
International Journal on Software Tools for Technology Transfer
https://doi.org/10.1007/s10009-021-00639-7

GENERAL

Special Issue: TACAS 2019

Extending a brainiac prover to lambda-free higher-order logic

Petar Vukmirović1 · Jasmin Blanchette1,2,3 · Simon Cruanes4 · Stephan Schulz5

Accepted: 20 July 2021
© The Author(s) 2021

Abstract
Decades of work have gone into developing efficient proof calculi, data structures, algorithms, and heuristics for first-order
automatic theorem proving. Higher-order provers lag behind in terms of efficiency. Instead of developing a new higher-order
prover from the ground up, we propose to start with the state-of-the-art superposition prover E and gradually enrich it with
higher-order features. We explain how to extend the prover’s data structures, algorithms, and heuristics to λ-free higher-order
logic, a formalism that supports partial application and applied variables. Our extension outperforms the traditional encoding
and appears promising as a stepping stone toward full higher-order logic.

Keywords Automatic theorem provers · Higher-order logic · First-order logic

1 Introduction

Superposition provers such as E [45], SPASS [57], and Vam-
pire [27] are among the most successful first-order reasoning
systems. They serve as backends in various frameworks,
including software verifiers (e.g., Why3 [23]), automatic
higher-order theorem provers (e.g., Leo-III [46], Satallax
[18]), and one-click “hammers” in proof assistants (e.g.,
HOLyHammer inHOLLight [25], Sledgehammer in Isabelle
[36]). Decades of research have gone into refining calculi,
devising efficient data structures and algorithms, and devel-
oping heuristics to guide proof search [44]. This work has
mostly focused on first-order logic with equality.

B Petar Vukmirović
p.vukmirovic@vu.nl

Jasmin Blanchette
j.c.blanchette@vu.nl

Simon Cruanes
simon@aestheticintegration.com

Stephan Schulz
schulz@eprover.org

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

2 Max-Planck-Institut für Informatik, Saarland Informatics
Campus, Saarbrücken, Germany

3 CNRS, Inria, LORIA, Université de Lorraine, Nancy, France

4 Aesthetic Integration, Austin, TX, USA

5 DHBW Stuttgart, Stuttgart, Germany

Research on higher-order automatic provers has resulted
in systems such as LEO [11], Leo-II [13], and Leo-III [46],
based on resolution and paramodulation, and Satallax [18],
based on tableaux and SAT solving. They feature a “cooper-
ative” architecture, pioneered by LEO: They are full-fledged
higher-order provers that regularly invoke an external first-
order prover with a low time limit as a terminal procedure, in
an attempt to finish the proof quickly using only first-order
reasoning. However, the first-order backend will succeed
only if all the necessary higher-order reasoning has been
performed, meaning that much of the first-order reasoning
is carried out by the slower higher-order prover. As a result,
this architecture leads to suboptimal performance on largely
first-order problems, such as those that often arise in interac-
tive verification [48]. For example, at the 2017 installment of
the CADE ATP System Competition (CASC) [50], Leo-III,
which uses E as a backend, proved 652 out of 2000 first-order
problems in theSledgehammer division, comparedwith 1185
for E on its own and 1433 for Vampire.

To obtain better performance, we propose to start with a
competitive first-order prover and extend it to full higher-
order logic one feature at a time. Our goal is a graceful
extension, so that the system behaves as before on first-order
problems, performs mostly like a first-order prover on typi-
cal, mildly higher-order problems, and scales up to arbitrary
higher-order problems, in keeping with the zero-overhead
principle:What you don’t use, you don’t pay for.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-021-00639-7&domain=pdf

P. Vukmirović et al.

As a stepping stone toward full higher-order logic, we
initially restrict our focus to a higher-order logic without λ-
expressions (Sect. 2). Compared with first-order logic, its
distinguishing features are partial application and applied
variables. It is rich enough to express the recursive equations
of higher-order combinators, such as map on lists:

map f nil ≈ nil map f (cons x xs) ≈ cons (f x) (map f xs)

Our vehicle is E [41,45], a prover developed primarily
by Schulz. It is written in C and offers good performance,
with more emphasis on “brainiac” heuristics than on raw
speed. E regularly scores among the top systems at CASC
and is usually the strongest open-source prover in the relevant
divisions. It also serves as a backend for competitive higher-
order provers. We refer to our extended version of E as Ehoh.
It corresponds to a prerelease version ofE2.5 configuredwith
the option --enable-ho. 1

The main challenges we faced concerned the represen-
tation of types and terms (Sect. 3), the unification and
matching algorithms (Sect. 4), and the indexing data struc-
tures (Sect. 5). We also adapted the inference rules (Sect. 6),
the heuristics (Sect. 7), and the preprocessor (Sect. 8).

A central aspect of our work is a set of techniques we
call prefix optimization. Higher-order terms contain twice
as many proper subterms as first-order terms; for example,
f (g a) b contains not only the “argument” subterms g a,
a, b but also the “prefix” subterms f, f (g a), g. Many
operations, including superposition and rewriting, require
traversing all subterms of a term. Using the optimization, the
prover traverses subterms recursively in a first-order fash-
ion, considering all the prefixes of a given subterm together.
Our experiments (Sect. 9) show that Ehoh is almost as fast
as E on first-order problems and can also prove higher-order
problems that do not require synthesizing λ-terms. As next
steps, we plan to add support for λ-terms and higher-order
unification.

An earlier version of this article was presented at TACAS
2019 [55]. This article extends the conference paper with
detailed explanations, pseudocode, and correctness proofs.
We have also extended E’s preprocessor to eliminate Boolean
subterms, updated the empirical evaluation, and broadened
the treatment of related work.

2 Logic

Our logic is a variant of the intensional λ-free Boolean-
free higher-order logic (λfHOL) described by Bentkamp et
al. [10, Sect. 2], which could also be called “applicative first-
order logic.” In the spirit of FOOL [26], we extend the syntax

1 https://github.com/eprover/eprover/commit/80946ac

of this logic by erasing the distinction between terms and for-
mulas, and its semantics by interpreting the Boolean type o
as a domain of cardinality 2. Functional extensionality can
be obtained by adding suitable axioms [10, Sect. 3.1].

A type is either an atomic type ι or a function type τ → υ,
where τ and υ are types. Terms, ranged over by s, t, u, v, are
either variables x, y, z, . . . , (function) symbols a,b, c,d, f,
g, . . . (often called “constants” in the higher-order litera-
ture), binary applications s t , or Boolean terms �, ⊥, ¬s,
s ∧ t , s ∨ t , s → t , s ↔ t , ∀x . s, ∃x . s, s ≈ t . Boolean terms
are also called formulas, and function symbols returning a
Boolean value are also called predicate symbols. The typing
rules are as for the simply typed λ-calculus. A term’s arity
is the number of extra arguments it can take. If f has type
ι → ι → ι and a has type ι, then f is binary, f a is unary,
and f a a is nullary. Subterms are defined in the usual way;
for example, s t has all subterms of s and t as subterms, in
addition to s t itself.

Non-Boolean terms have a unique flattened decomposi-
tion of the form ζ s1 . . . sm , where ζ , the head, is a variable
or symbol, and s1, . . . , sm , the arguments, are arbitrary terms.
We abbreviate tuples (a1, . . . , am) to am or a. Abusing nota-
tion, we write ζ sm for ζ s1 . . . sm . An equation s ≈ t
corresponds to an unordered pair of terms. A literal L is an
equation s ≈ t , where s and t have the same type, or its
negation s �≈ t . Clauses C, D are finite multisets of literals,
written L1 ∨ · · · ∨ Ln . E and Ehoh clausify the input as a
preprocessing step, producing a clause set in which the only
proper Boolean subterms are variables, �, and ⊥.

Substitutions σ are partial functions of finite domain from
variables to terms, written {x1 �→ s1, . . . , xm �→ sm}, where
each si has the same type as xi . The substitution σ [x �→ s]
maps x to s and otherwise coincides with σ . Applying σ to
a variable beyond σ ’s domain is the identity. Composition
(σ ′ ◦ σ)(t) is defined as σ ′(σ (t)).

A well-known technique to support λfHOL is to use the
applicative encoding: Every n-ary symbol is mapped to a
nullary symbol, and application is represented by a distin-
guished binary symbol @. Thus, the λfHOL term f (x a) b
is encoded as the first-order term @(@(f,@(x, a)),b).

However, this representation is not graceful, since it also
introduces @’s for terms within λfHOL’s first-order frag-
ment. By doubling the size and depth of terms, the encoding
clutters data structures and slows down term traversals. In
our empirical evaluation, we find that the applicative encod-
ing can decrease the success rate by up to 15% (Sect. 9). For
these and further reasons, it is not ideal (Sect. 10).

3 Types and terms

The term representation is a central concern when building a
theorem prover. Delicate changes to E’s representation were

123

https://github.com/eprover/eprover/commit/80946ac

Extending a brainiac prover to lambda-free higher-order logic

needed to support partial application and especially applied
variables. In contrast, the introduction of a higher-order type
system had a less dramatic impact on the prover’s code.

Types For most of its history, E supported only untyped first-
order logic. Cruanes implemented support for atomic types
for E 2.0 [19, p. 117]. Symbols are declared with a type sig-
nature: f: τ1 × · · · × τm → τ. Atomic types are represented
by integers, leading to efficient type comparisons.

In λfHOL, a type signature is simply a type τ , in which
the type constructor → can be nested—e.g., (ι → ι) → ι. A
natural way to represent such types is tomimic their recursive
structure using a tagged union. However, this leads to mem-
ory fragmentation; a simple operation such as querying the
type of a function’s i th argument would require dereferenc-
ing i pointers. We prefer a flattened representation, in which
a type τ1 → · · · → τn → ι is represented by a single node
labeled with → and pointing to the array (τ1, . . . , τn, ι).

Ehoh stores all types in a shared bank and implements
perfect sharing, ensuring that types that are structurally the
same are represented by the same object in memory. Type
equality can then be implemented as a pointer comparison.

Terms In E, terms are stored as perfectly shared directed
acyclic graphs [30]. Each node, or cell, contains 11 fields,
including f_code, an integer that identifies the term’s head
symbol (if ≥ 0) or variable (if < 0); arity, an integer cor-
responding to the number of arguments passed to the head;
args, an array of size arity consisting of pointers to argu-
ments; and binding, which may store a substitution for a
variable (if f_code < 0), used for unification andmatching.

In first-order logic, the arity of a variable is always 0,
and the arity of a symbol is given by its type signature.
In higher-order logic, variables may have function type and
be applied, and symbols can be applied to fewer arguments
than specified by their type signatures. A natural represen-
tation of λfHOL terms as tagged unions would distinguish
between variables x , symbols f, and binary applications s t .
However, this scheme suffers from memory fragmentation
and linear-time access, as with the representation of types,
affecting performance on purely or mostly first-order prob-
lems. Instead, we propose a flattened representation, as a
generalization of E’s existing data structures: Allow argu-
ments to variables, for symbols let arity be the number
of actual arguments, and rename the field num_args. This
representation, often called “spine notation,” is isomorphic
to the standard definition of higher-order terms with binary
application. It is employed in various higher-order reasoning
systems, including Leo-III [46] and Zipperposition [9].

A side effect of the flattened representation is that prefix
subterms are not shared. For example, the terms f a and
f a b correspond to the flattened cells f(a) and f(a,b). The
argument subterm a is shared, but not the prefix f a.Similarly,

x and x b are represented by two distinct cells, x() and x(b),
and there is no connection between the two occurrences of x .
In particular, despite perfect sharing, their binding fields
are unconnected, leading to inconsistencies.

A potential solution would be to systematically traverse a
clause and set thebindingfields of all cells of the form x(s)
whenever a variable x is bound, but this would be inefficient
and inelegant. Instead, we implemented a hybrid approach:
Variables are applied by an explicit application operator @,
to ensure that they are always perfectly shared. Thus, x b c
is represented by the cell @(x,b, c), where x is a shared
subcell. This is graceful, since variables never occur applied
in first-order terms. The main drawback is that some normal-
ization is necessary after substitution:Whenever a variable is
instantiated by a symbol-headed term, the@ symbol must be
eliminated. Applying the substitution {x �→ f a} to the cell
@(x,b, c) must produce f(a,b, c) and not @(f(a),b, c), for
consistency with other occurrences of f a b c.

There is one more complication related to the binding
field. In E, it is easy and useful to traverse a term as if a substi-
tution has been applied, by following all set binding fields.
In Ehoh, this is not enough, because cells must also be nor-
malized. To avoid repeatedly creating the same normalized
cells, we introduced a binding_cache field that connects
a @(x, s) cell with its substitution. However, this cache can
easily become stale when x’s binding pointer is updated.
To detect this situation, we store x’s binding value in the
@(x, s) cell’s binding field (which is otherwise unused).
To find out whether the cache is valid, it suffices to check
that the binding fields of x and @(x, s) are equal.

Term orders Superposition provers rely on term orders to
prune the search space. The order must be a simplifica-
tion order that is total on variable-free terms. E implements
both the Knuth–Bendix order (KBO) and the lexicographic
path order (LPO). KBO is widely regarded as the more
robust option for superposition. In earlier work, Blanchette
and colleagues have shown that only KBO can be general-
ized gracefully while preserving the necessary properties for
superposition [7,16]. For this reason, we focus on KBO.

E implements Löchner’s linear-time algorithm for KBO
[29], which relies on the tuplingmethod to store intermediate
results. It is straightforward to generalize the algorithm to
compute the graceful λfHOL version of KBO [7]. The main
difference is that when comparing two terms f sm and f tn ,
because of partial application we may now have m �= n; this
required changing the implementation to perform a length-
lexicographic comparison of the tuples sm and tn .

