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Abstract

Individualized treatment of acute stroke depends on the timely detection of ischemia

and potentially salvageable tissue in the brain. Using functional MRI (fMRI), it is possi-

ble to characterize cerebral blood flow from blood-oxygen-level-dependent (BOLD)

signals without the administration of exogenous contrast agents. In this study, we

applied spatial independent component analysis to resting-state fMRI data of

37 stroke patients scanned within 24 hr of symptom onset, 17 of whom received

follow-up scans the next day. Our analysis revealed “Hypoperfusion spatially-

Independent Components” (HICs) whose spatial patterns of BOLD signal resembled

regions of delayed perfusion depicted by dynamic susceptibility contrast MRI. These

HICs were detected even in the presence of excessive patient motion, and dis-

appeared following successful tissue reperfusion. The unique spatial and temporal

features of HICs allowed them to be distinguished with high accuracy from other

components in a user-independent manner (area under the curve = 0.93, balanced

accuracy = 0.90, sensitivity = 1.00, and specificity = 0.85). Our study therefore pre-

sents a new, noninvasive method for assessing blood flow in acute stroke that mini-

mizes interpretative subjectivity and is robust to severe patient motion.
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blood oxygenation level dependent signal, perfusion, resting-state functional magnetic
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1 | INTRODUCTION

Imaging blood flow in acute ischemic stroke is important for directing

treatment decisions. In clinical practice, magnetic resonance imaging

(MRI) of blood flow is typically performed using dynamic susceptibility

contrast MRI (DSC-MRI). This method is well-established and corre-

lates well with the in-vivo perfusion imaging gold-standard, 15O-water

positron emission tomography (PET; Zaro-Weber et al., 2016; Zaro-
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Weber, Moeller-Hartmann, Heiss, & Sobesky, 2010). However, it

requires the use of intravenously administered contrast agents, which

are contraindicated in patients with kidney impairment (Khawaja

et al., 2015) and can accumulate in tissues with repeated use (Gulani,

Calamante, Shellock, Kanal, & Reeder, 2017).

Blood-oxygenation-level-dependent (BOLD) functional MRI (fMRI)

has been proposed as an alternative to DSC-MRI. At rest, BOLD signal

oscillations reflect a combination of different signal sources, including

the hemodynamic response to spontaneous neural activity (neuro-

vascular coupling), peripheral physiology (respiratory and cardiac func-

tion), fluctuations in blood carbon dioxide (Golestani, Chang, Kwinta,

Khatamian, & Jean Chen, 2015; Wise, Ide, Poulin, & Tracey, 2004), and

head motion (Liu, 2016). Disturbed cerebral blood flow is associated with

changes in BOLD signal fluctuations in multiple ways. One of the best

studied perfusion-related changes in the BOLD signal is BOLD delay

(Amemiya, Kunimatsu, Saito, & Ohtomo, 2014; Q. Chen et al., 2018;

Christen et al., 2015; Khalil et al., 2017, 2020; Lv et al., 2013, 2018; Ni

et al., 2017; Siegel, Snyder, Ramsey, Shulman, & Corbetta, 2016; Wu,

Dehkharghani, Nahab, Allen, & Qiu, 2017), which are relative phase lags

in low frequency oscillations (LFOs) of the BOLD signal originating from

outside the brain (systemic LFOs) in underperfused brain regions (Tong,

Hocke, & Frederick, 2019). Disturbed perfusion is known to affect other

BOLD signal features, including a shift to lower LFO frequencies (Liu

et al., 2007; Tsai et al., 2014; Yao et al., 2012) and a reduction in LFO

amplitude (Wang et al., 2008). These findings suggest that regions of dis-

turbed perfusion may have a unique set of BOLD signal characteristics

that distinguish them from normally perfused tissue. Using this BOLD

“signature” to rapidly and reliably identify abnormally perfused tissue

would be of great diagnostic and prognostic utility.

Spatial independent component analysis (spatial ICA) is a data-

driven method for decomposing complex signals into statistically inde-

pendent subcomponents (Beckmann & Smith, 2004). In fMRI, it has

been used to remove nonneuronal signal contributions such as head

motion, large vessel pulsations, and scanner instabilities (Thomas, Har-

shman, & Menon, 2002). Additionally, using spatial ICA, researchers

can isolate functionally distinct resting-state networks (RSNs) such as

visual cortical areas and the sensory-motor cortex (Beckmann, DeL-

uca, Devlin, & Smith, 2005).

Considering spatial ICA's ability to separate statistically independent

sources of variance in the BOLD signal, we investigated whether spatial

ICA would be able to detect hypoperfusion-related changes in the BOLD

signal in acute stroke patients. Specifically, we aimed (a) to identify spa-

tial ICA components corresponding to tissue hypoperfusion, (b) to char-

acterize the temporal and spatial properties of these “Hypoperfusion
spatially independent components” (HICs), and (c) to determine whether

these properties allow the automated identification of HICs.

2 | MATERIALS AND METHODS

2.1 | Patients

This study analyzes data from a subset of ischemic stroke patients

from 1000Plus (Hotter et al., 2009; clinicaltrials.gov identifier:

NCT00715533) and Longitudinal MRI Examinations of Patients With

Brain Ischemia and Blood Brain Barrier Permeability (LOBI-BBB,

clinicaltrials.gov identifier: NCT02077582), two prospective cohort

imaging studies conducted at Charité Universitätsmedizin Campus

Benjamin Franklin (Berlin, Germany) between January 2009 and

March 2016.

