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The high-field regime of the spin-𝑠 XXZ antiferromagnet on the kagome lattice gives rise to macroscopically de-
generate ground states thanks to a completely flat lowest single-magnon band. The corresponding excitations
can be localized on loops in real space and have been coined “localized magnons”. Thus, the description of the
many-body ground states amounts to characterizing the allowed classical loop configurations and eliminating
the quantum mechanical linear relations between them. Here, we investigate this loop-gas description on fi-
nite kagome lattices with open boundary conditions and compare the results with exact diagonalization for the
spin-1/2 XY model on the same lattice. We find that the loop gas provides an exact account of the degenerate
ground-state manifold while a hard-hexagon description misses contributions from nested loop configurations.
The densest packing of the loops corresponds to a magnon crystal that according to the zero-temperature mag-
netization curve is a stable ground state of the spin-1/2 XY model in a window of magnetic fields of about 4%
of the saturation field just below this saturation field. We also present numerical results for the specific heat
obtained by the related methods of thermal pure quantum (TPQ) states and the finite-temperature Lanczos
method (FTLM). For a field in the stability range of the magnon crystal, one finds a low-temperature maximum
of the specific heat that corresponds to a finite-temperature phase transition into the magnon crystal at low
temperatures.

Key words: frustrated magnetism, Kagome lattice, XY model, lattice gases, phase transitions, exact
diagonalization

1. Introduction

The study of the kagome lattice in condensed matter physics goes back at least to Syôzi’s famous
investigation of the Ising model on this lattice [1]. The kagome lattice is built from corner-sharing
triangles. On the one hand, antiferromagnetic interactions along the three edges of each triangle compete
so that not all of them can be satisfied at the same time. On the other hand, the connectivity of the
corner-sharing arrangement is low so that the number of constraints arising from the coupling between
triangles is also low (see, e.g., reference [2]). This entails a huge degeneracy of the Ising antiferromagnet
on the kagome lattice [3] and thus also preempts any finite-temperature phase transition in this case [1].
Investigation of the spin-1/2 Heisenberg antiferromagnet on the kagome lattice is a comparably young
endeavor [4–7]. Even if the classical ground-state degeneracy is lifted by quantum fluctuations, the
nature of the ground state of the spin-1/2 kagome antiferromagnet has remained controversial in spite
of numerous and big efforts, see references [8–17] for some examples. One distinguishing feature of
the spin-1/2 kagome antiferromagnet is an exceptional number of low-lying singlet excitations on finite
lattices [18–21] which renders the determination of the true ground state so delicate and challenging that
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some of the founding fathers of the field [4, 5, 7] have recently suggested to suspend this endeavor [22].
The spin-1/2 kagome antiferromagnet in an applied magnetic field is also interesting since it exhibits

several plateaux in its zero-temperature magnetization curve [23–30]. For some of these plateaux, the
inclusion of the external magnetic field simplifies the situation in the sense that it allows for a rather
unambiguous identification of the plateau states as valence-bond crystal-type states, at least for the
plateaux at 1/3, 5/9, and 7/9 of the saturation magnetization [26–28, 30]. Another intriguing phenomenon
arises at the saturation field where part of the classical degeneracy survives at the quantum level, thus
violating the third law of thermodynamics. The essence is a flat single-magnon band that permits a
strict localization of the corresponding excitations in real space and thus permits the construction of
exact many-body eigenstates [31–37]. These so-called “localized-magnon states” live on closed loops
on the kagome lattice and can be shown to be not only exact eigenstates but in fact ground states in
the corresponding sectors of the magnetic quantum number 𝑆𝑧 [38, 39]. In particular, the three-fold
degenerate crystalline state of the 7/9 plateau can be written down exactly [31]. More generally, the
subset of the localized-magnon states corresponding to loops of minimum size can be mapped [33, 34]
to a model of hard hexagons that was solved exactly by Baxter [40, 41]. However, there are nested
loop configurations [33, 34] that can be argued to give rise to a further macroscopic contribution of the
ground-state degeneracy [37].

Recently, we have investigated the full loop-gas description of the localized-magnon states on finite
lattices with 𝑁 6 72 sites [42]. Following the general philosophy that periodic boundary conditions
reduce finite-size effects by eliminating explicit boundaries, we employed periodic boundary conditions
in that investigation. The resulting non-trivial topology of a torus leads to loop configurations that
wind around the boundaries. There are several issues associated with these winding loops. Firstly, they
lead to an enormous number of geometrically allowed configurations before taking linear relations into
account [42]. Secondly, on a torus a nested configuration of two loops can actually be expressed as a
linear combination of hard-hexagon and winding configurations, as is evidenced by the counting of ground
states in the two-magnon sector [37, 42]. Thirdly, one finds that the number of linearly independent loop
configurations does not describe all ground states of the spin-1/2 kagome Heisenberg antiferromagnet
on a torus [42] which raises the question whether the loop gas does yield a complete description of the
ground-state manifold of the spin-1/2 kagome Heisenberg antiferromagnet around the saturation field
in the thermodynamic limit. In particular, the latter question urges us to investigate here the loop gas
on finite systems with open boundary conditions. In order to ensure that the open boundary conditions
do not spoil the localized-magnon states, it is advisable to consider the XY rather than the Heisenberg
model in this case1. In what follows, we first explain and present the results for the kagome loop gas
with open boundary conditions. Then, we analyze the resulting thermodynamic properties and present a
comparison with “exact” diagonalization results for the spin-1/2 XY model.

