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In a recent publication [Phys. Rev. Lett. 124, 178902] Öhberg and Wright claim that in a chiral
soliton model it is possible to realize a genuine time crystal which corresponds to a periodic evolution
of an inhomogeneous probability density in the lowest energy state. We show that this result is
incorrect and present a solution which possesses lower energy with the corresponding probability
density that does not reveal any motion. It implies that the authors’ conclusion that a genuine time
crystal can exist in the system they consider is not true.

I. INTRODUCTION

The idea of a quantum time crystal was proposed by
Wilczek in 2012 [1]. He considered attractively inter-
acting bosons on a ring which formed a localized wave-
packet (more precisely a bright soliton) and, in the pres-
ence of a magnetic-like flux, were supposed to move pe-
riodically along a ring even if the energy of the system
was the lowest possible. The existence of such a gen-
uine time crystal would involve spontaneous breaking of
the continuous time translation symmetry into a discrete
time translation symmetry in the system’s ground state,
in a full analogy to the spontaneous formation of ordi-
nary space crystals [2]. It turned out that the system
proposed by Wilczek was not a genuine time crystal, be-
cause in the limit of large number of bosons, the particle
density corresponding to the ground state did not reveal
any motion [3–5]. It was also proven for a quite gen-
eral class of systems with two-body interactions that a
genuine time crystal cannot exist [6–8]. Referring to sys-
tems with multi-particle interactions, Kozin and Kyri-
ienko showed that a genuine time crystal could exist [9]
but its experimental realization does not seem attain-
able [10, 11]. On the other hand, another kind of time
crystals has been demonstrated in the laboratory [12–16],
i.e., the so-called discrete or Floquet time crystals where
discrete time translation symmetry is spontaneously bro-
ken into another discrete time translation symmetry [17–
19]. Discrete time crystals and condensed matter physics
in the time domain are becoming intensively develop-
ing research area [20–66] (for comprehensive reviews see
[2, 67, 68]) but hunting for a genuine time crystal, which
can be realized in the laboratory, is still continued.

Recently Öhberg and Wright have analyzed a mean-
field description of a Bose system with a density-
dependent gauge potential supporting chiral soliton so-
lutions [69]. They asserted that such a system could cir-
cumvent the no-go theorems [6–8] and reveal a genuine
time crystal behavior. In other words, the claim was that
there existed a parameter regime where the lowest energy
solution of the mean-field equation was a strongly local-
ized soliton that evolved periodically along a ring [69].

The idea was very attractive because the considered sys-
tem could be realized in ultra-cold atomic gases. How-
ever, it turned out that the energy of the system was
not correctly calculated in Ref. [69] and the strongly lo-
calized soliton minimizes the energy when its velocity in
the laboratory frame is zero [70]. In Ref. [71] Öhberg and
Wright admitted their error, but presented a new class
of solutions by employing an ansatz that enforced the
quantization of the soliton’s velocity u and argued that
u = 0 could be disallowed. Should the later be true, this
would naturally allow for a genuine time crystal.

Here, we revisit the chiral soliton problem and show
that the ansatz employed in Ref. [71] restricts to a cer-
tain class of mean-field solutions only. There exist chiral
soliton solutions that can move with any velocity along a
ring. Importantly, a chiral soliton has the lowest energy
when it does not move and consequently no genuine time
crystal behavior is present in the system.

Before we switch to the chiral soliton problem analyzed
in Refs. [69, 71] it is worth presenting the basic arguments
why a genuine time crystal cannot exist in a simpler soli-
tonic problem, i.e., in the Wilczek model [1, 5].

