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Abstract
If A is a finite-dimensional symmetric algebra, then it is well-known that the only silting
complexes in Kb(projA) are the tilting complexes. In this note we investigate to what extent
the same can be said for weakly symmetric algebras. On one hand, we show that this holds
for all tilting-discrete weakly symmetric algebras. In particular, a tilting-discrete weakly
symmetric algebra is also silting-discrete. On the other hand, we also construct an example
of a weakly symmetric algebra with silting complexes that are not tilting.
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1 Introduction

For a finite-dimensional k-algebra A, the tilting complexes play a central role in the cate-
gory Kb(proj A) of perfect complexes. One of the main tools used in their study is mutation,
but to get a well-behaved mutation, one is led to consider the weaker notion of silting com-
plexes instead. While the silting theory of A can be quite complicated in general, the notion
of silting-discreteness was introduced by Aihara [3] as a strong finiteness property. This can
make it possible to describe all the silting complexes over A and their behavior under muta-
tion. For example, under this condition it is well known that A is silting-connected [3] i.e.
any two silting complexes of A can be connected by a sequence of mutations.

The silting-discreteness property also has particularly nice implications on the Bridge-
land stability manifold associated to Db(mod A) [2, 15] – a topological invariant related to
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the t-structures in this category. In particular, Pauksztello–Saorin–Zvonareva show that for
a silting-discrete algebra, the bounded t-structures in Db(mod A) are in bijection with basic
silting complexes in Kb(proj A) [14, 15]. Moreover, they use this to show the stability mani-
fold is contractible in this case, something which is often very difficult to determine in more
geometric settings.

With this in mind, the results in this article were broadly motivated by the question
of which finite-dimensional algebras are silting-discrete. Because of their connection with
derived equivalences, it is often easier to control the tilting complexes of an algebra, rather
than all the silting complexes. For example, Aihara–Mizuno [6] use the associated equiv-
alences to show that the preprojective algebras of Dynkin type are tilting-discrete, but it
remains an open question whether they are all silting-discrete. In particular, the easiest set-
tings to establish silting-discreteness will be when the notions of silting and tilting (and
hence also silting-discrete and tilting-discrete) coincide. This is well-known for symmetric
algebras, and so we asked whether the same is true for weakly symmetric algebras. As we
show below, if a weakly symmetric algebra is tilting-discrete, then it must also be silting-
discrete, and in this case all silting complexes are tilting. In particular, this applies to the
weakly symmetric preprojective algebras (those of type D2n, E7 and E8), a result which we
have since learned was already known to Aihara [4], although the proof does not explicitly
appear in [6]. Furthermore, after writing we became aware of work of Adachi and Kase [1],
which independently proves both of these results as a consequence of a more general theory
of ν-stable silting.

However, we additionally return to the question of whether every silting complex over
a weakly symmetric algebra is tilting, and we show that the answer is negative in gen-
eral. We achieve this by constructing examples of weakly symmetric algebras with silting
complexes that are not tilting. These examples are modifications of the examples of silting-
disconnected algebras in [11], and in fact provide further examples of algebras with this
property.

2 Preliminaries

We let A be a basic finite-dimensional algebra over an algebraically closed field k with n

isomorphism classes of simple (right) modules. We write e1, . . . , en for a complete set of
pairwise orthogonal primitive idempotents for A, and write Pi = eiA for the indecompos-
able projective right A-modules. We primarily work with right A-modules and use mod A

for the category of finitely generated right A-modules, Db(mod A) for the bounded derived
category and Kb(proj A) for the homotopy category of perfect complexes over A.

2.1 TwistedModules

Let σ be a k-algebra automorphism of A, acting on the left. For any right A-module M , we
define the twisted module Mσ to be M as a k-vector space with the right action of A given by
m·a = mσ(a) for all m ∈ M and a ∈ A. Similarly, for a left A-module N , we can define the
twisted module σ N as N but with A-action given by a·m = σ(a)m for all a ∈ A and m ∈ N .
Observe that we have natural isomorphisms Mσ

∼= M ⊗A Aσ and σ N ∼= σ A ⊗A N for all
right (resp. left) A-modules M (resp. N ). Thus σ induces an automorphism σ ∗ := −⊗A Aσ

of the category mod A. This action restricts to an automorphism of proj A and hence also
induces automorphisms of Kb(proj A) and Db(mod A).
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2.2 Nakayama Automorphism

Writing D := Homk(−, k) for the standard k-duality between left and right A-modules, the
Nakayama functor ν := D HomA(−, A) is a right exact functor isomorphic to − ⊗A DA.
It induces an equivalence proj A

∼−→ injA whose quasi-inverse is ν−1 := HomA(DA, −).