2. Model and localized-magnon states

Let us start by recalling some results for the spin-𝑠 XXZ model in a magnetic field [44], given by the
Hamiltonian

𝐻 = 𝐽
∑︁
〈𝑖, 𝑗 〉

(
𝑆𝑥𝑖 𝑆

𝑥
𝑗 + 𝑆

𝑦

𝑖
𝑆
𝑦

𝑗
+ Δ 𝑆𝑧

𝑖
𝑆𝑧
𝑗

)
− ℎ

∑︁
𝑖

𝑆𝑧
𝑖

= 𝐽
∑︁
〈𝑖, 𝑗 〉

[
1
2

(
𝑆+𝑖 𝑆

−
𝑗 + 𝑆−𝑖 𝑆

+
𝑗

)
+ Δ 𝑆𝑧

𝑖
𝑆𝑧
𝑗

]
− ℎ

∑︁
𝑖

𝑆𝑧
𝑖
, (2.1)

where 〈𝑖, 𝑗〉 denotes the nearest-neighbor pairs of sites on a kagome lattice, and the ®𝑆𝑖 are spin-𝑠
operators at site 𝑖. 𝐽 > 0 is an antiferromagnetic coupling constant and Δ is the exchange anisotropy.
We note in passing that the ground-state problem corresponding to ℎ = 0 in equation (2.1) was studied,
e.g., in references [45–47], and that the case of the one third-plateau was investigated for 𝑠 = 1/2 in
reference [26].

1Here, we follow the reference [43] and refer to the Δ = 0 limit of the XXZ model as “XY model”, while the Δ = 1 case would
be the Heisenberg model.
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Figure 1. (Colour online) The three bands 𝜔𝑖 ( ®𝑘) of single-magnon energies on the kagome lattice along
the path in the Brillouin zone shown in the inset. Note that 𝜔0 ( ®𝑘) is completely independent of ®𝑘 .

A first simple observation is that the ferromagnetic state |↑ . . . ↑〉 is a trivial eigenstate of the
Hamiltonian (2.1). If we consider the subspace where a single spin is flipped relative to this ferromagnetic
state, we arrive at a single-particle problem that we call “single-magnon” problem. This single-magnon
problem can still be solved in a closed form, at least in the thermodynamic limit. Let us impose periodic
boundary conditions so that we can first transform the problem to the reciprocal space. Since a unit cell
of the kagome lattice contains three sites, the one-magnon problem for the Hamiltonian (2.1) leads to a
3 × 3 matrix in reciprocal space whose eigenvalues yield three bands of single-magnon energies [44]

𝜔0(𝑘𝑥 , 𝑘𝑦) = ℎ − 𝐽 𝑠 (2 + 4Δ) ,

𝜔±(𝑘𝑥 , 𝑘𝑦) = ℎ + 𝐽 𝑠
©«1 ± 1

√√√
1 + 4 cos

(
𝑘𝑥

2

) [
cos

(√
3 𝑘𝑦

2

)
+ cos

(
𝑘𝑥

2

)]
− 4Δª®¬ . (2.2)

Figure 1 shows these three single-magnon bands along the path in the Brillouin zone sketched in the
inset of this figure. Note that the lowest band 𝜔0( ®𝑘) turns out to be completely flat, and this will be the
cornerstone of the following discussion.

As a byproduct we can obtain the saturation field ℎsat from equation (2.2). If the lowest excitation
energy𝜔0 becomes negative, then the ferromagnetic state |↑ . . . ↑〉 is unstable. The condition𝜔0(ℎsat) = 0
yields

ℎsat = 𝐽 𝑠 (2 + 4Δ) . (2.3)

We focus on the proximity of this saturation field in what follows.
Let us return to the completely flat single-magnon branch𝜔0 of equation (2.2). Since it is independent

of ®𝑘 , one can construct linear combinations of the corresponding states that are completely localized. In
fact, these localized excitations can be constructed in real space also for finite lattices with open and not
just periodic boundary conditions. These localized single-magnon states have the form

| ℓ〉 =
∑︁
𝑥∈ℓ

(−1)𝑥 𝑆−𝑥 |↑ . . . ↑〉 , (2.4)

where ℓ is a closed loop of even length so that it is always separated by at least one empty site when it
bends back onto itself. Some examples of such loops for an open lattice with 𝑁 = 38 sites are shown in
figure 2.

Two conditions ensure that the states equation (2.4) are exact eigenstates of the Hamiltonian (2.1) [31,
48]:
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Figure 2. (Colour online) Three one-loop configuration on an 𝑁 = 38 kagome lattice. Sites and bonds
belonging to a loop ℓ are shown in blue (bold lines for the bonds). The filled and open circles correspond
to the alternating sign along the sites of the loop in equation (2.4). The loop on the left is localized in the
center and gives rise to an exact eigenstate of the spin-𝑠 XXZ model. The two loops in the middle and
at the right touch the boundary of the lattice such that they yield exact eigenstates only in the XY limit
Δ = 0.

1. The states equation (2.4) are exact eigenstates of the XY part 𝐽
2

∑
〈𝑖, 𝑗 〉

(
𝑆+
𝑖
𝑆−
𝑗
+ 𝑆−

𝑖
𝑆+
𝑗

)
since

propagation to outside the loop would have to proceed via an empty site of a triangle where the
two other sites are occupied and have alternating sign. These opposite signs give rise to an exact
cancellation, and this destructive interference ensures that the excitation remains localized on the
loop ℓ

2. The part 𝐽 Δ
∑

〈𝑖, 𝑗 〉 𝑆
𝑧
𝑖
𝑆𝑧
𝑗

is diagonal in the 𝑧-basis that we are using here. For a homogeneous
system, this term would yield just a constant and would yield no further conditions. However, for
a system with boundaries, the diagonal entries would depend on the neighborhood and thus yield
further conditions.

The first of these two conditions is satisfied for all three loop configurations sketched in figure 2. However,
only the leftmost example in figure 2 also satisfies the second condition and thus yields an eigenstate of
the spin-𝑠 XXZ model. On the other hand, the second condition is violated by the examples in the middle
and on the right of figure 2 so that they yield eigenstates only for the XY model, i.e., Δ = 0. Since here
we are particularly interested in open boundary conditions, in what follows we restrict ourselves to the
XY model, i.e., Δ = 0, in order to ensure that any allowed loop configuration yields an exact eigenstate.

