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TDCS effects on pointing task 
learning in young and old adults
E. Kaminski1,2*, M. Engelhardt3,4, M. Hoff2, C. Steele2,5, A.Villringer2,6,7 & P. Ragert1,2

Skill increase in motor performance can be defined as explicitly measuring task success but also via 
more implicit measures of movement kinematics. Even though these measures are often related, 
there is evidence that they represent distinct concepts of learning. In the present study, the effect 
of multiple tDCS-sessions on both explicit and implicit measures of learning are investigated in a 
pointing task in 30 young adults (YA) between 27.07 ± 3.8 years and 30 old adults (OA) between 
67.97 years ± 5.3 years. We hypothesized, that OA would show slower explicit skill learning indicated 
by higher movement times/lower accuracy and slower implicit learning indicated by higher spatial 
variability but profit more from anodal tDCS compared with YA. We found age-related differences in 
movement time but not in accuracy or spatial variability. TDCS did not facilitate learning neither in 
explicit nor implicit parameters. However, contrary to our hypotheses, we found tDCS-associated 
higher accuracy only in YA but not in spatial variability. Taken together, our data shows limited 
overlapping of tDCS effects in explicit and implicit skill parameters. Furthermore, it supports the 
assumption that tDCS is capable of producing a performance-enhancing brain state at least for explicit 
skill acquisition.

Motor skill learning is an essential part of our everyday life, ranging from experts performance in  sports1 or 
 music2 to recovery of motor functions after pathological brain  lesions3. Skilled motor performance can be meas-
ured as task success, an often explicit categorical measure, but also via more implicit continuous measures of 
movement  kinematics4. Task success in motor learning studies is mainly characterized by performance param-
eters such as speed, accuracy or  efficiency5–8 measured by accuracy rates, reaction times or the trade-off between 
both  parameters7–10, which are usually reported as a single value per trial. Measures of movement kinemat-
ics allow the characterization of a variety of parameters such as position, velocity, acceleration or movement 
 direction11 but also temporal and spatial characteristics of motor output  variability12–16. Variability in motor 
movement performance stems from a variety of different adaptational processes, including integration of sen-
sory  feedback17. In line with the approach that unstable sensory conditions need to be integrated into internal 
 models17,18, motor variability can be considered as noise in the neuro-motor system causing variability in motor 
output  performance16,19. Learning a new motor movement includes variability reduction in motor  performance10 
but also for example implicit learning of spatial  accuracy20 or learning the best task-specific  strategy21. Even 
though parameters of task success such as accuracy and movement kinematics are often related, there is evidence 
that they represent distinct concepts of learning with regard to its  explicitness4,22. Explicit and implicit compo-
nents of learning are likely to be maintained in separate but interacting  systems20,23,24. Therefore, investigating 
whether learning a novel motor skill task is associated with both increases in explicit task success and more 
implicit decreases in motor output variability might help understanding the relationship between both explicit 
and implicit learning components.

Aging is one major factor modulating motor skill  learning25–30. Presumably, one reason is that aging pro-
foundly impacts the sensorimotor  network31–34, resulting in a progressive decline in motor  functions32,35–38. 
Learning a novel motor task in older age involves a much more distributed neural network compared with 
younger adults (YA)39,40. This phenomenon, however, cannot merely be attributed to increased neural noise but 
presumably serves as a necessary compensatory mechanism for successful task performance in older  age39–41. 
Even though there is evidence showing intact explicit skill learning in older adults (OA)25,27, rates of motor learn-
ing are usually  smaller26,28. Therefore, extended practice periods and different strategies are necessary to obtain 
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similar explicit skill levels as younger  cohorts27,29,42. Furthermore, there is some evidence suggesting that OA 
perform motor tasks with higher motor  variability38,43,44. Age-related increase in variability may be caused by 
age-related changes in motor unit morphology and  properties38 but may furthermore also represent a decreased 
ability to flexibly adapt to varying task  constraints43. In this regard, adding kinematic measures in motor learning 
investigations in OA may help unraveling more implicit mechanisms of motor control in the learning process.