The patients included in this study had a clinical and radiological

diagnosis of acute supratentorial ischemic stroke, and had received

both dynamic susceptibility contrast magnetic resonance imaging

(DSC-MRI) and resting-state functional MRI (rs-fMRI) scans within

24 hr of symptom onset as part of a standard stroke imaging protocol

(Hotter et al., 2009). All patients showed perfusion deficits on their

time-to-maximum (Tmax) maps at baseline. Where available, follow-up

scans from the same patients, acquired approximately 24 hr after the

baseline scans, were also included in the analysis. Exclusion criteria

were any contraindications to undergoing an MRI or receiving a

gadolinium-based contrast agent.

Thirty-seven acute ischemic stroke patients who met our inclu-

sion criteria were included in this study, fourteen of whom had

follow-up scans. A total of 51 scans were thus included in data analy-

sis. The baseline scans of 22 of these patients were previously ana-

lyzed in a comparison between time shift analysis of rs-fMRI data

(BOLD delay) and DSC-MRI (Khalil et al., 2017) and 12 patients (and

their follow-up scans) from the current study were previously investi-

gated in a study of the longitudinal evolution of perfusion deficits

detected using BOLD delay (Khalil et al., 2020).

2.2 | Ethics statement

Patients provided written informed consent prior to participation, and

all procedures were approved by the local ethics committee

(EA4/026/08 for the 1000plus study and EA1/200/13 for LOBI-BBB)

and were performed according to the Declaration of Helsinki.

2.3 | Imaging

An overview of the image processing pipeline implemented in this

study is shown in Figure 1.

2.3.1 | Acquisition

All imaging was performed on a Siemens (Erlangen, Germany) Tim Trio

3 Tesla MRI scanner. The sequence parameters were as follows, rs-

fMRI; repetition time (TR) = 2,300 ms, echo time (TE) = 30 ms, flip

angle (FA) = 90�, matrix = 64 � 64, voxel dimensions = 3 � 3

� 3 mm3, 1 mm slice gap, 33 slices, and 150 volumes (acquisition

time = 5 min and 50 s). The rs-fMRI scan was performed prior to the

administration of the contrast agent and patients were requested to

relax, lie still, and close their eyes for the duration of the scan.

DSC-MRI was performed after injection of a bolus of 5 ml

Gadovist (Gadobutrol, 1 M, Bayer Schering Pharma AG, Berlin,
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Germany) followed by a saline flush at a flow rate of 5 ml/s. The

sequence parameters were: TR = 1,390 ms, TE = 29 ms, FA = 60,

matrix = 128 � 128, voxel dimensions = 1.8 � 1.8 � 5 mm, 0.5 mm

slice gap, 21 slices, and 80 volumes (acquisition time = 1 min

and 58 s).

Other imaging included diffusion-weighted imaging (DWI), time-

of-flight MR angiography, and fluid-attenuated inversion recovery

(FLAIR) scans, as described previously (Hotter et al., 2009).

2.3.2 | Dynamic susceptibility contrast MRI

Maps of time-to-maximum of the tissue residue function (Tmax) were

generated from the DSC-MRI data using Stroketool (version 2.8; Digi-

tal Image Solutions—H. J. Wittsack) after deconvolution of the

concentration-time curve through block-circulant singular value

decomposition (Wu et al., 2003). The arterial input function (AIF) was

selected from 5 to 10 voxels in the distal branches of the middle cere-

bral artery on the hemisphere contralateral to the acute infarct

(Ebinger et al., 2010). Artifacts in the cerebrospinal fluid (CSF) were

automatically removed from the Tmax maps using CSF masks derived

from T2-weighted B0 images. Perfusion deficits were manually delin-

eated on Tmax maps by one of the authors (A. K., with 8 years' experi-

ence in stroke imaging research).

2.3.3 | Resting-state functional MRI

Preprocessing

Preprocessing of the resting-state data was performed using tools

from Analysis of Functional NeuroImages (AFNI; Cox, 1996) and the

Functional Magnetic Resonance Imaging of the Brain Software Library

(FSL). The first four volumes of each time series were discarded for

signal equilibration. After correcting for slice-timing effects, the

remaining volumes were skull-stripped, realigned to the mean func-

tional image of each individual, and linear and quadratic trends were

removed. Images were spatially smoothed (Gaussian kernel of full-

width-at-half-maximum = 6 mm), but left temporally unfiltered to

include the full range of signal frequencies for spatial ICA.

ICA decomposition

Spatial ICA is a data-driven approach for multivariate data analysis

and representation. It was implemented in this study using FSL's Mul-

tivariate Exploratory Linear Optimized Decomposition into Indepen-

dent Components—MELODIC (Beckmann & Smith, 2004). Spatial ICA

models four-dimensional fMRI data as a linear combination of

unknown source signals (referred to as “independent components”),
each described by a spatial map and a mean time course across all

voxels in the spatial map. It dissects out the different source signals

by assuming their mutual, statistical independence and non-

Gaussianity (Beckmann & Smith, 2004). In this study, spatial ICA was

implemented using MELODIC's default Bayesian dimensionality esti-

mation, which estimates the number of source signals within the data

automatically (Beckmann & Smith, 2004). This means that the number

of independent components output by MELODIC can differ between

patients and scanning sessions in the study.