Input and output syntax E implements the TPTP [51] for-
mats FOF and TF0, corresponding to untyped andmonomor-
phic first-order logic, for both input and output. In Ehoh,
we added support for the λfHOL fragment of TPTP TH0,

123

P. Vukmirović et al.

which provides monomorphic higher-order logic. Thanks to
the use of a standard format, Ehoh’s proofs can immedi-
ately be parsed by Sledgehammer [36], which reconstructs
them using a variety of techniques. There is ongoing work
on increasing the level of detail of E’s proofs, to facilitate
proof interchange and independent proof checking [38]; this
will also benefit Ehoh.

4 Unification andmatching

Syntactic unification of (Boolean-free) λfHOL terms has a
first-order flavor. It is decidable, and most general unifiers
(MGUs) are unique up to variable renaming. For example, the
unification constraint f (y a) ?= y (f a) has the MGU {y �→
f}, whereas in full higher-order logic infinitely many inde-
pendent solutions of the form {y �→ λx . f (f (· · · (f x) · · ·))}
exist. Matching is a special case of unification where only the
variables on the left-hand side can be instantiated.

An easy but inefficient way to implement unification and
matching for λfHOL is to apply the applicative encoding
(Sect. 2), perform first-order unification or matching, and
decode the resulting substitution. To avoid the overhead, we
generalize the first-order unification and matching proce-
dures to operate directly on λfHOL terms.

Unification We present our unification procedure as a non-
deterministic transition system that generalizes Baader and
Nipkow [5]. A unification problem consists of a finite set S
of unification constraints si

?= ti , where si and ti are of the
same type. A problem is in solved form if it has the form
{x1

?= t1, . . . , xn
?= tn}, where the xi ’s are distinct and do

not occur in the t j ’s. The corresponding unifier is {x1 �→ t1,
. . . , xn �→ tn}. The transition rules attempt to bring the input
constraints into solved form. They can be applied in any order
and eventually reach a normal form, which is either an idem-
potent MGU expressed in solved form or the special value
⊥, denoting unsatisfiability of the constraints.

The first group of rules—the positive rules—consists of
operations that focus on a single constraint and replace it with
a new (possibly empty) set of constraints:

Delete {t ?= t} � S �⇒ S
Decompose {f sm

?= f tm} � S �⇒
S ∪ {s1 ?= t1, . . . , sm

?= tm}
DecomposeX {x sm

?= u tm} � S �⇒
S ∪ {x ?= u, s1

?= t1, . . . , sm
?= tm}

if x and u have the same type and m > 0
Orient {f s ?= x t} � S �⇒ S ∪ {x t ?= f s}

OrientXY {x sm
?= y tn} � S �⇒ S ∪ {y tn

?= x sm}
if m > n

Eliminate {x ?= t} � S �⇒ {x ?= t} ∪ {x �→ t}(S)

if x ∈ Var(S)\Var(t)

The Delete,Decompose, and Eliminate rules are essentially
as for first-order terms.TheOrient rule is generalized to allow
applied variables and complemented by a newOrientXY rule.
DecomposeX, also a new rule, can be seen as a variant of
Decompose that analyzes applied variables; the term u may
be an application.

The rules belonging to the second group—the negative
rules—detect unsolvable constraints:

Clash {f s ?= g t} � S �⇒ ⊥ if f �= g
ClashTypeX {x sm

?= u tm} � S �⇒ ⊥
if x and u have different types

ClashLenXF {x sm
?= f tn} � S �⇒ ⊥ if m > n

OccursCheck {x ?= t} � S �⇒ ⊥ if x ∈ Var(t) and
x �= t

Clash andOccursCheck are essentially as in Baader andNip-
kow. ClashTypeX and ClashLenXF are variants of Clash for
applied variables.

The derivation below demonstrates the computation of
MGUs for the unification problem {x (z b c) ?= g a (y c)}:

{x (z b c) ?= g a (y c)}
�⇒DecomposeX {x ?= g a, z b c ?= y c}
�⇒OrientXY {x ?= g a, y c ?= z b c}
�⇒DecomposeX {x ?= g a, y ?= z b, c ?= c}
�⇒Delete {x ?= g a, y ?= z b}

E stores open constraints in a double-ended queue. Con-
straints are processed from the front. New constraints are
added at the front if they involve complex terms that can be
dealt with swiftly by Decompose or Clash, or to the back if
one side is a variable. This delays instantiation of variables
and allows E to detect structural clashes early.

During proof search, E repeatedly needs to test a term s
for unifiability not only with some other term t but also with
t’s subterms. Prefix optimization speeds up this test: The
subterms of t are traversed in a first-order fashion; for each
such subterm ζ tn , at most one prefix ζ tk , with k ≤ n, is
possibly unifiable with s, by virtue of their having the same
arity. For first-order problems, we can only have k = n, since
all functions are fully applied. Using this technique, Ehoh is
virtually as efficient as E on first-order terms.

The transition system introduced above always terminates
with a correct answer. Our proofs follow the lines of Baader
and Nipkow. The metavariable R is used to range over con-
straint sets S and the special value⊥. The set of all unifiers of
S is denoted byU(S). Note thatU(S ∪ S′) = U(S)∩U(S′).
We let U(⊥) = ∅. The notation S �⇒! S′ indicates that
S �⇒∗ S′ and S′ is a normal form (i.e., there exists no S′′
such that S′ �⇒ S′′). A variable x is solved in S if it occurs
exactly once in S, in a constraint of the form x ?= t .

123

Extending a brainiac prover to lambda-free higher-order logic

Lemma 1 If S �⇒ R , then U(S) = U(R).

Proof The rules Delete, Decompose, Orient, and Eliminate
are proved as in Baader and Nipkow. OrientXY trivially pre-
serves unifiers. For DecomposeX, the core of the argument
is as follows:

σ ∈ U({x sm
?= u tm})

iff σ(x sm) = σ(u tm)

iff σ(x) σ (s1) . . . σ (sm) = σ(u) σ (t1) . . . σ (tm)

iff σ(x) = σ(u), σ (s1) = σ(t1), . . . , and σ(sm) = σ(tm)

iff σ ∈ U({x ?= u, s1
?= t1, . . . , sm

?= tm})

The proof of the problem’s unsolvability if rule Clash or
OccursCheck is applicable carries over fromBaader andNip-
kow. For ClashTypeX, the justification is that σ(x sm) =
σ(u tm) is possible only if σ(x) = σ(u), which requires x
and u to have the same type. Similarly, for ClashLenXF, if
σ(x sm) = σ(f tn) with m > n, we must have σ(x sm−n) =
σ(x) σ (s1) . . . σ (sm−n) = f, which is impossible. ��
Lemma 2 If S is a normal form, then S is in solved form.

Proof Consider an arbitrary unification constraint s ?= t ∈
S. We show that in all but one cases, a rule is applicable,
contradicting the hypothesis that S is a normal form. In the
remaining case, s is a solved variable in S.
Case s = x :

– Subcase t = x : Delete is applicable.
– Subcase t �= x and x ∈ Var(t): OccursCheck is appli-
cable.

– Subcase t �= x , x /∈ Var(t), and x ∈ Var(S\{s ?= t}):
Eliminate is applicable.

– Subcase t �= x , x /∈ Var(t), and x /∈ Var(S\{s ?= t}):
The variable x is solved in S.

Case s = x sm for m > 0:

– Subcase t = η tn for n ≥ m: DecomposeX or
ClashTypeX is applicable, depending on whether x and
η tn−m have the same type.

– Subcase t = y tn for n < m: OrientXY is applicable.
– Subcase t = f tn for n < m: ClashLenXF is applicable.

Case s = f sm :

– Subcase t = x tn : Orient is applicable.
– Subcase t = f tn : Due to well-typedness, m = n.

Decompose is applicable.
– Subcase t = g tn : Clash is applicable.

Since each constraint is of the form x ?= t where x is solved
in S, the problem S is in solved form. ��

Lemma 3 If the constraint set S is in solved form, then the
associated substitution is an idempotent MGU of S.

Proof This lemma corresponds to Lemma 4.6.3 of Baader
and Nipkow. Their proof carries over to λfHOL. ��
Theorem 4 (Partial correctness) If S �⇒! ⊥, then S has no
solutions. If S �⇒! S′, then S′ is in solved form and the
associated substitution is an idempotent MGU of S.

Proof The first part follows from Lemma 1. The second part
follows from Lemma 1 and Lemmas 2 and 3. ��
Theorem 5 (Termination) The relation �⇒ is well founded.

Proof We define an auxiliary notion of weight:W (ζ sm) =
m+1+∑m

i=1W (si).Well-foundedness is proved by exhibit-
ing a measure function from constraint sets to quadruples of
natural numbers (n1, n2, n3, n4), where n1 is the number of
unsolved variables in S; n2 is the sum of all term weights,
∑

s ?=t∈S W (s) +W (t); n3 is the number of right-hand sides
with variable heads, |{s ?= x t ∈ S}|; and n4 is the number
of arguments to left-hand side variable heads,

∑
x sm

?=t∈S m.
The following table shows that the application of each

positive rule lexicographically decreases the quadruple:

n1 n2 n3 n4

Delete ≥ >

Decompose ≥ >

DecomposeX ≥ >

Orient ≥ = >

OrientXY ≥ = = >

Eliminate >

Thenegative rules,which produce the special value⊥, cannot
contribute to an infinite �⇒ chain. ��

A unification algorithm for λfHOL can be derived from
the above transition system, by committing to a strategy for
applying the rules. This algorithm closely follows the Ehoh
implementation, abstracting away from complications such
as prefix optimization. We assume a flattened representation
of terms; as in Ehoh, each variable stores the term it is bound
to in its bindingfield (Sect. 3).We also rely on aApplySubst
function, which applies the binding to the top-level variable.
The algorithm assumes that the terms to be unified have the
same type. The pseudocode is as follows:

function SwapNeeded(Term s, Term t) is
return t .head.isVar()

∧ (¬ s.head.isVar()
∨ s.num_args > t .num_args)

function Deref(Term s) is
while s.head.isVar() ∧ s.head.binding �= Null do

123

P. Vukmirović et al.

s ← ApplySubst(s, s.head.binding)

return s

function GobblePrefix(Term x , Term t) is
res ← Null
if x .type.args is suffix of t.head.type.args then

pref _len ← t.head.type.arity − x .type.arity
if pref _len ≤ t .num_args then

res ← Term(t .head, t .args[1 . . pref _len])
return res

function Unify(Term s, Term t) is
constraints ← DoubleEndedQueue()
constraints.prepend(s)
constraints.prepend(t)

while ¬ constraints.isEmpty() do
t ← Deref(constraints.dequeue())
s ← Deref(constraints.dequeue())

if s �= t then
if SwapNeeded(s, t) then

(t, s) ← (s, t)

if s.head.isVar() then
x ← s.head
prefix ← GobblePrefix(x, t)
if prefix �= Null then

start_idx ← prefix.num_args + 1
if x occurs in prefix then
return False

else
x .binding ← prefix

else
return False

else if s.head = t .head then
start_idx ← 1

else
return False

for i ← start_idx to t .num_args do
s_arg ← s.args[i − start_idx + 1]
t_arg ← t .args[i]
if (s_arg.head.isVar()

∨ t_arg.head.isVar()) then
constraints.append(t_arg)

constraints.append(s_arg)

else
constraints.prepend(s_arg)

constraints.prepend(t_arg)

return True

Matching Given s and t , the matching problem consists of
finding a substitutionσ such thatσ(s) = t .We thenwrite that
“t is an instance of s” or “s generalizes t .” We are interested
in most general generalizations (MGGs). Matching can be

reduced to unification by treating variables in t as nullary
symbols [5], but E implements it separately.

Matching can be specified abstractly as a transition system
on matching constraints si �? ti consisting of the unifica-
tion rules Decompose, DecomposeX, Clash, ClashTypeX,
ClashLenXF (with �? instead of ?=) and augmented with

Double {x �? t, x �? t ′} � S �⇒ ⊥ if t �= t ′
ClashLenXY {x sm �? y tn} � S �⇒ ⊥

if x �= y and m > n
ClashFX {f s �? x t} � S �⇒ ⊥

The matching relation is sound, complete, and well founded.
Interestingly, a Delete rule would be unsound for matching.
Consider the problem {x �? x, x �? g x}. Applying Delete
to the first constraint would yield the solution {x �? g x},
even though the original problem is clearly unsolvable.

5 Indexing data structures

Superposition provers like E work by saturation. Their main
loop heuristically selects a clause and searches for poten-
tial inference partners among a possibly large set of other
clauses.Mechanisms such as simplification and subsumption
also require locating terms in a large clause set. For example,
when E derives a new equation s ≈ t , if s is larger than t
according to the term order, it will rewrite all instances σ(s)
of s to σ(t) in existing clauses.

To avoid iterating over all terms (including subterms) in
large clause sets, superposition provers store the potential
inference partners in indexing data structures. A term index
stores a set of termsS.Given aquery term t , a query returns all
terms s ∈ S that satisfy a given retrieval condition: σ(s) =
σ(t) (s and t are unifiable), σ(s) = t (s generalizes t), or
s = σ(t) (s is an instance of t), for some substitution σ.

Perfect indices return exactly the subset of terms satisfying
the retrieval condition. In contrast, imperfect indices return
a superset of eligible terms, and the retrieval condition needs
to be checked for each candidate.