Recall that A is self-injective if and only if there is an isomorphism of right (or left)
modules A

∼−→ DA. In this case, all projective modules are injective and vice versa, and
there always exists an algebra automorphism ν : A → A such that there is an isomorphism
of A-bimodules

ϕ : Aν → DA.

Note that ν is unique up to inner automorphism, and we call ν the Nakayama auto-
morphism of A since ν∗ := − ⊗A Aν coincides with the Nakayama functor ν. It is well
known that A is symmetric if and only if ν is inner which is if and only if ν is isomorphic
to the identity functor. Note that ν(Pi) ∼= Ii for all finite-dimensional algebras, but if A is
self-injective, then there exists a permutation π such that, for all i,

Pi
∼= Iπ(i), or equivalently, νPi

∼= Pπ−1(i).

This permutation π is known as the Nakayama permutation of A.

Definition 2.1 An algebra is weakly symmetric if the Nakayama permutation is the identity
i.e. Pi

∼= νPi for all i. Or equivalently, if ν(ei) ∼= ei for all i.

Note that the weakly symmetric property is strictly weaker than being symmetric.

Theorem 2.2 [8, 4.8] The preprojective algebras of ADE Dynkin type are self-injective.
They are weakly symmetric if the Dynkin type is D2n, E7, or E8 but these are not symmetric
unless char k = 2.

As an equivalent way to characterise weakly symmetric algebras, note that when A is
self-injective, the Nakayama functor restricts to an equivalence ν : proj A → proj A and
hence there is an induced equivalence

ν : Kb(proj A) → Kb(proj A). (2.A)

This further induces a group automorphism on the Grothendieck group K0(proj A) ∼=
K0(Kb(proj A)) and the weakly symmetric algebras are precisely those self-injective alge-
bras for which this automorphism is the identity. This property will be key to several
arguments in the next section (see Propositions 3.1 and 3.6).

2.3 Nakayama and Tilting

Recall that a complex T ∈ Kb(proj A) is called tilting (resp. silting) if

(1) HomKb(proj A)(T , T [n]) = 0 for all n �= 0 (resp. for all n > 0);

(2) the smallest full triangulated subcategory of Kb(proj A) containing T and closed under
forming direct summands is Kb(proj A).
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We will write tilt A (resp. silt A) for the set of isomorphism classes of basic tilting (resp.
silting) complexes in Kb(proj A). If A is self-injective, it follows from the autoequivalence
(2.A) that if T is a tilting (resp. silting) complex, then so is νT .

Theorem 2.3 [3, A.4] If A is self-injective then a basic silting complex T is tilting if and
only if νT ∼= T .

Recall that when A is symmetric, ν ∼= id, and hence a direct corollary of this result is the
well-known fact that all silting complexes over a symmetric algebra are tilting complexes.

2.4 SiltingMutation

To create new silting complexes from a given one, Aihara–Iyama introduced the notion of
mutation [5].

Definition 2.4 Suppose that T = X ⊕ Y ∈ Kb(proj A) is a basic silting complex. Then
consider a triangle

X
f−→ Y ′ g−→ X′ → X[1]

where f is a left add(Y )-approximation of X. Then μX(T ) := X′ ⊕ Y is a silting complex
called the left mutation of T with respect to X. There is a dual notion of right mutation.
Such mutations are called irreducible if X is indecomposable.

For any finite-dimensional algebra A, we may view the algebra as a complex centred
in degree zero, and this will always be a tilting complex. An algebra A is called silting-
connected (resp. weakly silting-connected) if all basic silting complexes in Kb(proj A)

can be obtained from A by a sequence of irreducible (resp. not necessarily irreducible)
mutations, left or right at each stage. Note that not all algebras are weakly silting-
connected [11].

If A is self-injective, we say that a complex X ∈ Kb(proj A) is Nakayama stable if
ν(X) ∼= X. In other words, Theorem 2.3 says that a silting complex T is tilting if and only if
it is Nakayama stable. We further call T strongly Nakayama stable if each indecomposable
summand of T is Nakayama stable.