II. WILCZEK MODEL

A single particle on a ring (whose position is denoted
by an angle θ) in the presence of a constant magnetic-
like flux α is described by the Hamiltonian H = (p −
α)2/2. The periodic boundary conditions on a ring, i.e.
Ψ(θ+ 2π) = Ψ(θ), imply the quantization of the particle
momentum pn = n where n is integer. If the flux α is
not equal to an integer number, then in the ground state,
Ψn(θ) = einθ/

√
2π, the probability current is not zero,

∂H

∂pn
= n− α 6= 0, (1)

where n is the closest integer to α. The corresponding
probability density |Ψn(θ)|2 is spatially uniform and can-
not be identified with a time crystal. Wilczek idea was to
consider N interacting bosons on a ring in the presence of
the constant magnetic-like flux α [1]. If the interactions
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between particles are attractive and sufficiently strong
it is known that the system forms a bright soliton in
its lowest energy state. That is, in the solitonic regime,
spontaneous breaking of the space translation symme-
try occurs and the system’s ground state collapses to a
mean-field solution where all bosons occupy a bright soli-
ton state [72]. Wilczek hoped that in the presence of the
flux α, not only one could observe spontaneous breaking
of the space translation symmetry, but also the soliton
would move periodically on a ring. However, it does not
happen and the easiest way to see it, is to analyze the
center of mass of the system which is described by the
Hamiltonian HCM = (P − Nα)2/(2N). The center of
mass momentum is quantized, Pn = n ∈ Z, but in the
ground state, the probability current related to the center
of mass motion vanishes in the N → ∞ limit regardless
of a choice of α,

∂HN

∂Pn
=

n

N
− α ≈ 0. (2)

Thus, if the N -particle system in the lowest energy state
forms a bright soliton, then the soliton does not move
when N → ∞ [5]. One might wonder whether the time
crystal could be saved if we keep N large but finite which,
due to Eq. (2), would correspond to a slowly moving
ground state soliton solution. It turns out that we do
need the infinite N limit, because otherwise the center of
mass position is subjected to quantum fluctuations and
the mean-field bright soliton description breaks down. In
the Wilczek’s model, the quantum fluctuations of the cen-
ter of mass position require infinite time to appear, only
when N → ∞ but Ng = constant (where g is a contact
interaction strength). Similarly, an ordinary space crys-
tal is stable only in the thermodynamic limit (N,V →∞,
N/V = constant) where the energy difference between
symmetry broken states and the true ground state is in-
finitesimally small. Otherwise, a space crystal would melt
due to quantum fluctuations of the center of mass posi-
tion [2].

It is worth analyzing the absence of a genuine time
crystal also in the mean-field description. The mean-
field approximation assumes that all N bosons occupy
the same single particle wave-function Ψ(θ, t) which ful-
fills the Gross-Pitaevskii equation (GPE) [73]. Assuming
dimensionless variables as in Ref. [69], the GPE reads

i∂tΨ =
[
(−i∂θ − α)2 + g|Ψ|2

]
Ψ, (3)

with a contact interaction strength g, a constant α and
〈Ψ|Ψ〉 = 1. As the system is confined in a ring geometry
we assume that Ψ fulfills periodic boundary conditions,
Ψ(θ+2π, t) = Ψ(θ, t), and thus its phase can change only
by 2πJ , where J ∈ Z is the phase winding number. The
GPE, Eq. (3), is generated by the action associated with
the energy functional,

ELAB =

∫
dθ Ψ∗

[
(−i∂θ − α)2 +

g

2
|Ψ|2

]
Ψ. (4)

The energy ELAB is the energy of the system in the labo-
ratory frame which we want to minimize if we are looking
for a genuine time crystal. It turns out that for g < −π
and arbitrary α, stable solitonic solutions of the GPE,
Eq. (3), exist and they can move with any velocity u.
These solutions are known analytically and can be ex-
pressed in terms of Jacobi elliptic functions and complete
elliptic integrals [74–77]. Note that the fact that mean-
field solitons on a ring can propagate with any velocity is
consistent with the center of mass momentum quantiza-
tion, i.e. in the limit N →∞ the momentum per particle
n/N becomes a continuous variable. Thus in contrast to
the initial Wilczek’s claim it does not matter if α is in-
teger or not, the lowest energy state represented by a
soliton solution reveals no periodic evolution.