E relies on two term indexing data structures, perfect
discrimination trees [32] and fingerprint indices [42], that
needed to be generalized toλfHOL. It also uses feature vector
indices [43] to speed up subsumption and related techniques,
but these require no changes to work with λfHOL.

Discrimination trees Discrimination trees [32] are tries in
which every node is labeled with a symbol or a variable. A
path from the root to a leaf node corresponds to a “serialized
term”—a term expressed without parentheses and commas.

123

Extending a brainiac prover to lambda-free higher-order logic

Consider the following discrimination trees D1 and D2:

f

a

g

a

a

b

a b

f

x

g

a

a

y

a x

x

Assuming a,b, x, y: ι, f: ι → ι, and g: ι2 → ι, D1 represents
the term set {f(a), g(a, a), g(b, a), g(b,b)}, and D2 rep-
resents the term set {f(x), g(a, a), g(y, a), g(y, x), x}. E
uses perfect discrimination trees for finding generalizations
of query terms. Thus, if the query term is g(a, a), it would
follow the path g.a.a in D1 and return {g(a, a)}. For D2,
it would also explore paths labeled with variables, binding
themas it proceeds, and return {g(a, a), g(y, a), g(y, x), x}.

It is crucial for this data structure that distinct terms always
give rise to distinct serialized terms. Conveniently, this prop-
erty also holds for λfHOL terms. Suppose that two distinct
λfHOL terms yield the same serialization. Clearly, they must
disagree on parentheses; one will have the subterm s t u
where the other has s (t u). However, these two subterms
cannot both be well typed.

When generalizing the data structure to λfHOL, we face
a complication due to partial application. First-order terms
can only be stored in leaf nodes, but in Ehoh we must also
be able to represent partially applied terms, such as f, g, or
g a (assuming, as above, that f is unary and g is binary).
Conceptually, this can be solved by storing a Boolean on
each node indicating whether it is an accepting state. In the
implementation, the change is more subtle, because several
parts of E’s code implicitly assume that only leaf nodes are
accepting.

The main difficulty specific to λfHOL concerns applied
variables. To enumerate all generalizing terms, E needs to
backtrack from child to parent nodes. This is achieved using
two stacks that store subterms of the query term: T stores
the terms that must be matched in turn against the current
subtree, and P stores, for each node from the root to the
current subtree, the corresponding processed term.

Let [a1, . . . , an] denote an n-item stack with a1 on top.
Given a query term t , the matching procedure starts at the
root with σ = ∅, T = [t], and P = []. The procedure
advances by repeatedly moving to a suitable child node:

A. If the node is labeled with a symbol f and the top item t of
T is of the form f(tn), replace t by n new items t1, . . . , tn ,
and push t onto P .

B. If the node is labeled with a variable x , there are two
subcases. If x is already bound, check that σ(x) = t ;
otherwise, extend σ so that σ(x) = t . Next, pop the term
t from T and push it onto P .

The goal is to reach an accepting node. If the query term and
all the terms stored in the tree are first-order, T will then be
empty, and the entire query term will have been matched.
Backtracking works in reverse: Pop a term t from P; if the
current node is labeled with an n-ary symbol, discard T ’s
topmost n items; push t onto T . Undo any variable bindings.

As an example, looking up g(b, a) in the tree D1 would
result in the following succession of stack states, starting
from the root ε along the path g.b.a:

ε g g.b g.b.a
σ : ∅ ∅ ∅ ∅
T : [g(b, a)] [b, a] [a] []
P: [] [g(b, a)] [b, g(b, a)] [a, b, g(b, a)]

Backtracking amounts to moving leftward: To get back from
g to the root, we pop g(b, a) from P , we discard two items
from T , and we push g(b, a) onto T .

To adapt the procedure to λfHOL, the key idea is that an
applied variable is not very different from an applied symbol.
A node labeled with an n-ary head ζ matches a prefix t ′ of
the k-ary term t popped from T and leaves n − k arguments
u to be pushed back, with t = t ′ u. If ζ is a variable, it must
be bound to the prefix t ′ assuming ζ and t ′ are of same type.
Backtracking works analogously: Given the arity n of the
node label ζ and the arity k of the term t popped from P , we
discard the topmost n − k items u from P .

To illustrate the procedure, we consider the tree D2 but
change y’s type to ι → ι. This tree stores {f x, g a a,
g (y a), g (y x), x}. Let g (g a b) be the query term. We
have the following sequence of substitutions σ and stacks
T , P:

ε g g.y g.y.x

∅ ∅ {y �→ g a} {y �→ g a, x �→ b}
[g (g a b)] [g a b] [b] []
[] [g (g a b)] [g a b, g (g a b)] [b, g a b, g (g a b)]

When backtracking from g.y to g, by comparing y’s arity of
n = 1with g a b’s arity of k = 0, we determine that one item
must be discarded from T . Finally, to avoid traversing twice
as many subterms as in the first-order case, we can optimize
prefixes: Given a query term ζ tn , we can also match prefixes
ζ tk , where k < n, by allowing T to be nonempty when we
reach an accepting node.

Similarly to matching, we present finding generalizations
in a perfect discrimination tree as a transition system. States
are quadruples Q = (t, b, D, σ), where t is a list of terms,
b is a list of tuples storing backtracking information, D is a
discrimination (sub)tree, and σ is a substitution.

Let D be a perfect discrimination tree. Term(D) denotes
the set of terms stored in D. The function D|ζ returns the child
of D labeled with ζ , if it exists. Child nodes are themselves
perfect discrimination (sub)trees. Given any node D, if the

123

P. Vukmirović et al.

node is accepting, then the value stored on that node is defined
as val(D) = (s, d), where s is the accepted term and d is
some arbitrary data; otherwise, val(D) is undefined.

Starting from an initial state ([t], [], D,∅), where t is the
query term and D is an entire discrimination tree, the follow-
ing transitions are possible:

AdvanceF (f sm · t, b, D, σ) � (sm · t, (f sm, D, σ) ·
b, D|f , σ) if D|f is defined

AdvanceX (s sm · t, b, D, σ) �
(sm · t, (s sm, D, σ) · b, D|x , σ [x �→ s])
if D|x is defined, x and s have the same type, and
σ(x) is either undefined or equal to s

Backtrack (sm · t, (s, D0, σ0) · b, D, σ) � (s ·
t, b, D0, σ0)

if D0|ζ = D and m = arity(ζ) − arity(s)
Success ([], b, D, σ) � (val(D), σ)

if val(D) is defined

Above, · denotes prepending an element or a list to a list.
Intuitively,AdvanceF andAdvanceXmovedeeper in the tree,
generalizing casesA andB above toλfHOL terms. Backtrack
can be used to return to a previous state. Success extracts the
term t and data d stored in an accepting node.

The following derivation illustrates how to locate a gen-
eralization of g (g a b) in the tree D2:

([g (g a b)], [], D, ∅)

�AdvanceF ([g a b], [(g (g a b), D,∅)], D|g, ∅)

�AdvanceX ([b], [(g a b, D|g,∅), . . .], D|g.y, {y �→ g a})
�AdvanceX ([], [(b, D|g.y, {y �→ g a}), . . .], D|g.y.x ,

{y �→ g a, x �→ b})
�Success ((g (y x), d), {y �→ g a, x �→ b})

Let�Advance = �AdvanceF∪�AdvanceX. It is easy to show
that Backtrack undoes an Advance transition:

Lemma 6 If Q �Advance Q ′, then Q ′ �Backtrack Q .

Proof For both Advance steps, we show that Backtrack
restores the state properly. If AdvanceFwas applied, we have

(f sm · t, b, D, σ) �AdvanceF (sm · t, (f sm , D, σ) · b, D|f , σ)

�Backtrack (t ′, b, D, σ)

We must show that t ′ = f sm · t . Let k = arity(f) and
l = arity(f sm). By definition of k, we have m = k − l, as
in Backtrack’s side condition. Thus, t ′ = f sm · t . The other
case is

(s sm · t, b, D, σ) �AdvanceX (sm · t, (s sm , D, σ) · b, D|x , σ ′)

�Backtrack (t ′, b, D, σ)

where σ ′ = σ [x �→ s]. Again, wemust show that t ′ = s sm ·
t . Terms x and s must have the same type for AdvanceX to be
applicable; therefore, they have the same arity. Then, we con-
clude m = arity(s) − arity(s sm) = arity(x) − arity(s sm),
as in Backtrack’s side condition. Thus, t ′ = s sm · t . ��
Lemma 7 If Q �Advance Q ′ �Backtrack Q ′′, then Q ′′ = Q .

Proof By Lemma 6, Q ′ �Backtrack Q . Furthermore, Back-
track is clearly functional. Thus, Q ′′ = Q . ��
Lemma 8 Let Q = ([t], [], D,∅). If Q �∗ Q ′, then
Q �∗

Advance Q
′.

Proof Let Q = Q 0 � · · · � Q n = Q ′. Let i be the
index of the first transition of the formQ i �Backtrack Q i+1.
Since Q 0’s backtracking stack is empty, we must have i �=
0. Hence, we have Q i−1 �Advance Q i �Backtrack Q i+1.
By Lemma 7, Q i−1 = Q i+1. Thus, we can shorten the
derivation to Q 0 � · · · � Q i−1 = Q i+1 � · · · � Q n ,
thereby eliminating one Backtrack transition. By repeating
this process, we can eliminate all applications of Backtrack.

��
Lemma 9 There exist no infinite chains of the form Q 0

�Advance Q 1 �Advance · · · .

Proof With each Advance transition, the height of the dis-
crimination tree decreases by at least one. ��

Perfect discrimination trees match a single term against a
set of terms. To prove them correct, we will connect them to
the transition system �⇒ for matching (Sect. 4). This con-
nection will help us show that whenever a discrimination
tree stores a generalization of a query term, this generaliza-
tion can be found. To express the refinement, we introduce an
intermediate transition system, ↪−→, that focuses on a sin-
gle pair of terms (like �⇒) but that solves the constraints
in a depth-first, left-to-right fashion and builds the substitu-
tion incrementally (like �). Its initial states are of the form
([s �? t],∅). Its transitions are as follows:

Decompose (f sm �? f tm · c, σ) ↪−→
((s1 �? t1, . . . , sm �? tm) · c, σ)

DecomposeX (x sm �? u tm · c, σ) ↪−→
((s1 �? t1, . . . , sm �? tm) · c, σ [x �→ u])
if x and u have the same type and either σ(x)

is undefined or σ(x) = u
Success ([], σ) ↪−→ σ

Clash (f sm �? g tn · c, σ) ↪−→ ⊥
ClashTypeX (x sm �? u tm · c, σ) ↪−→ ⊥

if x and u have different types

123

Extending a brainiac prover to lambda-free higher-order logic

ClashLenXF (x sm �? f tn · c, σ) ↪−→ ⊥ if m > n
ClashLenXY (x sm �? y tn · c, σ) ↪−→ ⊥

if x �= y and m > n
ClashFX (f s �? x t · c, σ) ↪−→ ⊥
Double (x sm �? u tm · c, σ) ↪−→ ⊥

if x and u have the same type, σ(x) is defined,
and σ(x) �= u

Weneed an auxiliary function to convert ↪−→ states to�⇒
states. Let α({x1 �→ s1, . . . , xm �→ sm}) = {x1 �? s1, . . . ,
xm �? sm}, α(c, σ) = {c | c ∈ c} ∪ α(σ), and α(⊥) = ⊥.
Moreover, let S range over states of the form (c, σ) and R
additionally range over special states of the form σ or ⊥.

Lemma 10 If S ↪−→ R , then α(S) �⇒∗ α(R).

Proof By case distinction on R . Let S = (c, σ).
Case R = (c′, σ ′): Only ↪−→Decompose and ↪−→DecomposeX

are possible. If ↪−→Decompose is applied, then �⇒Decompose

is applicable and results in α(R). If ↪−→DecomposeX is
applied, we have either m > 0, and �⇒DecomposeX is appli-
cable, or m = 0, and α(c′, σ ′) = α(S), which implies that
the two states are connected by an idle transition of �⇒∗.
Case R = ⊥: All the ↪−→ rules resulting in ⊥ except for
Double have the same side conditions as the corresponding
�⇒ rules. ↪−→Double corresponds to �⇒Double if m = 0. If
m �= 0, we need an intermediate �⇒DecomposeX step before
�⇒Double can be applied to derive ⊥. Since ↪−→Double is
applicable, σ(x) = u′ �= u. Hence, x �? u′ must be present
in α(c, σ). �⇒DecomposeX will augment this set with x �? u,
enabling �⇒Double.
Case R = σ : The only possible rule is ↪−→Success, with
c = []. Since α(S) = α(σ), this transition corresponds to an
idle transition of �⇒∗. ��
Lemma 11 If S ↪−→! R , then R is either some substitution
σ ′ or ⊥. If S ↪−→! σ ′, then σ ′ is the MGG of α(S). If S ↪−→!
⊥, then α(S) has no solutions.

Proof First, we show that states S ′ = (c′, σ ′) cannot be
normal forms, by exhibiting transitions from such states. If
c′ = [], the ↪−→Success rule would apply. Otherwise, let
c′ = c1·c′′ and consider thematching problem {c1}∪α(σ ′). If
this problem is in solved form, c1 is a constraint correspond-
ing to a solved variable, and we can apply ↪−→DecomposeX

to move the constraint into the substitution. Otherwise, some
�⇒ rule can be applied. It necessarily focuses on c1, since the
constraints from α(σ ′) correspond to solved variables. In all
cases except for�⇒DecomposeX, a homologous ↪−→ rule can
be applied to S ′. If �⇒DecomposeX would make �⇒Double
applicable, then we can apply ↪−→Double to S ′; otherwise,
↪−→DecomposeX is applicable.