Proposition 2.5 [11, 2.1] If A is self-injective and T is a strongly Nakayama stable tilting
complex, then any (not necessarily irreducible) mutation of T is also strongly Nakayama
stable.

3 Tilting Theory for Weakly Symmetric Algebras

In this section, we make some initial observations on the tilting theory of weakly sym-
metric algebras, before then placing an extra condition on the algebras, known as tilting-
discreteness, and showing that all silting complexes are tilting in this case. As before, we
let A be a basic finite-dimensional algebra over an algebraically closed field k with n

isomorphism classes of simple modules.
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3.1 Initial Observations

Since a basic silting complex T ∈ Kb(proj A) has n indecomposable summands by [5,
2.28], we can write T = ⊕n

i=1Ti where each Ti is indecomposable. If A is self-injective
and T is tilting, then Theorem 2.3 shows ν must permute these summands. In this case,
the associated standard derived equivalence Db(mod A) → Db(mod End(T )) maps the Ti

to the distinct indecomposable projective modules over End(T ), and commutes with the
Nakayama functors of the two algebras [17, 5.2]. Hence it follows that the permutation of
the Ti induced by ν will correspond with the Nakayama permutation of End(T ).

Proposition 3.1 Let A be weakly symmetric. Then any tilting complex T ∈ Kb(proj A) is
strongly Nakayama stable. Consequently, any algebra derived equivalent to A is also weakly
symmetric.

Proof The Grothendieck group of the triangulated category Kb(proj A) is a free abelian
group with basis elements [Pi] for each indecomposable projective A-module Pi . Since a
tilting complex T = ⊕n

i=1Ti ∈ Kb(proj A) with B = End(T ) induces an equivalence of
triangulated categories Kb(proj B) → Kb(proj A) taking B to T , it induces an isomorphism
of Grothendieck groups taking the natural basis over B to {[Ti]}ni=1. Thus the latter is a basis
for the Grothendieck group of Kb(proj A) (this is in fact true if T is any silting complex
by [5, 2.27]). However, if A is weakly symmetric, we have νPi

∼= Pi for all i, and thus
ν acts as the identity on the Grothendieck group. Since ν permutes the Ti , if νTi

∼= Tj ,
then [Ti] = [νTi] = [Tj ] in the Grothendieck group, which means that Ti = Tj

∼= νTi ,
as required. The second statement of the proposition, now follows from the fact mentioned
above that the action of ν on the Ti induces the Nakayama permutation of End(T ).

Our next observation is the following direct corollary of Proposition 2.5.

Proposition 3.2 If A is a weakly symmetric algebra, then all silting complexes reachable
from A via iterated mutation are strongly Nakayama stable tilting complexes. Moreover,
their endomorphism algebras will all be weakly symmetric algebras.

Proof Since A is weakly symmetric, by definition we have νPi
∼= Pi for all indecomposable

projective modules and thus A is a strongly Nakayama stable tilting complex. By Proposi-
tion 2.5, any mutation of A is again a strongly Nakayama stable tilting complex, and hence
iterating this result shows any silting complex reachable from A is a strongly Nakayama
stable tilting complex. The second statement again uses the fact mentioned above that the
action of ν on a tilting complex T induces the Nakayama permutation of End(T ).

Corollary 3.3 If A is weakly symmetric and weakly silting-connected, then every silting
complex for A is a strongly Nakayama stable tilting complex.

Proof By Proposition 3.2, since A is weakly symmetric, all silting complexes reachable
from A by mutation are strongly Nakayama stable tilting complexes. Since A is weakly
silting-connected, these are all the silting complexes of A and hence the result follows.
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3.2 Tilting-discreteness

Silting- and tilting-discreteness are notions which were developed by Aihara–Mizuno [6]
using the partial order on silting complexes introduced by Aihara–Iyama [5].

Definition 3.4 If T , S ∈ Kb(proj A) are two silting complexes, then we say T ≥ S if
HomKb(proj A)(T , S[n]) = 0 for all n > 0.

This partial order is one of the key tools used when studying silting theory, as it is known
to control mutation. It may also be used to define a certain subset of silting complexes, often
studied because of their connections with τ -tilting theory and cluster-tilting theory.