Manual classification of independent components

To reduce the number of components by removing nonsignal inde-

pendent components, we used FMRIB's ICA-based X-noiseifier (FIX),

a machine-learning algorithm that automatically classifies signal and

artifact components in rs-fMRI data using 186 spatial and temporal

features (Salimi-Khorshidi et al., 2014). FIX needs to be trained on

manually classified data. Therefore, for a subset of our data (20 out of

F IGURE 1 Overview of the image processing pipeline. rs-fMRI, resting-state functional magnetic resonance imaging; DSC-MRI, dynamic
susceptibility contrast magnetic resonance imaging; TSA, time shift analysis; Tmax, time-to-maximum; FIX, FMRIB's ICA-based X-noiseifier
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37 baseline scans; the FIX training dataset, see below), two raters

(A. A. K and J.-Y. H.) together (i.e., not independently) manually classi-

fied the independent components from MELODIC into the following

classes: resting-state networks (RSNs), likely hypoperfusion indepen-

dent components (HICs), noise (including head motion and scanner

noise), or “unknown” if the independent component could not be

clearly identified. Manual classification of the RSNs, noise, and

unknown components was carried out according to published guide-

lines (Kelly et al., 2010) by inspecting the thresholded spatial maps

(jZj > 2.33), the power spectrum, and the time courses. HICs were

identified as unilateral components that were present in, and largely

restricted to, the vascular territory in which the patient's infarct was

found (guided by the DWI).

A total of 896 independent components were generated using

MELODIC from the subjects in the FIX training dataset. The median

number of independent components per subject was 45 (interquartile

range [IQR] = 43–47; Figure S1). The mean (±SD) contribution of each

component class (% out of the total number of components) for sub-

jects in the FIX-training dataset are as follows: noise (79.8 ± 9.4%),

resting-state networks (9.2 ± 5.9%), and likely hypoperfusion indepen-

dent component(s) (HIC; 2.6 ± 1.5%). “Other” components that could

not be unambiguously classified into any of the other three categories

formed 8.4 ± 4.8% of the training dataset. Of the 20 subjects in the

FIX training dataset, 14 had a single HIC, 3 had two HICs, 1 had three

HICs, and 2 had no HICs. Examples of our classifications are provided

in Figure S2.

Data denoising

After manual classification of the FIX training dataset, minor modifica-

tions were made to FIX to accommodate our data: we substituted

T1-weighted magnetization-prepared rapid gradient-echo (MPRAGE)

scans used in calculations of FIX features with B0 images

(T2-weighted spin-echo EPI), as MPRAGEs are not routinely acquired

as part of our acute stroke MR imaging protocol (Hotter et al., 2009).

Tissue segmentation maps needed for these features were generated

from these images using FSL's FMRIB Automated Segmentation Tool

(FAST). All segmentations were visually assessed for quality.

FIX was trained on the FIX training dataset. The accuracy of FIX

for separating signal from noise in the FIX training dataset was investi-

gated using leave-one-out cross-validation. A threshold of 20 was

selected for the classification of independent components in our train-

ing data, as this was the highest threshold at which no HICs were

incorrectly classified by FIX as noise (see Table S1). At this threshold,

FIX achieved a mean true positive rate (TPR; percent of true signal

independent components correctly classified) of 90.9%, and a mean

true negative rate (TNR; percent of true noise independent compo-

nents correctly classified) of 84.6%. The output of FIX denoising was

a “shortlist” of components classified by FIX as being “non-noise.”
After training, FIX was applied to the full dataset (n = 2,337 indepen-

dent components from 51 scans). FIX reduced the number of inde-

pendent components to a list of likely-signal independent

components by 77.4% (total, n = 528 independent components from

51 scans, see Figure S3).

Time shift analysis

For a visual comparison between HICs and a more established mea-

sure of perfusion derived from rs-fMRI, we performed time shift anal-

ysis (TSA) of the preprocessed rs-fMRI data (Amemiya et al., 2014;

Christen et al., 2015; Khalil et al., 2017, 2020; Lv et al., 2013). TSA

maps were generated by assigning each voxel the value of the time

shift (ranging between �20 and +20 s) that achieves maximum cross-

correlation between the voxel's time series and a recursively refined

regressor derived from the global mean time series after univariate

interpolation of the time series. A long tracking range was applied

because time shift delays in acute stroke patients are very prolonged

(Khalil et al., 2017, 2020; Tanrıtanır et al., 2020) TSA was performed

using a set of Python tools (https://github.com/bbfrederick/rapidtide;

Frederick, 2016).

2.3.4 | Image registration

All images (including Tmax maps, resting-state data, and spatial ICA

maps) were registered to a custom echo planar imaging (EPI) tem-

plate in Montreal Neurological Institute 152 (MNI152) standard

space using a rigid body spatial transformation (3 rotations and

3 translations, implemented using FMRIB's Linear Image Registration

Tool—FLIRT) for further processing. This template was derived from

the EPI scans of 103 stroke patients and details of how it was gener-

ated can be found in the supporting information of Khalil

et al. (2017). This template was used instead of standard templates,

such as the MNI template, to account for differences in brain and

ventricular system size between the study's population and younger,

healthy individuals.

2.4 | Feature extraction

We extracted a set of relevant spatial and temporal features from the

shortlisted independent components (i.e., after data denoising by FIX)

to examine how HICs may differ from other signal components. The

following features were extracted:

1. Temporal delay to a reference signal: Temporally delayed BOLD sig-

nals, calculated using time shift analysis (Lv et al., 2013), have been

found to correspond to hypoperfused brain regions. We thus

explored whether the temporal delay between the time courses of

each independent component and a reference time course was dif-

ferent between HICs and independent components representing

normally perfused tissue. We used two different reference time

courses: the whole brain (global) signal (Amemiya et al., 2014; Lv

et al., 2013) and the signal from within the major venous sinuses

(Aso, Jiang, Urayama, & Fukuyama, 2017; Christen et al., 2015;

Khalil et al., 2017), the latter of which was automatically extracted

using a venous sinus template in MNI space [details described in

the supporting information of Khalil et al., 2017]. Positive delay

values indicate the component's BOLD signal time course followed
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the reference time course, while negative delay values indicate the

component's BOLD signal time course preceded the reference

time course.