3. Multi-loop configurations

Remarkably, the exact localization of the single-magnon states equation (2.4) on loops facilitates the
construction of a macroscopic number of exact multi-magnon states. Given the configurations of 𝑛ℓ loops
ℓ𝑖 , the state

| {ℓ𝑖}〉 =
𝑛ℓ∏
𝑖=1

( ∑︁
𝑥𝑖 ∈ℓ𝑖

(−1)𝑥𝑖 𝑆−𝑥𝑖

)
|↑ . . . ↑〉 (3.1)

is also an exact eigenstate with energy 𝑛ℓ 𝜔0 provided that each loop ℓ𝑖 respects the condition for a
localized single-magnon state and that different loops are separated by at least one empty site. At the
saturation field, 𝜔0(ℎsat) = 0 so that all of the states, equation (3.1), collapse to zero energy.

For a homogeneous system, i.e., periodic boundary conditions, it has been proven that the states,
equation (3.1), are not only exact eigenstates, as we have explained here, but actually ground states in
the respective subspace of 𝑆𝑧 [38, 39]. Although the situation of open boundary conditions that we
are considering here does not satisfy the conditions of the proof, we find numerically that the states,
equation (3.1), are still ground states and not just some eigenstates of the XY model on open systems in
the respective subspace of 𝑆𝑧 .

Thus, investigation of the ground-state manifold of the model equation (2.1) boils down to studying
the geometric problem of classical loop configurations {ℓ𝑖} on the kagome lattice, at least for the subset
of ground states given by equation (3.1).
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= +

+ +

Figure 3. (Colour online) A linear relation between five two-loop configurations on an 𝑁 = 38 kagome
lattice. Sites and bonds belonging to a loop ℓ are shown in blue and magenta for the first and second
loop, respectively (bold lines correspond to bonds of a loop). The filled and open circles correspond to
the alternating signs along the sites of the loops in equation (3.1).

Figure 4. (Colour online) A nested two-loop configuration on an 𝑁 = 38 kagome lattice. Loops are
designated in the same way as in figures 2 and 3.

3.1. Linear relations

The states, equation (3.1), are quantum-mechanical wave functions so that they may be subjected to
linear relations. Figure 3 illustrates the relation between two-loop configurations. We distinguish here two
different loops by different colors, but note that the assignment of first and second loop is arbitrary, i.e.,
that any permutation of the loops in equation (3.1) yields the same state. Thanks to relations such as the
one illustrated in figure 3, loops in any non-nested configurations can be contracted to “compact” loops
residing on a hexagon. In this manner, one recovers the hard-hexagon description of all configurations of
compact loops [33, 34]. The hard-hexagon states in turn are linearly independent, at least in the case of
open boundary conditions that we consider here2.

While hard-hexagon configurations are independent, they do not form a basis for the localized-magnon
subspace since there exist further nested loop configurations that cannot be expressed in terms of hard
hexagons [33, 34]. The simplest example for the kagome lattice is the nested two-loop configuration
shown in figure 4. This nesting cannot only be iterated, but each new nested loop configuration should be
added to an eventual classical loop gas description so that we may argue that these nested configurations
give rise to another macroscopic contribution to the ground-state degeneracy [37].

We are thus faced with characterizing the loop gas that corresponds to the linearly independent
states among the equation (3.1). Previously, we observed relations [42] for which we currently have no
geometric interpretation. Thus, at this point we rather go back to the wave functions equation (3.1) and
examine the linear relations between them. In the following subsection we present the results obtained
on a computer for finite open lattices.

2In the case of periodic boundary conditions, there are actually linear relations between the hard-hexagon states on the torus,
but from the point of view of counting, this deficit is compensated by the state with 𝜔− (®0) = 𝜔0, see also figure 1 [37, 42].
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3.2. Counting the loop states

𝑁hex = 4
𝑁 = 19

𝑁hex = 7
𝑁 = 30

𝑁hex = 9
𝑁 = 38

𝑁hex = 16
𝑁 = 63

𝑁hex = 19
𝑁 = 72

Figure 5. (Colour online) Kagome lattices with open boundary conditions. These include three lattices
with 𝑁hex = 𝑛 × 𝑛 hexagons (𝑛 = 2, 3, and 4) and two hexagonal-shaped lattices.

In this section we present the results for the loop gas obtained by computer enumeration on the finite
kagome lattices with open boundary conditions shown in figure 5. These include three cases consisting
of 𝑁hex = 𝑛 × 𝑛 hexagons and 𝑁 = 3 𝑛2 + 4 𝑛 − 1 sites, and two hexagonal-shaped samples containing
𝑁hex = 7 and 19 hexagons (𝑁 = 30 and 72 spins, respectively). As in previous work [42] for periodic
boundary conditions, we started with enumerating all allowed 𝑛ℓ-loop configurations {ℓ𝑖}. We then make
use of the fact that, apart from a global sign, the scalar products between the states equation (3.1) can be
computed just with the knowledge of the loop configurations {ℓ𝑖} in order to perform a Gram-Schmidt
orthogonalization of the states equation (3.1) and thus eliminate the linearly dependent wave functions.

