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1 Introduction

We consider in this paper the quantisation of antisymmetric tensor-spinors. These are
fermionic fields of the form ψαµ1µ2...µp , where α is a spinor index and the µi are spacetime
indices, which are totally antisymmetric in their spacetime indices:

ψαµ1µ2...µp = ψα[µ1µ2...µp] . (1.1)

We will also call them ‘fermionic p-forms’. The free action for such a field in flat spacetime
is a direct generalisation of the Rarita-Schwinger action for a fermionic one-form ψαµ and
reads [1, 2]

S0[ψ] = −(−1)
p(p−1)

2

∫
dDx ψ̄µ1µ2...µp γ

µ1µ2...µpνρ1ρ2...ρp ∂νψρ1ρ2...ρp . (1.2)

This action is invariant under some reducible gauge symmetries, i.e. with ‘gauge-for-gauge’
transformations. They are

δψ = dΛ(p−1) , δΛ(p−1) = dΛ(p−2) , . . . , δΛ(1) = dΛ(0) (1.3)

in differential form notation (with a spectator spinor index). Here, each parameter Λ(k) is an
antisymmetric tensor-spinor of rank k. This reducibility introduces well-known subtleties
upon quantisation, which we will tackle using the powerful Batalin-Vilkovisky (BV) field-
antifield formalism [3, 4].

– 1 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
8

Our motivation for examining these fields is twofold. First, fermionic two-forms ap-
pear in the exotic N = (4, 0) and N = (3, 1) maximally supersymmetric multiplets in
six dimensions [5], which have been conjectured by Hull to play a role in some strongly
coupled regimes of maximal supergravity [6, 7] and have attracted renewed interest in re-
cent years [8–15]. In particular, gravitational anomalies for these exotic multiplets were
computed in [11], but some assumptions were required since the precise ghost structure for
the fermionic two-form was unknown at the time. One of the goals of this paper is to fill
that gap. Another, more remote motivation for looking at these types of fields comes from
considerations of dual gravity [6, 7, 16, 17], where (in the linearised regime) the graviton
is dualised to a [D − 3, 1]-type mixed-symmetry tensor. A supersymmetric, manifestly
covariant model in which this field finds a partner is still lacking, however, and a fermionic
p-form field would be the natural candidate (see [18] for an early attempt at dualising
fermionic fields, and [19, 20] for related considerations in the prepotential formalism).

The structure and main results of this paper are as follows.

• Section 2 starts with a short review of the quantisation procedure of irreducible gauge
theories in the BV formalism [3], i.e., when there are no ‘gauge-for-gauge’ transfor-
mations. We put a special emphasis on quadratic gauges containing a differential
operator: there, a third propagating ghost appears, as was first described within this
formalism in a manifestly local way by Batalin and Kallosh in [21]. Then, this pro-
cedure is applied to the quantisation of the free Rarita-Schwinger field, where this
propagating third ghost is known as the Nielsen-Kallosh ghost [22, 23].

• In section 3, we discuss in the BV formalism the appearance of the ‘third ghost’
for quadratic gauges in an arbitrary gauge theory. This generalises a result of [21]
to the reducible case and is one of the main results of this paper. It should be
emphasised that this result is valid beyond the simple action and gauge symmetries
for the fermionic p-form described above: we allow for non-abelian gauge algebras,
on-shell closure, etc. These subtleties are all packaged in the explicit form of the
‘minimal BV action’ for the model at hand, which always exists and which we keep
arbitrary.

• Section 4 turns to the quantisation of free fermionic p-form fields, using the general
results of the previous section. (In the words of [4] however, this is ‘like cracking nuts
with a sledgehammer’.) This is done both in the usual delta-function gauge-fixing
and in the Gaussian gauge-fixing where a generalised Nielsen-Kallosh ghost appears;
propagators and BRST transformations are also discussed in both schemes. Explicit
details are given only in the two-form case, but the generalisation to higher form
degree poses no difficulty. We maintain manifest locality and covariance throughout.

• Finally, in section 5 we compute the gravitational anomaly of a chiral fermionic p-
form in dimensions D = 4m+ 2. This is done using the ghost spectrum found in the
previous section and applying the Atiyah-Singer index theorem [24, 25], following the
methods developed in the classic papers [26–29]. We describe the general procedure
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in detail and display the results in dimensions D = 2, 6 and 10 in tables 5, 6 and 7.
An intriguing result is that in dimensions D ≥ 6, the anomaly of a chiral fermionic
p-form matches that of a (D − p − 1)-form; it would be very interesting to use this
fact to attempt to build new anomaly-free models.

We should mention an important caveat related to the computation of the gravitational
anomaly: to the best of our knowledge, there is currently no model that couples consistently
a fermionic p-form to dynamical gravity. It can be hoped that this difficulty will be resolved
in the future, perhaps by including (an infinite number of) other fields.1 However, since
the anomaly computations of section 5 are solely based on the ghost spectrum and not on
the specific form of the action, we are confident that these results will survive such future
developments.

2 Review: the Nielsen-Kallosh ghost

We begin with a short review of BV quantisation of irreducible gauge theories and apply
it to the free gravitino field. This will be generalised to arbitrary reducible gauge theories
in section 3, and those results will be applied to antisymmetric tensor-spinors in section 4.

2.1 In the Batalin-Vilkovisky formalism

We start from an action S0[ϕi] depending on fields ϕi, invariant under some gauge invari-
ances δϕi = RiαΛα with generator Riα and parameter Λα. Gauge invariance is equivalent
to the Noether identities

δRS0
δϕi

Riα = 0 . (2.1)

We follow the notation and conventions of [30, 31]; in particular, a contracted index includes
space-time integration and the superscript R (resp. L) indicates that the derivative is acting
from the right (resp. left).

We assume in this section that the theory is irreducible, so there are no ‘gauge-for-
gauge’ transformations: the gauge generators Riα are independent on-shell. We will also
assume the usual regularity conditions on S0 throughout this paper; these are detailed in
the reviews [30, 31]. The fields and gauge parameters are allowed to be bosonic or fermionic:
their Grassmann parity is written as ε(ϕi) ≡ εi and ε(Λα) ≡ εα. The gauge-fixing condition
will be written χα(ϕ) = 0; the function χα(ϕ) has the same index structure and Grassmann
parity as the gauge parameter Λα.

In the field-antifield formalism of Batalin and Vilkovisky [3, 4], the space of fields is
extended to include a ghost field cα corresponding to the gauge parameter Λα, and the
antifields ϕ∗i and c∗α. Ghost number assignments and Grassmann parities are collected in
table 1. We will denote the set of fields collectively by ΦI , and the antifields by Φ∗I . The
action S0[ϕi] is then extended to the minimal BV action SM[ϕi, cα;ϕ∗i , c∗α] depending on

1Something even more exotic should happen in the D = 6, N = (4, 0) or (3, 1) theories, if they exist, since
they contain no metric at all. There, one should probably take the vanishing of the gravitational anomaly
as a criterion selecting on which background manifolds these theories can be formulated consistently in
certain regimes.
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ϕi cα c′α bα S0, SM, SNM Ψ χα

gh 0 1 −1 0 0 −1 0
ε εi εα + 1 εα + 1 εα 0 1 εα

Table 1. Ghost numbers and Grassmann parities of the various objects appearing in the irreducible
case. Antifields have ghost number given by gh(Φ∗I) = − gh(ΦI) − 1 and the opposite parity,
ε(Φ∗I) = ε(ΦI) + 1.

the original fields ϕi but also on the ghost field cα and their antifields ϕ∗i , c∗α. It is a
ghost number zero, even functional that should be a proper solution of the classical master
equation

(SM, SM) = 0 , (2.2)

where the antibracket ( · , · ) is defined as

(X,Y ) = δRX

δΦI

δLY

δΦ∗I
− δRX

δΦ∗I
δLY

δΦI
. (2.3)

Moreover, it should reduce to the original action when the antifields are set to zero:

S0[ϕi] = SM[Φ,Φ∗ = 0] . (2.4)

These two conditions completely determine SM, which always exists; it starts with

SM[ϕi, cα;ϕ∗i , c∗α] = S0[ϕ] + ϕ∗iR
i
αc
α + . . . (2.5)

and the omitted terms carry the explicit information about the gauge algebra, on-shell
closure, etc. We refer to [30, 31] for pedagogical reviews.