Second, by Lemma 10, if S ↪−→! σ ′, then α(S) �⇒∗
α(σ ′). By construction, α(σ ′) is in solved form. Therefore,

α(S) �⇒! α(σ ′). By completeness of �⇒, the substitution
corresponding to α(σ ′)—that is, σ ′—is the MGG of α(S).

Third, by Lemma 10, if S ↪−→! ⊥, then α(S) �⇒! ⊥. By
soundness of �⇒, α(S) has no solutions. ��

Lemma 12 The relation ↪−→ is well founded.

Proof By Lemma 10, every ↪−→ transition corresponds to
zero or more �⇒ transitions. Since �⇒ is well founded, the
only transitions that can violate well-foundedness of ↪−→ are
the ones that take idle �⇒∗ transitions: ↪−→DecomposeX for
m = 0 and ↪−→Success. The latter is terminal, so it cannot
contribute to infinite chains.As for ↪−→DecomposeX,withm =
0, it decreases the followingmeasureμ, which the other rules
nonstrictly decrease, with respect to the multiset extension
of < on natural numbers: μ([s1 �? t1, . . . , sm �? tm], σ) =
{|s1| , . . . |sm |}, where |s| denotes the syntactic size of s. ��

Lemma 13 If term s generalizes t , then ([s �? t],∅) ↪−→! σ ,
where σ is the MGG of s �? t .

Proof By Lemma 12, there exists a normal form R start-
ing from S = ([s �? t],∅). Since s �? t is solvable,
by Lemma 11, and soundness of ↪−→ (a consequence of
Lemma 10 and soundness of �⇒), R must be the MGG for
s and t . ��

Lemma 14 If there exists a term s ∈ Term(D) that general-
izes the query term t, then there exists a derivation ([t], [],
D,∅) �! ((s, d), σ).

Proof By Lemma 13, we know that (s �? t,∅) ↪−→! σ for
each s ∈ Term(D) generalizing t . This means that there
exists a derivation ([s �? t],∅) = (c0, σ0) ↪−→ · · · ↪−→
(cn, σn) ↪−→ σ . The n first transitions must be Decompose
or DecomposeX, and the last transition must be Success.

We show that there exists a derivation of the form ([t], [],
D,∅) = Q 0 � · · · � Q n � ((s, d), σ), where Q i =
(ti , bi , Di , σi) for each i . We define ti , bi , and Di as fol-
lows, for i > 0. The list ti consists of the right-hand sides
of the constraints ci , in the same order. Let hd be the func-
tion that extracts the head of a list. We set bi = (hd(ti−1),

Di−1, σi−1). We know that ci−1 is nonempty, since there
exists a transition (ci−1, σi−1) ↪−→ (ci , σi) ; thus, ti−1 is
nonempty. If an accepting node storing s was reached in
n steps, the serialization of s must be of the form ζ1. · · · .ζn .
Take Di = Di−1|ζi .

The sequence of states Q i forms a derivation: If (ci , σi)

↪−→Decompose (ci+1, σi+1), then Q i �AdvanceF Q i+1. If
(ci , σi) ↪−→DecomposeX (ci+1, σi+1), then Q i �AdvanceX
Q i+1. If (cn, σn) ↪−→Success σ , then Q n �Success ((s, d),

σ). ��

123

P. Vukmirović et al.

Lemma 15 If ([t], [], D,∅) �+ ((s, d), σ), then s ∈
Term(D) and σ is the MGG of s �? t .

Proof Let ([t], [], D,∅) = Q 0 � · · · � Q n �
((s, d), σ) be a derivation, where Q i = (ti , bi , Di , σi) for
each i . Without loss of generality, by Lemma 8, we can
assume that the derivation contains no Backtrack transitions.

The first conjunct, s ∈ Term(D), clearly holds for any
term found from an initial state. To prove the second con-
junct, we first introduce a function preord that defines the
preorder decomposition of a list of terms: preord([]) = []
and preord(ζ sn · xs) = (ζ , sn · xs) · preord(sn · xs). Given
a term s, preord([s]) gives a sequence (ζ1, u1), . . . , (ζn, un).
Since s ∈ Term(D), the sequence D0, . . . , Dn follows the
preorder serialization of s: Di = Di−1|ζi for i > 0.

Next, we show that there exists a derivation of the form
([s �? t],∅) = S0 ↪−→ · · · ↪−→ Sn ↪−→ σ , where Si =
(ci , σi). We define ci , for i > 0, as the list of constraints
whose left-hand sides are the elements of ui and right-hand
sides are the elements of ti , in the order they appear in the
respective lists. By inspecting the definition of preord and
the changes each Advance step makes to the head of ti , we
can see that ui and ti have the same length. The sequence of
states Si forms a derivation: If Q i �AdvanceF Q i+1, then
Si ↪−→Decompose Si+1. If Q i �AdvanceX Q i+1, then Si

↪−→DecomposeX Si+1. If Q n �Success σ , then Sn ↪−→Success

σ . ��
Theorem 16 (Total correctness) Let D be a perfect discrim-
ination tree and t be a term. The sets {s ∈ Term(D) |
∃σ. σ (s) = t} and {s | ∃d, σ. ([t], [], D,∅) �! ((s, d), σ)}
are equal.

Proof This follows from Lemmas 14 and 15. ��
The theorem tells us that given a term t , all generalizations

s stored in the perfect discrimination tree can be found, but
it does not exclude nondeterminism. Often, both AdvanceF
and AdvanceX are applicable. To find all generalizations, we
need to follow both transitions. But for some applications, it
is enough to find a single generalization.

To cater for both types of applications, E provides iter-
ators that store the state of a traversal. After an iterator is
initialized with the root node D and the query term t , each
call to FindNextValwill move the iterator to the next node
that generalizes the query term and stores a value, indicating
an accepting node. After all such nodes have been traversed,
the iterator is set to point to Null.

The following definitions constitute the high-level inter-
face for iterating through values incrementally or for obtain-
ing all values of nodes that store generalizations of the query
term in D.

function InitIter(PDTNode D, Term t) is
i ← Iterator()

(i .node, i .t_stack, i .t_proc, i .c_iter) ←
(D, [t], [], Start)
return i

procedure FindNextVal(Iterator i) is
do
FindNextNode(i)

while i .node �= Null ∧
(¬ i .t_stack.isEmpty() ∨ ¬ i .node.has_val())

function AllVals(PDTNode D, Term t) is
i ← InitIter(D, t)
FindNextVal(i)
res ← ∅
while i.node �= Null do

res ← res ∪ {i.node.val()}
FindNextVal(i)

return res

The core functionality is implemented in FindNext-
Node, presented below. This procedure moves the iterator
to the next node that has not been explored in the search for
generalization, or Null if the entire tree has been traversed.
It first goes through all child nodes labeled with a variable
before possibly visiting the child node labeledwith a function
symbol. We assume that we can iterate through the children
of a node using a function NextVarChild that, given a
tree node and iterator through children, advances the iterator
to the child representing the next variable. Furthermore, we
assume that the iterator can also be in the distinguished states
Start and End. Start indicates that no child has been visited
yet; End indicates that we have visited all children. Finally,
the expression n.child(ζ) returns a child of the node n labeled
ζ if such a child exists or Null otherwise.

procedure FindNextNode(Iterator i) is
if i .t_stack.isEmpty() then
BacktrackToVar(i)

advanced ← False
while i .node �= Null ∧ ¬ advanced do
while i .c_iter �= End ∧ ¬ advanced do

i .c_iter ← NextVarChild(i .node, i .c_iter)
if i .c_iter �= End then

x ← i .c_iter.var()
t ← i .t_stack.top()

s ← GobblePrefix(x, t)
if s �= Null ∧

(x .binding = Null ∨ x .binding = s) then
i .t_stack.pop()

for j ← t .num_args
downto s.num_args + 1 do

i .t_stack.push(t .args[j])
if x .binding = Null then

123

Extending a brainiac prover to lambda-free higher-order logic

x .binding ← s
i .t_proc.push((t, i .node, i .c_iter, True))

else
i .t_proc.push((t, i .node, i .c_iter, False))

i.node ← i .node.child(x)

advanced ← True

t ← i .t_stack.top()

if i .c_iter = End ∧ ¬ t .head.isVar()
∧ D.child(t .head) �= Null then

i .t_stack.pop()

for j ← t .num_args downto 1 do
i .t_stack.push(t .args[j])

i .t_proc.push((t, i .node, End, False))
i.node ← i .node.child(t .head)

advanced ← True

if ¬ advanced then
BacktrackToVar(i)

else
i .c_iter ← Start

procedure BacktrackToVar(Iterator i) is
forever do
if i .t_proc.isEmpty() then

i .node ← Null
return

else
(t, D, c_iter, var_unbound) ← i .t_proc.pop()

label_arity ← i .node.label.type.arity
t_arity ← t .type.arity

for i ← 1 to label_arity − t_arity do
i .t_stack.pop()

i .t_stack.push(t)
i .node ← D
i .c_iter ← c_iter

if var_unbound then
i .node.label.binding ← Null

if c_iter �= End then
return

The pseudocode uses a slightly different representation of
backtracking tuples than�. In theAdvanceX rule,σ changes
only if the variable x was previously not bound. Instead
of creating and storing substitutions explicitly, we simply
remember whether the variable was bound in this step or not,
in the var_unbound tuple component. Then we rely on the
label x of the current node and its binding field to carry the
substitutions. Similarly, since our strategy is to traverse the
tree by first visiting the variable-labeled child nodes, we need
to remember how far we have come with this traversal. We
store this information in the c_iter tuple component.

Fingerprint indices Fingerprint indices [42] trade perfect
indexing for a compact memory representation and more

flexible retrieval conditions. The basic idea is to compare
terms by looking only at a few predefined sample positions.
If we know that term s has symbol f at the head of the sub-
term at 2.1 and term t has g at the same position, we can
immediately conclude that s and t are not unifiable.

Let A (“at a variable”), B (“below a variable”), and N
(“nonexistent”) be distinguished symbols not present in the
signature, and let q < p denote that position q is a proper
prefix of p (e.g., ε < 2 < 2.1). Given a term t and a posi-
tion p, the fingerprint function G fpf is defined as

G fpf (t, p) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f if t |p has a symbol head f

A if t |p is a variable

B if t |q is a variable for some q < p

N otherwise

Based on a fixed tuple of positions pn , the fingerprint of a
term t is defined asFp(t) = (

G fpf (t, p1), . . . ,G fpf (t, pn)
)
.

To compare two terms s and t , it suffices to check that their
fingerprints are componentwise compatible using the follow-
ing unification and matching matrices, respectively:

f1 f2 A B N
f1 ✗ ✗

f2 ✗ ✗

A ✗

B
N ✗ ✗ ✗

f1 f2 A B N
f1 ✗ ✗ ✗ ✗

f2 ✗ ✗ ✗ ✗

A ✗ ✗

B
N ✗ ✗ ✗ ✗

The rows and columns correspond to s and t , respectively.
The metavariables f1 and f2 represent arbitrary distinct sym-
bols. Incompatibility is indicated by ✗.

As an example, let (ε, 1, 2, 1.1, 1.2, 2.1, 2.2) be the sam-
ple positions, and let s = f(a, x) and t = f(g(x),g(a)) be the
terms to unify. Their fingerprints are Fp(s) = (f, a,A,N,N,

B, B) andFp(t) = (f,g,g,A,N, a,N). Using the left matrix,
we compute the compatibility vector (--, ✗, --, ✗, --, --, --).
The mismatches at positions 1 and 1.1 indicate that s and t
are not unifiable.

A fingerprint index is a trie that stores a term set T keyed
by fingerprint. The term f(g(x),g(a)) above would be stored
in the node addressed by f.g.g.A.N.a.N, together with other
terms that share the same fingerprint. This scheme makes it
possible to unify or match a query term s against all the terms
T in one traversal. Once a node storing the terms U ⊆ T
has been reached, due to overapproximation we must apply
unification or matching on s and each u ∈ U .

When adapting this data structure to λfHOL, wemust first
choose a suitable notion of position in a term.Conventionally,
higher-order positions are strings over {1, 2}, but this is not
graceful. Instead, it is preferable to generalize the first-order
notion to flattened λfHOL terms—e.g., x a b |1 = a and

123

P. Vukmirović et al.

xab|2 = b.However, this approach fails on applied variables.
For example, although xb and f ab are unifiable (using {x �→
fa}), sampling position 1would yield a clash betweenb and a.
To ensure that positions remain stable under substitution,
we propose to number arguments in reverse: t |ε = t and
ζ tn . . . t1 |i .p = ti |p if 1 ≤ i ≤ n. We use a nonstandard
notation, t |p, for this nonstandard notion. The operation is
undefined for out-of-bound indices.

Lemma 17 Let s and t be unifiable terms, and let p be a
position such that the subterms s|p and t |p are defined. Then
s|p and t |p are unifiable.