A key goal of the present work is to compare the resulting dimensions with the ground-state degeneracy
of the XY model, equation (2.1) withΔ = 0. For this purpose, we take the example of spin 1/2 and classify
the states according to total 𝑆𝑧 and their quantum numbers under the point group of the lattices shown in
figure 5 (rotation and/or reflections). As long as the dimension does not much exceed 105, we use a library
routine to find all the eigenvalues of the spin-1/2 XY model in the corresponding sector. In order to push
this a bit further, we follow the strategy described in reference [49] to obtain a large number of low-lying
eigenvectors. We first perform a Lanczos procedure [50] with a relatively large number of iterations. The
ghosts that are generated by this procedure are projected out by re-orthogonalizing the eigenvectors. The
main challenge that we face here is that we are interested in unusually high ground-state degeneracies.
In order to ensure that these are found correctly, a significant amount of post-processing turns out to be
needed (that we perform here mainly along the lines of additional vector iteration operations) which is
the main limiting factor to how far we can push this.

Results for the lattices of figure 5 are summarized in tables 1–5. We note that some empty entries
for the spin-1/2 XY model in tables 4 and 5 were beyond our numerical capacities. Before we discuss
the ground-state degeneracies, we mention that these tables also quote a value of the gap 𝑔 between the
ground-state manifold and the first excited state in the corresponding sector of 𝑆𝑧 for the spin-1/2 XY
model. One observes that this gap can become quite small so that one may expect excited states to become
relevant for the finite-temperature properties that we discuss in section 4.2.

In the present section we focus on the ground-state properties encoded in tables 1–5. First we observe
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Table 1. Data for the system consisting of 2 × 2 = 4 hexagons (𝑁 = 19). For the spin-1/2 XY model, we
quote the gap 𝑔 to the lowest excited state above the degenerate ground-state manifold in the corresponding
sector of 𝑆𝑧 .

XY model loop gas hard hexagons
𝑆𝑧 degeneracy gap 𝑔/𝐽 𝑛ℓ # confs. # lin. indep. # confs.

17/2 4 0.14149 1 11 4 4
15/2 1 0.02550 2 1 1 1

Table 2. Data for the system consisting of 7 hexagons (𝑁 = 30).

XY model loop gas hard hexagons
𝑆𝑧 degeneracy gap 𝑔/𝐽 𝑛ℓ # confs. # lin. indep. # confs.
14 7 0.12460 1 88 7 7
13 10 0.03021 2 31 10 9
12 2 0.02166 3 2 2 2

Table 3. Data for the system consisting of 3 × 3 = 9 hexagons (𝑁 = 38).

XY model loop gas hard hexagons
𝑆𝑧 degeneracy gap 𝑔/𝐽 𝑛ℓ # confs. # lin. indep. # confs.
18 9 0.06853 1 276 9 9
17 21 0.01743 2 198 21 20
16 11 0.01033 3 32 11 11
15 1 0.02243 4 1 1 1

Table 4. Data for the system consisting of 4 × 4 = 16 hexagons (𝑁 = 63).

XY model loop gas hard hexagons
𝑆𝑧 degeneracy gap 𝑔/𝐽 𝑛ℓ # confs. # lin. indep. # confs.

61/2 16 0.04087 1 18314 16 16
59/2 91 0.01561 2 27966 91 87
57/2 207 0.00350 3 15402 207 196
55/2 178 0.00364 4 3583 178 176
53/2 46 0.00390 5 212 46 46
51/2 6 2 2 2

Table 5. Data for the system consisting of 19 hexagons (𝑁 = 72).

XY model loop gas hard hexagons
𝑆𝑧 degeneracy gap 𝑔/𝐽 𝑛ℓ # confs. # lin. indep. # confs.
35 19 0.05575 1 141203 19 19
34 136 0.02159 2 213939 136 129
33 430 0.00459 3 127231 430 390
32 576 0.00249 4 36986 576 532
31 5 4518 303 297
30 6 210 55 55
29 7 2 2 2

that a maximum of 𝑛ℓ 6 (𝑁hex + 2)/3 loops can be packed on the lattices of figure 5. The maximum
packing corresponds to a “magnon crystal” where the localized excitations reside on hexagons that are
separated from each other by empty sites. For the open systems that we consider here, we can firstly
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Figure 6. (Colour online) Total entropy 𝑆/𝑁hex of ground states per hexagon. We show both the results
for open boundary conditions (OBC) corresponding to tables 1–5 as well as previous results for periodic
boundary conditions (PBC) [42]. The horizontal line denotes the known thermodynamic limit for hard
hexagons [41].

pack sightly more than 𝑁hex/3 loops into the system by pushing the loops to the boundaries. Secondly,
the degeneracy in this maximum sector of 𝑛ℓ is not 3 as for periodic boundary conditions [42], but
rather reduced to 1 or 2, depending on whether this densest packing is symmetric under the point-group
symmetry or whether there are two symmetry-related closest packings.

Returning to smaller numbers of loops, we observe that the maximum number of geometrically
allowed loop configurations before considering the linear relations is in the sectors with 𝑛ℓ = 1 or 2 for
the present cases. Given that these numbers are large, these enumerations constitute a relevant limiting
factor for our enumeration procedure, but they are necessary as a basis of the enumeration in the sectors
with a higher number of loops.

If we now consider the linearly independent loop states, the most important observation probably is
that their number is exactly equal to the number of ground states of the spin-1/2 XY model in all cases
where we are able to make such a comparison. This suggests that the additional states that appeared
for periodic boundary conditions [42] disappear when one goes to open ones so that for open boundary
conditions the states, equation (3.1), do indeed span the ground-state manifold of the model equation (2.1)
in its high-field regime. In view of this equality, we focus on a comparison of the linearly independent
loop states and hard hexagons.