To gauge-fix the theory, one further extends the space of fields by adding a trivial pair
of fields (c′α, bα) of ghost numbers −1 and 0 respectively, along with their antifields.2 The
minimal action SM is then extended to the non-minimal

SNM = SM[ϕi, cα;ϕ∗i , c∗α] + c′∗α b
α , (2.6)

which still satisfies the master equation. The antifields are then eliminated according to
the formula

Φ∗I = δΨ
δΦI

, (2.7)

where Ψ(Φ) is an odd functional of ghost number −1 depending on the fields only, called
the gauge-fixing fermion. It does not matter whether one uses left or right derivatives
in (2.7). If Ψ is well-chosen, the resulting action is properly gauge-fixed and possesses
well-defined propagators.

2In some cases, it can be more convenient to take these fields with down indices instead, and we will
sometimes do this in the following. Note also that c′ is often written c̄; however, since we will be dealing
with fermionic theories in the applications, this could be confused with the Dirac conjugate and we will
stick with the prime notation in this paper.
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The simplest example is delta-function gauge-fixing: here, one can simply take the
gauge-fixing fermion as

Ψδ = c′αχ
α(ϕ) . (2.8)

This gives the gauge-fixed action

Sδ[ϕi, cα, c′α, bα] ≡ SNM
[
ΦI ,Φ∗I = δΨδ

δΦI

]
(2.9)

= SM
[
ϕi, cα;ϕ∗i = c′α

δRχα

δϕi
, c∗α = 0

]
+ χα(ϕ)bα . (2.10)

The field bα is auxiliary and enforces the gauge-fixing constraint χα(ϕ) = 0. The fields
cα and c′α are the usual Faddeev-Popov ghosts. Note however that formula (2.10) is also
correct for e.g. theories with open algebras where the usual Faddeev-Popov procedure
cannot be applied; these subtleties only appear in the explicit form of SM.

It can also be convenient to use Gaussian gauge-fixing, with a gauge-breaking term in
the action of the form χα(ϕ)Mαβχβ(ϕ) with some non-degenerate matrix M . This can be
obtained by including terms linear in the auxiliary fields in Ψ:

Ψ = c′αχ
α(ϕ) + 1

2c
′
α(M−1)αβbβ , (2.11)

giving

S[ϕi, cα, c′α, bα] = SM
[
ϕi, cα;ϕ∗i = c′α

δRχα

δϕi
, c∗α = 0

]
+ χα(ϕ)bα + 1

2(M−1)αβbβbα . (2.12)

Here, bα is a simple auxiliary field appearing quadratically in the action. Eliminating it
using its own equation of motion yields the looked-after gauge-breaking term χαM

αβχβ .
However, in some applications one would like this term to contain a differential operator,
M = D. Then, the above procedure is problematic since the non-local object D−1 appears
in the gauge-fixing fermion (2.11) and the action (2.12).

It is well-known that gauge-breaking terms of this form lead to a third propagating
ghost, the Nielsen-Kallosh ghost [22, 23] (the first two ghosts being the usual Faddeev-
Popov ghosts cα and c′α). This was first described within this formalism, while maintaining
manifest locality throughout, by Batalin and Kallosh in reference [21] as we review shortly
now. The third ghost is nothing but the bα field, which stops being auxiliary and propagates
with kinetic operator D.

The trick is to use the freedom to do a canonical transformation, which preserves the
antibracket and maps solutions of the master equation to solutions, and only after that
replace the antifields using a gauge-fixing fermion. In the simple case where the gauge
condition χα only depends on the original fields ϕi, the canonical transformation reads

bα → b̃α = bα − χα(ϕ)

ϕ∗i → ϕ̃∗i = ϕ∗i + b∗α
δRχα

δϕi
. (2.13)

(the gauge condition χα is also allowed to depend on the ghost fields cα, c′α or bα, in
which case the canonical transformation is more complicated; see [21]), with other variables
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unchanged.3 This maps the non-minimal action (2.6) to

S̃NM = SM
[
ϕi, cα;ϕ∗i + b∗α

δRχα

δϕi
, c∗α

]
+ c′∗α (bα − χα(ϕ)) , (2.14)

which still satisfies the master equation since the transformation is canonical. Using the
gauge-fixing fermion

ΨG = 1
2c
′αDαβ(ϕ)

(
χβ(ϕ) + bβ

)
. (2.15)

now gives

SG ≡ S̃NM
[
ΦI ,Φ∗I = δΨG

δΦI

]
(2.16)

= SM
[
ϕi, cα; c′αDαβ

δRχβ

δϕi
+ 1

2c
′α δ

RDαβ
δϕi

(
χβ + bβ

)
(−1)εiεβ , 0

]
− 1

2Dαβ χ
βχα + 1

2Dαβb
βbα . (2.17)

This action contains the desired gauge-breaking term Dαβ χβχα, along with a quadratic
term in bα. This construction is most relevant when the operator Dαβ is field dependent:
then, bα is coupled to the other fields (including the ghosts cα and c′α) and cannot be
ignored in Feynman diagram computations.

2.2 Quantisation of the Rarita-Schwinger Lagrangian

As an example, we apply in this section the field-antifield method described above to the
quantisation of the free spin 3/2 field ψαµ (µ is a space-time index and α a spinor index).
We will use Dirac spinors to avoid dimension-dependent discussions of chirality and/or
reality conditions, but these can be included without difficulty. We are in flat Minkowski
spacetime here and in section 4. Our spinor conventions are as in the textbook [32].

The action and gauge invariances are

S0[ψ] = −
∫
dDx ψ̄µγ

µνρ∂νψρ , δψαµ = ∂µΛα , (2.18)

where the bar denotes the usual Dirac conjugate, ψ̄µ ≡ i(ψµ)†γ0. We will impose the gauge
condition

χ(ψ) ≡ γµψµ = 0 . (2.19)

In the minimal sector, there is the field ψαµ , the ghost cα corresponding to the gauge
parameter Λα, and their antifields ψ∗µα , c∗α. Notice that the antifields carry naturally an

3To check that this transformation is canonical, compute

ϕ̃∗i dϕ̃
i + b̃∗αd̃b

α =
(
ϕ∗i + b∗α

δRχα

δϕi

)
dϕi + b∗αd(bα − χα(ϕ)) = ϕ∗i dϕ

i + b∗αdb
α ,

which is the field-antifield analogue of the condition p′idq′i = pidq
i in classical mechanics. Another way is

to notice that this transformation is generated by F = b∗αχ
α(ϕ) via the antibracket, i.e. takes the form

ΦI → ΦI + (F,ΦI) , Φ∗I → Φ∗I + (F,Φ∗I) , F = b∗αχ
α(ϕ) .
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ψαµ cα c′α bα ψ∗µα c∗α c′∗α b∗α

gh 0 1 −1 0 −1 −2 0 −1

Table 2. The ghost numbers of the fields and antifields appearing in the quantisation of the Rarita-
Schwinger Lagrangian.

index down, so they transform as conjugate spinors under Lorentz transformations. The
minimal BV action is

SM =
∫
dDx

(
−1

2 ψ̄µγ
µνρ∂νψρ + ψ∗µα ∂µc

α + c.c.
)

(2.20)

=
∫
dDx

(
−ψ̄µγµνρ∂νψρ + ψ∗µ∂µc+ (∂µc̄)ψ̄∗µ

)
, (2.21)

where in the second line we suppressed the spinor indices and introduced the notation

ψ̄∗µ ≡ iγ0(ψ∗µ)† (2.22)

for the ‘Dirac conjugate’ of a conjugate (index-down) spinor. With this notation, we have
¯̄χ = +χ for any spinor or conjugate spinor χ, and the property (ab)† = +b̄ā for any
conjugate spinor a and spinor b.

For the non-minimal sector, one adds one pair of spinors (c′α, bα) and their antifields.
The ghost numbers are given in table 2. Grassmann parity is ghost number plus one
modulo two, since we have a fermionic theory and take the convention where degrees add
up when determining signs. In particular, c and c′ are bosonic (commuting) spinors, while
b has the correct spin-statistics. The non-minimal action, adding the trivial pair, is simply

SNM = SM +
∫
dDx

(
c′∗α b

α + c.c.
)

(2.23)

=
∫
dDx

(
−ψ̄µγµνρ∂νψρ + ψ∗µ∂µc+ (∂µc̄)ψ̄∗µ + c′∗b+ b̄c̄′∗

)
. (2.24)

Delta-function gauge-fixing. For δ-function gauge-fixing, one takes the gauge-fixing
fermion

Ψδ =
∫
dDx

(
c̄′χ(ψ) + c.c.

