analogous derivatives of F;:(,)g) in (4.19) are [27]

(7V)%F35” 320 40
o = 96087 (9] + 1920874 §] + 288057 (1 4] - yggﬁsv[g] yggﬁsv[é]
18C5ﬁsv[ - 23 G 3GG TG
189 3042 45 32407
(ﬂ-v)FJ’_(g) SV SV SV SV 0 SV
TR — 21081 }] - 1208 38] - 3605 [3 ) + 80Gu8™ 4] + o267 })
9(5 sv G 366 | T
LI LU 2
N (G2)
4 SV SV 15 SV sV
(rV)FSS) = — B 53] - 158 [31] - B 491 + 1568 [3]
SV 34’5 Ssvril 34’3(5 L
3 g+ Sy - L T
45 SV 15 SV 5 SV SV
(VPFES) = D3+ IR + B (4] - G [R)
3C5 3C3C T¢r
_ SV 1 sV _ >
3G (4] - S+ 222 -

with higher derivatives determined by (WV)?’F;g)’) = L(rVEy)(7V)?E3 + (Im 7)*G47VE3.
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For F;f) in (4.19) we have

VIEL V)2E;(7V)E
(W)i@’“ = —8064053°V[{ 1] — 806403°V[ 1 9] — 1612808 [§ 9] + (TV) 2(;TV) 4
Y 12y
13440(3 3360(3 45(7 G (r o 15G3¢r N 25y

/BSV[ ] BSV[ ] /BSV[ ]

135  16y* 8y7 72y8 "’

(ﬂ-v) F;—4(14) svil 1l SV sV SV
= 336085V 2] + 1344085V [} 1] + 33608572 9] + 20160585 [2 9] — 2240(36°[ 2]

2240(3 SV 140C3 SV 45C7 SV C7 15(3(7 25C9
—=p"[i] - )2 —=pV[¢] - 51 —— B [2]+—24y3 65 725
§F+(4)
%z—&mﬁ“[ 2] — 8407 [3 1] — 168082 4] + 56038 [4] + —d gov( 2]
15(7 sv (7 5(3(7 25Cy
<wv>F;i4>=—105ﬂ“[z - 1055“[ 11— 2B (39 + 10~ (3]
15C7 SV 15(7 SV C7 5(34'7 25C9
ﬁ 41+ 16y25 [i]_'iéﬁ'_ 16y3 +144y2’
315 105 105 105 105
(@VPFs ) = S A B AR+ A A+ B8] - G (]
15 SV 15C7 sv 15C7 SV 15C3C7 25C9
- Gb (9] — 1 — B[] - 617 —= V1] + 16y ~ Ty
315 315 315
VPR =~ 2238 - SR - S+ S A ()RS
1O5C3 SV 45C7 SV 45(7 SV 5(7 15(3(7 25(9
1 — =BV [3]+ =64+ 32y —B3[3] - 32y2(WV)E2_W+W'

The third derivatives feature (7V)?Ey = 6(Im7)*G4 and its complex conjugate. For other
functions also derivatives of the (anti-)holomorphic Eisenstein series can arise, but we shall only
write out the derivatives to the orders where they do not for simplicity.

For F;;és) in (4.16), the derivatives which go beyond products of depth one are given by

ALt 80 60 2 5
% = —24005"[3 §] +8005™ 3 §] - 455“[ |+ 4555%] SR 84_;5 + 28217/2 ,
15Gs v 5
(7V)F3$) = ~1508°[3 2] + 505 [ 4] — 20¢55° [ 4] + zfsﬁ (8] - ;j +—2§§ (G.4)
as well as
VA 3F+(4)
(T‘-V)T&s = _7680055V[ ] - 268800ﬁsv[ ] 4+ 1680C5 BSV[%]
120g5 50 27¢2 35

+

B8]+

126y2  16y7 ' 19246’
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(nV)?Fq ) 20 800G

= 1920085 [L L] + 2400085V [2 9] — —2 8V [9]

y! y?
12065 svrgy BG 2TCE 385G
y3 5 0Ll - 378y | 32y 19245’ (G-5)
(7V)F5 ) . . 12065 .,
TS 40057 (2 §] — 120067 [ ] + 8 gy
60(555\,[1] &_% 35{9
657 756 32y5 384yt
and
+(4) _ sV sV sv 155 ooy 9<§ 35G9
(WV)Fs5" = —1505[§ 3] = 1567 [§ 5] + 30657 (5] + = =6V(F] — 55 5 + 5gp0 -