III. CHIRAL SOLITON MODEL

Let us consider the system of N attractive bosons on a
ring in the presence of density-dependent gauge potential
[69, 71, 78]. Within the mean-field description all bosons
populate a Bose-Einstein condensate, where the conden-
sate wave-function Ψ(θ, t) fulfills periodic boundary con-
ditions, i.e., Ψ(θ + 2π, t) = Ψ(θ, t). In the dimensionless
variables the laboratory frame energy per particle of the
system reads

ELAB =

∫
dθ Ψ∗

[
(−i∂θ −A)2 +W +

g

2
|Ψ|2

]
Ψ, (5)

where A = q
2 + a|Ψ|2 is the density dependent vector

potential, W = q2

4 is a scalar potential, q is an integer
and a determines the strength of the first-order density-
dependent contribution to the vector potential. From
now on we will refer to this model as a chiral soliton
model. The chiral soliton model can be realized in ultra-
cold atomic setups where the gauge fields W , A arise
as effective potentials due to light-matter interactions
[78]. In particular, q is related to the gradient of the
laser’s phase and its quantization results from the wind-
ing number of the Laguerre-Gaussian laser beam [69].
The time evolution of the system is governed by the time-
dependent GPE

i∂tΨ =
[
(−i∂θ −A)2 − aj +W + g|Ψ|2

]
Ψ, (6)

generated by the action associated with Eq. (5), where

j = −iΨ∗(∂θ − iA)Ψ + c.c. (7)

is the nonlinear current. In order to answer the ques-
tion whether a genuine time crystal exists in this system
we are going seek for the lowest energy solution in the
frame moving with a velocity u. After that, we shall
return to the laboratory frame and evaluate its energy.
If the soliton has a minimal energy for u = 0, then no
genuine time crystal exists. It is crucial to be in the soli-
ton regime where formation of a localized wave-packet
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is energetically favorable because only non-homogeneous
probability density that evolves periodically in time can
represent a time crystal.

Switching to the frame moving with a velocity u,
Ψ′(θ, t) = eut∂θΨ(θ, t) = Ψ(θ + ut, t), the GPE reads

i∂tΨ
′ =

[
(−i∂θ −A′)

2 − aj′ + (g − 2au)|Ψ′|2
]

Ψ′, (8)

where

j′ = −iΨ′∗(∂θ − iA′)Ψ′ + c.c., (9)

A′ = u
2 + q

2 + a|Ψ′|2 and constant contributions are
accounted in the chemical potential. Note that in the
moving frame the wavefunction Ψ′ also fulfills periodic
boundary conditions, i.e., Ψ′(θ + 2π, t) = Ψ′(θ, t).

In order to find the lowest energy stationary solution
Ψ′(θ) in the moving frame we evolve the GPE, Eq. (8),
in the imaginary time [79]. A uniform solution looses
its stability for sufficiently strong interparticle attraction
g, where formation of a localized lump – a soliton – be-
comes more energetically favourable. To identify a pa-
rameter regime of a solitonic phase in the moving frame,
we perform a Bogoliubov stability analysis of the uni-
form solution with the phase winding number J ∈ Z,
Ψ′ = eiJθ/

√
2π. That is, we study the linear stability of

the stationary solution Ψ′ of the GPE in Eq. (8) under a
small perturbation δΨ′, i.e. Ψ′ → Ψ′δ = Ψ′ + δΨ′, where
up to a trivial phase evolution

δΨ′(θ, t) =
∑
k∈Z

(
ukeikθe−iωkt + v∗ke−ikθeiω

∗
kt
)
, (10)

with (uk, vk) and ωk being the eigenstates and eigenval-
ues of the Bogoliubov-de Gennes equations [72] respec-
tively. It is worth emphasizing that for each real eigen-
value ωk corresponding to the eigenvector with a posi-
tive norm Nk =

〈
uk
∣∣uk〉 − 〈vk∣∣vk〉 = +1 (the so-called

”+ family” of the Bogoliubov modes [72]), there exists
also an eigenvalue −ωk related to the eigenvector with a
negative norm Nk = −1 (”− family”). By employing the