The smallest nested loop configuration is the one shown in figure 4. It occupies 30 sites (plus possibly
surrounding empty sites that are required to separate it from neighboring loops). Since even the smallest
nested configuration does not fit on the 𝑁 = 19 lattice of figure 5, all degeneracies are equal in this case, as
one observes in table 1. The configuration of figure 4 fits exactly once on the 𝑁 = 30 and 𝑁 = 38 lattices
of figure 5 such that one obtains exactly one further linearly independent loop state for these two lattices
in the sector with 𝑛ℓ = 2, see tables 2 and 3. There are more non-hard-hexagon states for the 𝑁 = 63
and 72 lattices of figure 5 although the differences that we observe in tables 4 and 5 remain relatively
small. Indeed, bigger lattices would be needed in order to allow more multi-magnon configurations built
on nested loops when we impose open boundary conditions, as also the following consideration shows.
Compact loops occupy 6 sites around one hexagon while the smallest loop that encloses such a compact
loop requires 18 sites, compare again figure 4, and to construct a third nested loop, one needs to put it
on 30 boundary sites of the 𝑁 = 72 lattice in figure 5. The preceding considerations also explain why
the difference between linearly independent loop states and hard-hexagon configurations is maximal for
intermediate loop densities, since these leave more space for bigger loops.

The results of tables 1–5 are summarized in figure 6 that shows the total entropy corresponding to
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the linearly independent loop configurations and hard hexagons. We also include previous results for
periodic boundary conditions [42] for comparison. Here, we choose a normalization per hexagon which
in the case of open boundary conditions is more appropriate than normalizing per site while for periodic
boundary conditions these normalizations are equivalent since in that case 𝑁hex = 𝑁/3. The horizontal
line in figure 6 shows the known result for the thermodynamic limit of hard hexagons [41]

lim
𝑁hex→∞

𝑆hard hexagons

𝑁hex
≈ 0.333242721976 . (3.2)

Comparison with the results for finite 𝑁hex shows that for hard hexagons open boundary conditions clearly
gives rise to bigger finite-size effects than periodic ones. For the loop gas, boundary conditions seem to
matter less, but conclusions about the thermodynamic limit are evidently difficult to draw based on the
data for finite 𝑁hex. We observe again that for open boundary conditions and the system sizes that we have
studied here, the entropy of the loop gas is only slightly higher than that of hard hexagons. However, we
recall that when including nested loop configurations [33, 34] into the many-particle physics, we expect
another macroscopic contribution to the number of ground-state configurations [37]. Consequently, the
results for 𝑆/𝑁hex of the loop gas and hard hexagons should separate more clearly for systems that are
bigger than those discussed here, so that the entropy for the loop gas converges to a value that is bigger
than equation (3.2) in the thermodynamic limit.

We comment furthermore that 𝑆/𝑁hex corresponds to the ground-state entropy of the spin-1/2 XY
model exactly at the saturation field equation (2.3) since 𝑛ℓ 𝜔0(ℎsat) = 0 independently of the number of
loops 𝑛ℓ . Since equation (3.2) is a lower bound for the thermodynamic limit of this entropy, we conclude
that the thermodynamic limit of the entropy lim𝑁hex→∞ 𝑆/𝑁hex is non-zero exactly at the saturation field
so that the third law of thermodynamics is violated in this quantum system at ℎ = ℎsat.

Although open boundary conditions do enhance finite-size effects and thus complicate the analysis,
there is nevertheless an important message to be retained from the present analysis, namely that the loop
gas seems to provide an exact match of the ground-state degeneracy of the spin-1/2 XY model. Since
boundary conditions should become irrelevant in the thermodynamic limit, this implies in turn that the
loop gas should also amount to an exact description of the ground-state manifold of the spin-𝑠 XXZ
model with periodic boundary conditions once the thermodynamic limit is taken.

3.3. Contribution of localized states to the thermodynamics

With the degeneracies of the ground states given in tables 1–5, it is straightforward to compute the
contribution of the hard hexagons, or more generally the loop gas, to thermodynamic properties. The
corresponding partition function is given by

𝑍loc =

𝑛max∑︁
𝑛ℓ=0

deg(𝑛ℓ) e−𝛽 𝑛ℓ 𝜔0 =

𝑛max∑︁
𝑛ℓ=0

deg(𝑛ℓ) e−𝑛ℓ 𝛽 (ℎ−ℎsat) , (3.3)

where 𝛽 = 1/𝑇 is the inverse temperature (we set 𝑘B = 1). deg(𝑛ℓ) is the number of hard-hexagon or
linearly independent loop configurations, respectively. We comment that the data in tables 1–5 needs to be
complemented by the empty system corresponding to the ferromagnetically polarized state, i.e., deg(0) =
1. The energy of an 𝑛ℓ-particle state 𝑛ℓ 𝜔0 is rewritten by substituting the saturation field according to
equation (2.3) into equation (2.2). The result equation (3.3) makes it obvious that all thermodynamic
quantities in the hard-hexagon and the loop-gas description depend only on the combination 𝛽 (ℎ−ℎsat) =
(ℎ − ℎsat)/𝑇 and not on temperature 𝑇 and magnetic field ℎ separately. The physical reason is that all
configurations in a given sector of 𝑛ℓ have the same energy so that the only characteristic energy scales
are 𝑇 and ℎ − ℎsat, and the partition function must thus depend on the ratio of these two quantities.

Figure 7 shows the result for the specific heat per site 𝐶/𝑁 in both the hard-hexagon (HH) and
loop-gas (LG) picture. For the later comparison with numerical data for the spin-1/2 XY model we take
the magnetic field to be ℎ = 0.99 𝐽, but as we have just pointed out, one could rescale this to any value
ℎ < ℎsat by rescaling the temperature axis accordingly. In the case of hard hexagons, the result for the
thermodynamic limit 𝑁 = ∞ is known exactly [33, 34, 40], and we include this in figure 7. This latter
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Figure 7. (Colour online) Specific heat per site 𝐶/𝑁 at a magnetic field ℎ = 0.99 𝐽 as obtained from hard
hexagons (HH) and the loop gas (LG). For 𝑁 = 19, both descriptions yield identical results owing to
identical degeneracies, see table 1. For hard hexagons, we include the known result for the thermodynamic
limit 𝑁 = ∞ [33, 34, 40].

curve diverges at the temperature 𝑇𝑐/𝐽 ≈ 0.004156 which corresponds to the phase transition from
the magnon crystal at low temperatures to a paramagnetic disordered phase at high temperatures in the
hard-hexagon description. The curves for finite 𝑁 exhibit a maximum at a temperature close to the phase
transition in the infinite system.

