
Vol.:(0123456789)1 3

Theoretical Ecology 
https://doi.org/10.1007/s12080-021-00513-x

BRIEF COMMUNICATION

Applying symmetries of elasticities in matrix population models

Stefano Giaimo1 · Arne Traulsen1

Received: 16 December 2020 / Accepted: 22 April 2021 
© The Author(s) 2021

Abstract
Elasticity analysis is a key tool in the analysis of matrix population models, which describe the dynamics of stage-structured 
populations in ecology and evolution. Elasticities of the dominant eigenvalue of a matrix model to matrix entries obey certain 
symmetries. Yet not all consequences of these symmetries are fully appreciated, as they are sometimes hidden in mathematical 
detail. Here, we propose a method to reason about these symmetries directly by visual inspection of the life cycle graph that 
corresponds to the matrix model. We present two applications of this method, one in ecology and one in evolution. First, we 
prove several conjectures about elasticities that were obtained from purely numerical results and that can support population 
managers in decision-making under scarce demographic information. Second, we show how to identify candidates for invari-
ant trade-offs in evolutionary optimal life cycles. The method extends to the elasticity analysis of non-dominant eigenvalues, 
of the stochastic growth rate and, in next-generation matrices, of the basic reproduction number.

Keywords  Eigenvalues · Life cycles · Matrix models · Population management · Trade-offs

Introduction

Matrix models are key tools to study the ecology and evo-
lution of stage-structured populations (Caswell 2001). A 
matrix model contains all information about the life cycle 
in the population, i.e., transition probabilities and fertilities 
at all stages. The dominant eigenvalue of a matrix model 
A = [ai,j] corresponds to the asymptotic geometric growth of 
the population when its dynamics are governed by the linear 
recurrence x(t + 1) = Ax(t) , where x(t) is the vector of stage 
abundances and ai,j is the number of individuals in stage i at 
t + 1 per individual in stage j at t.

The elasticity ei,j of the dominant eigenvalue of a matrix 
model to an entry ai,j gives the  slope of the natural loga-
rithm of the dominant eigenvalue plotted against the natural 
logarithm of ai,j (Caswell 2001). Elasticity analysis stud-
ies the effects of small modifications of the life cycle on 
population growth (de Kroon et al. 1986). Ecologically, such 
modifications may be due to environmental variation or to 
population management decisions. Often it is of interest to  

forecast the ensuing population growth. Elasticity analysis 
has proven a highly valuable tool to understand how popu-
lation dynamics may react depending on which life cycle 
traits are targeted in proportional interventions (de Kroon 
et al. 1986; Silvertown et al. 1996; Benton and Grant 1999; 
Caswell 2000). Understanding the effect of life cycle modi-
fications is also relevant to the study of evolution: Can a 
mutant subpopulation with a different allocation of resources 
over its life cycle grow faster than the resident population? 
Elasticities can help us to answer this question, too (van 
Tienderen 1995, 2000)

Intriguingly, in any matrix model, elasticities of the domi-
nant eigenvalue to entries in row i of the model and elasticities 
of the dominant eigenvalue to entries in column i add up to the 
same number (van Groenendael et al. 1994). This is here called 
the row–column symmetry. This symmetry is foundational to 
loop analysis (van Groenendael et al. 1994), which explores the 
relative importance to population growth of the different path-
ways an individual can take through the life cycle stages. More 
generally, mathematical regularities like the row–column sym-
metry can always be exploited in model analysis and additional 
such regularities are eagerly looked for (Carslake et al. 2009). 
So far, there are two main applications of the row–column sym-
metry outside the literature on loop analysis: (i) classifying spe-
cies with minimal demographic data for management purposes 
based on how elastic their population growth is to basic life 
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cycle traits (Heppell et al. 2000) and (ii) studying the linear 
relationships between subsets of elasticities of the dominant 
eigenvalue in specific matrix models of plants (de Matos and 
Silva Matos 1998).