Proof By structural induction on p. The case p = ε is trivial.
Case p = q.i : Let s|q = ζ sm . . . s1 and t |q = η tn . . . t1.
Since p is defined in both s and t , we have s|p = si and
t |p = ti . By the induction hypothesis, s|q and t |q are unifi-
able, meaning that there exists a substitution σ such that
σ(ζ sm . . . s1) = σ(η tn . . . t1). Hence, σ(s1) = σ(t1), …,
σ(si) = σ(ti)—i.e., σ(s|p) = σ(t |p). ��

Let t〈p denote the subterm t |q such that q is the longest
prefix of p for which t |q is defined. The λfHOL version of
the fingerprint function is defined as follows:

G fpf ′(t, p) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f if t |p has a symbol head f

A if t |p has a variable head

B if t |p is undefined
but t〈p has a variable head

N otherwise

Except for the reversed numbering scheme, G fpf ′ coincides
with G fpf on first-order terms. The fingerprint Fp′(t) of a
term t is defined analogously as before, and the same com-
patibility matrices can be used.

The key difference between G fpf and G fpf ′ concerns
applied variable. Given the sample positions (ε, 2, 1), the
fingerprint of x is (A, B, B) as before, whereas the fingerprint
of x c is (A, B, c). As another example, let (ε, 2, 1, 2.2, 2.1,
1.2, 1.1) be the sample positions, and let s = x (f b c)
and t = g a (y d). Their fingerprints are Fp′(s) =
(A, B, f, B, B,b, c) and Fp′(t) = (g, a,A,N,N, B,d). The
terms are not unifiable due to the incompatibility at position
1.1 (c vs. d).

We can easily support prefix optimization for both terms s
and t being compared:We simply add enough fresh variables
as arguments to ensure that s and t are fully applied before
computing their fingerprints.

Lemma 18 If terms s and t are unifiable, then G fpf ′(s, p)

and G fpf ′(t, p) are compatible according to the unification
matrix. If s generalizes t , then G fpf ′(s, p) and G fpf ′(t, p)

are compatible according to the matching matrix.

Proof We focus on the case of unification. By contraposition,
it suffices to consider the eight blank cells in the unification
matrix, where the rows correspond to G fpf ′(s, p) and the
columns correspond to G fpf ′(t, p). Since unifiability is a
symmetric relation, we can rule out four cases.
Case f1–f2: By definition of G fpf ′, s|p and t |p must be of
the forms f1 s and f2 t , respectively. Clearly, s|p and t |p are
not unifiable. By Lemma 17, s and t are not unifiable.
Case f1–N, f2–N,orA–N: FromG fpf ′(t, p) = N, we deduce
that p �= ε. Let p = q.i .r , where q is the longest prefix such
that G fpf ′(t, q) �= N. Since G fpf ′(t, q.i) = N, the head of
t |q must be some symbol g. (For a variable head, we would
have G fpf ′(t, q.i) = B.) Hence, t |q has the form g tn . . . t1,
for n < i . Since q.i is a legal position in s, s|q has the
form ζ sm . . . s1, with i ≤ m. A necessary condition for
σ(s|q) = σ(t |q) is that σ(ζ sm . . . sn+1) = σ(g), but this
is impossible because the left-hand side is an application
(since n < m), whereas the right-hand side is the symbol g.
By Lemma 17, s and t are not unifiable. ��
Corollary 19 (Overapproximation) If s and t are unifiable
terms, then Fp′(s) and Fp′(t) are compatible according to
the unification matrix. If s generalizes t , then Fp′(s) and
Fp′(t) are compatible according to the matching matrix.

Feature vector indices A clause C subsumes a clause D
if there exists a substitution σ such that σ(C) ⊆ D. Sub-
sumption is a crucial operation to prune the search space.
Feature-vector indices [43] are an imperfect indexing data
structure that can be used to retrieve clauses that subsume a
query clause or that are subsumed by the query clause. Unlike
for discrimination trees and fingerprint indices, no changes
were necessary to adapt feature vectors indices to λfHOL.
All the predefined features make sense in λfHOL.

6 Inference rules

Saturating provers show the unsatisfiability of a clause set
by systematically adding logical consequences, eventually
deriving the empty clause as a witness of unsatisfiability.
They implement two kinds of inference rules: Generating
rules produce new clauses and are needed for completeness,
whereas simplification rules delete existing clauses or replace
them by simpler clauses. This simplification is crucial for
success, and most modern provers spend a large part of their
time on simplification.

E’s main loop, which applies the rules, implements the
given clause procedure [4]. The proof state is represented by
two disjoint subsets of clauses, the set of processed clauses
P and the set of unprocessed clauses U . Initially, all clauses
are unprocessed. At each iteration of the loop, the prover
heuristically selects a given clause from U , adds it to P ,
and performs all generating inferences between this clause

123

Extending a brainiac prover to lambda-free higher-order logic

and all clauses in P . Resulting new clauses are added to
U . This maintains the invariant that all direct consequences
between clauses in P have been performed. Simplification
is performed on the given clause (using clauses in P as side
premises), on clauses in P (using the given clause), and on
newly generated clauses (again, using P).

Ehoh is based on the same logical calculus as E, except
that it is generalized to λfHOL terms. The standard inference
rules and completeness proof of superposition with respect
to intensional Boolean-free λfHOL fragment of our logic can
be reused verbatim; the only changes concern the basic defi-
nitions of terms and substitutions [10, Sect. 1]. Refutational
completeness of superposition forλfHOL terms has been for-
mally proved by Peltier [37] using Isabelle. We introduced
support for first-class Boolean terms in Ehoh by extending
the preprocessor, as explained in Sect. 8.

The generating rulesThe superposition calculus consists of
the following four core generating rules, whose conclusions
are added to the proof state:

s ≈ t ∨ C u[s′] �≈ v ∨ D
SN

σ(u[t] �≈ v ∨ C ∨ D)

s �≈ s′ ∨ C
ER

σ(C)

s ≈ t ∨ C u[s′] ≈ v ∨ D
SP

σ(u[t] ≈ v ∨ C ∨ D)

s ≈ t ∨ s′ ≈ u ∨ C
EF

σ(t �≈ u ∨ s ≈ u ∨ C)

In each rule, σ denotes the MGU of s and s′. Not shown are
various side conditions that restrict the rules’ applicability.

Equality resolution (ER) and equality factoring (EF) are
single-premise rules that work on the entire left- or right-
hand side of a literal of the given clause. To generalize them,
it suffices to disable prefix optimization for unification.

T he rules for superposition into negative and positive lit-
erals (SN and SP) are more complex. As two-premise rules,
they require the prover to find a partner for the given clause.
There are two cases to consider, depending on whether the
given clause acts as the first or second premise in an infer-
ence. Moreover, since the rules operate on subterms s′ of a
clause, the prover must be able to efficiently locate all rele-
vant subterms, including λfHOL prefix subterms. To cover
the case where the given clause acts as the left premise, the
prover relies on a fingerprint index to compute a set of clauses
containing terms possibly unifiable with a side s of a posi-
tive literal of the given clause. Thanks to our generalization
of fingerprints, in Ehoh this candidate set is guaranteed to
overapproximate the set of all possible inference partners.
The unification algorithm is then applied to filter out unsuit-
able candidates. Thanks to prefix optimization, we can avoid
polluting the index with all prefix subterms.

When the given clause is the right premise, the prover
traverses its subterms s′ looking for inference partners in
another fingerprint index, which contains only entire left-

and right-hand sides of equalities. Like E, Ehoh traverses
subterms in a first-order fashion. If prefix unification suc-
ceeds, Ehoh determines the unified prefix and applies the
appropriate inference instance.

The simplifying rules Unlike generating rules, simplify-
ing rules do not necessarily add conclusions to the proof
state—they can also remove premises. E implements over
a dozen simplifying rules, with unconditional rewriting and
clause subsumption as the most significant examples. Here,
we restrict our attention to a single rule, which best illustrates
the challenges of supporting λfHOL:

s ≈ t u[σ(s)] ≈ u[σ(t)] ∨ C
ES

s ≈ t

Given an equation s ≈ t , equality subsumption (ES) removes
a clause containing a literal whose two sides are equal except
that an instance of s appears on one side where the corre-
sponding instance of t appears on the other side.

E maintains a perfect discrimination tree storing clauses
of the form s ≈ t indexed by s and t . When applying ES, E
considers each positive literal u ≈ v of the given clause in
turn. It starts by taking the left-hand side u as a query term.
If an equation s ≈ t (or t ≈ s) is found in the tree, with
σ(s) = u, the prover checks whether σ ′(t) = v for some
(possibly nonstrict) extension σ ′ of σ . If so, ES is applicable,
with a second premise of the form σ(s) ≈ σ(t) ∨ C .

To consider nonempty contexts, the prover traverses the
subterms u′ and v′ of u and v in lockstep, as long as they
appear under identical contexts. Thanks to prefix optimiza-
tion, when Ehoh is given a subterm u′, it can find an equation
s ≈ t in the tree such that σ(s) is equal to some prefix of
u′, with some arguments u remaining as unmatched. Check-
ing for equality subsumption then amounts to checking that
v′ = σ ′(t) u, for some extension σ ′ of σ .

For example, let f (g a b) ≈ f (h g b) be the given clause,
and suppose that x a ≈ h x is indexed. Under context f [],
Ehoh considers the subterms g a b and h x b. It finds the
prefix g a of g a b in the tree, with σ = {x �→ g}. The
prefix h g of h g b matches the indexed equation’s right-
hand side h x using the same substitution, and the remaining
argument in both subterms, b, is identical. Ehoh concludes
that the given clause is redundant.

Pragmatic extensions Since Ehoh is based on a monomor-
phic logic, the only way to support extensionality without
changing the calculus is to add a set of extensionality axioms
for every function type occurring in problem [10, Sect. 3.1].
The evaluation by Bentkamp et al. of such an approach was
discouraging [10, Sect. 6], so we decided to support exten-
sionality via inference rules in Ehoh. We implemented two

123

P. Vukmirović et al.

well-known incomplete rules we had experimented with in
the context of Zipperposition.

Thenegative andpositive extensionality (NE andPE) rules
are defined as

s �≈ t ∨ C
NE

s (sk x) �≈ t (sk x) ∨ C

s x ≈ t x ∨ C
PE

s ≈ t ∨ C

For NE, x contains all the variables occurring in s and t ,
the terms s and t are of function type, sk is a fresh Skolem
symbol, and the literal s �≈ t is eligible for resolution [9,
Sect. 5]. For PE, variable x does not occur in any of the s, t ,
orC , no literals are selected inC , and s x ≈ t x is a maximal
literal.

Finally, we introduced an injectivity recognition (IR) rule,
which detects injectivity axioms and asserts the existence of
the inverse function for injective function symbols:

f xn �≈ f yn ∨ xi ≈ yi
IR

sk (f xn) x J ≈ xi

where sk is a fresh Skolem symbol, J is the largest subset of
{1, . . . , n} such that x j = y j for every j ∈ J . We denote the
subsequence of xn indexed by J by x J . Moreover, we require
that xi �= yi , all variables in x K · yK are distinct, where
K = {1, . . . , n}\J , and neither x K nor yK shares variables
with x J . For example, given add a b �≈ add a b′ ∨ a ≈ b′,
IR can derive the existence of the inverse sk1 characterized
by sk1 (add a b) a ≈ b.

7 Heuristics

E’s heuristics are largely independent of the logic used and
work unchanged for Ehoh. Yet, in preliminary experiments,
we noticed that E proved some λfHOL benchmarks quickly
using the applicative encoding (Sect. 1), whereas Ehoh timed
out. There were enough such problems to prompt us to take
a closer look. Based on these observations, we extended the
heuristics to exploit λfHOL-specific features.

Term order generation The superposition calculus is
parameterized by a termorder—typically an instance ofKBO
orLPO(Sect. 3). E cangenerate a symbol weight function (for
KBO) and a symbol precedence (for KBO and LPO) based
on criteria such as the symbols’ frequencies, their arities, and
whether they appear in the conjecture.

In preliminary experiments, we discovered that the pres-
ence of an explicit application operator @ can be beneficial
for some problems. Let a: ι1, b: ι2, c: ι3, f: ι1 → ι2 → ι3,
x : ι2 → ι3, y: ι2, and z: ι3, and consider the clauses f a y �≈ c
and x b ≈ z, where the first one is the negated conjecture.
Their applicative encoding is @ι2,ι3(@ι1,ι2→ι3(f, a), y) �≈ c

and @ι2,ι3(x,b) ≈ z, where @τ,υ is a type-indexed family
of symbols representing the application of a function of type
τ → υ. With the applicative encoding, generation schemes
can take the symbols @τ,υ into account, thereby exploiting
the type information carried by such symbols. Since@ι2,ι3 is
a conjecture symbol, some weight generation scheme could
give it a low weight, which would also impact the second
clause. By contrast, the native λfHOL clauses share no sym-
bols; the connection between them is hidden in the types of
variables and symbols, which are ignored by the heuristics.

To simulate the behavior observed on applicative prob-
lems, we introduced four generation schemes that extend
E’s existing symbol-frequency-based schemes by partition-
ing the symbols by type. To each symbol, the new schemes
assign a frequency equal to the sum of all symbol frequen-
cies for its class. Each new scheme is inspired by a similarly
named type-agnostic scheme in E, without type in its name:

– typefreqcount assigns as each symbol’s weight the
number of occurrences of symbols of the same type.

– typefreqrank sorts the frequencies calculated by
the function typefreqcount in increasing order and
assigns each symbol a weight corresponding to its rank.

– invtypefreqcount is typefreqcount’s inverse.
If typefreqcountwould assign a weightw to a sym-
bol, it assigns M − w + 1, where M is the maximum
symbol weight according to typefreqcount.

– invtypefreqrank is typefreqrank’s inverse. It
sorts the frequencies in decreasing order.

We designed fourmore schemes (whose names beginwith
comb instead of type) that combine E’s type-agnostic and
Ehoh’s type-aware approaches using a linear equation.