Definition 3.5 A basic silting complex T ∈ Kb(proj A) is called two-term if A ≥ T ≥ A[1]
or equivalently, T only has nonzero terms in degrees 0 and −1.

Proposition 3.6 For a weakly symmetric algebra A, all two-term silting complexes are
tilting.

Proof Suppose that A = ⊕n
i=1 Pi and that T is a two-term silting complex for A. Then,

since the [Pi] give a basis of the Grothendieck group of Kb(proj A), we may write

[T ] =
n⊕

i=1

ai[Pi]

and, using the language of [10], we say that the g-vector of T is (a1, . . . , an) ∈ Z
n. Now

νT is another two-term silting complex for A, and since A is weakly symmetric (νPi
∼= Pi

for all i), νT must have the same g-vector. However, by [10, 6.5], g-vectors completely
determine two-term silting complexes and thus T ∼= νT and T is tilting by Theorem 2.3.

If an algebra A has finitely many basic two-term silting complexes, the algebra is called
τ -tilting finite. Aihara [3] generalised this notion, with Aihara–Mizuno then developing it
further.

Definition 3.7 [6, 2.4, 2.11] A self-injective finite-dimensional algebra A is called tilting-
discrete (resp. silting-discrete) if the set

{T ∈ tilt A | P ≥ T ≥ P [1]} (resp. {T ∈ silt A | P ≥ T ≥ P [1]})
is finite for any tilting (resp. silting) complex P obtained from A by iterated irreducible left
mutation.

It is clear that silting-discrete implies tilting-discrete and if the algebra A is symmetric,
the two notions are equivalent. It is also known that silting-discrete implies silting-connected
[6, 3.9] and tilting-discrete implies tilting-connected [9, 5.14]. However, if we only know
an algebra is tilting-discrete, it is generally unknown whether the algebra is also silting-
discrete/silting-connected.

Proposition 3.8 (Cf. [1, Cor. 2.26]) If A is a tilting-discrete weakly symmetric algebra,
then A is in fact silting-discrete and all silting complexes for A are tilting.

174 



Silting and Tilting for Weakly Symmetric Algebras

Proof Suppose that P is a silting complex obtained from A by iterated irreducible left muta-
tion. Then, since A is weakly symmetric, P is a strongly Nakayama stable tilting complex,
and B := EndA(P ) is a weakly symmetric algebra using Proposition 3.2. Thus, there is a
standard derived equivalence

F : Db(mod A) → Db(mod B)

P �→ B

and this preserves silting (resp. tilting) complexes and the silting order (see e.g. [7, 2.8]). In
particular, F induces a bijection

{T ∈ silt A | P ≥ T ≥ P [1]} ↔ {S ∈ silt B | B ≥ S ≥ B[1]} (3.A)

which further restricts to a bijection

{T ∈ tilt A | P ≥ T ≥ P [1]} ↔ {S ∈ tilt B | B ≥ S ≥ B[1]}. (3.B)

By the tilting-discreteness of A, the left hand side of (3.B) is finite and hence so is the right
hand side. However, as B is weakly symmetric, Proposition 3.6 shows that

{S ∈ tilt B | B ≥ S ≥ B[1]} = {S ∈ silt B | B ≥ S ≥ B[1]}
and thus, both sides in (3.A) are also finite, proving that A is silting-discrete. Then by
[3, 3.9], this implies A is silting-connected and thus all silting complexes can all be obtained
from A by iterated mutation. Using Proposition 3.3 this shows that all silting complexes are
strongly Nakayama stable tilting complexes.

Corollary 3.9 (Cf. [4, Ex. 22], [1, Ex. 2.27]) The preprojective algebras of Dynkin type
D2n, E7 and E8 are silting-discrete algebras, where every silting complex is a tilting
complex.

Proof By Theorem 2.2, these algebras are weakly symmetric and [6, 5.1] shows that they
are tilting-discrete. The result then follows directly from Proposition 3.8.

One application of silting-discreteness is in the study of Bridgeland stability. Given a
triangulated category, in this case the bounded derived category of our finite-dimensional
algebra, Bridgeland stability constructs a complex manifold associated to this category. If
A is a finite-dimensional silting-discrete algebra, then [15] show that this manifold will be
contractible, and combining this with Proposition 3.8 immediately gives the following.