The potential of this symmetry has not been fully 
appreciated, we suggest. In this note, we propose an alter-
native form of regularity based on the row–column sym-
metry that lends itself to visual reasoning. Two new appli-
cations of the symmetry are then explored. First, several 
regularities about elasticities of the dominant eigenvalue 
to matrix entries were conjectured with the aim of pro-
viding a rough guide for population management under 
scarce demographic information (Carslake et al. 2009). 
We prove these regularities, which were based on purely 
numerical results, mathematically by applying the alter-
native form of the row–column symmetry. Second, we 
show how this can also assist one in finding candidates 
for so-called invariant trade-offs in life cycle evolution 
(Charnov 1997). In the study of optimal life cycles, these 
trade-offs are of special importance, because their prop-
erties at fitness optima are independent of most specifics 
of the life cycle.

An alternative form of the row–column 
symmetry

Consider an eigenvalue � of a n × n matrix model A with cor-
responding right eigenvector u and left eigenvector v . It is a 
classic result (Caswell 2001) that the sensitivity of � to ai,j is

where ⟨∙, ∙⟩ gives the inner product of two vector arguments 
and v∗

i
 is the complex conjugate of the ith component of v . 

The elasticity ei,j of � to ai,j is a relative sensitivity (Cas-
well 2001, p. 226):

When � is the dominant eigenvalue, this is guaranteed real 
and positive and the components of corresponding eigenvec-
tors are nonnegative by mild assumptions about A , e.g., it 
is nonnegative and irreducible. Then, we can write Eq. 2 as 
ei,j = � log �∕� log ai,j ≥ 0 (Caswell 2001). Using the eigen-
vector equations �u = Au and �v∗ = v

∗
A , where v∗ is the 
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This implies that the elasticities of � to matrix entries obey 
the row–column symmetry:

as first shown by van Groenendael et al. (1994) assuming 
that � is the dominant eigenvalue.

For an alternative form of this symmetry, partition the n 
stages into an arbitrary, nonempty subset X and its comple-
ment Xc . Add the row–column symmetry for each stage in 
X to obtain

Subtracting from this equation redundant terms, i.e., ek,l for 
which both k and l are in X, we get

This alternative form of the symmetry is easily visualized. In 
a life cycle graph, nodes are stages and ai,j is the weight on 
the arrow from node j to node i. By substituting ei,j for ai,j , 
one gets the corresponding elasticity graph. A bipartition of 
the stages is a cut through this graph that separates the stages 
into two complementing parts. By Eq. 6, the flow of elastici-
ties traversing the cut in one direction balances the flow of 
elasticities traversing the cut in the opposite direction. This 
reasoning about symmetry is illustrated in Fig. 1.

Applications

Proving conjectures

In a computational study, Carslake et al. (2009) generated 
a large number of matrix models with random, positive 
entries that were following several possible patterns. For 
each matrix, Carslake et al. (2009) compared the elastici-
ties of the dominant eigenvalue to matrix entries pair-
wise, thereby obtaining inequalities of the form ei,j ≥ ek,l . 
Extracting those inequalities that were true across all gen-
erated matrices with the same pattern of positive entries 
irrespective of the matrix dimensions, Carslake et  al. 
(2009) conjectured the existence of some general rules. 
These rules were meant to show that the stage structure 
alone, as represented by a given pattern of positive matrix 
entries, may suffice to rank demographic contributions to 
be targeted in a proportional intervention aimed at modify-
ing population growth. Crucially, this would be possible 
even if the actual magnitude of some of these contributions 
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are unknown, a situation that is typical of the lack of 
demographic information that population managers often 
face (Conde et al. 2019). For example, in age-classified 
matrix models, the magnitude of the elasticity of the domi-
nant eigenvalue to adult survival declines with adult age 
(Hamilton 1966). Carslake et al. (2009) argued that the 
numerical finding that in a conservation plan for an endan-
gered species, survival earlier in adult life should be pref-
erentially preserved compared to later survival (Grenier 
et al. 2007) may be predicted a priori ignoring the species 
exact life table.

Carslake et al. (2009) report a total of 12 putative rules about 
elasticities, which are summarized in Table 1. Some are known, 
yet others have remained putative so far, as no proof of them 
has been given yet. Rules E1, E3, E4, E6, E7, E9, E10, and E11 
in this table can be proven directly from the row–column sym-
metry in its original form. The four remaining rules (E2, E5, E8 
and E12), which are new (Carslake et al. 2009), are all about 
matrix models with the following pattern

where + indicates a positive entry and ∗ indicates a non-
negative entry. For brevity, we combined in this one pat-
tern several distinct patterns considered by Carslake et al. 
(2009) (see Table 1), who also added some bounds on the 
entry values, but these bounds play no relevant role here. 
The conjectured rules about matrix models with the above 
pattern can be summarized as

i.e. each entry (i, i − 1) in the subdiagonal of the elasticity 
matrix is greater than or equal to any entry in the block 
stretching from the corresponding superdiagonal entry 