To generate symbol precedences, E can sort symbols by
weight and use the symbol’s position in the sorted array as the
basis for precedence. To reflect the type information intro-
duced by the applicative encoding, we implemented four
type-aware precedence generation schemes. Ties are broken
by comparing the symbols’ number of occurrences and, if
necessary, the position of their first occurrence in the input.

Literal selection The side conditions of the superposition
rules SN and SP (Sect. 6) rely on a literal selection func-
tion to restrict the set of inference literals, thereby reducing
the search space. Given a clause, a literal selection func-
tion returns a (possibly empty) subset of its literals. For
completeness, any nonempty subset selected must contain at
least one negative literal. If no literal is selected, all maximal
literals become inference literals. Themostwidely used func-
tion is probablySelectMaxLComplexAvoidPosPred,
which we abbreviate to SelectMLCAPP. It selects at most
one negative literal, based on size, absence of variables, and
maximality of the literal in the clause.

123

Extending a brainiac prover to lambda-free higher-order logic

Intuitively, applied variables can potentially be unified
with more terms than terms with rigid heads. This makes
them prolific in terms of possible inference partners, a behav-
ior we might want to avoid. On the other hand, shorter proofs
might be found if we prefer selecting applied variables. To
cover both scenarios, we implemented selection functions
that prefer or defer selecting applied variables.

Let max(L) = 1 if L is a maximal literal of the clause
it appears in; otherwise, max(L) = 0. Let appvar(L) =
1 if L is a literal where either side is an applied variable;
otherwise, appvar(L) = 0. Based on these definitions, we
devised the following selection functions, both of which rely
on SelectMLCAPP to break ties:

– SelectMLCAPPAvoidAppVar selects a negative lit-
eral L with the maximal value of (max(L), 1 −
appvar(L)) according to the lexicographic order.

– SelectMLCAPPPreferAppVar selects a negative
literal L with themaximal value of (max(L), appvar(L))

according to the lexicographic order.

Clause selection Selection of the given clause is a critical
choice point. E heuristically assigns clause priorities and
clause weights to the candidates. The priorities provide a
crude partition, whereas the weights order the clauses within
a partition. E’s main loop visits, in round-robin fashion, a set
of priority queues. From a given queue, the clause with the
highest priority and the smallest weight is selected. Typically,
one of the queues will use the clauses’ age as priority, to
ensure fairness.

E provides template weight functions that allow users
to fine-tune parameters such as weights assigned to vari-
ables or function symbols. The most widely used template
is ConjectureRelativeSymbolWeight, which we
abbreviate to CRSWeight. It computes term and clause
weights according to eight parameters, notably conj_mul, a
multiplier applied to the weight of conjecture symbols. This
template works well for some applicatively encoded prob-
lems. Let a: ι, f: ι → ι, x : ι, and y: ι → ι, and consider
the clauses y x �≈ x and f a ≈ a, where the first one is
the negated conjecture. Their encoding is @ι,ι(y, x) �≈ x
and @ι,ι(f, a) ≈ a. The encoded clauses share @ι,ι, whose
weight will be multiplied by conj_mul—usually a factor in
the interval (0, 1). By contrast, the native λfHOL clauses
share no symbols, and the heuristic would fail to notice that
f and y have the same type, giving a higher weight to the
second clause. To mitigate this, we coded a new type-aware
template,CRSTypeWeight, that applies the conj_mul mul-
tiplier to all symbols whose type occurs in the conjecture. For
the example above, since ι → ι appears in the conjecture, it
would notice the relation between the conjecture variable y
and the symbol f and multiply f’s weight by conj_mul.

Natively supportingλfHOLallows the prover to recognize
applied variables. It may make sense to extend clause weight
templates to either penalize or promote clauses with such
variables. To support this extension, we added the following
parameter toCRSTypeWeight, aswell as to some other E’s
weight function templates: appv_mul is a multiplier applied
to terms s = x tn , where s is either side of the literal and
n > 0. In addition, we implemented a new clause priority
scheme, ByAppVarNum, that separates the clauses by the
number of top-level applied variables occurring in the clause,
favoring those containing fewer such variables.

Configurations and modes A combination of parameters,
including term order, literal selection, and clause selec-
tion, is called a configuration. For years, E has provided an
auto mode that analyzes the input problem and chooses a
configuration known to perform well on similar problems.
More recently, E has been extended with an autosched-
ule mode that applies a portfolio of configurations in
sequence on the given problem, restarting the prover for each
configuration.

Configurations that are suitable for a wide range of
problems have emerged over time. One of them is the con-
figuration that is most often chosen by E’s auto mode. We
call it boa (“best of auto”):

Term order: KBO
Weight generation: invfreqrank
Precedence generation: invfreq
Literal selection: SelectMLCAPP
Clause selection:

1.CRSWeight(SimulateSOS,

0.5, 100, 100, 100, 100, 1.5, 1.5, 1),

4.CRSWeight(ConstPrio,

0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5),

1.FIFOWeight (PreferProcessed),

1.CRSWeight (PreferNonGoals,

0.5, 100, 100, 100, 100, 1.5, 1.5, 1),

4.Refinedweight (SimulateSOS,

3, 2, 2, 1.5, 2)

The clause selection scheme consists of five queues, each of
which is specified by aweight function template. The prefixes
n. next to the template names indicate that the queue will
be visited n times in the round-robin scheme before moving
to the next one. The first argument to each template is the
clause priority scheme.

123

P. Vukmirović et al.

8 Preprocessing

E’s preprocessor transforms first-order formulas into clausal
normal form, before the main loop is started. Since literals
of clauses are (dis)equations, E encodes nonequational lit-
erals such as even(n) as equations even(n) ≈ �. Beyond
turning the problem into a conjunction of disjunctive clauses,
the preprocessor eliminates quantifiers, introducing Skolem
symbols for essentially existential quantifiers.

For first-order logic, skolemization preserves both satis-
fiability (unprovability) and unsatisfiability (provability). In
contrast, for higher-order logics without the axiom of choice,
naive skolemization is unsound, because it introduces sym-
bols that can be used to instantiate higher-order variables.
One solution proposed byMiller [34, Sect. 6] is to ensure that
Skolem symbols are always applied to aminimum number of
arguments. However, to keep the implementation simple, we
have decided to ignore this issue and consider all arguments
as optional, including those to Skolem symbols. We plan to
extend Ehoh’s logic to full higher-order logic with the axiom
of choice, which will address the issue.

There is another transformation performed by preprocess-
ing that is problematic, but for a different reason. Definition
unfolding is the process of replacing equationally defined
symbols with their definitions and removing the defining
equations.Adefinition is a clause of the form f xm ≈ t ,where
the variables xm are distinct, f does not occur in the right-
hand side t , andVar(t) ⊆ {x1, . . . , xm}. This transformation
preserves unsatisfiability (provability) for first- and higher-
order logic, but not forλfHOL,makingEhoh incomplete. The
reason is that by removing the definitional clause, we also
remove a symbol f that otherwise could be used to instan-
tiate a higher-order quantifier. For example, the clause set
{f x ≈ x, f (y a) �≈ a} is unsatisfiable, whereas {y a �≈ a} is
satisfiable in λfHOL. (In full higher-order logic, the second
clause set would be unsatisfiable thanks to the {y �→ λx . x}
instance and β-conversion.) For the moment, we have sim-
ply disabled definition unfolding in Ehoh. We will enable it
again once we have added support for λ-terms.

Higher-order logic treats formulas as terms of Boolean
type, erasing the distinction between terms and formulas.
As a consequence, formulas might appear as arguments not
only to logical connectives but also to function symbols or
applied variables—e.g.,p(a∧b), y(¬ a).We call such formu-
las nested. Kotelnikov et al. [26] describe a modification to
Vampire’s clausification algorithm to support nested formu-
las. We adapt their approach to the clausification algorithm
[35] used by E. Given a formula ϕ to clausify, the following
procedure removes nested formulas:

1. Let χ = ϕ|p be the leftmost outermost nested formula
that is different from �, ⊥, or a variable x , if one exists;
otherwise, skip to step 2. Let p = q.r where q is the

longest strict prefix of p such that ψ = ϕ|q is a formula.
Let ψ ′ = (χ → ψ[�]r) ∧ (¬χ → ψ[⊥]r). Replace ϕ

by ϕ[ψ ′]q and repeat this step.
2. Apply all the steps of E’s clausification algorithm up to

and including skolemization.
3. Skolemization might replace Boolean variables by new

terms with predicate symbol heads. To remove them, fol-
low step 1.

4. Perform the remaining steps of E’s clausification algo-
rithm, resulting in a set of clauses.

5. Let C be a clause that contains a literal L of the form
x ≈ � or x �≈ �, where x is a Boolean variable, if
one exists; otherwise, terminate. Delete C if it also con-
tains the complement of L . Otherwise, replace C with
the clause C[x �→ ⊥] if L is of the form x ≈ � and
else C[x �→ �]. Trivial literals ⊥ ≈ � and � �≈ � are
removed from the resulting clause. Repeat this step.

As an example, consider the formula f x ≈ x → p (a∧b).
Step 1moves the subterm a∧b outward, yielding f x ≈ x →
((a ∧ b) → p �) ∧ (¬ (a ∧ b) → p ⊥). This formula can
be clausified further as usual.

Theorem 20 (Total correctness) The above procedure always
terminates and produces a set of clauses that is equisatisfi-
able with the original formula ϕ in λfHOL with interpreted
Booleans and that contains no nested formulas other than �,
⊥, and variables.

Proof It is easy to see that steps 1, 3, and 5 produce equiva-
lent formulas or clauses. Moreover, steps 1 and 3 remove
all offending nested formulas (i.e., other than �, ⊥, and
variables). In conjunction with the standard clausification
algorithm,which preserves and reflects satisfiability, our pro-
cedure gives correct results when it terminates.

To prove termination,wewill use ameasure functionW to
natural numbers that decreases with each application of step
1 or 3. Steps 2 and 4 rely on a terminating algorithm, whereas
each application of step 5 decreases the size of a clause. We
define W by W (∀x . s) = W (∃x . s) = W (s); W (ζ sn) =∑n

i=1W (si) if ζ is a logical connective (including � and
⊥); andW (ζ sn) = 3k(1 + ∑n

i=1W (si)) otherwise, where
k is the number of offending outermost nested formulas in
ζ sn . We must show W (ψ) > W (ψ ′). By definition, ψ is
of the form ζ sn , where ζ is not a logical connective. Thus,
W (ψ) = 3k(1 + ∑n

i=1W (si)). Steps 1 and 3 substitute �
or ⊥, of measure 0, for a nested formula χ (including χ ’s
own nested formulas) in ψ . Clearly, the longer r is, the more
W (ψ ′) decreases. Taking |r | = 1, we get the upper bound
2W (χ) + 2 · 3k−1(1 + ∑n

i=1W (si) − W (χ)) for W (ψ ′),
which is less thanW (ψ) = 3k(1 + ∑n

i=1W (si)). ��
The output may contain �, ⊥, or Boolean variables as

nested formulas. Since E was first developed as an untyped

123

Extending a brainiac prover to lambda-free higher-order logic

prover, unification of a variable with a Boolean constant was
disallowed to avoid unsoundness. We needed to undo this
in Ehoh. Ehoh must also remove trivial literals ⊥ ≈ � and
� �≈ � that emerge during proof search.

9 Evaluation

How useful are Ehoh’s new heuristics? And how does Ehoh
perform comparedwith E, used directly or in tandemwith the
applicative encoding, and compared with other provers? To
answer the first question, we evaluated each new parameter
independently. From the empirical results, we derived a new
configuration optimized for λfHOL. For the second ques-
tion, we compared Ehoh’s success rate and speed on λfHOL
problems with native higher-order provers and on applica-
tively encoded problems with E. We also included first-order
benchmarks to measure Ehoh’s overhead.

We set a CPU time limit of 60 s per problem. This is more
than allotted by interactive proof tools such as Sledgeham-
mer, or by cooperative provers such as Leo-III and Satallax,
but less than the 300s of CASC [50]. The experiments were
performed on StarExec [47] nodes equipped with Intel Xeon
E5-26090 CPUs clocked at 2.40GHz.

Heuristics tuningWeused the boa configuration as the basis
to evaluate the new heuristic schemes. For each heuristic
parameter we tuned, we changed only its value while keep-
ing the other parameters the same as for boa. This gives an
idea of how each parameter affects overall performance. All
heuristic parameters were tested on a 5012 problem suite
generated using Sledgehammer, consisting of four variants
of the Judgment Day [17] suite. The problems were given
in native λfHOL syntax. The experiments described in this
subsection were carried out using an earlier E version (2.3).

Evaluating the new weight and precedence generation
heuristics amounted to testing each possible combination
of frequency-based schemes, including E’s original type-
agnostic schemes. Table 1 shows the number of solved (i.e.,
proved or disproved) problems for each combination. In this
and the following figures, the underlined number is for boa,
whereas bold singles out the best value. In the names of the
generation schemes, we abbreviated inv to i, type to t,
freq to f, comb to cm, count to cn, and rank to r.

Table 1 indicates that including type information in the
generation schemes results in a somewhat higher number of
solved problems compared with E’s type-agnostic schemes.
Against our expectations, Ehoh’s combined schemes appear
to be less efficient than the type-aware schemes.

The literal selection function has little impact on perfor-
mance: Ehoh solves 2379 problems with SelectMLCAPP
or SelectMLCAPPAvoidAppVar, and 2378 problems
with SelectMLCAPPPreferAppVar.