Corollary 3.10 If A is a finite-dimensional weakly symmetric tilting-discrete algebra, then
the Bridgeland stability manifold of Db(mod A) is contractible.

Proof This follows directly from Proposition 3.8 and [15].

4 Examples

We now give examples of weakly symmetric algebras with silting complexes that are not
tilting. The examples are based on those in [11], so we begin by reviewing the necessary
details from that work.
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We fix an even integer n ≥ 4 and let A be the path algebra of the quiver

Q = 1
x ��
y

�� 2
x ��
y

�� · · · x ��
y

�� n

modulo the relations x2 = y2 = 0. We write ei for the primitive idempotent of A corre-
sponding to vertex i (for 1 ≤ i ≤ n). As A has finite global dimension, we can identify
Kb(proj A) with Db(mod A), and we write S := − ⊗L

A DA for the Serre functor on this
category.

We let σ ∈ Autk(A) be the order two automorphism induced by the automorphism
of Q that fixes each vertex and swaps each pair of x and y arrows. We write σ ∗ for the
induced automorphisms on the categories mod A, Kb(proj A), or Db(mod A) depending on
context. We set E = e1A/e1yA, which is a uniserial module of length n, and note that
σ ∗E ∼= e1A/e1xA � E.

Proposition 4.1 [11, 4.1] E and σ ∗E are Hom-orthogonal (n − 1)-spherical objects in
Db(mod A).

Now E defines a spherical twist functor, which we can apply to A to obtain a tilting
complex T that fits into an exact triangle

E[1 − n]n → A → T → E[2 − n]n (4.A)

in Db(mod A). By applying σ ∗, and using the fact that σ ∗A ∼= A we obtain another triangle

σ ∗E[1 − n]n → A → σ ∗T → σ ∗E[2 − n]n. (4.B)

To get a weakly symmetric algebra, we can form the twisted trivial extension of A using
the automorphism σ . Thus we define � := Tσ A = A � σ DA, where the latter denotes
the usual bimodule extension of A by the bimodule σ DA. The idempotents ei of A induce
a complete set of primitive orthogonal idempotents (ei, 0) of �, which we will continue to
write as ei . In general, by [12, Prop. 2.2] the Nakayama automorphism ν of Tσ A is given by

ν(a, f ) = (σ (a), f σ−1). (4.C)

In particular, since σ fixes the idempotents ei of A, we see also that ν(ei) = ei for all i, and
thus � is weakly symmetric. The quiver and relations of a twisted trivial extension can be
computed as described in [13, §3], for example. In our case, we see that � has quiver

with relations x2 = y2 = 0 and xv = ux = yu = vy = 0, together with additional relations
expressing equality of the two (remaining) nonzero paths of length n at each vertex: for
0 ≤ r < q := n/2,

(xy)rv(xy)q−r−1x = (yx)ru(yx)q−r−1y and (xy)rxu(yx)q−r−1 = (yx)ryv(xy)q−r−1.

One can contrast these relations with those of the untwisted trivial extension, which are
described just after Question 1 in [11]. Furthermore, while the Nakayama automorphism of
the untwisted trivial extension is the identity, we can see from Eq. (4.C) that the Nakayama
automorphism on � swaps each pair x and y (of parallel arrows), while also swapping u and
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v. For n = 4, the tilting complex T ∈ Kb(proj A) from Eq. (4.A) is described in [11]. The
corresponding complex T ⊗A � ∈ Kb(proj �) will look the same, but with each A replaced
by �. Its indecomposable summands are as follows, where we indicate the degree-0 term
by underlining it:

0 �� 0 �� e3�
y �� e2�

y �� e1� �� 0

0 �� e4�

(
x

y

)

�� (e3�)2 (0 y) �� e2�
y �� e1� �� 0

0 �� e4�

(
yx

y

)

�� e2� ⊕ e3�
(0 y) �� e2�

y �� e1� �� 0

0 �� e4�

(
xyx

y

)

�� e1� ⊕ e3�
(0 y) �� e2�

y �� e1� �� 0

As this complex is clearly not invariant under the Nakayama functor ν, it is not a tilting
complex. However, it is silting.

Proposition 4.2 Let A, σ and T be as above, and let � = Tσ A. Then T ⊗A � is a silting
complex in Kb(proj �) that is not tilting.