(7)A =

⎛
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Fig. 1   Applications of a general symmetry about elasticities of matrix 
models. A−B, the life cycle graph of the flowering plant Dipsacus sil-
vestris (Caswell 2001). (C), elasticity graph of this model. D−F, the 
elasticity graph is cut in three different ways. The flow of elasticities 
out of dormancy stages equals the flow of elasticities into dormancy 
stages (D); the flow of elasticities out of rosette stages equals the flow 

of elasticities into rosette stages (E); the flow of elasticities out of 
the flowering stage equals the flow of elasticities into the flowering 
stage (F). The symmetry holds for any possible cut of the graph into a 
subset of stages and its complement and applies to elasticities of any 
eigenvalue of the matrix model
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(i − 1, i) to the entry (1, n). This inequality can be proven 
using the suggested visual approach on elasticity graphs. As 
Fig. 2 shows, for matrix models with a pattern like in Eq. 7, 
not only an inequality must hold, but instead the equation

i.e., the elasticity of � to ai,i−1 equals the sum of the elastici-
ties of � taken over all entries that are both in columns on the 
right of ai,i−1 and in rows above ai,i−1 . Since elasticities of the 
dominant eigenvalue to matrix entries are nonnegative, Eq. 9 
proves Eq. 8 for any matrix model with the pattern in Eq. 7.

Looking for invariant trade‑offs in evolution

Life cycles are usually subject to trade-offs, i.e., con-
straints to the independent increment of different traits 
(Stearns 1992; Roff 1992). For example, there may be a 
quality-quantity trade-off in offspring production: big-sized 
newborns could be more likely to survive through their first 
year, yet parents can only have fewer of them. Selection 
is supposed to lead to the evolution of optimal life cycles, 
i.e. they attain maximum fitness within the constraints. In 
the context of matrix models, the dominant eigenvalue is 
usually taken as the maximand of selection (Stearns 1992; 
Roff 1992), albeit with some caveats (Metz et al. 2008). 
Trade-offs may be envisaged between matrix entries (van 
Tienderen 1995). For example, using a Leslie matrix model, 

(9)ei,i−1 =
∑

k≤i−1,l≥i

ek,l, i = 2,… , n,Table 1   Elasticities patterns conjectured by Carslake et al. (2009)

This table recapitulates Table 3 in Carslake et al. (2009)
a Unspecified matrix entries are set to 0

Matrix Name Patterna Conjectured Rules

Leslie a1,j > 0 E1: ei,i−1 ≥ ek>i,k−1

ai,i−1 > 0 E2: ei,i−1 ≥ e1,l≥i

E3: en,n−1 = e1,n

Leslie+ a1,j > 0 E4: ei,i−1 ≥ ek>i,k−1

ai,i−1 > 0 E5: ei,i−1 ≥ e1,l≥i

an,n > 0 E6: en,n−1 = e1,n

Progression a1,j > 0 E7: ei,i−1 ≥ ek>i,k−1

ai,i−1 > 0 E8: ei,i−1 ≥ e1,l≥i

ai,i > 0 E9: en,n−1 = e1,n

Growth a1,j > 0 E10: e2,1 ≥ ek≠2,2

ai,j≤i > 0 E11: e1,n ≥ en,l<n

Leslie(R) a1,j > 0 E12: ei,i−1 ≥ ek<i,l>i−1

ai,j≥i−1 > 0
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Fig. 2   Elasticity graph of a matrix model with growth only into the 
next stage, retrogression or reproduction to any earlier stage and sta-
sis in the current stage. Solid arrows indicate positive entries in the 
matrix model, dotted arrows indicate nonnegative entries, see Eq. 7 
in the main text. Here an example with n = 4 stages. The graph is cut 
(red dashed line) to separate the first 2 stages from the rest. By sym-
metry, elasticities traversing the cut in one direction balance elastici-
ties traversing the cut in the opposite direction. Therefore, the elastic-

ity e3,2 of � to growth into stage 3 equals the sum of all elasticities 
e
k,l of � to retrogression or reproduction from any stage l ≥ 3 into any 

stage k ≤ 2 , e.g. e3,2 = e1,3 + e1,4 + e2,3 + e2,4 . When dotted arrows 
are removed, growth is interpreted as survival and arrows towards the 
first stage as fertility, the elasticity graph of an age classified popu-
lation is obtained. In this special case, the elasticity of � to survival 
from an age to the next equals the sum of elasticities of � to fertility at 
any later age, e.g., e3,2 = e1,3 + e1,4
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Caswell (1982) studied a possible trade-off between fecun-
dity at some age and survival from that age to the next.