Bogoliubov formalism one easily finds that for g < g
(J)
d ,

g
(J)
d = −π + 2a(2J − q)− 3a2/π, (11)

the uniform solution Ψ′ = eiJθ/
√

2π is dynamically un-

stable. However, for g
(J)
d < g < g

(J)
c , where

g(J)
c = −π + 2au+ 4π (Ω− J)

2
, (12)

with Ω = u
2 + q

2 + a
2π , there is a negative eigenvalue of

a “+ family” Bogoliubov mode [72], and consequently

Ψ′ = eiJθ/
√

2π describes a dynamically stable excited
state of the system. In a result, for g < gc,

gc = min
J∈Z

g(J)
c , (13)

there exists a stationary soliton solution which represents
the lowest energy state of the system in the moving frame.

FIG. 1: Critical interaction strength gc, Eq. (13), for the
chiral soliton model. Panel (a) illustrates the situation where
no density-dependent gauge potential is present, i.e. when
a = 0, which corresponds to the Wilczek model with α = q

2
.

An influence of a density-dependent gauge potential is shown
in panels (b) and (c), where a = −1 and a = +1, respectively.
Note that −π+ 2au ≤ gc ≤ 2au, which is indicated by dotted
lines. In every panel the case of even (odd) q is represented
by solid (dashed) lines.

Note that the critical values of the interaction strength g
are different than reported in Refs. [69, 71]. In Fig. 1 we
illustrate what is the influence of different values of the
parameters a and q on the critical interaction strength gc,
Eq. (13), at which a chiral soliton moving with velocity
u appears [80].

Having the lowest energy soliton solution Ψ′(θ) in the
frame moving with a velocity u, we return to the labo-
ratory frame. This yields a solution moving periodically
on a ring Ψ(θ, t) = e−ut∂θΨ′(θ) = Ψ′(θ − ut). In Fig. 2
we present the results obtained for parameters for which
Öhberg and Wright claim an existence of the time crystal,
i.e. a = π/2, g = −6 and even q, but the final conclusion
is the same for any choice of parameters a, g and q ∈ Z.
While the soliton solutions that fulfill periodic boundary
conditions exist for any u & −1.64, the laboratory frame
energy ELAB , Eq. (5), is minimal when u = 0 and conse-
quently in the lowest energy state no motion of the soli-
ton is allowed. The corresponding density |Ψ|2 and phase
ϕ = Arg(Ψ) of the lowest energy solution is depicted in
the inset of Fig. 2 (c). We stress that a nontrivial phase
ϕ of the stationary solution visible in the inset is due to a
nonzero A. Indeed, according to the continuity equation,
the probability current j = 2|Ψ|2(∂θϕ−A) for stationary
states can be nonzero but must be constant.

In Ref. [71] where the existence of a genuine time crys-
tal is claimed, the authors introduce the following ansatz,

Ψ(θ, t) = eiΘ(θ,t)Φ(θ − ut, t), (14)

with

Θ(θ, t) =
qθ

2
+
uθ

2
+ a

∫ θ

dθ′|Φ(θ′, t)|2. (15)
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FIG. 2: Results of numerical simulations for exemplary pa-
rameters a = π/2, g = −6 and even q. (a) color coded plot
of the chiral soliton density versus u. (b) critical value gc
of interaction strength versus u (dashed line shows g = −6).
(c) the energy ELAB (5) of a chiral soliton moving with a
velocity u. Circles indicate energies of solutions obtained
within the ansatz used in Ref. [71], i.e. for u = −0.5 and
u = 1.5. Clearly, the ansatz solutions do not represent the sys-
tem ground state. Density |Ψ(θ)|2 and phase ϕ(θ) = Arg(Ψ)
of the chiral soliton for u = 0 which minimizes ELAB are de-
picted in the inset.