Table 1 Evaluation of weight and precedence generation schemes

f if tf itf cmf icmf

fcn 2294 2288 2287 2297 2290 2287

ifcn 2371 2373 2374 2370 2369 2377

fr 2326 2317 2323 2329 2322 2318

ifr 2383 2379 2376 2380 2381 2381

tfcn 2305 2314 2301 2306 2302 2311

itfcn 2386 2381 2389 2388 2384 2379

tfr 2326 2334 2322 2334 2321 2336

itfr 2390 2382 2390 2394 2387 2386

cmfcn 2273 2281 2271 2285 2269 2280

icmfcn 2380 2375 2382 2379 2380 2375

cmfr 2321 2313 2319 2321 2318 2312

icmfr 2368 2378 2371 2378 2368 2380

Clause selection is the heuristic component that we
extended the most. We must assess the effect of a new
heuristic weight function, a multiplier for the occurrence of
top-level applied variables, and clause priority based on the
number of top-level applied variables.

To test the effect of the new type-based weight function,
we replaced boa’s queue, which uses 4.CRSWeight(…),
with the queue ordered by 4.CRSTypeWeight(…). We
call the original heuristic W and the type-aware alternative
TW. We chose nine values for testing the effect of the applied
variablemultiplierappv_mult. Table 2 summarizes the results
of combining W or TW with the different appv_mult values.
Applying a multiplier smaller than 1, which corresponds
to preferring literals containing applied variables, can lose
dozens of solutions. Overall, using the type-aware heuristic
seems slightly detrimental.

Finally, we evaluated the new clause priority function
ByAppVarNum, by replacing 4.CRSWeight(Const-
Prio,…) with 4.CRSWeight(ByAppVarNum,…) in
boa’s specification. ConstPrio assigns each clause the
same priority. The results are inconclusive.

The results presented above give an idea of how each
parameter influences performance. We also evaluated their
performance in combination, to derive an alternative to boa
for λfHOL. For each category of parameters, we chose either
boa’s value of the parameter in boa (“Old”) or the best per-
forming newly implemented parameter (“New”). Based on
the results above, for term orders, we chose the combination
of invtypefreqrank and invtypefreq; for clause
selection, we chose CRSTypeWeight with ConstPrio
priority and an appv_mult factor of 1.41; for literal selection,
we chose SelectMLCAPPAvoidAppVar.

Table 3 shows the number of solved problems for all com-
binations of these parameters. From the two configurations
that solve 2397 problems, we selected the “New Old New”

123

P. Vukmirović et al.

Table 2 Evaluation of weight
function and appv_mult factor

0.25 0.35 0.5 0.7 1 1.41 2 2.82 4

W 2311 2341 2363 2374 2379 2376 2377 2376 2377

TW 2331 2331 2360 2371 2372 2374 2373 2373 2372

Table 3 Evaluation of combinations of new parameters

Term order Literal selection Clause weight Solved

Old Old Old 2379

Old Old New 2374

Old New Old 2379

Old New New 2373

New Old Old 2394

New Old New 2397

New New Old 2395

New New New 2397

combination as our suggested “higher-order best of auto,” or
hoboa, configuration.

Main evaluation We now present a more detailed evalua-
tion of hoboa, along with other configurations, on a larger
benchmark suite. Our raw data are publicly available. 2

The benchmarks are divided into four sets: (1) 1147 first-
order TPTP [51] problems belonging to the FOF (untyped)
and TF0 (monomorphic) categories, excluding arithmetic;
(2) 5012 Sledgehammer-generated problems from the Judg-
ment Day [17] suite, targeting the monomorphic first-order
logic embodied by TPTP TF0; (3) all 955 monomorphic
higher-order problems from the TH0 category of the TPTP
belonging to our extension of λfHOL; (4) 5012 Judgment
Day problems targeting the λfHOL fragment of TPTP TH0.

The TPTP includes benchmarks from various areas of
computer science andmathematics. It is the de facto standard
for evaluating automatic provers, but it has few higher-
order problems. For the first group of benchmarks, we
randomly selected 1000 FOF problems (out of 8172) and all
monomorphic TFF problems that are parsable by E within
60s (amounting to 147 out of 231 monomorphic TFF prob-
lems). Both groups of Sledgehammer problems include two
subgroups of 2506 problems, generated to include 32 or
512 Isabelle lemmas (SH32 and SH512), to represent both
small and large problems. Each subgroup consists of two
sub-subgroups of 1253 problems, generated by using either
λ-lifting or SK-style combinators to encode λ-expressions.

To ascertain the effectiveness of our approach, we eval-
uated Ehoh against E used on applicative encodings of
problems (denoted by @+E). For reference, we also evalu-
ated the latest versions of higher-order provers that competed

2 https://doi.org/10.5281/zenodo.4045452

in the THF division of the 2019 edition of CASC [52]: CVC4
1.8 prerelease [6], Leo-III 1.4 [46], Satallax 3.4 [18],Vampire
4.4 [14], and Zipperposition 1.6 [9]. Like at CASC, we used
different versions of Vampire for first-order and higher-order
problems. Similarly, Zipperposition does not use E as back-
end when it is run on first-order problems and uses different
heuristics on first- and higher-order problems. The genuine
higher-order provers have the unfair advantage that they can
instantiate higher-order variables with λ-terms. Thus, some
formulas that are provable by these systems may be non-
theorems for @+E and Ehoh, or they may require tedious
reasoning about λ-lifted functions or SK-style combinators.
An example is the conjecture ∃ f .∀x y. f x y ≈ g y x , whose
proof requires taking λx y. g y x as the witness for f .

We ran all provers except Satallax (which only supports
THF) on first-order benchmarks to measure the overhead
introduced by our extensions, as well as that entailed by the
applicative encoding. Table 4 gives the number of problems
each system proved. In each column, bold highlights the best
E value and the best value overall.We considered theEmodes
auto (a) and autoschedule (as) and the configurations boa (b)
and hoboa (hb).

We observe the following. First, comparing the Ehoh
row with the E row, we see that Ehoh’s overhead is barely
noticeable—the difference is at most two problems. Sec-
ond, Ehoh outperforms the applicative encoding on both
first-order and higher-order problems. Nevertheless, the raw
evaluation data reveal that there are quite a few higher-order
problems that @+E proves faster than Ehoh. Third, it is
advantageous to use the higher-order versions of the Sledge-
hammer problems, although the difference in success rate
is small, especially for SH512. Fourth, the new hoboa out-
performs boa on higher-order problems, suggesting that it
could be worthwhile to re-train auto and autoschedule based
onλfHOLbenchmarks and to design further heuristics. Fifth,
Ehoh cannot compete against the best higher-order systems,
but this is no surprise, given that it does not yet support λ-
expressions and higher-order unification.

Next to the success rate, the time inwhich a prover gives an
answer is also an important consideration. Table 5 compares
the average running times, in seconds, of the various systems
on the problems that all of the applicable systems proved.
Clearly, Ehoh incurs little overhead on first-order problems.
The raw evaluation data reveal that for boa, it takes Ehoh
2747s to prove all first-order problems that E, @+E, and
Ehoh can all prove using this configuration, compared with

123

https://doi.org/10.5281/zenodo.4045452

Extending a brainiac prover to lambda-free higher-order logic

Table 4 Number of proved problems

First-order Higher-order

TPTP SH32 SH512 TPTP SH32 SH512

E a 624 938 1237

E as 665 957 1298

E b 550 943 1242

@+E a 531 932 1111 686 952 1125

@+E as 571 949 1148 692 969 1164

@+E b 536 943 1227 690 959 1267

Ehoh a 624 939 1236 694 966 1235

Ehoh as 665 957 1296 699 988 1309

Ehoh b 550 943 1242 697 967 1262

Ehoh hb 504 947 1231 693 975 1267

CVC4 567 956 1361 745 973 1351

Leo-III 548 960 1239 834 967 1266

Vampire 728 968 1401 805 979 1214

Satallax 827 871 1019

Zipperposition 496 933 1187 815 976 1069

2728s for E, amounting to a 0.7% overhead. For comparison,
@+E needs 3939s—a 44% overhead.

10 Discussion and related work

Our working hypothesis is that it is possible to extend first-
order provers to higher-order logic without slowing them
down unduly. Our research program is two-pronged: On
the theoretical side, we are investigating higher-order exten-
sions of superposition [9,10,56]; on the practical side, we are
implementing such extensions in a state-of-the-art prover.

The work described in this article required modifying
many parts of the E prover. The invariant that variables can-
not be applied and that symbols are always passed the same
number of arguments were entrenched in E’s code, requir-
ing hundreds of modifications. Nonetheless, we found the
generalization manageable and are now in a position to add
support for λ-terms and higher-order unification.

Traditionally, most higher-order provers were designed
from the ground up to target higher-order logic. Two excep-
tions are Otter-λ by Beeson [8] and Zipperposition by
Cruanes et al. [9,20]. Otter-λ adds λ-terms and second-
order unification to the superposition prover Otter [31].
Zipperposition, also based on superposition, was extended to
Boolean-free higher-order logic by Bentkamp et al. [9]. Its
performance is a far cry from E’s, but it is easier to modify.
Vukmirović et al. also used it to test and evaluate higher-order
unification procedures [54] and Boolean reasoning [56]. Zip-
perposition now includes Ehoh as a backend in a cooperative
architecture. Finally, there is recent work by the developers

Table 5 Average running times on the problems proved by all systems

First-order Higher-order

TPTP SH32 SH512 TPTP SH32 SH512

E a 0.22 0.15 0.54

E as 0.38 0.20 0.74

E b 0.43 0.07 0.56

@+E a 0.61 0.18 0.38 0.03 0.21 0.32

@+E as 0.91 0.18 0.39 0.06 0.25 0.33

@+E b 0.53 0.12 0.81 0.09 0.20 0.54

Ehoh a 0.21 0.15 0.54 0.03 0.08 0.51

Ehoh as 0.38 0.20 0.73 0.07 0.14 0.60

Ehoh b 0.42 0.07 0.58 0.02 0.07 0.37

Ehoh hb 0.69 0.12 1.06 0.10 0.13 0.56

CVC4 3.02 1.58 1.75 1.22 2.44 1.65

Leo-III 1.33 0.52 5.63 0.49 0.89 6.54

Vampire 0.67 0.43 1.50 0.76 1.89 4.84

Satallax 2.45 5.22 10.12

Zipperposition 3.81 1.60 5.09 0.76 2.21 6.31

of Vampire [14] and of the SMT (satisfiability modulo the-
ories) solvers CVC4 and veriT [6] to extend their provers to
higher-order logic.

Native higher-order reasoning was pioneered by Robin-
son [39], Andrews [1], and Huet [24]. Andrews [2] and
Benzmüller and Miller [12] provide excellent surveys. TPS,
by Andrews et al. [3], was based on expansion proofs
and lets users specify proof outlines. The Leo family of
systems, developed by Benzmüller and his colleagues, is
based on resolution and paramodulation. LEO [11] supported
extensionality on the calculus level and introduced the coop-
erative paradigm to integrate first-order provers. Leo-III [46]
expands the cooperation with SMT solvers and introduces
term orders in a pragmatic, incomplete way. Brown’s Satal-
lax [18] is based on a complete higher-order tableau calculus,
guided by a SAT solver; later versions also cooperate with
E and Ehoh. Another noteworthy system is Lindblad’s agsy-
HOL [28]. It is based on a focused sequent calculus driven
by a generic narrowing engine.

An alternative to all of the above is to reduce higher-order
logic to first-order logic via a translation. Robinson [40] out-
lined this approach decades before tools such asMizAR [53],
Sledgehammer [36], HOLyHammer [25], and CoqHammer
[22] popularized it in proof assistants. In addition to perform-
ing an applicative encoding, such translations must eliminate
the λ-expressions [21,33] and encode the type information
[15]. In practice, on problems with a large first-order com-
ponent, translations perform very well compared with the
existing native provers [48]. Largely thanks to Sledgeham-
mer, Isabelle often came in close second at CASC, even
defeating Satallax in 2012 [49].

123

P. Vukmirović et al.

By removing the need for the applicative encoding, our
work reduces the translation gap. The encoding buries the
λfHOL terms’ heads under layers of @ symbols. Terms dou-
ble in size, cluttering the data structures, and twice as many
subterm positions must be considered for inferences. More-
over, the encoding is incompatiblewith interpreted operators,
notably for arithmetic. A common remedy is to introduce
proxies to connect an uninterpreted nullary symbol with its
interpreted counterpart (e.g.,@(@(add, x), y) ≈ x + y), but
this is clumsy. A further complication is that in a monomor-
phic logic, @ is not a single symbol but a family of symbols
@τ,υ , which must be correctly introduced and recognized.
Finally, the encoding must be undone in the proofs. While it
should be possible to base a higher-order prover on such an
encoding, the prospect is aesthetically and technically unap-
pealing, and performance would likely suffer.

11 Conclusion

Despite considerable progress since the 1970s, higher-order
automated reasoning has not yet assimilated some of the
most successful methods for first-order logic with equality,
such as superposition. We presented a graceful extension of
a state-of-the-art first-order theorem prover to a fragment of
higher-order logic devoid of λ-terms. Our work covers both
theoretical and practical aspects. Experiments show promis-
ing results on λ-free higher-order problems and very little
overhead for first-order problems, as we would expect from
a graceful generalization.