Generally, constrained optima of fitness display some 
dependence on life cycle details. For example, in a log–log 
plot the constraint curve that bounds the feasible combi-
nations between overall survival and overall fertility in a 
life cycle has a slope at the maximum attainable fitness that 
is equal to 1 minus the generation time of the optimal life 
cycle (Giaimo and Traulsen 2019). Invariant trade-offs are 
special in this respect. Charnov (1997) originally used the 
term ‘trade-off-invariant rules’ to refer to those trade-offs 
for which the slope of the constraint curve at an optimum 
between two traits in a log-log plot is always −1.

Invariant trade-offs are typically identified by work-
ing with the characteristic equation of the matrix model, 
e.g., (Charnov 1997; Giaimo and Traulsen 2019). For age-
structured life cycles, this is the Euler–Lotka equation, 
which is well understood. Unfortunately, equally intelligi-
ble characteristic equations are not known for most matrix 
models. This complicates the discovery of invariant trade-
offs, which in fact appear to be known by and large only 
for the age-structured case. Here is where the symmetry 
in Eq. 6 can assist us.

Parametrize a matrix model A so that ai,j = bi,j when both 
i and j are in X or neither is, ai,j = �1bi,j when j is in X and i 
is not, and ai,j = �2bi,j when i is in X and j is not. The bi,j are 
positive constants. The positive parameters �1 and �2 control 
the demographic contributions from stages in X to stages 
out of X and in the opposite direction. The elasticity of the 
dominant eigenvalue � of A to these two parameters are

for all positive values of �1 and �2 . Consider then a log–log 
plot of �2 against �1 . The implicit function theorem and 
Eqs. 6, 10 and 11 imply that the slope of any level curve of 
constant log � in this plot is

Suppose �1 and �2 are under selection, and there is a trade-
off between them. Since the dominant eigenvalue is an 
increasing function of matrix entries, fitness is an increasing 
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function of �1 and �2 . Both these parameters then tend to 
increase. Yet not all combinations of �1 and �2 are feasi-
ble. Eventually, a constraint is hit and to an increment in 
�1 there corresponds a decrement in �2 and vice versa. We 
think of this constraint as a smooth curve that separates what 
is feasible from what is not in the log �1-log �2 plane. We 
restrict attention to evolution along this curve. Assume that 
a constrained local maximum log �∗ of fitness is on the con-
straint curve at (log �∗

1
, log �∗

2
) . This optimum also belongs 

to a level curve of constant fitness, i.e. the set of all points 
(log �1, log �2) at which fitness takes value log �∗ . As shown 
above, Eq. 12, any such level curve actually is a straight line 
with slope −1 . Focus then on a sufficiently small neighbor-
hood around (log �∗

1
, log �∗

2
) so that the constraint curve is 

well approximated by its tangent at such optimum. If this 
tangent has a slope different from −1 , then it intersects the 
level line of optimal fitness exactly once at the optimum. A 
segment of the tangent not including the optimum remains 
above the line of optimal fitness. Since fitness increases both 
in �1 and in �2 , this segment contains points that have greater 
than optimal fitness. These points are also feasible, as they 
lie on the curve and, therefore, satisfy the constraint. Moreo-
ver, we can always find such feasible points at any arbitrarily 
small distance from the optimum (log �∗

1
, log �∗

2
) . But this 

contradicts the fact that this optimum is a local maximum 
of fitness. Therefore, the tangent of the constraint curve at 
the optimum must have slope −1 . We can then conclude that 
if there is a trade-off across a bipartition of the life cycle 
stages, then it is an invariant trade-off.