Substitution of the ansatz to the GPE, Eq. (6), sig-
nificantly simplifies the equation but in general implies
twisted boundary conditions Φ

Φ(θ−ut+ 2π, t) = e−i[Θ(θ+2π,t)−Θ(θ,t)]Φ(θ−ut, t). (16)

However, if one insists (as it is done in Ref. [71]) that

Θ(θ + 2π, t)−Θ(θ, t) = 2πk, k ∈ Z, (17)

then Φ fulfills periodic boundary conditions (similarly as
Ψ) which enforces that the velocity u is allowed to take
quantized values only — e.g. for even q, the velocity
u = 2k − a/π. Then, the ansatz represents a certain
class of solutions only. If it was a general solution, then
velocity would be quantized even in the case of a = 0

where analytical soliton solutions propagating with any
u are known [74–77]. Importantly, the ansatz does not
describe the ground state of the system, see Fig. 2 (c).
The latter corresponds to stationary probability density
and consequently, the system does not represent a gen-
uine time crystal.

IV. DISCUSSION AND CONCLUSIONS

It turns out that it is not easy to realize a genuine time
crystal. The initial proposition by Wilczek relied on at-
tractively interacting bosons on a ring in the presence
of a magnetic-like flux (the so-called Aharonov-Bohm
ring) [1]. In the single particle case when the flux does not
match the quantized values of the momentum of a parti-
cle on a ring, the probability current is non-zero even for
the lowest energy state but the corresponding probability
density is uniform and does not change over time. In a
many-body case, the situation is quite opposite: although
there exist spatially localized solutions which could travel
non-dispersively, the ground state probability current is
zero in the thermodynamic limit [5].

Öhberg and Wright proposed an extension of the orig-
inal Wilczek model, where they replaced a constant flux
with a density-dependent gauge potential and claimed
the existence of a time crystal behavior in the ground
state of the system [69]. The idea was very attractive
because such a genuine time crystal could be realized in
ultra-cold atoms laboratories. The publication triggered
a debate in the literature whether the results are correct
[70, 71]. In this work we are taking the final step of the
discussion.

We have reexamined the chiral soliton model and
showed that in Ref. [71] a certain class of mean-field so-
lutions is considered only and one can find other states
which possess lower energy. It turns out that the ground
state of the system is represented by a stationary prob-
ability density and consequently a genuine time crystal
cannot be observed in the chiral soliton model.
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[36] K. Giergiel, A. Kuroś, and K. Sacha, Phys. Rev. B

99, 220303(R) (2019), URL https://link.aps.org/

doi/10.1103/PhysRevB.99.220303.
[37] F. M. Gambetta, F. Carollo, M. Marcuzzi, J. P.

Garrahan, and I. Lesanovsky, Phys. Rev. Lett. 122,
015701 (2019), URL https://link.aps.org/doi/10.

1103/PhysRevLett.122.015701.
[38] A. Pizzi, J. Knolle, and A. Nunnenkamp, Phys. Rev.

Lett. 123, 150601 (2019), URL https://link.aps.org/

doi/10.1103/PhysRevLett.123.150601.
[39] A. Pizzi, J. Knolle, and A. Nunnenkamp, arXiv e-prints

arXiv:1910.07539 (2019), 1910.07539.
[40] F. M. Gambetta, F. Carollo, A. Lazarides, I. Lesanovsky,

and J. P. Garrahan, Phys. Rev. E 100, 060105 (2019),
URL https://link.aps.org/doi/10.1103/PhysRevE.

100.060105.
[41] C. Fan, D. Rossini, H.-X. Zhang, J.-H. Wu, M. Artoni,

and G. C. La Rocca, arXiv e-prints arXiv:1907.03446
(2019).

[42] P. Matus and K. Sacha, Phys. Rev. A 99, 033626 (2019),
URL https://link.aps.org/doi/10.1103/PhysRevA.

99.033626.
[43] B. Zhu, J. Marino, N. Y. Yao, M. D. Lukin, and E. A.

Demler, New Journal of Physics 21, 073028 (2019), URL
https://doi.org/10.1088/1367-2630/ab2afe.
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