)
=
∫
dDx

(
c̄′γµψµ − ψ̄µγµc′

)
, (2.25)

which gives the gauge-fixed action

Sδ[ΦI ] = SNM
[
ΦI ,Φ∗I = δΨδ

δΦI

]
(2.26)

=
∫
dDx

(
−1

2 ψ̄µγ
µνρ∂νψρ + c̄′ γµ∂µc+ b̄γµψµ + c.c.

)
(2.27)

=
∫
dDx

(
−ψ̄µγµνρ∂νψρ + c̄′ γµ∂µc+ c̄ γµ∂µc

′ + b̄γµψµ − ψ̄µγµb
)
. (2.28)

The auxiliary field b enforces the gauge-fixing condition γµψµ = 0. Using this condition,
the kinetic term for ψµ reduces to −ψ̄µ/∂ψµ.
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Gaussian gauge-fixing. We now want to produce the Gaussian gauge-breaking term

ξ χ̄(ψ) /∂ χ(ψ) = −ξ ψ̄µγµγνγρ∂νψρ (2.29)

with an arbitrary parameter ξ 6= 0. As indicated above, this is done by the canonical
transformation

b→ b− χ(ψ) , ψ∗µ → ψ∗µ + b∗
δχ

δψµ
= ψ∗µ + b∗γµ (2.30)

(and similarly for the Dirac conjugates), which gives the non-minimal action

S̃NM =
∫
dDx

(
−1

2 ψ̄µγ
µνρ∂νψρ + (ψ∗µ + b∗γµ)∂µc+ c′∗(b− χ) + c.c.

)
. (2.31)

Eliminating the antifields by means of the gauge-fixing fermion

ΨG = −ξ2

∫
dDx c̄′ /∂ (χ(ψ) + b) + c.c. (2.32)

then produces

SG =
∫
dDx

(
−ψ̄µγµνρ∂νψρ + ξ χ̄/∂χ− ξ

(
c̄′�c+ c̄�c′

)
− ξ b̄/∂b

)
. (2.33)

The field b is now a propagating spin 1/2 field. Note that the ghosts c, c′ count for four,
since they come with the second-order � = /∂/∂ as kinetic operator.4 The field b, being of
ghost number zero, has the correct spin-statistics. This gives indeed the requisite number
of ghosts: 3 = 4− 1.

In the action (2.33), the Nielsen-Kallosh ghost b is decoupled. However, in supergravity
the operator /∂ appearing in the gauge-breaking term is covariantised and contains the
vielbein and the spin-connection. Then, the field b couples to the other fields and ghosts
of the theory [21–23].

3 The third ghost in reducible theories

In this section, we present a simple generalisation of the procedure of [21] reviewed in
section 2.1 to the reducible case, i.e. in the presence of ‘gauge-for-gauge’ transformations.
This gives a mechanism within the BV formalism detailing the appearance of a third ghost
in quadratic gauges for an arbitrary reducible gauge theory.

3.1 First-stage reducible

We consider an action S0[ϕi] invariant under m gauge transformations δϕi = RiαΛα, which
themselves are invariant under n reducibility (‘gauge-for-gauge’) transformations δΛα =
Zαa λ

a. This is equivalent to the identities

δRS0
δϕi

Riα = 0 , RiαZ
α
a = 0 . (3.1)

4This can be ‘undoubled’ with a well-known trick (cf. for example the textbook [33], exercise VIA4.2).
Introduce a Lagrange multiplier λ, of ghost number −1, to impose the equation /∂c = f with f a new spinor
of ghost number 1. This gives the equivalence c̄′�c ∼ c̄′/∂f+ λ̄(/∂c−f). This is diagonalised by the non-local
triangular change of variables c→ c+ /∂

−1
f , with final result c̄′�c ∼ c̄′/∂f + λ̄/∂c featuring four fields with

a first-order Lagrangian instead of two with a second-order one.
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ϕi

Cα

ca

C ′α

ηa c′a

bα

πaπ′a

Figure 1. The pyramid of ghosts fields in the first-stage reducible case [4]. The fields linked by a
thick line constitute the minimal BV sector; an arrow a → b indicates that the field b (along with
its partner in a trivial pair) is introduced to fix the gauge freedom of a. The second pyramid shows
the partners of the non-minimal fields of the first pyramid.

ϕi Cα C ′α ca c′a ηa bα πa π′a

gh 0 1 −1 2 −2 0 0 −1 1
ε εi εα + 1 εα + 1 εa εa εa εα εa + 1 εa + 1

Table 3. Ghost numbers and Grassmann parities of the various fields in the first-stage reducible
case. Antifields have gh(Φ∗I) = − gh(ΦI)− 1 and opposite parity, ε(Φ∗I) = ε(ΦI) + 1.

We assume that there are no further reducibilities. The number of independent gauge re-
dundancies in the fields ϕi is therefore equal m−n. Accordingly, the gauge-fixing condition
χα(ϕ) = 0 must only contain m−n independent conditions. Since it carries a gauge index
ranging from 1 to m, we will take it to satisfy n constraints:

Xaα χ
α(ϕ) = 0 (3.2)

with Xaα of maximal rank.
In the minimal BV sector, we therefore have the original fields ϕi, the ghost Cα

corresponding to the gauge parameter Λα, and the ghost-for-ghost ca corresponding to
the reducibility parameter λa, along with their antifields. The proper solution SM to the
master equation starts as

SM[ϕi, Cα, ca;ϕ∗i , C∗α, c∗a] = S0[ϕ] + ϕ∗iR
i
αC

α + C∗αZ
α
a c

a + . . . . (3.3)

To build the non-minimal action, one introduces three extra trivial pairs [4]: (C ′α, bα) to
fix the gauge freedom of ϕi, but also two more, (c′a, πa) and (ηa, π′a), to fix the gauge
freedom of the ghosts Cα and C ′α themselves. This is depicted in figure 1. Their ghost
numbers and Grassmann parities can be found in table 3.

The non-minimal action is then

SNM = SM + C ′∗α b
α + c′∗a π

a + η∗aπ
′a . (3.4)

Delta function gauge-fixing. This case is well-known [4]: simply take the gauge-fixing
fermion

Ψδ = C ′αχ
α(ϕ) + c′aωaαC

α + ηaσαaC
′
α , (3.5)

– 9 –
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where ω and σ are of maximal rank and we take the pair (C ′α, bα) to have indices down for
this paragraph only. The gauge-fixed action then reads

Sδ ≡ SNM
[
ΦI ,Φ∗I = δΨδ

δΦI

]
(3.6)

= SM
[
ϕi, Cα, ca;ϕ∗i = C ′α

δRχα

δϕi
, C∗α = c′aωaα, c

∗
a = 0

]
+ (χα(ϕ) + ηaσαa ) bα + ωaαC

απa + σαaC
′
απ
′a . (3.7)

In this action, the ghosts Cα and C ′α are both gauge fields. Their gauge invariances are
fixed by the 2m gauge conditions ωaαCα = 0 and σαaC

′α = 0 imposed by the auxiliary
fields πa and π′a. The field bα is also auxiliary and imposes the equation

χα(ϕ) + ηaσαa = 0 . (3.8)

Among these m conditions, m−n fix the gauge invariance of the original fields ϕi, and the
remaining n set the extra ghost η to zero.

Gaussian gauge-fixing. Now, we would like to achieve the gauge-fixing term Dαβχβχα.
As before, the field bα will become propagating if D is a differential operator. However, an
important difference with the irreducible case is that here bα will be a constrained field,
satisfying the same constraint (3.2) as the gauge condition.

One starts with the same canonical transformation (2.13) as in the irreducible case:

bα → b̃α = bα − χα(ϕ)

ϕ∗i → ϕ̃∗i = ϕ∗i + b∗α
δRχα

δϕi
(3.9)

with other fields unchanged. We take the gauge-fixing fermion

ΨG = 1
2C
′αDαβ(ϕ)

(
χβ(ϕ) + bβ

)
+ c′aωaαC

α + ηaσaαC
′α , (3.10)

which is of the same form as Ψδ, with only the first term modified along the lines of the
irreducible case. Eliminating the antifields using ΨG then gives

SG ≡ S̃NM
[
ΦI ,Φ∗I = δΨG

δΦI

]
(3.11)

= SM
[
ϕi, Cα, ca;C ′αDαβ

δRχβ

δϕi
+ 1

2C
′α δ

RDαβ
δϕi

(
χβ + bβ

)
(−1)εiεβ , c′aωαa, 0

]

− 1
2Dαβχ

βχα + 1
2Dαβb

βbα (3.12)

+ ηaσaα(bα − χα) + πaωaαC
α + π′aσaαC

′α .