Visual reasoning about the elasticity graph helps us to 

apply this result. For example, the invariant trade-off between 
present survival and future reproduction that was laboriously 
derived from the characteristic equation of the matrix in 
Giaimo and Traulsen (2019) can be proven much more easily 
as follows. Keep only the solid arrows in the graph in Fig. 2 
to get the elasticity graph of the age-classified (Leslie) matrix 
model, i.e. arrows ending in 1 indicate fertilities and arrows 
from one node (age class) to the next indicate survival. By 
cutting the elasticity graph to separate the first k age classes 
from the remaining ones, the elasticity of survival at age class 
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k (into the next age class) balances the elasticities of fertility 
at all subsequent age classes ( > k ). Therefore, if there is a 
trade-off between survival at age class k and fertility in all 
subsequent age classes, then this trade-off is invariant.

Discussion

The row–column symmetry has been helpful to classify spe-
cies with minimal demographic information for conserva-
tion purposes (Heppell et al. 2000). In order to extend the 
repertoire of useful mathematical rules about elasticities 
for population management in the absence or scarcity of 
demographic data, Carslake et al. (2009) have developed 
a numerical approach that yielded a number of putative 
such rules. Our work shows that these rules, which can be 
applied by only knowing the stage structure of the popula-
tion while ignoring its exact demographics, can be proven 
analytically as special cases of the row–column symmetry 
using an alternative form of it. The eventual usefulness of 
these rules remains conditional to the known limitations of 
elasticity analysis (Benton and Grant 1999; Mills et al. 1999; 
de Kroon et al. 2000).

In the study of optimal life cycles, using symmetry to 
reason about invariant trade-offs vastly expands upon the 
original approach by Charnov (1997). He expressed fitness 
as a product of only three aggregate life cycle traits and 
looked at trade-offs among them: the probability of surviv-
ing to the age of first breeding, the average rate of offspring 
production over the adult lifespan, and the average length of 
the adult lifespan. To get to this formulation, Charnov (1997) 
limited attention to the case where stages are age classes and 
the population is stationary, i.e. the dominant eigenvalue of 
the matrix model is 1. These restrictions are not required in 
our approach. Stages need not be age classes and the matrix 
model can represent any demography. By bipartitioning n 
stages, there are up to 2n−1 − 1 ways of aggregating matrix 
entries into two traits which, if related by a trade-off, would 
display invariance. Fitness as given by the dominant eigen-
value of the matrix model will generally be a nonlinear func-
tion of these possible traits (Hodgson et al. 2006). But this 
adds no further complication and the population can grow, 
shrink or stay constant in size.

However, an important caveat should be stated. Symme-
tries of elasticities deliver a quick method to check for invar-
iance of a trade-off between certain subsets of matrix entries. 
But this method is silent as to whether a trade-off exists in 
the first place. It is unclear whether a given bipartition of 
the set of stages identifies a trade-off between demographic 
contributions from one part into the other and vice versa. 
More generally, an arbitrary bipartition-induced grouping of 
matrix entries may fail to single out two biologically mean-
ingful traits.

Our results were derived with reference to the elasticities 
of the dominant eigenvalue to the entries of a matrix model 
that governs time-homogeneous population dynamics of the 
form x(t) = A

t
x(0) . In such scenario, this eigenvalue cor-

responds to asymptotic population growth (i.e. t → ∞ ) and 
fitness for a density-independent population in a constant 
environment. However, the scope of our results extends to 
more general scenarios. Here, we discuss three of them.

First, in the study of transient population dynamics (i.e. 
small t), nondominant eigenvalues matter (Stott et al. 2011). 
The ratio between the dominant eigenvalue and the modulus 
of the subdominant eigenvalue of the matrix model determines 
the rate of convergence to the stable state (Caswell 2001). 
More generally, all eigenvalues of the matrix model, along 
with the initial population state, influence dynamics before 
the population reaches the asymptotic phase and they may 
induce overshoots, undershoots and oscillations that, however 
transient, need to be accounted for in population management 
(Koons et al. 2005). Since natural or human-induced distur-
bances on a population tend to displace this from equilibrium, 
transient dynamics are of direct relevance to conservation 
biology and applied ecology, as these dynamics operate on 
roughly the same time scale as many population management 
plans (Ezard et al. 2010). The elasticity of the population state 
outside of demographic equilibrium to matrix entries can be 
analyzed (Fox and Gurevitch 2000; Caswell 2007). In particu-
lar, Fox and Gurevitch (2000) propose an analysis that requires 
the computation of the elasticities of all matrix eigenvalues 
to matrix entries. Our derivation and re-elaboration of the 
row–column symmetry in Eq. 3 apply to any eigenvalue of A . 
Thus, symmetries extend to elasticities of nondominant eigen-
values to matrix entries. In the study of transient dynamics, 
these symmetries may be leveraged to facilitate some computa-
tions or gain some insights. However, it should be kept in mind 
that elasticities of non-dominant eigenvalues may be negative. 
This means, for example, that while our Eq. 9 holds for any 
eigenvalue, the inequality in Eq. 8 does not.