2. Power in frequency bands: Ischemia shifts BOLD signal oscillations

toward lower frequencies (Liu et al., 2007; Tsai et al., 2014; Yao

et al., 2012). For each independent component, we calculated the

percentage of total spectral power in six different frequency

ranges (0–0.01 Hz, 0.01–0.025 Hz, 0.025–0.05 Hz, 0.05–0.1 Hz,

0.1–0.15 Hz, and 0.15–0.20 Hz) after fast Fourier transform of the

time courses (Salimi-Khorshidi et al., 2014).

3. Percent restriction to a single vascular territory: Ischemic stroke-

related hypoperfusion is most commonly restricted to a vascular

territory supplied by a single major artery. This makes the percent

restriction of an independent component's spatial map to a single

vascular territory a potential feature of interest. We thus calcu-

lated the percentage of each independent component's volume

that exists within a single vascular territory. For this analysis, only

independent components with >50% of their volume within a sin-

gle vascular territory were considered. The vascular territories

were defined according to a custom vascular territory atlas in MNI

template space, described in further detail in the supporting infor-

mation of Khalil et al. (2017).

4. Mean Tmax delay: To compare the results of the spatial ICA with

the delay in perfusion revealed by DSC-MRI in the area covered

by each independent component, we calculated the mean Tmax

delay of all voxels in the Tmax map overlapped by the independent

component's spatial map.

For each patient, min–max normalization was applied to the

values of the features extracted from each of the independent com-

ponents using the following equation:

zi ¼ xi�min Sð Þð Þ= max Sð Þ�min Sð Þð Þ

where, z is the normalized feature value, x is the original feature value,

i refers to the independent component in question, and S refers to the

feature values of the entire set of independent components from a

single patient.

2.5 | Automated identification of HICs

Both model training and testing were performed on the data after

excluding follow-up scans.

2.5.1 | Model training

We used a generalized linear model (GLM) on the extracted features

to estimate the probability that a given independent component is a

HIC. To mitigate multicollinearity effects we applied elastic net regu-

larization to our GLM (Zou & Hastie, 2005).

Disregarding components classified as noise, approximately 10%

of the components in each dataset were HICs. To address this

problem of extreme class imbalance (Krawczyk, 2016), which can bias

GLM results, we first sub-sampled the FIX training dataset to contain

50% HICs (number of components = 23), and 50% non-HICs (number

of components = 23).

For the model training, components were classified as HICs if

their model probabilities were above a probability threshold deter-

mined by Youden's index, which gives equal weight to sensitivity and

specificity. The shrinkage parameter lambda was estimated using

leave-one-out cross-validation on the training dataset.

2.5.2 | Model testing

The test dataset contained all subjects who were not part of the FIX

training dataset (number of HICs = 22, number of non-HICs = 151).

From this, we randomly subsampled 5 HICs and a set of non-HICs

according to the mean ratio between HICs and non-HICs in individual

MELODIC outputs in the FIX shortlist (about 1:10). Note that this

allowed the testing of model performance to be performed on a

dataset with a class imbalance similar to that of the original dataset.

This random selection was repeated 50 times and the model's perfor-

mance is reported as the median of these iterations (see below for

metrics of model performance).

2.6 | Statistical analysis

Radar plots were created using the “radarchart” function from the

fmsb R package (Nakazawa, 2018) to visualize feature values.

Raincloud plots, which combine dot plots, box plots, and violin plots,

are used to visualize the distribution of continuous variables (Allen,

Poggiali, Whitaker, Marshall, & Kievit, 2019).

The elastic net regularized GLM used in this study was

implemented using the “cv.glmnet” function from the glmnet R pack-

age (Friedman, Hastie, & Tibshirani, 2010).

Model performance is reported using the following metrics:

• Area-under-the-curve of the receiver operating ROC curve (AUC):

The probability that the model will assign a higher probability of

being a HIC to a randomly chosen HIC than to a randomly chosen

non-HIC. ROC curves were visualized and their AUCs were calcu-

lated using the pROC R package (Robin et al., 2011).

• Sensitivity: The true positive rate, or the proportion of HICs cor-

rectly classified by the model as being HICs.

• Specificity: The true negative rate, or the proportion of non-HICs

correctly classified by the model as being non-HICs.

• Balanced accuracy: (Sensitivity + specificity)/2. Balanced accuracy

was chosen instead of regular accuracy due to the unbalanced

nature of our test dataset (Brodersen, Ong, Stephan, &

Buhmann, 2010).

• Cohen's kappa: The agreement between the model's classification

and the “true”/”reference” classification, beyond that expected

due to random chance. This was calculated using the irr R package

(Gamer, Lemon, Fellows, & Sing, 2019).
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The GLM coefficients were converted into Odds ratios (Odds

ratio = ecoefficient). Since elastic net, like all penalized regression

models, provides biased estimators, no meaningful standard errors can

be calculated (Kyung, Gill, Ghosh, & Casella, 2010) and therefore P-

values are not reported in this analysis. Instead, the model produces

penalized coefficients through bootstrapped cross-validation. Vari-

ables whose contribution to the outcome is negligible have penalized

coefficients of zero (i.e., Odds ratios of 1).

2.7 | Data/code availability

The data and code for the training and testing of the model can be

found at https://github.com/ahmedaak/spatial_ICA_stroke.

