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I. TRANSITION LOCATION
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Figure S1. ⟨r⟩ as of a function of electric field strength for various interaction strengths (different panels), and system sizes.
Larger system size corresponds to stronger color intensity. The black dashed lines correspond to WD statistics (r ≃ 0.536) and
Poisson (r ≃ 0.39) statistics. The model parameters that were used are Jxy = 2, Jz ∈ [0.5, 1, 2], α = 0.5.

To approximately assess the location of the Stark-MBL transition we use the standard metric,

rα = min
(

sα
sα−1

,
sα−1

sα

)
, (S1)

where sα ≡ Eα+1 − Eα are the spacing between adjacent eigenvalues of the Hamiltonian. For integrable systems
the mean of this quantity (⟨r⟩), is typically given by ⟨r⟩ ≈ 0.39, which corresponds to a Poissonian distribution,
while for quantum chaotic systems it is ⟨r⟩ ≈ 0.536, which corresponds to Wigner Dyson distribution. In Fig. S1
we examine ⟨r⟩ as a function of the electric field strength γ for various couplings Jz. We observe a transition from
a Wigner-Dyson distribution for low electric fields to a Poissonian distribution at high electric fields. The transition
occurs approximately at γ ≈ Jz. This analysis does not depend strongly on the size of the system, in contrast to
the mean-square displacement results presented in the main text. The middle panel (Jz = 1) is in agreement with
Ref. [44] although we have used a different mechanism to break the symmetries of the model.

II. DELOCALIZATION TIME EXTRACTION

In Fig. S2 we present the analysis used to obtain t⋆ (γ, L) in Fig. 3 in the main text. The mean-square displacement
(MSD) shows severe finite size effects, with subdiffusive behavior delayed to later times for larger system sizes. The
locations of the plateaus (green horizontal lines) are calculated by taking the mean of the MSD between the 2nd and
the 3rd peaks of the MSD. We fit the late time behavior with a power-law fit, x2 ∝ ta (orange dashed lines), and
estimate the delocalization time t⋆ (γ, L) by the intersection of the plateaus with the power-law fits (orange crosses).
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Figure S2. Mean-square displacement (MSD) as a function of time for L ∈ [14, 24] (Krylov based method). The orange dashed
line correspond to power-law fits (x2 ∼ ta), while the horizontal lines indicate the plateau of the MSD calculated by taking
the mean of the MSD between the 2nd and the 3rd peaks. The orange crosses are the estimated delocalization time t⋆ (γ, L)
obtained from the intersection of the power-law fits with the plateau. The color of the plateau lines matches the coloring of
the corresponding system size. All plots were obtained using Jxy = 2, Jz = 1.

III. FINITE-SIZE SUBDIFFUSIVE BEHAVIOR

From the power law-fits in Fig. S2 we can obtain the dynamical exponent a, which corresponds to the late-time
growth of the MSD, x2 ∼ ta. We plot this exponent as a function of the electric field γ and for various system sizes in
Fig. S3. One can see an apparent transition between a subdiffusive behavior (a < 1) to a localized behavior (a ∼ 0),
with very strong finite-size effects.While for γ > Jz the exponent seems to converge with the size of the system, it
is important to keep in mind that the onset of the subdiffusive transport is pushed to later times for larger system
sizes, as one can see in the main text and in Fig. S2 indicating that the observed subdiffusive behavior is a finite-size
effect.

IV. SENSITIVITY TO BOUNDARY CONDITIONS

In this Section we show that the conclusions of the main text are robust to changes in the gauge and the boundary
conditions. In Fig. S4 we have calculated the MSD as a function of time, using the dynamical gauge, (3) in the main
text for various electric fields γ (rows), various system sizes (color intensity), and two different boundary conditions
(columns). We see that in the dynamic gauge the MSD shows less pronounced oscillations compared to the static
gauge, allowing to spot the formation of the localization plateau already for γ = 1. The results remain qualitatively
the same to the results in the static gauge (Fig.S2), with severe finite size effects, and a delocalization time that is
increasing with the system size. The quantitative difference between open and periodic boundary conditions serves
as another indication of finite-size effects, though the localization plateau for both boundary conditions appears at
about the same MSD.
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Figure S3. The dynamical exponent a as obtained from the fits to the MSD, x2 ∝ ta (see Fig. S2), as function of γ for various
system sizes (L ∈ [14, 24]).