Second, populations rarely live in a constant environment. 
More often, they experience varying environmental condi-
tions. To capture the effect of these on life cycle traits, a 
time-dependent matrix model for population dynamics of 
the form x(t) = At−1 …A1A0x(0) is used (Caswell 2001). 
In this model, matrix A

�
 contains the vital rates that are 

induced to the population by the environment that is expe-
rienced at time � . When the matrix sequence is governed 
by a stochastic process, under mild assumptions about the 
process and the matrices in the sequence, long run popula-
tions dynamics are characterized by a stochastic growth rate 
log �s (Cohen 1977a, b; Tuljapurkar 1990), which also serves 
as a measure of fitness (Tuljapurkar 1990). Since the ai,j vary 
randomly, it is possible to define different elasticities of �s to 
matrix entries depending on which feature of the distribu-
tion of these entries is perturbed (Tuljapurkar et al. 2003). 
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However, it is customary to refer to a perturbation of both 
the mean and the standard deviation of ai,j in the same pro-
portion for all matrices in the sequence as “the” stochastic 
elasticity of �s (Caswell 2001; Tuljapurkar et al. 2003). Sto-
chastic elasticities were crucial in assessing the impact of 
harvest intensity on population persistence of Khaya (Gaoue 
et al. 2011) and in investigating fitness differences between 
genetic variants at a polymorphism under variable environ-
ments (Smallegange and Coulson 2011). Interestingly, sto-
chastic elasticities are nonnegative and they also obey the 
row–column symmetry (Claessen 2005). Therefore, when 
stochastic elasticities are the relevant ecological and evolu-
tionary quantities, our results extend to stochastically fluc-
tuating environments and could be used to predict a priori 
some findings of elasticity analysis solely on the basis of the 
matrix structure.

Third, elasticity analysis has lately been extended to 
next-generation matrices (Hartemink et al. 2008; Matser 
et al. 2009; Davis and Bent 2011; Polo et al. 2018). Matrix 
models discussed in the present work demographically project 
the population over time steps of conveniently chosen length, 
e.g. a day, one year or five years. Next-generation models, 
instead, project the population over generations. In this con-
text, a single generation is the time needed for the popula-
tion to grow by its basic reproductive number R0 , which cor-
responds to the dominant eigenvalue of the next-generation 
matrix. The elasticity of R0 to entries of the next-generation 
matrix and their underlying parameters has been employed to 
understand infectious disease ecology (Hartemink et al. 2008; 
Matser et al. 2009). Here, R0 measures how the number of 
infected hosts tends to grow in the long run, while matrix 
entries quantify processes of pathogen transmission through 
hosts. Elasticity analysis has been pivotal in comparing the 
importance of different transmission routes for distinct tick-
borne infections (Matser et al. 2009). The eigenvalue per-
turbation machinery required to get the elasticities of R0 for 
next-generation matrices is the same as that for the elasticities 
of � . Therefore, the row–column symmetry and our derived 
results carry over smoothly to the elasticity analysis of next-
generation matrices in ecology.

For future work it would be interesting to systemati-
cally review the literature on elasticity analysis to apply 
our results. We can foresee that several findings, i.e. some 
elasticities being equal to or larger than others, may be 
found therein that would appear as empirical because they 
emerge from the analysis of specifically parametrized matrix 
population models. However, some of these findings could 
instead be instances of more general regularities that are to 
be expected solely in virtue of the matrix structure.

The row–column symmetry has long been known. But 
some relevant applications of it have not been discussed 
yet. Here, we have proposed a different way of formulating 
and using this symmetry that, in some contexts, seems to 

be more revealing than the original one. More generally, 
our work highlights the importance of exploring different 
ways of looking at already known results to fully under-
stand all their implications.
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