3 | RESULTS

3.1 | Patients

The study sample consisted of 17 women and 20 men (mean

age = 71 years, SD = 14 years). Their median National Institutes of

Health Stroke Scale (NIHSS) was 7 (IQR 3–14) and the median time

from symptom onset to MRI was 7 hr (IQR 2–16 hr). Intravenous

thrombolysis was administered to 19 (51%) patients. Fourteen

patients received follow-up scans on the second day following stroke

onset, resulting in a total of 51 scans. Tissue reperfusion was success-

ful in 3 of the 14 patients with follow-up scans, as demonstrated by

the complete resolution of time-to-maximum (Tmax) lesions observed

on their baseline scans.

Head motion was quantified using framewise displacement (FD),

which is the sum of the absolute value of individual subjects' six trans-

lational and rotational realignment parameters (Power, Barnes, Snyder,

Schlaggar, & Petersen, 2012). Twelve out of the fifty one rs-fMRI

scans exhibited severe head motion, defined according to previous

studies on the use of rs-fMRI for assessing cerebral hemodynamics as

a mean FD of >0.4 mm across the scan or a maximum FD of >3 mm

(Khalil et al., 2017, 2020). Median FD (mean across all scan volumes)

in the sample was 0.23 mm (IQR: 0.15 mm) for rs-fMRI, and 0.29 mm

(IQR: 0.19–0.47 mm) for DSC-MRI. Median FD (maximum across all

scan volumes) were 1.28 mm (IQR: 0.61–2.86 mm) and 0.82 (IQR:

0.49–1.89 mm) for rs-fMRI and DSC-MRI scans, respectively. The dis-

tribution of mean and maximum FD for the rs-fMRI scans is shown in

Figure S4.

3.2 | Hypoperfusion independent components
reflect tissue hypoperfusion

Of the 37 baseline scans, 34 showed at least one HIC (6 scans showed

2 HICs and 2 scans showed 3 HICs). Figure 2 shows the DWI, Tmax,

and HIC of three example patients. Maps for the other 31 patients

can be found in Figure S5. Together, these figures reveal the striking

spatial similarities between HICs and perfusion deficits on Tmax maps.

The spatial overlap between HICs and manually delineated Tmax perfu-

sion deficits was quantified using the Dice similarity coefficient

F IGURE 2 Spatial independent component analysis (spatial ICA) of resting-state fMRI detects post-stroke perfusion deficits in the form of
hypoperfusion independent components (HICs). The figure shows (from left to right) diffusion-weighted imaging (visualization of infarcted tissue),
hypoperfusion independent components (HICs), and time-to-maximum of the residual curve from dynamic susceptibility contrast MRI (Tmax;
reflecting delayed perfusion), from three representative acute stroke patients with a right-sided posterior cerebral artery infarct (patient A), right-
sided middle cerebral artery infarct (patient B), and left-sided middle cerebral artery infarct (patient C). A corresponding perfusion deficit is seen in
the affected vascular territory of each patient on the Tmax maps. In each case, spatial ICA reveals a HIC with striking spatial resemblance to the
perfusion deficit visible on the Tmax maps obtained using a contrast agent
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(Dice, 1945). Figure S6 shows that the HIC was the independent com-

ponent that showed the highest spatial overlap with the Tmax perfu-

sion deficit in 40 out of the 45 datasets in which a HIC was identified.

In addition, 10 out of the 14 follow-up scans showed HICs.

Figure 3 illustrates the relationship between the spatial ICA results

and vessel status (recanalization or persistent vessel occlusion) in two

patients with follow-up scans. In patient A, we observe the resolution

of HICs following vessel recanalization and tissue reperfusion, while in

patient B, HICs persist with continued vessel occlusion and delayed

tissue perfusion. This finding suggests that HICs dynamically respond

to changes in vessel status and perfusion dynamics over time.

HICs were identified in 10 out of 12 subjects with high head

motion during their rs-fMRI scans, as shown in an example patient in

Figure 4. The images and head motion traces of all 12 subjects with

F IGURE 3 Perfusion assessed using spatial independent component analysis (spatial ICA) evolves with vessel status. Baseline images were
obtained within 24 hr of symptom onset, while follow-up images were acquired the next day. Patient A had a left-sided acute posterior cerebral
artery (PCA) infarct due to occlusion of the P2 segment of the PCA, seen on time-of-flight magnetic resonance angiography (TOF-MRA) and
diffusion weighted imaging (DWI). A perfusion deficit as seen on a contrast-enhanced Tmax map and a corresponding hypoperfusion independent
component (HIC) were observed among 13 other independent components (after automatic denoising) at baseline. Following recanalization of

the PCA, there is a normalization of the perfusion deficit in the PCA vascular territory on the contrast-enhanced Tmax map. Spatial ICA on follow-
up imaging generated 20 independent components after automatic denoising, mostly corresponding to resting-state networks, and no HICs.
Patient B had a right-sided acute PCA infarct due to occlusion of the P1 segment. A perfusion deficit and corresponding HIC are seen at baseline.
Spatial ICA also produced 10 other independent components that mostly corresponded to resting-state networks (RSNs). Unlike in patient A,
patient B's PCA remained occluded at follow-up. The perfusion deficit in the posterior cerebral artery territory persisted on the Tmax map, and a
HIC was observed along with RSN independent components. This demonstrates that HICs follow longitudinal perfusion dynamics corresponding
to clinically relevant events such as changes in vessel status
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high head motion can be interactively viewed here: https://doi.org/

10.6084/m9.figshare.13676779. Overall, there were 4 false negative

cases, in which no HIC was visible despite the presence of a perfusion

deficit on Tmax maps (these cases can be interactively viewed here

https://doi.org/10.6084/m9.figshare.13664384). In two of the false

negative cases, extremely severe motion was present in the rs-fMRI

data, exceeding 20 mm maximum framewise displacement (see

Figure S4). In the other two false negative cases, motion during the rs-

fMRI scan was much lower (mean FD = 0.25 and 0.14 mm, max

FD = 0.56 and 0.44 mm).