Despite its lack of support for λ-terms, Ehoh is already
deployed as a backend in the leading higher-order provers
Satallax and Zipperposition. Ehoh will also form the basis
of our work toward stronger higher-order automation. Our
aim is to turn it into a prover that excels on proof obligations
arising in interactive verification, which tend to be large but
onlymildly higher-order [48]. Thenext stepswill be to extend
Ehoh’s data structures with λ-expressions and implement the
higher-order unification procedure by Vukmirović et al. [54].
These techniques are cornerstones of our prototype Zipper-
position, which dominated the higher-order proving division
of the 2020 edition of CASC.

Acknowledgements We are grateful to the maintainers of StarExec for
letting us use their service. We thank Ahmed Bhayat, Alexander Ben-
tkamp, Daniel El Ouraoui, Michael Färber, Pascal Fontaine, Predrag
Janičić, Robert Lewis, Tomer Libal, Giles Reger, Hans-Jörg Schurr,
Alexander Steen, Mark Summerfield, Dmitriy Traytel, and the anony-
mous reviewers for suggesting many improvements to this text. We also
want to thank the other members of the Matryoshka team, including
Sophie Tourret and Uwe Waldmann, as well as Christoph Benzmüller,
Andrei Voronkov, Daniel Wand, and Christoph Weidenbach, for many
stimulating discussions. Finally, we thank the TACAS 2019 chairs and
editors of this special issue, Tomáš Vojnar and Lijun Zhang, for their
patience with us.

Funding Vukmirović and Blanchette’s research has received fund-
ing from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (Grant Agree-
ment No. 713999, Matryoshka). Blanchette has received funding from
the Netherlands Organization for Scientific Research (NWO) under the
Vidi program (Project No. 016.Vidi.189.037, Lean Forward). He also
benefited from the NWO Incidental Financial Support scheme.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Andrews, P.B.: Resolution in type theory. J. Symb. Log. 36(3),
414–432 (1971)

2. Andrews, P.B.: Classical type theory. In: Robinson, J.A., Voronkov,
A. (eds.)Handbook ofAutomatedReasoning, vol. 2, pp. 965–1007.
Elsevier and MIT Press (2001)

3. Andrews, P.B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F.,
Xi, H.: TPS: a theorem-proving system for classical type theory. J.
Autom. Reason. 16(3), 321–353 (1996)

4. Avenhaus, J., Denzinger, J., Fuchs, M.: DISCOUNT: a system
for distributed equational deduction. In: Hsiang, J. (ed.) RTA-95,
LNCS, vol. 914, pp. 397–402. Springer, Berlin (1995)

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge
University Press, Cambridge (1998)

6. Barbosa,H.,Reynolds,A.,Ouraoui,D.E., Tinelli, C., Barrett, C.W.:
Extending SMT solvers to higher-order logic. In: Fontaine, P. (ed.)
CADE-27, LNCS, vol. 11716, pp. 35–54. Springer, Berlin (2019)

7. Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: A transfi-
nite Knuth-Bendix order for lambda-free higher-order terms. In:
de Moura, L. (ed.) CADE-26, LNCS, vol. 10395, pp. 432–453.
Springer, Berlin (2017)

8. Beeson,M.: Lambda logic. In: Basin, D.A., Rusinowitch,M. (eds.)
IJCAR 2004, LNCS, vol. 3097, pp. 460–474. Springer, Berlin
(2004)

9. Bentkamp, A., Blanchette, J., Tourret, S., Vukmirović, P., Wald-
mann, U.: Superposition with lambdas. In: Fontaine, P. (ed.)
CADE-27, LNCS, vol. 11716, pp. 55–73. Springer, Berlin (2019)

10. Bentkamp,A., Blanchette, J.C., Cruanes, S.,Waldmann, U.: Super-
position for lambda-free higher-order logic. In: Galmiche, D.,
Schulz, S., Sebastiani, R. (eds.) IJCAR 2018, LNCS, vol. 10900,
pp. 28–46. Springer, Berlin (2018)

11. Benzmüller, C., Kohlhase, M.: System description: LEO-a higher-
order theorem prover. In: Kirchner, C., Kirchner, H. (eds.) CADE-
15, LNCS, vol. 1421, pp. 139–144. Springer, Berlin (1998)

12. Benzmüller, C., Miller, D.: Automation of higher-order logic. In:
Siekmann, J.H. (ed.) Computational Logic, Handbook of the His-
tory of Logic, vol. 9, pp. 215–254. Elsevier, Amsterdam (2014)

13. Benzmüller, C., Sultana, N., Paulson, L.C., Theiss, F.: The higher-
order prover Leo-II. J. Autom. Reason. 55(4), 389–404 (2015)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Extending a brainiac prover to lambda-free higher-order logic

14. Bhayat, A., Reger, G.: Restricted combinatory unification. In:
Fontaine, P. (ed.) CADE-27, LNCS, vol. 11716, pp. 74–93.
Springer, Berlin (2019)

15. Blanchette, J.C., Böhme, S., Popescu, A., Smallbone, N.: Encoding
monomorphic and polymorphic types. Log. Methods Comput. Sci.
12(4), 13:1–13:52 (2016)

16. Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-
order recursive path order. In: Esparza, J., Murawski, A.S. (eds.)
FoSSaCS 2017, LNCS, vol. 10203, pp. 461–479. Springer, Berlin
(2017)

17. Böhme, S., Nipkow, T.: Sledgehammer: Judgement Day. In: Giesl,
J., Hähnle, R. (eds.) IJCAR 2010, LNCS, vol. 6173, pp. 107–121.
Springer, Berlin (2010)

18. Brown,C.E.: Satallax:Anautomatic higher-order prover. In:Gram-
lich, B.,Miller, D., Sattler, U. (eds.) IJCAR2012, LNCS, vol. 7364,
pp. 111–117. Springer, Berlin (2012)

19. Cruanes, S.: Extending Superposition with Integer Arithmetic,
Structural Induction, and Beyond. Ph.D. thesis, École polytech-
nique (2015)

20. Cruanes, S.: Superposition with structural induction. In: Dixon, C.,
Finger, M. (eds.) FroCoS 2017, LNCS, vol. 10483, pp. 172–188.
Springer, Berlin (2017)

21. Czajka, Ł: Improving automation in interactive theorem provers by
efficient encoding of lambda-abstractions. In: Avigad, J., Chlipala,
A. (eds.) CPP 2016, pp. 49–57. ACM (2016)

22. Czajka, Ł., Kaliszyk, C.: Hammer for Coq: automation for depen-
dent type theory (2018)

23. Filliâtre, J.-C., Paskevich,A.:Why3-where programsmeet provers.
In: Felleisen, M., Gardner, P. (eds.) ESOP 2013, LNCS, vol. 7792,
pp. 125–128. Springer, Berlin (2013)

24. Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.)
IJCAI-73, pp. 139–146. William Kaufmann (1973)

25. Kaliszyk, C., Urban, J.: HOL(y)Hammer: online ATP service for
HOL Light. Math. Comput. Sci. 9(1), 5–22 (2015)

26. Kotelnikov, E., Kovács, L., Suda, M., Voronkov, A.: A clausal nor-
mal form translation for FOOL. In: Benzmüller, C., Sutcliffe, G.,
Rojas, R. (eds.) GCAI 2016, EPiC Series in Computing, vol. 41,
pp. 53–71. EasyChair (2016)

27. Kovács, L., Voronkov, A.: First-order theorem proving and Vam-
pire. In: Sharygina, N., Veith, H. (eds.) CAV 2013, LNCS, vol.
8044, pp. 1–35. Springer, Berlin (2013)

28. Lindblad, F.: A focused sequent calculus for higher-order logic. In:
Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014, LNCS,
vol. 8562, pp. 61–75. Springer, Berlin (2014)

29. Löchner, B.: Things to know when implementing KBO. J. Autom.
Reason. 36(4), 289–310 (2006)

30. Löchner, B., Schulz, S.: An evaluation of shared rewriting. In: de
Nivelle, H., Schulz, S. (eds.) IWIL-2001, pp. 33–48. Max-Planck-
Institut für Informatik (2001)

31. McCune, W.: Otter 2.0. In: Stickel, M.E. (ed.) CADE-10, LNCS,
vol. 449, pp. 663–664. Springer, Berlin (1990)

32. McCune, W.: Experiments with discrimination-tree indexing and
path indexing for term retrieval. J. Autom. Reason. 9(2), 147–167
(1992)

33. Meng, J., Paulson, L.C.: Translating higher-order clauses to first-
order clauses. J. Autom. Reason. 40(1), 35–60 (2008)

34. Miller, D.A.: A compact representation of proofs. Stud. Log. 46(4),
347–370 (1987)

35. Nonnengart, A., Weidenbach, C.: Computing small clause normal
forms. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Auto-
mated Reasoning (in 2 volumes), pp. 335–367. Elsevier and MIT
Press (2001)

36. Paulson, L.C., Blanchette, J.C.: Three years of experience with
Sledgehammer, a practical link between automatic and interactive
theorem provers. In: Sutcliffe, G., Schulz, S., Ternovska, E. (eds.)
IWIL-2010, EPiC, vol. 2, pp. 1–11. EasyChair (2012)

37. Peltier, N.: A variant of the superposition calculus. Archive of For-
mal Proofs (2016). https://www.isa-afp.org/. Accessed 1Aug 2021

38. Reger, G., Suda,M.: Checkable proofs for first-order theoremprov-
ing. In: Reger, G., Traytel, D. (eds.) ARCADE 2017, EPiC Series
in Computing, vol. 51, pp. 55–63. EasyChair (2017)

39. Robinson, J.: Mechanizing higher order logic. In: Meltzer, B.,
Michie, D. (eds.) Machine Intelligence, vol. 4, pp. 151–170. Edin-
burgh University Press (1969)

40. Robinson, J.: A note on mechanizing higher order logic. In:
Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 5, pp.
121–135. Edinburgh University Press (1970)

41. Schulz, S.: E-a Brainiac theorem prover. AI Commun. 15(2–3),
111–126 (2002)

42. Schulz, S.: Fingerprint indexing for paramodulation and rewriting.
In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012, LNCS,
vol. 7364, pp. 477–483. Springer, Berlin (2012)

43. Schulz, S.: Simple and efficient clause subsumption with feature
vector indexing. In: Bonacina, M.P., Stickel, M.E. (eds.) Auto-
mated Reasoning and Mathematics-Essays in Memory of William
W. McCune, LNCS, vol. 7788, pp. 45–67. Springer, Berlin (2013)

44. Schulz, S.:We know (nearly) nothing! But can we learn? In: Reger,
G., Traytel, D. (eds.) ARCADE 2017, EPiC Series in Computing,
vol. 51, pp. 29–32. EasyChair (2017)

45. Schulz, S., Cruanes, S., Vukmirović, P.: Faster, higher, stronger: E
2.3. In: Fontaine, P. (ed.) CADE-27, LNCS, vol. 11716, pp. 495–
507. Springer, Berlin (2019)

46. Steen, A., Benzmüller, C.: The higher-order prover Leo-III. In:
Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR 2018, LNCS,
vol. 10900, pp. 108–116. Springer, Berlin (2018)

47. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community
infrastructure for logic solving. In: Demri, S., Kapur, D., Wei-
denbach, C. (eds.) IJCAR 2014, LNCS, vol. 8562, pp. 367–373.
Springer, Berlin (2014)

48. Sultana,N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on
the Sledgehammer test bench. J. Appl. Log. 11(1), 91–102 (2013)

49. Sutcliffe, G.: The 6th IJCAR automated theorem proving system
competition—CASC-J6. AI Commun. 26(2), 211–223 (2013)

50. Sutcliffe, G.: The CADE-26 automated theorem proving system
competition—CASC-26. AI Commun. 30(6), 419–432 (2017)

51. Sutcliffe, G.: The TPTP Problem Library and Associated Infras-
tructure. FromCNF toTH0, TPTPv6.4.0. J. Autom.Reason. 59(4),
483–502 (2017)

52. Sutcliffe, G.: The CADE-27 automated theorem proving system
competition—CASC-27. AI Commun. 32(5–6), 373–389 (2019)

53. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service
forMizar formalizations. J. Autom.Reason. 50(2), 229–241 (2013)

54. Vukmirović, P., Bentkamp, A., Nummelin, V.: Efficient full higher-
order unification. In: Ariola, Z.M. (ed.) FSCD 2020, LIPIcs, vol.
167, pp. 5:1–5:17. Schloss Dagstuhl (2020)

55. Vukmirović, P., Blanchette, J.C., Cruanes, S., Schulz, S.: Extending
a brainiac prover to lambda-free higher-order logic. In: Vojnar, T.,
Zhang, L. (eds.) TACAS 2019, LNCS, vol. 11427, pp. 192–210.
Springer, Berlin (2019)

56. Vukmirović, P., Nummelin, V.: Boolean reasoning in a higher-
order superposition prover. In: Fontaine, P., Korovin, K., Kotsireas,
I.S., Rümmer, P., Tourret, S. (eds.) PAAR+SC-Square 2020, CEUR
Workshop Proceedings, vol. 2752, pp. 148–166. CEUR-WS.org
(2020)

57. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M.,
Wischnewski, P.: SPASS version 3.5. In: Schmidt, R.A. (ed.)
CADE-22, LNCS, vol. 5663, pp. 140–145. Springer, Berlin (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.isa-afp.org/

	Extending a brainiac prover to lambda-free higher-order logic
	Abstract
	1 Introduction
	2 Logic
	3 Types and terms
	4 Unification and matching
	5 Indexing data structures
	6 Inference rules
	7 Heuristics
	8 Preprocessing
	9 Evaluation
	10 Discussion and related work
	11 Conclusion
	Acknowledgements
	References