A noteworthy observation in figure 7 is that the results for hard hexagons and the loop gas are very
close for the lattices with open boundary conditions that we consider here; for the 𝑁 = 19, system they are
even identical. The reason for this is that the degeneracies are either close or even identical, see tables 1–5
and figure 6. In particular, we do not observe a significant reduction of temperature at the maximum of
𝐶 by additional loop-gas states that we have observed for periodic boundary conditions [42]. Indeed, the
system sizes that we are able to access here with open boundary conditions probably remain too small
to accommodate a thermodynamically relevant number of loop configurations beyond hard hexagons, as
we have already explained in the discussion of figure 6, i.e., the open boundary conditions enhance once
again the finite-size effects and one would have to go to bigger systems in order to see more clearly the
difference between hard hexagons and the loop gas.

4. Spin-1/2 XY model

In this final chapter, we compare the contribution of the localized-magnon states to the low-
temperature thermodynamics in the vicinity of the saturation field with numerical data for the full
spin-1/2 XY model.

Full exact diagonalization is only possible for the smallest lattice of figure 5, namely the 𝑁 = 19 one.
Hence, we resort to other methods to compute the thermodynamic properties for bigger lattices. The key
idea is to perform a Monte-Carlo-like sampling of the Hilbert space that we briefly sketch here using
the language of thermal pure quantum (TPQ) states [51, 52]. One starts at infinite temperature where the
expectation value of an operator O is given by its trace, that in turn can be approximated by the random
trace average

Tr(O) = 𝑑 〈𝑟 | O | 𝑟〉 , (4.1)

where | 𝑟〉 is a random vector with normal-distributed components, 𝑑 is the dimension of the Hilbert
space, and · · · denotes averaging over random realizations of | 𝑟〉. Thermal expectation values are then
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Figure 8. (Colour online) Zero-temperature magnetization curve of the spin-1/2 XY model. The magne-
tization 𝑀 is normalized to its saturation value 𝑀sat. The inset presents a closer view of the behavior
close to saturation.

obtained by an imaginary time evolution

〈O〉 = 〈𝑟 | e−𝛽 𝐻/2 O e−𝛽 𝐻/2 | 𝑟〉
〈𝑟 | e−𝛽𝐻 | 𝑟〉

, (4.2)

where, as in equation (3.3), 𝛽 = 1/𝑇 is the inverse temperature and we have set 𝑘B = 1. The average in
equation (4.1) is approximated by a finite and small number of 𝑅 different random realizations of | 𝑟〉
in each symmetry subspace. As shown in references [51–54], the statistical error caused by the random
sampling of the vectors | 𝑟〉 is related to the density of states of the Hamiltonian 𝐻 and can become small
when the dimension 𝑑 of the subspace is large and thus exponentially small in the system size 𝑁 .

Certain efficient evaluations of equation (4.1) make use of the Lanczos algorithm [50]. A first
implementation that we have employed [55] used the above language of TPQ and a Krylov approximation
to the imaginary-time evolution [56]. For details of the parallelization of this implementation we refer
to [57].

A different implementation of the above procedure is known under the name of finite-temperature
Lanczos method (FTLM) [58–67]. At the level of the method and with the details that we have provided
here, TPQ and FTLM are indistinguishable. However, the second implementation is quite different from
the fist one and it is based on J. Schulenburg’s spinpack code [68, 69]. We continue to refer to the first
implementation by “TPQ” and to the second one by “FTLM”.

4.1. Zero-temperature magnetization curve

As a first byproduct, we obtain the ground-state energies and from these it is straightforward to
reconstruct the zero-temperature magnetization curve. Since it provides useful information about the
field range where localized magnons are low-energy excitations, we start by presenting numerical results
for the zero-temperature magnetization curve in figure 8 where we normalize the saturation value of the
magnetization to 1.

We note that the saturation field in figure 8 is indeed ℎsat/𝐽 = 1, as expected according to equation (2.3).
The transition to saturation occurs via a jump in the magnetization curve. Usually, such jumps are
associated with a concave piece in the energy 𝐸 as a function of 𝑆𝑧 curve 𝐸 (𝑆𝑧). The present case is
exceptional in so far that it is associated not only with a linear piece in 𝐸 (𝑆𝑧), but that in addition, the
ground states in each subspace of 𝑆𝑧 are also degenerate, as we have discussed in chapters 2 and 3, so that
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Figure 9. (Colour online) Specific heat per site 𝐶/𝑁 of the spin-1/2 XY model at a magnetic field
ℎ = 0.99 𝐽. Note the logarithmic temperature axis. Here, we compare several numerical methods for
different system sizes: for 𝑁 = 19, we have full exact diagonalization (ED), for 𝑁 = 30 full diagonalization
in the sectors with 𝑆𝑧 > 9 supplemented by the low-energy part of the spectrum in the sectors with
6 6 𝑆𝑧 6 8, and for 𝑁 = 38 we used full exact diagonalization results for 𝑆𝑧 > 14 supplemented by the
low-energy part of the spectrum for 𝑆𝑧 = 13. These are compared with FTLM for 𝑁 = 38 and 63, and
TPQ for 𝑁 = 38, respectively.

the ground-state manifold becomes macroscopically degenerate and the third law of thermodynamics is
violated by this quantum system at ℎ = ℎsat.