HICs identified multiple perfusion deficits located in different vas-

cular territories within the same patient (Figure 5). The fact that multi-

ple, spatially remote areas of delayed perfusion within an individual

patient are captured in a single independent component suggests that

these areas share a BOLD signal signature that sets them apart from

other components.

3.3 | HICs show unique characteristics

Table 1 shows the feature values (mean across patients) extracted

from the independent components. The means of the normalized fea-

ture values across patients are shown on the radar plot in Figure 6.

F IGURE 4 Hypoperfusion independent components (HICs) are
detected using spatial ICA despite high head motion. In this patient
with a right-sided middle cerebral artery infarct (red circles on the

diffusion-weighted image), the top row demonstrates the framewise
displacement of the patient's head over the duration of the resting-
state functional MRI scan (maximum motion = 3.2 mm, mean
motion = 0.35 mm). Despite the high motion, a HIC was detected
that corresponded to the patient's perfusion deficit as detected by
contrast-enhanced Tmax maps on dynamic susceptibility contrast MRI.
No perfusion deficit is seen on the time shift analysis map, derived
from the same scan as the HIC. Of note, this patient has two distinct
perfusion deficits within the same vascular territory (right middle
cerebral artery)—one frontal and one temporoparietal—both of which
are reflected in the HIC

F IGURE 5 Hypoperfusion independent components (HICs) detect
multiple perfusion deficits affecting different vascular territories in
the same patient. This patient has multiple infarcts (with
corresponding perfusion deficits on the contrast-enhanced Tmax

maps—bottom row)—in the left posterior cerebral artery (PCA)
territory (right) and in the right posterior inferior cerebellar artery
(PICA) territory (left). Spatial independent component analysis reveals
a single HIC (middle row) that corresponds to both perfusion deficits
in this patient. This implies that these areas of delayed perfusion,
although spatially distanced from each other, share a common BOLD
signal signature. Note that, in the left column, the DWI slice showing
the PCA infarct does not correspond to the same slice on the Tmax

and HIC images, as the infarct is not visible on the DWI at the level
shown on the Tmax and HIC images
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HICs have a unique feature signature compared with non-HICs, char-

acterized by delayed low frequency oscillations compared with the

whole-brain and venous sinus references, greater restriction to a

single vascular territory, greater overlap with areas of delayed perfu-

sion (as assessed using Tmax), and more power in the lowest frequency

bands (0–0.025 Hz).

3.4 | Hypoperfusion independent components can
be automatically identified

Elastic net regularized GLM was applied to the FIX-shortlisted inde-

pendent components (i.e., the independent components that were

classified by FIX as being non-noise) to determine the predictive

power of a set of features on HIC classification. The model discrimi-

nated HICs from non-HICs with a median balanced accuracy of 0.90,

sensitivity of 1.00, and specificity of 0.85. The median Cohen's kappa

for agreement between the model's classification and the reference

classification was 0.51 and the median AUC was 0.93. Figure 7 shows

the distribution of these performance metrics across 50 iterations of

the model, using different combinations of HICs and non-HICs.

A useful feature of elastic net regularized GLM is that it performs

implicit variable selection, and thus enhances model interpretability

by allowing the assessment of each feature's relative importance for

the classification (Zou & Hastie, 2005). Table 2 shows that 5 out of

the 9 extracted features were used by the model to distinguish HICs

from non-HICs (i.e., have an Odds ratio ≠ 1). These features

included a larger delay in the low frequency oscillations of the HIC

relative to the whole-brain and venous sinus signals, a larger restric-

tion to a single vascular territory by the HICs, and a higher power in

the 0.025–0.05 Hz and 0.1–0.15 Hz frequency bands in the

non-HICs.

4 | DISCUSSION

In this study, we present a novel approach for identifying areas of dis-

turbed perfusion in ischemic stroke without the use of contrast

agents. We demonstrate that, using this method, areas of delayed per-

fusion can be extracted from resting-state fMRI data in a manner that

is user-independent and robust to patient motion. The results of this

study have important implications from both a clinical and methodo-

logical standpoint.

We provide several lines of evidence that certain independent

components isolated from rs-fMRI data using spatial ICA reflect

regions of delayed brain tissue perfusion. Firstly, there is high visual

similarity between the spatial maps of HICs and the Tmax maps of indi-

vidual patients. This is noticeable even when patients had multiple

perfusion deficits within (Figure 4) and across (Figure 5) vascular terri-

tories. Secondly, HICs were present in areas of much higher Tmax

delay than other independent components (Figure 6). Thirdly, HICs

observed at baseline disappeared at follow-up in patients with suc-

cessful recanalization and reperfusion, paralleling the reversal of

patients' DSC-MRI Tmax lesions (Figure 3). Finally, HICs show BOLD

signal characteristics that are consistent with those previously

described in hypoperfused tissue (Liu et al., 2007; Lv et al., 2013; Tsai

et al., 2014; Yao et al., 2012).