Because of the constraint (3.2) satisfied by χα(ϕ), there is a privileged choice for the matrix
σaα: simply take σ = X. This gets rid of the unwanted term ηaσaαχ

α in the last line, and
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one remains with

SG =SM
[
ϕi, Cα, ca;C ′αDαβ

δRχβ

δϕi
+ 1

2C
′α δ

RDαβ
δϕi

(
χβ + bβ

)
(−1)εiεβ , c′aωαa, 0

]
− 1

2Dαβχ
βχα + 1

2Dαβb
βbα + πaωaαC

α + π′aXaαC
′α + ηaXaαb

α , (3.13)

featuring the desired gauge-breaking term Dαβχβχα. Just as in the irreducible case, the
field bα is propagating whenever D contains derivatives, and couples to the other fields and
ghosts if D is field-dependent. This generalises a result of [21] to the reducible case.

In the action (3.13), the auxiliary fields πa and π′a impose the gauge conditions

ωaαC
α = 0 , XaαC

′α = 0 (3.14)

on the ghost fields Cα and C ′α, as in the delta-function gauge-fixing case. On the other
hand, ηa plays here a very different role as it did in (3.7): it is now a Lagrange multiplier
for the constraint

Xaα b
α = 0 (3.15)

on the field bα. Notice how both C ′α and bα satisfy the same constraint as χα(ϕ) in this
gauge-fixing scheme.

3.2 Higher stage reducibility

This procedure generalises straightforwardly to theories with higher degree of reducibility.
For concreteness, we write out the second-stage reducible case here. So, we consider an
action S0[ϕi] with second-stage reducible gauge symmetries:

δϕi = Riα0Λα0 , δΛα0 = Zα0
α1λ

α1 , δλα1 = zα1
α2ε

α2 (3.16)

with α0 = 1, . . . ,m, α1 = 1, . . . , n and α2 = 1, . . . , r. Invariance under these transforma-
tions is equivalent to the relations

δRS0
δϕi

Riα0 = 0 , Riα0Z
α0
α1 = 0 , Zα0

α1z
α1
α2 = 0 , (3.17)

and we assume that there are no further reducibilities. The gauge condition χα0(ϕ) = 0
must fix the m−n+r independent gauge transformations: we take it to satisfy constraints
Xα1α0χ

α0 = 0 as in the previous case, but here with a degenerate matrix X of rank n− r.
In the minimal BV sector, there are now three generations of ghosts: Cα0

0 , Cα1
1 and

Cα2
2 . The first few terms in the minimal action are simply

SM[ϕi, Cα0
0 , Cα1

1 , Cα2
2 ; ϕ∗i , C∗0α0

, C∗1α1
, C∗2α2

] (3.18)

= S0[ϕi] + ϕ∗iR
i
α0C

α0
0 + C∗0α0

Zα0
α1C

α1
1 + C∗1α1

zα1
α2C

α2
2 + . . . .

For gauge-fixing, we add the usual extra pairs, as in figure 2. The non-minimal action,
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ϕi

Cα0
0

Cα1
1

Cα2
2

C ′0
α0

ηα1

ζ ′α2

C ′1
α1

C ′2
α2ζα2

bα0

π1
α1

πα2
2

π′1
α1

βα2 π′2
α2

Figure 2. The pyramids of ghost fields in the second-stage reducible case [4]. This should be read
in the same way as figure 1.

after the canonical transformation (3.9), then reads

S̃NM = SM
[
ϕi, Cα0

0 , Cα1
1 , Cα2

2 ; ϕ∗i + b∗α0

δRχα0

δϕi
, C∗0α0

, C∗1α1
, C∗2α2

]
(3.19)

+ C ′0
∗
α0

(bα0 − χα0(ϕ)) + C ′1
∗
α1
π1
α1 + η∗α1π

′
1
α1

+ C ′2
∗
α2
π2
α2 + ζ∗α2π

′
2
α2 + ζ ′

∗
α2β

α2 .

We use the gauge-fixing fermion

ΨG = 1
2C
′
0
α0Dα0β0(ϕ)(χβ0(ϕ) + bβ0) + C ′1

α1(ω1)α1α0C0
α0 + C ′2

α2(ω2)α2α1C1
α1

+ ηα1Xα1α0C
′
0
α0 + ζα2(σ2)α2α1C

′
1
α1 + ζ ′α2(σ′2)α2α1η

α1 , (3.20)

where ω1 and X are of rank n−r and ω2, σ2 and σ′2 are of maximal rank r. The gauge-fixed
action is then

SG = SM
[
ϕi, Cα0

0 , Cα1
1 , Cα2

2 ;

C ′0
α0Dα0β0

δRχβ0

δϕi
+ 1

2C
′
0
α0 δ

RDα0β0

δϕi

(
χβ0 + bβ0

)
(−1)εiεβ0 ,

C ′1
α1(ω1)α1α0 , C

′
2
α2(ω2)α2α1 , 0

]
− 1

2Dα0β0χ
β0χα0 + 1

2Dα0β0b
β0bα0 + ηα1(Xα1α0b

α0 + (σ′2)α2α1β
α2)

+ ((ω1)α1α0C0
α0 + ζα2(σ2)α2α1)π1

α1 + (Xα1α0C
′
0
α0 + ζ ′α2(σ′2)α2α1)π′1

α1

+ (ω2)α2α1C1
α1π2

α2 + (σ2)α2α1C
′
1
α1π′2

α2 , (3.21)

with the same structure as (3.13) and where we already used the constraint Xα1α0χ
α0 = 0.

The auxiliary fields ηα1 , π1
α1 and π′1

α1 impose the constraints

Xα1α0b
α0 + (σ′2)α2α1β

α2 = 0 (3.22)
(ω1)α1α0C0

α0 + (σ2)α2α1ζ
α2 = 0 (3.23)

Xα1α0C
′
0
α0 + (σ′2)α2α1ζ

′α2 = 0 (3.24)
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which give n−r constraints on bα0 , C0
α0 , C ′0

α0 and imply the vanishing of the extra ghosts,
βα2 = ζα2 = ζ ′α2 = 0. The fields π2

α2 and π′2
α2 impose the gauge-fixing conditions

(ω2)α2α1C1
α1 = 0 , (σ2)α2α1C

′
1
α1 = 0 . (3.25)

4 Free fermionic p-form fields

In this section, we apply the BV formalism to the quantisation of antisymmetric tensor
spinors. Since fermionic fields satisfy first-order equations of motion and the action (1.2)
is already in Hamiltonian form, the Hamiltonian quantisation methods of [34–36] would
have been more economical. The third ghost has also been discussed in that formalism
in reference [37]. However, the approach we use here has the advantage of preserving
manifest covariance.

4.1 Action, gauge symmetries and gauge conditions

The action for a fermionic p-form field, that is, a tensor-spinor ψαµ1µ2...µp totally antisym-
metric in its spacetime indices, was already presented in the introduction: it is given
by [1, 2]

S0[ψ] = −(−1)
p(p−1)

2

∫
dDx ψ̄µ1µ2...µp γ

µ1µ2...µpνρ1ρ2...ρp ∂νψρ1ρ2...ρp . (4.1)

Due to the rank 2p+ 1 antisymmetric gamma matrix, it is manifestly invariant under the
gauge symmetries

δψαµ1µ2...µp = p ∂[µ1Λ(p−1)α
µ2...µp] , (4.2)

where the gauge parameter Λ(p−1) is an arbitrary antisymmetric tensor-spinor of rank
p− 1. This system is (p− 1)-stage reducible: (4.2) comes with the chain of gauge-for-gauge
transformations

δΛ(p−1)α
µ2...µp = (p− 1) ∂[µ2Λ(p−2)α

µ3...µp] (4.3)

δΛ(p−2)α
µ3...µp = (p− 2) ∂[µ3Λ(p−3)α

µ4...µp] (4.4)
...