V. DYNAMICAL BEHAVIOR OF TRUNCATED EFFECTIVE HAMILTONIANS

In this Section we study the late-times dynamical behavior of the effective Hamiltonians calculated using Magnus
expansion in γ−1 up to some order n. In Fig. S5 (left column) we calculate the MSD for two electric fields (rows). We
see that it develops a pronounced linear behavior, indicative of diffusion, x2 ∼ 2Dt, where D is the linear response
diffusion coefficient. For even longer times the MSD saturates, since the system is finite. We extract the diffusion
coefficient from the relevant time windows (black dashed lines in Fig. S5), and plot it as a function of the truncation
order, n on the right column of Fig. S5.

The diffusion coefficient D (γ, n) is monotonically decreasing with the order of the Magnus expansion and the
strength of the electric field, approximately following D ∼ 1/n. While this finding indicates that the truncated
effective Hamiltonian is delocalized, it doesn’t imply much on the original interacting Stark model, since the diffusive
behavior of the effective Hamiltonian emerges for at times for which the dynamics under the effective Hamiltonian
doesn’t not well approximate the numerically exact dynamics. What is interesting, is that the infinite order Magnus
expansion, if it is convergent, could correspond to localized dynamics.

VI. CONVERGENCE CRITERIA OF THE MAGNUS EXPANSION

In this Section we examine the convergence of the Magnus expansion of the effective Hamiltonian,

Ĥ
(n)
eff =

n∑
k=0

Ĥk, (S2)

while each term Ĥk is of the order of γ−k. The D’Alembert criterion of convergence is
∥∥∥Ĥk+1

∥∥∥ /∥∥∥Ĥk

∥∥∥ < 1, where ∥.∥
indicates the operator norm. In Fig. S6 we the D’Alembert criterion is presented for different electric fields, γ. We
see that while for γ ≤ 2 the series is divergent, for γ ? 3 is it convergent at least up to 10th order. We note that this
doesn’t necessarily mean that the series has a finite radius of convergence, since divergence can occur for relatively
large expansions orders [74].

VII. DENSITY OF STATES OF THE TRUNCATED EFFECTIVE HAMILTONIANS

The zero order truncated effective Hamiltonian, Ĥ(0)
eff in (S2) corresponds to the interaction term,

Ĥ
(0)
eff = Jz

L∑
i=1

Ŝz
i Ŝ

z
i+1, (S3)

whose spectrum is composed of equally spaced degenerate bands, separated Jz/4 apart. The following terms of
the expansion are of order Jz/γ, and they partially lift this degeneracy giving a width of Jz/γ to the bands. To
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Figure S4. Mean-square displacement (MSD) as a function of time for L ∈ [14, 24] (Krylov based method) calculated from
the dynamic gauge (3) in the main text. Left column: open boundary conditions (OBC). Right column: periodic boundary
conditions (PBC). Different rows have different electric fields γ ∈ [1, 1.5, 2]. All plots were obtained for Jxy = 2, Jz = 1.

demonstrate this in Fig. S7 we plot the density of states (DOS) of Ĥ(n)
eff for a number of electric fields, γ. While the

gaps are washed away for Jz/4 < Jz/γ, namely γ < 4, they become clearly visible as γ increases.

VIII. FINITE-SIZE ANALYSIS

In Fig. S8 we repeat the analysis of Fig. 4 from the main text for a number of system sizes, showing that there
are no considerable system size dependence in the determination of tMagnus, namely the time up to which there is a
reasonable agreement between the MSD computed using Ĥ

(n)
eff and the MSD of the dynamical gauge Hamiltonian (3)

in the main text.
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Figure S5. Mean-squared displacement as a function of time for two electric fields (left column). The darkest lines correspond
to numerically exact results obtained using (Eq. 3 in the main text). The colored lines with increasing intensity corresponds to
evolution using effective Hamiltonians (S2), obtained from a truncated Magnus expansion. The black dashed lines corresponds
to linear fits, x2 ∼ 2D t, and the diffusion coefficient D is plotted in the right column as function of the truncation order. For
both γ = 3, 5 there is a visible trend of D ∝ 1/n. The parameters used are, Jxy = 2, Jz = 1, L = 14.
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Figure S6. D’Alembert criterion of convergence as a function of the Magnus expansion order (k),
∥∥∥Ĥk+1

∥∥∥ / ∥∥∥Ĥk

∥∥∥ < 1 (see
(S2) for definition). Different colors (markers) represents different electric field strength γ = 2, 3 and 5. The dashed black line
corresponds to a convergence requirement.. The parameters used are, Jxy = 2, Jz = 1, L = 10.
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Figure S8. Finite size analysis of Fig. 4 in the main text. Mean-squared displacement as a function of time for various
electric fields. The darkest lines correspond to numerically exact results obtained using (Eq. (3) in the main text). The
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