F IGURE 6 Hypoperfusion independent components (HICs) are
characterized by distinct features that distinguish them from non-
HICs independent components. This radar plot shows the feature
values for HICs (n = 57) and non-HICs (n = 471). Solid lines represent
the mean feature value and dashed lines represent the 95%
confidence interval around the mean. Compared with non-HICs
within the same patient, HICs have specific characteristics: higher
percentage occupancy within a single vascular territory, presence in
regions of higher Tmax delay, time courses that show a higher
temporal delay to the whole-brain and the venous sinus time courses,
and higher signal power in the lowest frequency bands (0–0.01 Hz
and 0.01–0.025 Hz). This combination of features represents a unique
signature for HICs

TABLE 1 Mean across patients and 95% confidence interval of
the feature values (non-normalized) for HICs and non-HICs

Feature HICs Non-HICs

Delay to whole-brain

signal (s)

7.2 (5.4 to 9.1) �0.5 (�0.8 to -0.1)

Delay to venous sinus

signal (s)

5.9 (4.1 to 7.6) �2.2 (�2.6 to -1.9)

Tmax delay (s) 2.15 (1.8 to 2.5) 1.3 (1.2 to 1.4)

Vascular territory

occupancy (%)

51.6 (44.3 to 58.9) 6.2 (4.6 to 7.8)

Power in frequency

bands (%)

0–0.01 Hz 21.7 (19.1 to 24.3) 17.9 (17.3 to 18.5)

0.01–0.025 Hz 23.9 (22.1 to 25.7) 21.4 (20.9 to 22.0)

0.025–0.05 Hz 22.6 (21.2 to 24.0) 25.8 (25.4 to 26.3)

0.05–0.1 Hz 15.1 (13.6 to 16.7) 17.4 (17.0 to 17.9)

0.1–0.15 Hz 12.5 (11.2 to 13.8) 13.3 (12.9 to 13.8)

0.15–0.2 Hz 4.2 (3.6 to 4.8) 4.0 (3.8 to 4.2)
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These spatial and temporal features of HICs help distinguish them

from resting-state networks (Figure 6). BOLD oscillations associated

with HICs were more temporally delayed in relation to the global and

venous sinus signals than oscillations associated with resting-state

networks. Although temporal delays in BOLD LFOs have been shown

to occur under physiological conditions (Aso et al., 2017) and differ

between resting-state networks (Tong, Hocke, Fan, Janes, &

Frederick, 2015), the largest delays are seen in areas of pathologically

reduced perfusion (Khalil et al., 2017, 2020). Additionally, HICs

showed more signal power in very low frequency ranges (0–0.025 Hz)

and less signal power in the 0.025–0.05 Hz range than resting-state

networks. This finding is consistent with previous studies showing

increased signal power in the <0.01 Hz range in hypoperfused tissue

(Liu et al., 2007; Tsai et al., 2014; Yao et al., 2012). Our study adds to

this by finding that oscillations associated with resting-state networks

exist largely toward the higher end of the low frequency range than

oscillations associated with disturbed perfusion.

One disadvantage of spatial ICA is that it can output potentially

dozens of components, and browsing through them to visually iden-

tify those likely reflecting hypoperfusion can be time-consuming,

require expertise, and be subject to bias. We therefore combined the

aforementioned component features with the degree of restriction of

the component's spatial map to a single vascular territory and used

this set of features to train an algorithm to automatically distinguish

HICs from resting-state networks. The algorithm did this with high

(>95%) balanced accuracy, sensitivity and specificity, showing that

HICs can be automatically extracted from the rest of the components

of spatial ICA.

In this study, the spatial agreement between HICs and delayed

perfusion is reflected in the fact that the areas covered by the HICs

on Tmax maps showed by far the highest Tmax delay (after removal of

artifactual Tmax delays in the CSF). In addition, in the majority

of datasets, the highest spatial overlap was found between the manu-

ally delineated Tmax perfusion deficits and the HICs (Figure S6). Finally,

the visual similarity between HICs and Tmax maps (which can be

F IGURE 7 Hypoperfusion independent components (HICs) can be automatically distinguished from other independent components using
machine-learning. Using independent test data of different combinations of HICs and non-HICs (that were not used for model training), we ran
50 iterations of the elastic net regularized generalized linear model (GLM) to classify HICs. The overall model performance is shown in the
receiver operating characteristic (ROC) curve (a). Each iteration of the model is shown in blue and the mean ROC curve is shown as a black
dashed line. The ROC curve depicts the true positive and false positive rates for each classification threshold in the model. The raincloud plot in
(b) shows the distribution of different metrics of model performance across the 50 model iterations. The lower and upper hinges of the box plot
represent the 25th and 75th percentiles, respectively, and the horizontal bar represents the median value. Across all model iterations, the values
of area-under-the-ROC-curve (AUC), balanced accuracy, sensitivity, specificity, and Cohen's kappa are depicted

TABLE 2 Results of the elastic net regularized generalized linear
model for the classification of HICs based on spatial and temporal
features

Feature Odds ratio

Delay to whole brain signal 1.14

Delay to venous sinus signal 1.19

Vascular territory occupancy 1.02

Power in frequency bands

0–0.01 Hz 1.00

0.01–0.025 Hz 1.00

0.025–0.05 Hz 0.07

0.05–0.1 Hz 1.00

0.1–0.15 Hz 0.13

0.15–0.2 Hz 1.00
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interactively viewed here: https://doi.org/10.6084/m9.figshare.

13686931), provides further evidence for their spatial agreement.

Spatial ICA has certain advantages over existing methods for

assessing perfusion using rs-fMRI. Instead of assessing the individual

characteristics of hypoperfusion-related signals separately, spatial ICA

extracts components that reflect a combination of changes in fre-

quency, amplitude, and temporal delay. In addition, we show that spa-

tial ICA is capable of identifying perfusion deficits even in the

presence of severe patient motion, where methods based on cross-

correlation, such as time shift analysis (Lv et al., 2013), often fail

(Figure 4 and https://doi.org/10.6084/m9.figshare.13676779.v1).