δΛ(1)α
µ = ∂µΛ(0)α , (4.5)

where each parameter Λ(k) is a rank-k antisymmetric tensor-spinor. In differential form
notation with a spectator spinor index, this is

δψ = dΛ(p−1) , δΛ(p−1) = dΛ(p−2) , . . . , δΛ(1) = dΛ(0) . (4.6)

The equations of motion coming from the action (4.1) read

γµ1...µpν1...νp+1 Hν1...νp+1 = 0 , Hµ1...µp+1 ≡ (p+ 1) ∂[µ1ψµ2...µp+1] , (4.7)

where H = dψ is the gauge-invariant field strength of the field ψ. Equivalently, they can
be written as the single-gamma-trace equation

γµ1Hµ1µ2...µp+1 = 0 . (4.8)
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These equations propagate the correct representation of the massless little group: the rank
p antisymmetric tensor-spinor of SO(D − 2) satisfying a gamma-tracelessness condition.
Such a tensor-spinor identically vanishes for p ≥ D/2. This is consistent with the covariant
action (4.1): that action identically vanishes when 2p+1 > D because of the antisymmetric
gamma matrix and, for 2p + 1 = D, the equations of motion are equivalent to H[ψ] = 0
which implies that ψ is pure gauge. So, the theory described by (4.1) has propagating
degrees of freedom only for 2p < D, and we will assume this inequality for the remainder
of this section.

We now turn to the gauge condition that we will impose on the field ψαµ1µ2...µp . It is
given by an equation of the form

χαµ1...µp−1(ψ) = 0 , (4.9)

with the same index structure as the gauge parameter, that must only contain as many
independent conditions as there are independent gauge transformations. That number is

Np−1 −Np−2 +Np−3 −Np−4 + · · · ±N0 (4.10)

where Nk is the number of components of an antisymmetric tensor-spinor of rank k and
where the final sign depends on the parity of p (the precise formula for Nk is irrelevant for
the sake of the argument). One way to realise this is to take a gauge condition χαµ1...µp−1(ψ)
that satisfies Np−2 − Np−3 + Np−4 − · · · independent constraints; this can work if the
operator X in the constraint equations Xα

µ1...µp−2(χ) = 0 (cf. section 3) itself satisfies
Np−3 −Np−4 + · · · independent constraints, etc. This reasoning shows that it is sufficient
to define operators T (k) mapping fermionic k-forms to (k−1)-forms such that the nilpotency
condition

T (k) ◦ T (k+1) = 0 (4.11)
holds and exhausts the constraints satisfied by T (k+1) (extra constraints would of course
upset the counting above). Then, the gauge condition

χ(ψ) ≡ T (p)(ψ) = 0 (4.12)

satisfies T (p−1)(χ) = 0 and gives the correct number of independent conditions. From the
analysis of the Rarita-Schwinger case (p = 1), eq. (2.19), we take

T (1)(ψ) = γµψµ (4.13)

as a suitable starting point. The next operators can then be determined recursively using
the nilpotency condition: the first few read explicitly

T (2)(ψ)µ = γνψµν −
1
D
γµγ

νρψνρ (4.14)

T (3)(ψ)µν = γρψµνρ + 2
D − 2γ[µγ

ρσψν]ρσ (4.15)

T (4)(ψ)µνρ = γσψµνρσ −
3

D − 4γ[µγ
στψνρ]στ −

2
D(D − 2)(D − 4)γµνργ

στκλψστκλ (4.16)

T (5)(ψ)µνρσ = γτψµνρστ + 4
D − 6γ[µγ

τκψνρσ]τκ

+ 8
(D − 2)(D − 4)(D − 6)γ[µνργ

τκλζψσ]τκλζ . (4.17)
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4.2 Quantisation of the fermionic 2-form

In this section, we carry out the quantisation of the fermionic 2-form explicitly along the
lines explained in section 3.1, both in delta-function gauge-fixing and in the Gaussian
gauge-fixing where an extra Nielsen-Kallosh ghost appears. The generalisation to higher
form degrees is direct.

The action, gauge transformations and reducibilities read

S0[ψ] =
∫
dDx ψ̄µνγ

µνρστ∂ρψστ , δψαµν = 2 ∂[µΛαν] , δΛαµ = ∂µλ
α . (4.18)

The gauge parameter Λ has n = Ds components and λ has m = s components, for a
total of n−m = s(D − 1) independent gauge symmetries, where s is the dimension of the
spinor representation at hand. (In this section as in section 2.2, we consider Dirac spinors
so s = 2[D/2], but this counting is of course also valid with when reality and/or chirality
conditions are imposed on the fields.) This action was used in the papers [9, 10] as part
of a complete free action principle for the exotic N = (4, 0) and N = (3, 1) multiplets
in D = 6.

Accordingly, the minimal spectrum in the Batalin-Vilkovisky formalism consists of the
fields and antifields

{ψαµν , Cαµ , cα , ψ∗µνα , C∗µα , c∗α} , (4.19)

where Cαµ is the ghost associated to the Λαµ gauge parameter and cα is the ghost-for-ghost
associated to the reducibility parameter λα. The minimal BV master action reads

SM =
∫
dDx

(1
2 ψ̄µνγ

µνρστ∂ρψστ + 2ψ∗µν∂µCν + C∗µ∂µc+ c.c.
)
. (4.20)

Note that antifields transform naturally as a conjugate spinor. The non-minimal action,
with the usual trivial pairs, is

SNM = SM +
∫
dDx

(
C ′∗µbµ + c′∗π + η∗π′ + c.c.

)
. (4.21)

Both are ghost number zero functionals satisfying the master equation

(SM, SM) = 0 = (SNM, SNM) . (4.22)

We will use the redundant gauge condition

χµ(ψ) ≡ γνψµν −
1

D − 2γµνρψ
νρ

= 0 , (4.23)

which satisfies the constraint
γµχµ(ψ) = 0 (4.24)

identically and hence gives the correct number n −m = s(D − 1) of gauge conditions to
fix the independent gauge transformations. In the notation of the previous section, this is

– 15 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
8

χ = D
D−2T

(1), with a convenient rescaling. To understand this gauge condition better, it is
useful to write the different trace components of ψµν explicitly:

ψµν = ψ̂µν + (γµσν − γνσµ) + γµνρ (4.25)

where ψ̂µν and σµ are gamma-traceless, γνψ̂µν = 0 = γµσµ. A short computation then
shows that the condition χµ(ψ) = 0 is equivalent to σµ = 0, i.e. setting the spin 3/2
component σµ to zero but not the spin 1/2 part ρ, indeed removing s(D − 1) components
of ψµν . The same is valid more generally for p-forms with the gauge conditions of the
previous section: T (p)(ψ) = 0 kills all gamma-traceless components of rank p − 1, p − 3,
etc. This is consistent with the counting (4.10) of independent gauge transformations.

Delta-function gauge-fixing. The gauge-fixing fermion is taken as

Ψδ =
∫
dDx

(
C̄ ′µ χ

µ(ψ) + c̄′γµCµ + η̄γµC ′µ + c.c.
)
, (4.26)

leading to

Sδ =
∫
dDx

(1
2 ψ̄µνγ

µνρστ∂ρψστ + 2 C̄ ′σ δχσ
δψµν

∂µCν + c̄′/∂c

+ b̄µ (χµ(ψ)− γµη) + π̄γµCµ + π̄′γµC ′µ + c.c.
)

(4.27)

where
δχσ
δψµν

= δ[µ
σ γ

ν] − 1
D − 2γσ

µν . (4.28)

The auxiliary fields enforce the gauge conditions

χµ(ψ)− γµη = 0 , γµCµ = 0 , γµC ′µ = 0 . (4.29)

Contracting the first condition with γµ gives η = 0 owing to the constraint satisfied by
χµ(ψ), and then it also implies the gauge condition χµ(ψ) = 0.

Using this gauge condition, the kinetic term for ψ can be simplified using the decom-
position (4.25) with σµ = 0, which gives

1
2 ψ̄µνγ

µνρστ∂ρψστ = − ¯̂
ψµν/∂ψ̂µν −

1
2(D − 1)(D − 2)(D − 3)(D − 4) ρ̄/∂ρ . (4.30)

The gamma-tracelessness conditions on Cµ and C ′µ can also be used to reduce their kinetic
term to

2 C̄ ′σ δχσ
δψµν

∂µCν = − 2D
D − 2 C̄

′µ/∂Cµ . (4.31)

Rescaling the fields and using an auxiliary field dµ to impose the gamma-tracelessness of
ψ̂µν , the final result can be written as

Sδ =
∫
dDx

(
− 1

2
¯̂
ψµν/∂ψ̂µν −

1
2 ρ̄
/∂ρ+ C̄ ′µ/∂Cµ + c̄′/∂c

+ d̄µγνψ̂µν + π̄γµCµ + π̄′γµC ′µ + c.c.
)
. (4.32)
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The spectrum of dynamical fields is as follows: one gamma-traceless 2-form, two gamma-
traceless one-forms and three zero-forms, with alternating Grassmann parity (hence spin-
statistics) at every stage. In terms of gamma-traceful fields, this formally corresponds to
1, 3 and 5 fields respectively. The same pattern appears for higher degree: one gets 1, 2, 3,
4, . . . gamma-traceless forms of descending degree and alternating parity, which effectively
corresponds to 1, 3, 5, 7, . . . gamma-traceful fields. This is as expected in a reducible
fermionic theory [38].