Just below this jump in the magnetization curve, we observe a plateau in figure 8. In the thermodynamic
limit, the plateau should have the value 𝑀/𝑀sat = 7/9, as one does indeed find on suitable lattices with
periodic boundary conditions, see references [27, 28, 31, 42] for the Heisenberg model. The deviations
from 𝑀/𝑀sat = 7/9 = 0.777 . . . that we observe in figure 8 are finite-size effects that arise due to the
open boundary conditions that we employ here. The wave function of this plateau is the aforementioned
magnon crystal that is stable in the range of magnetic fields where a plateau is observed. By inspection
of figure 8 we conclude that the plateau width is approximately 4% of the saturation field ℎsat, i.e.,
the relative stability range of the magnon crystal in the spin-1/2 XY model is comparable to that in the
spin-1/2 Heisenberg model [27, 28, 31, 42].

Apart from the vicinity of the saturation field, no other distinct features are visible in figure 8. This
applies in particular to a possible 𝑀/𝑀sat = 1/3 plateau that was suggested to persist in the XY limit that
we are considering here [26]. However, if this 1/3 plateau exists in the XY limit, it would be expected to
be narrow [26] so that the comparably large finite-size effects caused by the open boundary conditions
can easily obscure it.

4.2. Finite-temperature properties of the magnon crystal

Since we concluded from figure 8 that the magnon crystal state is stable at 𝑇 = 0 for 0.96 𝐽 . ℎ 6 𝐽,
we select ℎ = 0.99 𝐽 for a discussion of thermodynamic properties.

Figure 9 presents numerical results for the specific heat of the spin-1/2 XY model. In this figure, we
compare in particular the different methods discussed at the beginning of this chapter. 𝑁 = 19 is the
only system where we can perform full ED and thus obtain numerically “exact” results over the whole
temperature range. For 𝑁 = 30 and a field close to the saturation field, we can still perform ED for
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Figure 10. (Colour online) Low-temperature part of the specific heat per site 𝐶/𝑁 at a magnetic field
ℎ = 0.99 𝐽. Note the logarithmic temperature axis. Here, we compare results for the loop gas (LG) with
TPQ for 𝑁 = 38 and FTLM for 𝑁 = 63, respectively.

the low-energy part of the spectrum since in this parameter regime only the sectors with high 𝑆𝑧 are
relevant and the corresponding dimensions are relatively small. For the 𝑁 = 30 case shown in figure 9,
we have completely diagonalized the sectors with 𝑆𝑧 > 9 and further obtained the low-energy part of
the spectrum in the sectors with 6 6 𝑆𝑧 6 8 using the method outlined at the beginning of section 3.2.
This can be pushed till 𝑁 = 38 where we performed a complete diagonalization of the sectors 𝑆𝑧 > 14
and determined the low-energy part of the spectrum for 𝑆𝑧 = 13 which includes two sectors below the
magnon crystal, see table 3. For 𝑁 = 38, we further performed a TPQ computation that takes all sectors
of 𝑆𝑧 into account and a FTLM computation that again focuses on sectors with higher 𝑆𝑧 > 11. The latter
two methods are now subjected to statistical errors that we show for TPQ by an error tube in figure 9.
Comparison of all three data sets for 𝑁 = 38 in the temperature regime 𝑇 . 10−2 𝐽 shows that they agree
within statistical errors so that we can trust each of them. Finally, for 𝑁 = 63, figure 9 includes just an
FTLM data set. This large system size is again possible because we restrict ourselves to high sectors of
𝑆𝑧 > 47/2, but this implies that we only have access to the low-temperature regime.

Turning now to the physics behind figure 9, first, one observes a classical fluctuation peak at a
temperature 𝑇 of the order of 𝐽. The fact that the 𝑁 = 19 ED and 𝑁 = 38 TPQ curves are close at this
elevated temperature shows that correlations are still short-range so that finite-size effects are small. The
most interesting feature in the present context is the second peak in the temperature regime 𝑇 < 10−2 𝐽
of figure 9. Here, finite-size effects are more important. We now focus on this low-temperature peak in
the specific heat and explain its relation to the localized-magnon excitations that we discussed earlier.

Figure 10 presents a comparison of 𝑁 = 38 and 63 data for the loop gas from figure 7 and for
TPQ, respectively FTLM from figure 9. First, we observe that for 𝑁 = 38, the loop gas matches TPQ
for the spin-1/2 XY model exactly up to the low-temperature maximum of the specific heat 𝐶 around
𝑇max ≈ 0.3 · 10−3 𝐽. This underlines again that the loop gas provides an exact description of the ground
states of the spin-1/2 XY model in the regime of high magnetic fields. However, TPQ diverges from the
loop gas at temperatures already immediately above 𝑇max. This can be traced to excitations that are not
described by the loop gas appearing already at energies of the order of 10−2 𝐽, compare the values of
the gap in table 3. Likewise, the loop gas yields at least a qualitative description of the 𝑁 = 63 FTLM
low-temperature peak in 𝐶. In this case, deviations are already visible around and below the temperature
𝑇max ≈ 0.3 · 10−3 𝐽 of the maximum of 𝐶. We note that for 𝑁 = 63, the gap to excitations of the spin-1/2
XY model that are not captured by the loop gas has decreased to the order of 4 · 10−3 𝐽, see table 4,
thus giving rise to further fluctuations already at quite low temperatures. Nevertheless, we may conclude
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that the low-temperature maximum of figure 9 corresponds to the localized-magnon states. In the case
of the subclass of hard-hexagon states, this low-temperature maximum is known to correspond to a
finite-temperature phase transition into the magnon crystal, see figure 7. We expect the same to be true
both for the loop gas and the spin-1/2 XY model even if the system sizes 𝑁 that would be required to
exhibit the divergence in the specific heat 𝐶 are well beyond those accessible to us in the latter cases.