In recent years, non-invasive brain stimulation techniques such as transcranial direct current stimulation 
(tDCS) became popular with the potential to improve motor performance and learning in a variety of different 
motor tasks (for review  see45). Mechanistically, tDCS is capable of enhancing motor  excitability46 at postsynaptic 
cortical  neurons47–49. Since long-lasting synaptic  potentiation50 is considered a mechanism of plasticity, tDCS 
combined with motor practice seems to be capable of systematically augmenting brain function. The primary 
motor cortex (M1) is one of the key regions involved in the motor learning  process7 showing reduced activity 
with extended  practice51, which is why anodal tDCS over M1 has been predominantly used to facilitate early 
skill  acquisition52,53. The facilitatory effect of M1 tDCS was shown in sequential motor  tasks52,54 and continuous 
cursor navigation tasks, for example during continuous force  transduction55, joint flexion and  extention56,57 or 
reaching  movements58 but mainly for explicit learning parameters such as accuracy or movement time. Interest-
ingly, it seems that enhancing cortical excitability via M1 tDCS does not influence the motor act per se but only 
those synaptic connections, previously selected by training, indicating specificity in learning with regards to the 
sequence or the  movement59. However, since there is some evidence suggesting that tDCS effects also transfer 
to unlearned aspects of motor  tasks60, one can assume that the amount of transfer depends on the underlying 
function of the stimulated brain structure and therefore on the motor task that is performed. Furthermore, M1 
plays a major role in consolidating a learned motor movement. In fact, skill acquisition over multiple days is 
mainly enhanced via an effect of tDCS on  consolidation9,54,61, indicated by major increases in offline gain scores. 
Interestingly, over multiple tDCS sessions, offline gain enhancement accumulates, leading to observable effects on 
long-term retention up to months after the experimental  session9,54,61. In OA, tDCS over M1 has also been used 
to improve motor learning  rates62–64 and as one study indicates, tDCS may even produce greater improvement 
than in  YA65. Authors mainly attribute this effect to a larger room for improvement, which is also supported by 
a positive association between age and skill  improvement64. Since M1 stimulation is also capable of facilitating 
motor memory consolidation in  OA66, one may speculate that multiple tDCS sessions in OA have the potential 
to produce similar effects to those seen in  YA9.

In the present study, we aimed to investigate the effects of multiple tDCS-sessions on an arc pointing task 
(APT) in YA and OA. APT can be considered a complex motor  skill4 that requires highly precise pointing move-
ments which allow the analysis of specific kinematics on a single movement basis. Furthermore, since APT 
learning is associated with increased activation in  M167, it provides a suitable target for modification with tDCS. 
Anodal tDCS was applied over M1 during APT training on 3 consecutive days to investigate tDCS-induced 
improvements in both explicit and implicit measures of motor  performance53. We hypothesized that (i) OA would 
perform APT with lower accuracy and higher movement times and also show smaller learning  rates25,68. Fur-
thermore, we also expect them to show higher spatial variability compared to YA, indicating also lower implicit 
learning. Since lower performance values at baseline provides greater room for improvement, we hypothesized 
that (ii) OA would show greater gain than YA in both explicit and implicit measures of learning as a result of 
tDCS. Furthermore, we hypothesized that (iii) multiple tDCS-sessions will mainly enhance offline  gain9,54,61 in 
a movement-specific way, suggesting that only learning in trained but not transfer movements are facilitated.

Results
Demographics. Age groups did not differ regarding demographic variables besides age (see Table  1 for 
details). All participants tolerated the stimulation well and none reported any unexpected side effects from tDCS 
stimulation. Across both age groups, a chi-squared test revealed no difference between members of the a-tDCS 
and s-tDCS group in the ability to judge their group belonging (χ2(1) = 0.29, p = 0.59), indicating that the blind-
ing of conditions was effective. Additionally, differences between pre and post experimental ratings of attention, 
fatigue and discomfort did not differ between age groups nor between stimulation groups.

Aging effects on APT learning. Movement time (3 × 20 × 2 Repeated Measures-Analysis of variance 
(RM-ANOVA)) decrease in training trials (TT) over time was not different across age groups (interaction (IA) 
trial*day*group, F (5.93, 160.1) = 1.38, p = 0.23, ηp

2 = 0.05). Movement time also decreased within each training 
day (main effect (ME) trial, F (4, 160.1) = 1.35, p = 0.26, ηp

2 = 0.05) but interestingly not across training days (ME 
day, F (1.64, 160.1 = 0.003, p = 0.99, ηp

2 = 0). Generally, OA exhibited higher movement time values than YA (ME 
group, F (1,27) = 38.7, p < 0.001, ηp

2 = 0.59), see also Fig. 1. In transfer trials (TrT), movement time (3 × 2 × 2 RM-

Table 1.  Sample characteristics. Age groups did not differ regarding their laterality quotient (LQ), 
independent-samples t-test: t(45.21)  = 0.12, p = 0.91), the amount of regular video gamers (Chi-square test: 
χ2(1) = 0.07, p = 0.79) and the amount of people with joystick experience (Chi-square test: χ2(1) = 0.08, 
p = 0.77).