Gaussian gauge-fixing. We now would like to achieve a gauge-fixing term of the form
χ̄µDµνχν , where Dµν is some first-order differential operator. Using only gamma matrices,
the flat metric ηµν and one space-time derivative, we find using the gamma-tracelessness
of χµ that the only independent possibility for Dµν is the very simple

Dµν = ηµν/∂ . (4.33)

As indicated in section 3.1, we start with the canonical transformation

bµ → bµ − χµ(ψ) , ψ∗µν → ψ∗µν + b∗σ
δχσ
δψµν

, (4.34)

which gives the new non-minimal action

S̃NM =
∫
dDx

(1
2 ψ̄µνγ

µνρστ∂ρψστ + 2
(
ψ∗µν + b∗σ

δχσ
δψµν

)
∂µCν + C∗µ∂µc

+ C ′∗µ(bµ − χµ) + c′∗π + η∗π′ + c.c.
)
, (4.35)

and we use the gauge-fixing fermion

ΨG =
∫
dDx

(
−ξ2 C̄

′σ/∂ (bσ + χσ) + c̄′γµCµ + η̄γµC ′µ + c.c.
)

(4.36)

where ξ 6= 0 is an arbitrary parameter. This gives the gauge-fixed action

SG =
∫
dDx

(1
2 ψ̄µνγ

µνρστ∂ρψστ − 2ξ C̄ ′σ /∂ δχσ
δψµν

∂µCν + c̄′/∂c− ξ

2 b̄µ
/∂ bµ

+ ξ

2 χ̄µ
/∂ χµ + η̄γµ(bµ + χµ) + π̄γµCµ + π̄′γµC ′µ + c.c.

)
. (4.37)

The term η̄γµχµ(ψ) in this action identically vanishes thanks to the constraint satisfied by
χµ. The auxiliary fields η, π and π′ impose the gamma-tracelessness of Cµ, C ′µ and bµ.

Using the gamma-tracelessness conditions on the ghosts Cµ and C ′µ, their kinetic term
can be simplified as

−2ξ C̄ ′σ /∂ δχσ
δψµν

∂µCν = 2ξD
D − 2 C̄

′
µ�C

µ (4.38)
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The final result is then, after rescaling some of the fields,

SG =
∫
dDx

[
ψ̄µνγ

µνρστ∂ρψστ + ξ χ̄µ(ψ) /∂ χµ(ψ) (4.39)

+ (C̄ ′µ�Cµ + C̄µ�C
′µ)− b̄µ /∂ b

µ + (c̄′/∂c+ c̄/∂c′)

+ (η̄γµbµ − b̄µγµη) + (π̄γµCµ − C̄µγµπ) + (π̄′γµC ′µ − C̄ ′µγµπ′)
]

with the desired gauge-breaking term. The field bµ has a kinetic term and is a propagating
spin 3/2 field: it is the Nielsen-Kallosh ghost for the fermionic two-form. As in the Rarita-
Schwinger case, the ghosts Cµ and C ′µ have a second-order kinetic term and hence count
for four. The field bµ has the correct spin-statistics and there are effectively three spin 3/2
ghosts, as expected.

BRST transformations. The gauge-fixed actions above are invariant under a nilpotent
BRST transformation of ghost number +1, and the extra terms in the action (gauge-
breaking terms and ghosts terms) are BRST-exact. This comes very naturally out of the
field-antifield formalism; we refer to the reviews [30, 31] for a general discussion.

In the delta-function gauge-fixing case, the action of the BRST differential s̄ on a
functional A depending on the fields ΦI of the non-minimal sector (but not on the antifields
Φ∗I) is given by

s̄A = (A,SNM)
∣∣∣
Φ∗= δΨδ

δΦ
= δRA

δΦI

δLSNM

δΦ∗I

∣∣∣∣∣
Φ∗= δΨδ

δΦ

, (4.40)

where the non-minimal action is in eq. (4.21). Notice, however, that (4.21) is linear in the
antifields:5 therefore, δLSNMδΦ∗I

is antifield-independent and the definition of s is in fact does
not depend on the gauge-fixing fermion. On the fields, s̄ explicitly reads

s̄ψµν = 2∂[µCν] , s̄Cµ = ∂µc , s̄C ′µ = bµ , s̄c′ = π , s̄η = π′ , s̄(other) = 0 . (4.41)

The nilpotency
s̄ 2 = 0 (4.42)

is immediate and holds off-shell. On ψµν (and Cµ due to the reducibility), s̄ takes of
course the familiar form ‘gauge transformations with parameter replaced by ghost’. The
gauge-fixed action (4.27) can then be written as

Sδ = S0 + s̄Ψδ , (4.43)

with S0 the original action (4.18) and Ψδ the gauge-fixing fermion (4.26). This can be
checked explicitly using formulas (4.41), or proven more abstractly as follows: since SNM

is linear in antifields, we have SNM = S0 + Φ∗I δ
LSNM

δΦ∗I
. Therefore,

Sδ = SNM
[
ΦI ,Φ∗I = δΨδ

δΦI

]
= S0 + δΨδ

δΦI

δLSNM

δΦ∗I
= S0 + s̄Ψδ . (4.44)

5Terms of higher order in antifields would be expected in a putative interacting theory with a more
involved gauge structure, e.g. if the gauge algebra were open.
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BRST invariance
s̄ Sδ = 0 (4.45)

of the gauge-fixed action then follows from the gauge-invariance of S0 (indeed, s̄S0 = 0 is
equivalent to its gauge invariance since it only depends on ψµν) and s̄2 = 0.

We now do the same for the Gaussian gauge-fixing case. Even though (4.40) doesn’t
depend on the choice of gauge-fixing fermion, in the Gaussian case the non-minimal action
from which we started is different. The BRST transformation in this case is then defined as

s̃A = (A, S̃NM) = δRA

δΦI

δLS̃NM

δΦ∗I
, (4.46)

with S̃NM given in (4.35). Again, this definition is valid because S̃NM is linear in antifields,
so no antifields appear on the right-hand-side of (4.46); otherwise, they should be eliminated
using the gauge-fixing fermion ΨG. It takes the explicit form

s̃ ψµν = 2 ∂[µCν] , s̃ Cµ = ∂µc , s̃ C ′µ = bµ − χµ

s̃ bµ = 2 δχµ
δψρσ

∂ρCσ , s̃ c′ = π , s̃ η = π′ , s̃ (other) = 0 . (4.47)

Notice that s̃ bµ = s̃ χµ. The properties

s̃ 2 = 0 , SG = S0 + s̃ΨG , s̃ SG = 0 (4.48)

then follow straightforwardly.

Propagators. We finish this section by exhibiting the propagators for ψµν in both gauge-
fixing schemes. The propagator Sµνστ (p) is obtained by solving

Kρκ
µν(p)Sµνστ (p) = δρκστ (4.49)

where Kρκ
µν is the kinetic operator of ψµν in momentum space.

In the delta-function gauge-fixing case (4.32), the kinetic part of the action for the
gamma-traceless component ψ̂µν of ψµν is simply −/∂. The propagator for that component
is therefore given by, including Feynman’s iε prescription,

Sµνστ (p) = −Pµνκλ
/p

p2 − iε
Pκλστ , (4.50)

where P is the projector onto the gamma-traceless subspace

Pµνρσ = δµνρσ + 2
D − 2γ

[µδ
ν]
[ργσ] −

1
(D − 1)(D − 2)γ

µνγρσ . (4.51)

It is antisymmetric in both pairs of indices, satisfies γµPµνρσ = 0 = Pµνρσγρ and
PµνκλPκλρσ = Pµνρσ. The other component of ψµν is ρ, which is simply a Dirac field
with the usual propagator −/p/(p2 − iε).