5. Conclusion

In this contribution, we have first reviewed the localized-magnon states that appear as ground states in
the high-field regime of the spin-𝑠 XXZ model on the kagome lattice [31–37]. A subset of these states is
well understood in terms of hard hexagons [33, 34]. However, it is also known that nested objects [33, 34]
yield another macroscopic contribution to the ground-state manifold [37]. Consequently, one needs to
consider a more general loop-gas description. Since a previous investigation of finite kagome lattices [42]
demonstrated the existence of further ground states of the spin-1/2 Heisenberg model on lattices with
periodic boundary conditions that are not captured even by the loop gas, we decided to investigate open
boundary conditions in the present work in order to assess the completeness of the loop-gas description.

Indeed, here we found that the loop gas provides an exact match of the ground states of the spin-
1/2 antiferromagnetic XY model on the kagome lattice in the corresponding sectors of 𝑆𝑧 when we
impose open boundary conditions. Therefore, the loop gas should yield an exact description of the
thermodynamic limit of the low-temperature behavior of the spin-1/2 antiferromagnet at high magnetic
fields independently of the boundary conditions. On the other hand, we also observed that open boundary
conditions enhance finite-size effects, as might have been expected. One manifestation is that the lattices
with 𝑁 6 72 that were accessible to the present study turn out to be too small to accommodate a
significant number of composite loop objects that cannot be mapped to hard hexagons such that one
would have to go to bigger 𝑁 to clearly exhibit the macroscopic nature of the difference between loop-gas
and hard-hexagon states on lattices with open boundary conditions.

Nevertheless, given that the loop gas should provide an accurate description of the ground-state
manifold of the high-field regime of the spin-𝑠 XXZ model on the kagome lattice, it would certainly be
desirable to study this loop gas on bigger systems than we were able to do so far, or maybe even carry out
the thermodynamic limit, as has been done for the subset of hard hexagons [40, 41], and thus also exhibit
the crystallization transition in the loop gas. In this context, it would be helpful if the Gram-Schmidt
orthogonalization that we have used to implement the linear relations among the states corresponding
to multi-loop configurations could be avoided and a purely geometric description of the relevant loop
configurations be provided instead.

A final chapter was devoted to the contribution of the localized-magnon states to low-temperature
thermodynamic properties and a comparison with numerical results for the specific heat of the spin-1/2
XY model computed by exact-diagonalization variants such as thermal pure quantum (TPQ) states and
the finite-temperature Lanczos method (FTLM). We showed that the macroscopic number of localized-
magnon states gives rise to a low-temperature peak in the specific heat that in the thermodynamic
limit develops into a finite-temperature phase transition. The low-temperature phase that arises in a finite
window just below the saturation field corresponds to a magnon crystal that is formed at low temperatures
by the densest packing of the corresponding loop configurations.

In the present work, we have focused on the kagome lattice, but there are other lattices where a
similar analysis of a loop-gas description of localized-magnons states could be performed, specifically
the checkerboard lattice [37, 48, 70] and the star lattice [69] in two dimensions as well as the pyrochlore
lattice [70] in three dimensions.
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Loop-gas description of the localized-magnon states on the kagome lattice with open boundary conditions

Опис локалiзованих магнонних станiв на ґратцi кагоме з
вiдкритими граничними умовами за допомогою петлевого
газу

А. Гонекер 1, Й. Рiхтер 2,3, Ю. Шнак 4, А. Вiтек 5

1 Лабораторiя теоретичної фiзики та моделювання, CNRS UMR 8089, Унiверситет Сержi Париж, 95302
Сержi-Понтуаз, Францiя

2 Iнститут фiзики, Унiверситет Магдебурга, поштова скринька 4120, Магдебург 39016, Нiмеччина
3 Iнститут Макса Планка фiзики складних систем, Ньотнiтцерштрасе 38, D–01187 Дрезден, Нiмеччина
4 Унiверситет Бiлєфельда, факультет фiзики, поштова скринька 100131, D–33501 Бiлєфельд, Нiмеччина
5 Центр обчислювальної квантової фiзики, Флатиронський iнститут, Нью-Йорк 10010, США

Режим високих полiв у спiн-𝑠 XXZ антиферомагнетику на ґратцi кагоме призводить до макроскопiчно ви-
роджених основних станiв завдяки повнiстю плоскiй найнижчiй одномагноннiй зонi. Вiдповiднi збудже-
ння можуть бути локалiзованi на петлях у реальному просторi i отримали назву “локалiзованi магнони”.
Опис багаточастинкових основних станiв зводиться до опису конфiгурацiй дозволених класичних петель
та виключення квантово-механiчних лiнiйних спiввiдношень мiж ними. Тут ми дослiджуємо таке зобра-
ження петлевого газу на скiнченних гратках кагоме з вiдкритими граничними умовами i порiвнюємо ре-
зультати точної дiагоналiзацiї з спiн-1/2 XY моделлю на такiй самiй ґратцi. Ми знайшли, що петлевий газ
забезпечує точне врахування многовиду вироджених станiв, в той час як опис жорсткими гексагонами
пропускає вклади конфiгурацiй вкладених петель. Найщiльнiше пакування петель вiдповiдає магнонно-
му кристалу, що згiдно з кривою намагнiченостi при нульовiй температурi, є стабiльним основним станом
спiн-1/2 XY моделi у дiапазонi магнiтних полiв бiля 4% нижче поля насичення. Ми також представляємо
числовi результати для теплоємностi, отриманi за допомогою пов’заних методiв термiчних чистих кванто-
вих станiв та скiнченно-температурногометоду Ланцоша. Для поля в областi стабiльностi магнонного кри-
сталу, знайдено низькотемпературний максимум теплоємностi, що вiдповiдає скiнченно-температурному
фазовому переходу до магнонного кристалу при низьких температурах.

Ключовi слова: фрустрований магнетизм, гратка кагоме, XY модель, гратковi гази, фазовi переходи,
точна дiагоналiзацiя
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