2pt() _ sV 375 SV 75 SV 15C5 SV 27C52 35C9
e =3+ e - Dapn) - Sy 28 B0 (g

15(5 27¢2 N 35Cy

+4 75 SV 525 SV 105 SV SV
(WV)SFg’é):—Zﬁ [§6] = 5 A 1881+ GO 81+ 5 =07 18] = 6+ Jog

whereas higher derivatives yield products of depth one (FV)2F§:§2) = %(wVE3)2 as well as
(7)) F1 s = 3[(xV)2E5]? + 20(Im 1) G VE;.

G.2 Derivatives of odd F,}

The first Cauchy-Riemann derivatives of Fy és) in (5.39) are given by

V)F, )
% — 3608°[92] — 7208 [ L 1] — 3608°V[2 9] + 7208°[2 9] + @435“[2]
+ 200667 (8] - 2813 - A9+ 558+
(xV)F5D = 456743~ 4567 132 - D 2314 DAVAN+ 26N (@)
+30<355v%] 15C3st[ ] 9{55“[2]_‘_196_4’5255vu]
Y
and
(WV)F;&Q SV SV SV SV svi2 0
o = 3005 [92] 4 12008% [} 1] — 7208 [ L 1] + 2408 [2 2] — 10805 [2 9]
200 15 27 9
~ 1606557 (4] - Cgﬁ“[é] SRER+ T2 8+ 35 - g
(wV)F5S) = 4567 48]+ o2 p (53] - 2B (33— 75673 4] - 156 [49] — 45657 3]
15 15 9
2]+ 66671 + 2455“[311 At (@8)
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whereas the second derivatives introduce G4 as for instance seen in (5.40). The first derivatives
—(s) -
of Fo ;7 in (5.41) read

(7V)F,
—— P = 16805 (4] + 168057 3] — 33605 [ ] — 50405 [3 ) + 50405 [ )
2858 }] + 2240658 }] - 28243 B3] - 72<3 3]
45( v 45C7 v ¢
550+ + s (G.9)
(7V)F (’_3155“[ 4] = 3158%[2 3] — 1058 [3 3] — 1058°[4 1] + 2108%[3 9]
+1GB™ 8]+ 210657 (3] - T 28] - =)
15(7 Sv 15C7 sV C7
52 0+ 5 58 ]+ 4
and
(7V)F, )
T’:1680ﬂ“[2§]+7560ﬂ“[ 2] + 2520852 L] — 50408°V[2 1] — 67208°[3 9]
1260 70 30 45 5
- 16805 ] - 5] - 43/3“[] 2519+ S B - T
(V) = 3156} ]+42OBSV[ 8- 10587 (3] - =5 ﬁ“[éi]—ﬂﬁ“@z] (G10)
v 105C v 45C7 v 135C¢7 gy 15¢7 o ¢
— 28068 [§] - = 2BV [+ 8 18]+ e A+ 55258 1] - 5

where second derivatives again introduce Gy.

H A more convoluted example of red-herrings

Following the discussion in section 6.3, we want to present here a more convoluted example of the
apparent discrepancy between two representations of alternatively folded seed functions: The
expressions in (6.4) obtained from the Laplace system in step form turn out to yield the same
Poincaré sums as their counterparts derived from the inhomogeneous Laplace system (3.34),
where we take our formulee (3.39) and (3.50) extended to m > k.

Let us consider the seeds for F; és) and J ;:[5[] derived from (3.39) in the alternative folding:

7

5 y _ 1 &0
yRel€o(10.0")] + Z7ar033800 ~ e = Teal2s
7
2 4 Y +[0]
1 - 4 rhy= ——(2 H.1
7
3 3 Y L +0] | 1]
y* Re[€0(10,0°)] + oo + the = 2688(180f25 +20555 +Ja5 )
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and

7
Yy 1 (5 [0 1] ]2
v Re€0(10,0°)] — obos = — oo (2520 £ 4 pa0is ¥ 4 sags )+ 5B, (H.2)
7 i
y® Re[€(10,0)] + 26325088 = oo (20160 Fr$ 41008075 ¥ + 151255 10 + 56752 + 71
7
Yy 1 - _ ~ - ~
¥ Rel€0(10)] — gl = — o (100800 P 2016075 L +112075 P 4075 P4 7 ).