In the Gaussian gauge-fixing case, the kinetic operator appearing in (4.39) reads, in
momentum space,

Kρκ
µν(p) = γρκλµνpλ − ξ

(
δ

[ρ
λ γ

κ] + 1
D − 2γλ

ρκ
)
/p

(
δλ[µγν] −

1
D − 2γ

λ
µν

)
. (4.52)
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We find the result

Sµνστ (p) = 1
p2 − iε

1
(D − 4)

[
− 1

2(D − 4)δµνστ /p− 2
(
p[µδ

ν]
[σγτ ] + γ[µδ

ν]
[σpτ ]

)
+ γ[µδ

ν]
[σ/pγτ ]

+ 2
D − 2

(
p[µγν]γστ + γµνγ[σpτ ]

)
+ 1

2(D − 3)γ
µν
/pγστ

+ 4
(D − 2)

(
1 + (D − 4)[(D − 2)2 + 4]

D2ξ

)
p[µγν] /p

p2 γ[σpτ ]

+ 4
(

1 + (D − 4)(D − 2)2

D2ξ

)
p[µδ

ν]
[σpτ ]

/p

p2

]
. (4.53)

5 Gravitational anomalies

In this section, we compute the gravitational anomalies for chiral fermionic p-forms in
D = 4m + 2 dimensions using the Atiyah-Singer index theorem [24–29]. More precisely,
we will compute the anomaly polynomial as the D + 2 form part of the index density of a
Dirac operator,

ÎD+2 = [Ind( /D)]D+2 . (5.1)

The actual anomaly, which is a D-form, can be recovered from ÎD+2 by the method of
descent (we refer to the review [39] for further details).

As mentioned in the introduction, the computations of this section only rely on the
spectrum of ghosts and they therefore apply to any theory with the same structure (4.6)
of gauge transformations and reducibilities, whether or not it has a kinetic term of the
form (4.1). For this reason, we will also consider in this section fermionic p-forms with 2p ≥
D, which carry no degrees of freedom. For such fields, the action (4.1) vanishes identically,
but one could nevertheless imagine the existence of topological models in which they are
coupled to other fields while still having the same structure of gauge transformations and
reducibilities; our computations would then be applicable to such models. The prime
example of this case is the gravitino in D = 2, which doesn’t have a Rarita-Schwinger
kinetic term and carries no degree of freedom, but for which we nevertheless reproduce the
classic result of [26].

For definiteness, we take the field to be of positive chirality,

γ∗ψµ1µ2...µp = +ψµ1µ2...µp , (5.2)

where γ∗ is the usual chirality matrix. This then implies definite chiralities for all the other
fields appearing in the gauge-fixed actions: these are found by simply requiring that no
term in the gauge-fixed action vanish, remembering that a term of the form ψ̄1γ

µ1...µnψ2
is non-zero when both ψ1 and ψ2 have the same chirality and n is odd, or when ψ1 and ψ2
have opposite chiralities and n is even. For example, the chiralities in the chiral two-form
case are displayed in table 4.

We work in this section with a (spin, orientable) manifold M of Euclidean signature
(for a detailed account of the continuation from Minkowskian to Euclidean signature, see
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ψµν ψ̂µν ρ Cµ C ′µ c c′ bµ η dµ π π′

Sδ chirality + + + + + + + + + + + +
SG chirality + + − + + − − + −

Grassmann parity 1 1 1 0 0 1 1 1 1 1 0 0

Table 4. The chirality of the various fields appearing in the gauge-fixed actions (4.32) and (4.39)
for the chiral fermionic two-form. Notice that it can depend on the gauge-fixing scheme. Grassmann
parity is also included; even fields have abnormal spin-statistics.

e.g. [39]). The space of fermionic p-forms onM will be written as C∞(S⊗Λp T ∗M), where
S is the relevant spinor representation of SO(D).

The anomaly polynomial is given in terms of the index density of a certain Dirac
operator [27, 28]. Following [29], we will write the total Dirac operator, including all fields,
in the form

/D : C∞(S+ ⊗ V) −→ C∞(S− ⊗ V) , (5.3)

where S+ (resp. S−) denotes the positive (resp. negative) spinor representation of SO(D),
and V is a formal sum of spaces carrying tensor representations of SO(D). This means
that the corresponding index densities should be added or subtracted according to the signs
appearing in the formal sum V.

Some formal manipulations and careful handling of signs are required to reach the
standard form (5.3) and compute the relevant V [29]. Let us show how they work explicitly
in the chiral two-form case. The computation is slightly different in the two gauge-fixing
schemes of this paper, but the result is of course the same.

Delta-function gauge-fixing. After integrating out the auxiliary fields, the relevant
path integral measure reads (omitting the complex conjugates)∫

Dψ̂µν DρDĈµDĈ ′µDcDc′ (5.4)

where a ‘hat’ denotes a gamma-traceless field. Since the gamma-trace has the opposite
chirality from the field itself, the field ψ̂µν for example can be seen as an element of the
formal difference

C∞(S+ ⊗ Λ2T ∗M− S− ⊗ T ∗M) , (5.5)

i.e. a positive chirality fermionic two-form without the negative chirality one-form com-
ponent. This is not in the standard form (5.3) for /D to act upon; however, a fermion of
negative chirality gives the opposite contribution to the index density as a fermion of pos-
itive chirality. We can then replace S− by S+ in (5.5) and change the sign: ψ̂µν therefore
contributes as

C∞(S+ ⊗ [Λ2T ∗M+ T ∗M]) , (5.6)

which is now in the form (5.3). Another rule is that fields with the wrong spin-statistics,
in our case Ĉµ and Ĉ ′µ, also contribute with a minus sign. Combining these two rules,

– 21 –



J
H
E
P
1
1
(
2
0
2
1
)
0
7
8

the (wrong spin-statistics, positive chirality, gamma-traceless) field Ĉµ for example con-
tributes as

−C∞(S+ ⊗ T ∗M− S−) = C∞(S+ ⊗ [−T ∗M− 1]) . (5.7)

One must now sum the contributions of all fields appearing in the measure (5.4), using
these two rules and the chirality and spin-statistics of table 4. The complex C∞(S+ ⊗ Vδ)
on which the Dirac operator acts in this case is then

C∞(S+ ⊗ Vδ) = C∞(S+ ⊗ Λ2T ∗M− S− ⊗ T ∗M) + C∞(S+)
− 2 C∞(S+ ⊗ T ∗M− S−) + 2 C∞(S+) (5.8)

= C∞(S+ ⊗ [Λ2T ∗M− T ∗M+ 1])

and we have
Vδ = Λ2T ∗M− T ∗M+ 1 . (5.9)

Gaussian gauge-fixing. In the Gaussian gauge-fixing case, the Nielsen-Kallosh ghost
bµ enters the dynamics and we have the measure∫

Dψµν Db̂µDĈµDĈ ′µDcDc′ (5.10)

after integrating out the auxiliary fields. Here as before, a hat indicates a gamma-traceless
field. Notice that in this case (cf. table 4), the ghosts Ĉµ and Ĉ ′µ have opposite chiralities
but otherwise identical properties and their contributions to the index density cancel out.
The total complex on which /D acts is then

C∞(S+ ⊗ VG) = C∞(S+ ⊗ Λ2T ∗M) + C∞(S− ⊗ T ∗M− S+) + 2 C∞(S+)

= C∞(S+ ⊗ [Λ2T ∗M− T ∗M+ 1]) . (5.11)

Therefore,
VG = Vδ ≡ V2 (5.12)

as expected; both gauge-fixing procedures will give the same result for the anomaly.
It is now an easy exercise to repeat this procedure for the higher p-form cases, using the

information of sections 3.2 and 4.1. For the three-form we find V3 = Λ3T ∗M− Λ2T ∗M +
T ∗M− 1; more generally, one has

Vp =
p∑

k=0
(−1)k Λp−k T ∗M . (5.13)

With /D in the standard form, its index density is then [24, 25, 29]

Ind( /D) = Â(M) ch(R,V) . (5.14)

The first factor Â(M) in this formula is known as the Dirac genus (or roof genus) of M.
It is given in terms of the curvature 2-form Rab ofM by

Â(M) = 1 + 1
(4π)2

1
12 tr(R2) + 1

(4π)4

[ 1
288 tr(R2)2 + 1

360 tr(R4)
]