Proof The proof is similar to Rickard’s that T ⊗A T A is a tilting complex over the trivial
extension algebra T A for any tilting complex T over A [16]. We begin by noting that T ⊗A�

generates Kb(proj �). This can be seen using that T generates Kb(proj A) and − ⊗A � :
Kb(proj A) → Kb(proj �) is an exact functor of triangulated categories taking A to �. It
remains to show that

HomKb(�)(T ⊗A �, T ⊗A �[i]) = 0 for all i > 0.

To this end, observe that for all i �= 0

HomKb(�)(T ⊗A �, T ⊗A �[i]) ∼= HomKb(A)(T , T ⊗A �[i])
= HomKb(A)(T , T [i] ⊕ T ⊗A σ DA[i])
∼= HomKb(A)(T , T [i]) ⊕ HomKb(A)(T , (σ ∗)−1

ST [i])
∼= 0 ⊕ HomKb(A)(σ

∗T , ST [i])
∼= D HomKb(A)(T , σ ∗T [−i]),

where the penultimate isomorphism is from the fact that TA is a tilting complex and the last
is by Serre duality. Thus it suffices to show that HomKb(A)(T , σ ∗T [j ]) = 0 for all j < 0.

For the remainder of the proof, we are working in the category Kb(proj A), and so we
will omit the corresponding subscripts in our Hom-spaces. Applying Hom(−, σ ∗E[j ]) to
Eq. (4.A) and using the fact that E and σ ∗E are Hom-orthogonal, we get isomorphisms

Hom(T , σ ∗E[j ]) ∼= Hom(A, σ ∗E[j ]) (4.D)

for all j , and the latter vanishes for all j �= 0 since the homology of σ ∗E is concentrated in
degree 0. Now we apply Hom(T ,−) to Eq. (4.B), which yields isomorphisms

Hom(T , A[j ]) ∼= Hom(T , σ ∗T [j ])
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for all j �= n − 2, n − 1. In particular, for all j < 0, we have Hom(T , σ ∗T [j ]) ∼=
Hom(T , A[j ]). We now show that Hom(T ,A[j ]) = 0 for j < 0. Apply Hom(−, A[j ]) to
Eq. (4.A) to get an exact sequence

Hom(E[2 − n]n, A[j ]) → Hom(T ,A[j ]) → Hom(A,A[j ]). (4.E)

By a direct calculation, we see that the first term vanishes for all j �= 1. Indeed, replacing
E[2 − n] by its projective resolution

0 → enA
y−→ en−1A

y−→ · · · y−→ e2A
y−→ e1A → 0

and applying Hom(−, A) yields the complex

0 → Ae1
y−→ Ae2

y−→ · · · y−→ Aen−1
y−→ Aen → 0

with homology concentrated in degree 1. As the last term of Eq. (4.E) vanishes for j �= 0,
we obtain Hom(T ,A[j ]) = 0 for all j < 0, as required (in fact, for all j �= 0, 1).

Consequently, Hom(T , σ ∗T [j ]) = 0 for all j < 0 as required. Thus T ⊗A � is a silting
complex. While we can see that T ⊗A � is not a tilting complex since it is not invariant
under the Nakayama functor of �, which switches x and y, we also provide a direct proof
by showing that it has nonzero self-extensions in degree 2 − n.

Applying Hom(T ,−) to Eq. (4.B), and using Hom(T , A[j ]) = 0 for j �= 0, 1, and then
Eq. (4.D), gives

Hom(T , σ ∗T [n − 2]) ∼= Hom(T , σ ∗En) ∼= Hom(A, σ ∗En) ∼= σ ∗En.

Thus

HomKb(�)(T ⊗A �, T ⊗A �[2 − n]) ∼= D Hom(T , σ ∗T [n − 2]) ∼= D(σ ∗E)n �= 0.

As a consequence of Proposition 3.8, the algebra � is not tilting-discrete. In fact, com-
bining with Corollary 3.3, we see that it is not even weakly silting-connected. We conclude
by pointing out another interesting property of the silting complex T ⊗A �, which fol-
lows from Propositions 3.1 and 2.5, and to our knowledge has not been observed in other
examples.

Corollary 4.3 For � and T as defined above, T ⊗A � is a silting complex which is not
connected to any tilting complex by iterated silting mutations.
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