These do not match exactly with the seeds we would have obtained from the Laplacian system
in step form discussed in section 6.2 which would only contain a single term 5~ Re[&£y(10,07)]
with 0 < p < 6 per line. We see that a multitude of red-herrings appears in (H.1), namely

7
15 Re[£(10,07)] 81_;(1{6[50(10708)] 9,

rh, = 3Re[£0(10,0°)] +

4y
15Re[E0(10,00)]  45Re[&y(10,07)] 45 3 ¢
hy = — — — 1 -3 H.
15Re[E0(10,00)]  45Re[&(10,07)] 45 8\ G
h. = 10, -3),
r 2 + 16y + 32y2(Re[50( 0,0%)] — &)
related by the Laplace system
Olrha = I‘hb,
Ogrhb = I‘hC s (H4)
Ogl‘hc =0.

Following our discussion in section 6.3, it follows that rh. being in the kernel of O3 should be
related to Eg. To see that we can first rewrite the combination of iterated integrals in rh. as

15 Re[&(10, 0%)] N 45Re[E0(10,07)] 45
) 16y 3212

= —%% i nQJ_g(n) [ng_l/g(%m ImT) (e%m Rer  =2min R‘”)] ,
’ n=1

Re[£y(10,0%)] (H.5)

45 ¢9, 1-3
oY -

Unsurprisingly this red-herring is comprised of two different terms both of which appear as
points (or rather infinite sums thereof) on the same Poincaré orbit (2.39) for Es. Using (2.47)
we can compute the Poincaré sum over the Bessel function and then perform the analytically

while the remaining term can be rewritten trivially as —

continued Dirichlet series in n to arrive at

152¢y 1
3 [rhc} _ D2l g gy (H.6)
5 4 9! ¢
~EB(Z)\SL(2,Z)
Clearly since rhy, = —2rh. we have that rhy is also a red-herring, a very convoluted way to write

0 as the difference between two non-vanishing Poincaré sums. However, we see that we have
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not quite eliminated all the red-herrings since rh, is not a multiple of rh.. Nonetheless we can
easily rewrite its Laplace equation as

4
A <rha — grhc> =0, (H.7)
hence we expect the combination
4 1 6
rh, — grhc =3 Re[&0(10,0%)], (H.8)

to generate, upon Poincaré summation, an element in the kernel of Oy, i.e. Eg.
Following a reasoning very close to section 6.3, we can rewrite this iterated integral as

1 1 . .
3 Re[€y(10,0%)] = ~ 9 Z n? o_g(n) [\/n Im 7Ky_y /227 Im 7) <e27”" Rer | g=2min R‘”)} .
"n=1

(H.9)
We can perform the Poincaré sum over this Bessel function using (2.47) arriving at'”

o
1 p25+1/22

l € 6 = —— o_g(n)ogs—1(n) Eg(1)
,YEB(Z%L(M) [2 Re[&(10,0 )]] 9! > T cos(ms) T (s+1/2)C(25—1) 20(25) ° (H.10)

Y n=1

where we kept the Bessel index s as a regulator, taking the limit s — 0 only at the end.
To perform the Dirichlet sum over n we make use of Ramanujan identity

i aa(nifsfb(n) _ ((s)¢(s—a)((s—b)¢(s—a—b) (H.11)

¢(2s—a—b) ’

n=1

finally obtaining

1 % +l20(2—5)C(7T—5)C(s—3)C(645) Ey(r)

1 6y — 1y
WGB(Z%L(M) [2Re[5°(10’0)]L O o T cos(ms) (s 1/2)C (25— 1)C(d)  2C(25)

=0xE. (H.12)

So the Poincaré sum over the remaining red-herring rh, — %rhc is indeed proportional to Eq as
expected from its Laplace equation. However, the proportionality constant, which is effectively
given by the Dirichlet series above, vanishes upon analytic continuation.

We see in this more convoluted example that in general, when we compute the alternative
folding seeds (6.17) starting from the inhomogeneous Laplace system (3.34), we will generate a
variety of red-herrings at different levels. However, these red-herring seeds such as (H.3) give
rise to vanishing Poincaré sums even though they are obviously non-vanishing functions. Hence,
the Laplace system written in step form as presented in section 6.2 leads to considerably simpler
representatives of the seeds, see (6.30).

19Gimilar to appendix A, we write the Riemann zeta function as ¢(s) instead of (s in order to make the various
different arguments more legible.
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