+ 1
(4π)6

[ 1
10368 tr(R2)3 + 1

4320 tr(R2) tr(R4) + 1
5670 tr(R6)

]
+ . . . (5.15)
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Here, the traces are taken in the fundamental (vector) representation of SO(D). Writing
components explicitly, with Rab = 1

2R
a
b µνdx

µdxν , one has for example tr(R2) = RabR
b
a =

1
4R

a
b µνR

b
a ρσ dx

µdxνdxρdxσ. The genus Â(M) is thus a sum of differential forms of degrees
that are multiples of four. It will be useful to write the results in terms of Pontryagin classes
pi rather than the curvature itself; they are defined by the expansion

det
(

1− R

2π

)
= 1 + p1 + p2 + p3 + p4 + . . . (5.16)

with each pi a form of degree 4i. The first three Pontryagin classes will be sufficient for
our purposes:

p1 = 1
(2π)2

(
−1

2 trR2
)

(5.17)

p2 = 1
(2π)4

(
−1

4 trR4 + 1
8(trR2)2

)
(5.18)

p3 = 1
(2π)6

(
−1

6 trR6 + 1
8 trR2 trR4 − 1

48(trR2)3
)
. (5.19)

The Dirac genus can then be written as

Â(M) = 1− 1
24 p1 + 1

5760(7 p2
1 − 4 p2) + 1

967680
(
−31 p3

1 + 44 p1p2 − 16 p3
)

+ . . . .

(5.20)

The second factor in (5.14) is the Chern character, which for a single representation r

of SO(D) reads
ch(R, r) = Tr exp

(
iRr

2π

)
. (5.21)

In this formula, the two-form Rr is defined as Rr = 1
2RabT

ab
r , where Rab is the curvature

two-form ofM and the T abr are the SO(D) generators for the representation r. The traces
are taken in the representation at hand. When V is a formal sum of representation spaces,
as in (5.13), one takes the corresponding sum of characters. The representations that
appear in this case are the antisymmetric tensor representations of SO(D), which we write
as r = [k] for some integer k. Their Chern character is

ch(R, [k]) = Tr exp
(
iR[k]
2π

)
= D!
k!(D − k)! −

1
(2π)2 Tr(R2

[k]) + 1
(2π)4 Tr(R4

[k]) + . . . , (5.22)

where we used Tr(1) = dim([k]) = D!
k!(D−k)! and the fact that traces of odd powers of R[k]

identically vanish for these representations. The generators T ab[k] are given by

(T ab[k])i1...ik j1...jk = k!
k∑
l=1

δ
[i1
j1
δi2j2 · · · (t

ab)iljl · · · δ
ik]
jk
, (5.23)

with (tab)ij = 2δi[aδb]j the generators of the fundamental. Therefore, R[k] is

(R[k])i1...ik j1...jk = 1
2Rab(T

ab
[k])i1...ik j1...jk = k!

k∑
l=1

δ
[i1
j1
δi2j2 · · ·R

il
jl · · · δ

ik]
jk
. (5.24)
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The next step of the computation is to write the traces of powers of R[k] in terms of
Pontryagin classes or, equivalently, in terms of traces of powers of R in the fundamental
representation. For low k and low powers this can be done using the explicit formula (5.24):
for example, for k = 2 one has R[2]

ij
kl = 2R[i

kδ
j]
l + 2δ[i

kR
j]
l and then

Tr(R2
[2]) = 1

4R[2]
ij
klR[2]

kl
ij = (D − 2)RijRj i = (D − 2) tr(R2) , (5.25)

Tr(R4
[2]) = 1

16R[2]
ij
klR[2]

kl
mnR[2]

mn
pqR[2]

pq
ij = (D − 8) tr(R4) + 3(trR2)2 . (5.26)

This quickly becomes computationally intractable, however. Fortunately, this is a well-
known mathematical problem and there exists the following generating formula (see
e.g. [40]):

∞∑
k=0

xk ch(R, [k]) = det
(
1 + x e

iR
2π
)

= exp tr log
(
1 + x e

iR
2π
)

(5.27)

with x a formal variable. A formula for ch(R, [k]) can be extracted by expanding the right-
hand-side as a formal power series in x and selecting the coefficient of xk. For example,
from the coefficient of x2 one finds

ch(R, [2]) = 1
2
(
tr e

iR
2π
)2
− 1

2 tr e
i2R
2π . (5.28)

Expanding the exponentials, this formula contains all Tr(Rn[2]) in terms of traces in the
fundamental: the four-form component of this equation reproduces equation (5.25), the
eight-form component gives (5.26), and so on. Likewise, any trace Tr(Rn[k]) can be found
by expanding equation (5.27) to order xk and to form degree 2n.

Finally, the anomaly polynomial for a chiral fermionic p-form is given as the D + 2
form part in the index density (5.14). Using the form (5.13) of Vp, this is

Î
(p)
D+2 =

[
Â(M)

p∑
k=0

(−1)p−k ch(R, [k])
]
D+2

. (5.29)

This can be computed for any desired D and p using the ingredients detailed above. We
display explicitly the results in terms of Pontryagin classes in dimensions D = 2, 6 and 10
in tables 5, 6 and 7. Of course, for spin 1/2 and 3/2 fields (p = 0 and p = 1 respectively),
these tables reproduce the classic results of [26]. The anomaly polynomial for the chiral
bosons (i.e. the self-dual scalar, 2-form and 4-form) in those dimensions are also listed for
convenience [26].

Interestingly, in dimensions D ≥ 6 we find6 that the anomaly of a chiral fermionic
p-form matches that of a (D − p− 1)-form,

Î
(p)
D+2 = Î

(D−p−1)
D+2 . (5.30)

6To be more precise: this is apparent in D = 6 and 10 from tables 6 and 7, and has been checked
explicitly in D = 14 and 18; however, we have no general proof for arbitrary D.
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p Î
(p)
4

0 − 1
24 p1

1 23
24 p1

2 −p1

ÎA4 − 1
24 p1

Table 5. The four-form anomaly polynomials for chiral fermionic p-forms in D = 2.

p Î
(p)
8

0 1
5 760

(
7 p2

1 − 4 p2
)

1 1
5 760

(
275 p2

1 − 980 p2
)

2 1
5 760

(
790 p2

1 + 2 840 p2
)

3 1
5 760

(
790 p2

1 + 2 840 p2
)

4 1
5 760

(
275 p2

1 − 980 p2
)

5 1
5 760

(
7 p2

1 − 4 p2
)

6 0

ÎA8
1

5 760
(
16 p2

1 − 112 p2
)

Table 6. The eight-form anomaly polynomials for chiral fermionic p-forms in D = 6.

For example, the anomaly of a chiral fermionic 2-form in D = 6 could be cancelled by a
3-form of the opposite chirality. Similarly, one could imagine canceling the anomaly of a
bosonic, self dual 4-form in D = 10 such as the one appearing in type IIB supergravity
using topological fermionic 8- and 9-forms of opposite chirality. (Notice how (5.30) always
relates the anomaly polynomial of a dynamical field to that of a topological one.) This is
of course subject to the caveats mentioned in the introduction, namely, the current lack
of explicit Lagrangians coupling fermionic p-forms to dynamical gravity. Nevertheless, it
would be very interesting to see whether these possibilities can be realised in physically
relevant models.
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p Î
(p)
12

0 1
967 680

(
−31 p3

1 + 44 p1p2 − 16 p3
)

1 1
967 680

(
225 p3

1 − 1 620 p1p2 + 7 920 p3
)

2 1
967 680

(
2 412 p3

1 + 27 792 p1p2 − 186 048 p3
)

3 1
967 680

(
7 980 p3

1 + 162 960 p1p2 − 73 920 p3
)

4 1
967 680

(
13 734 p3

1 + 338 184 p1p2 + 764 064 p3
)

5 1
967 680

(
13 734 p3

1 + 338 184 p1p2 + 764 064 p3
)

6 1
967 680

(
7 980 p3

1 + 162 960 p1p2 − 73 920 p3
)

7 1
967 680

(
2 412 p3

1 + 27 792 p1p2 − 186 048 p3
)

8 1
967 680

(
225 p3

1 − 1 620 p1p2 + 7 920 p3
)

9 1
967 680

(
−31 p3

1 + 44 p1p2 − 16 p3
)

10 0

ÎA12
1

967 680
(
−256 p3

1 + 1 664 p1p2 − 7 936 p3
)

Table 7. The twelve-form anomaly polynomials for chiral fermionic p-forms in D = 10.
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