Finally, unlike time shift analysis, spatial ICA does not require the

specification of a reference signal, the choice of which can substan-

tially affect the calculated maps (Christen et al., 2015; Khalil

et al., 2017; Wu et al., 2017).

This study's findings have two major implications. From a clinical

perspective, it provides a proof-of-concept for a new method of

assessing blood flow in acute stroke patients that may be relevant for

informing decision-making regarding recanalization and reperfusion

therapies. This method is safer, as it does not require the use of exog-

enous contrast agents, which are particularly problematic in this

patient population, who are generally older and have a higher preva-

lence of chronic kidney disease (Sadowski et al., 2007). The acquisi-

tion of the rs-fMRI data, upon which this method is based, is simple

and widely available on clinical scanners. Although the rs-fMRI data

acquisition took substantially longer than DSC-MRI in this study

(about 6 vs. 2 min), recent evidence suggests that extracting

perfusion-related information from rs-fMRI can be achieved with

much shorter acquisitions (Tanrıtanır et al., 2020). The method is also

user-independent, thereby avoiding the subjective assessment of per-

fusion maps that often leads to inconsistencies between and within

experts (Campbell et al., 2010) and allows it to be seamlessly inte-

grated in routine clinical practice. Finally, the robustness of the

method to head motion is a substantial practical advantage, as

patients scanned during acute illnesses tend to exhibit a lot of motion,

which diminishes scan quality and interpretability (Andre et al., 2015).

For further clinical validation of this method, detailed comparisons to

quantitative perfusion thresholds derived from DSC-MRI and to imag-

ing and clinical outcomes should be made in future studies.

From a methodological perspective, this study underscores the

importance of accounting for disturbed perfusion as a potential source

of confounding in rs-fMRI studies, particularly in patients with cere-

brovascular diseases. More consideration should be given to dis-

entangling the effects of disturbed perfusion on the BOLD signal

(e.g., due to vessel pathology) from components of the BOLD

signal that reflect neuronal activity via local neurovascular coupling.

So far, suggestions on how to do this have included regressing out the

time delays (relative to a reference) from the rs-fMRI data (Erdo�gan,

Tong, Hocke, Lindsey, & De Frederick, 2016) and temporally real-

igning the BOLD signal time courses according to each voxel's time

delay value (Jahanian, Christen, Moseley, & Zaharchuk, 2018). Consid-

ering, however, that tissue hypoperfusion is a pathophysiological hall-

mark of stroke, the decision to remove the effect of disturbed

perfusion from the BOLD signal will depend on the exact research

question.

While the spatial distribution of physiological vascular processes

overlap with, and are often indistinguishable from, the spatial distribu-

tion of resting-state networks (Bright, Whittaker, Driver, &

Murphy, 2020; Chen et al., 2020; Tong et al., 2015), we show that the

influence of disturbed perfusion on the BOLD signal in stroke patients

can be readily disentangled from other components of the BOLD sig-

nal using spatial ICA. There are two potential explanations for this.

The first is that, in stroke, hypoperfusion is spatially restricted to

either a vascular territory or part of a vascular territory. On the other

hand, physiological vascular processes are spatially distributed in a

manner similar to resting-state networks (Bright et al., 2020; Chen

et al., 2020; Tong et al., 2015), which may make their separation using

spatial ICA less likely. The second possible explanation has to do with

the large difference in the temporal BOLD signal characteristics

between hypoperfused and normally perfused tissue, which may also

facilitate their separation by spatial ICA. In stroke, disturbed perfusion

tends to be severe compared with the physiological delays in perfu-

sion across different brain regions, and this leads to relatively large

changes in the temporal characteristics of the BOLD signal in

hypoperfused regions (Khalil et al., 2017, 2020; Liu et al., 2007; Tsai

et al., 2014; Yao et al., 2012).

As the first study to describe this method for assessing perfusion,

the study has some limitations. The study sample is relatively small,

owing to the fact that it includes an established, albeit relatively inva-

sive, reference standard for assessing perfusion (DSC-MRI) as a com-

parison. Because of the novelty of the method, we chose to have the

two raters perform the ratings together and therefore could not quan-

tify interrater agreement on the identification of HICs in this study.

Future studies should test the algorithm we developed on larger

cohorts with different MR sequence parameters and more heteroge-

neous patient cohorts, assess practical aspects of the method, such as

the required computing time and power, and investigate the minimum

scan length required for the method to deliver reliable results as has

recently been done for time shift analysis (Tanrıtanır et al., 2020).

Larger cohorts would also allow the investigation of the clinical signifi-

cance of perfusion assessed using this method, in terms of how it

relates to clinical and imaging outcomes and how it potentially influ-

ences clinical decision-making in acute stroke patients (Fisher &

Albers, 2013). Only two of the four cases in our cohort where spatial

ICA could not identify the perfusion deficit could be explained by

severe head motion. Therefore, larger studies should investigate in

more detail the causes of such false negative cases. Finally, the nature

of ICA means that, depending on the properties of the algorithm used,

individual signal sources (such as a resting state network or

hypoperfused tissue) can be spread across multiple components

(Esposito et al., 2002). Therefore, it is important to note that the term

“hypoperfusion independent component” is an operationalization and

that other independent components might also partially reflect

hypoperfused tissue.

In summary, spatial independent component analysis is a novel

approach for identifying hypoperfused tissue in ischemic stroke. It
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does not require the use of exogenous contrast agents, its data can be

analyzed without user input, and its results are robust to patient

motion. It therefore presents a convenient and promising new alterna-

tive to existing perfusion imaging methods in acute stroke.
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