Group Age (years) Gender (f/m) LQ Regular video gaming Joystick experience

YA (n = 30) 27.7 ± 3.8 17/13 83.3 ± 13.98 11/30 9/30

OA (n = 30) 67.97 ± 5.32 15/15 82.7 ± 25.3 9/30 8/30
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Figure 1.  (a) Study design. Participants sat facing a computer screen with their left wrist on a joystick while 
they received 20 min of a-tDCS or s-tDCS over the contralateral primary motor cortex. Their main task was 
to move the cursor from the start to the target box through the arc channel without exceeding the channels 
boundaries as fast and as accurately as possible. The study consisted of three consecutive training days with 
tDCS (indicated by yellow flash) seperated by 24 h and a retention day without tDCS 1 week later. Each training 
day consisted of 20 learning (black rectangle) and 2 transfer trials (white rectangle). Learning trials included 
upward movements in clockwise direction, transfer trials downward movements in counter-clockwise direction. 
(b) Data analysis. MSA: movement specific accuracy, TT: training trial, TrT: transfer trial, TD1: training day 1, 
TD2: training day 2, TD3: training day 3, SV: Spatial Variability. Online calculations included movement time 
and error rate calculation. Offline calculations included accuracy calculation (1-error rate) and calculation of SV 
(variability of time-normalized radial position data). Furthermore, subparameters of accuracy were calculated: 
MSA corresponds to the absolute difference between last TT (T20) and second TrT (Tr2). Online gain scores 
were calculated as difference between T20 TT and T1 TT. Offline gain scores were calculated as differences 
between last and first TT of consecutive TDs, values > 0 represent skill consolidation and values < 0 represent 
skill loss. (c) Statistical analysis. RM-ANOVA: repeated-measures analysis of variances, ind-samples t-tests: 
independent samples t-tests.
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ANOVA) did not decrease within training days (TDs) (ME trial, F (1, 54) = 1.26, p = 0.27, ηp
2 = 0.05) but between 

training days (ME day, F (1.48, 49.7) = 3.99, p = 0.04, ηp
2 = 0.13). Furthermore, movement time was higher in 

OA than in YA also in TrT (ME group, F (1,27) = 13.46, p = 0.001, ηp
2 = 0.33) but the decrease over time was not 

modulated by age (IA trial*day*group, F (2,54) = 0.25, p = 0.78, ηp
2 = 0.01).

Accuracy (3 × 20 × 2 RM-ANOVA) increase in TT over time was not modulated by age (IA trial*day*group, 
F (13.77, 358.18) = 0.65, p = 0.95, ηp

2 = 0.02), however across both age groups accuracy significantly increased 
within (ME trial, F (8.03, 358.18) = 7.97, p < 0.001, ηp

2 = 0.24) and also across all training days (ME day, F (1.36, 
358.18) = 13.28, p < 0.001, ηp

2 = 0.34). Furthermore, accuracy in TT did not differ across age groups (ME group, 
F (1,26) = 0.81, p = 0.38, ηp

2 = 0.03), see also Fig. 1. Also in TrT, accuracy (3 × 2 × 2 RM-ANOVA) changes over 
time were not modulated by age (IA trial*day*group, F (2,54) = 1.18, p = 0.32, ηp

2 = 0.04). TrT accuracy increased 
within (ME trial, F (1,49.65) = 6.2, p = 0.02, ηp

2 = 0.19) and across training days (ME day, F (1.44, 49.65) = 4.27, p 
= 0.03, ηp

2 = 0.14) and did not differ between age groups (ME group, F (1, 27) = 0, p = 1, ηp
2 = 0).

Spatial variability did not differ between age groups in none of the time-normalized data points (all p-val-
ues > 0.05/200, bonferoni threshold: 0.00025). Mean spatial variability (3 × 2 RM-ANOVA) decreased over time 
(ME day, F (1.54, 43.25) = 3.65, p = 0.04, ηp

2 = 0.12), but the variability decrease was not modulated by group (IA 
day*group, F (1.54, 43.25) = 0.69, p = 0.47, ηp

2 = 0.02). We found no effect of age group on mean spatial variability 
(ME group, F (1,28) = 3.03, p = 0.09, ηp

2 = 0.1), even though descriptively, OA showed higher higher spatial vari-
ability (525.43 ± 99) than YA (336.45 ± 198), see also Fig. 2.

TDCS effects on APT learning. OA. Movement time (3 × 20 × 2 RM-ANOVA) decrease in TT was not 
affected by tDCS (IA trial*day*condition, (F (8.52, 213.08) = 1.13, p = 0.35, ηp

2 =  0.04,  BF10 = 0.15). Generally, 
average movement times did not differ across stimulation conditions (ME condition, F (1,25) = 0.1, p = 0.76, 
ηp

2 = 0.004,  BF10 = 0.48) indicating no effect of tDCS on movement times. Also in TrT (3 × 2 × 2 RM-ANOVA), 
tDCS did not affect movement times (ME condition, F (1, 26) = 0.01, p = 0.91, ηp

2 = 0 .001,  BF10 = 0.43) and also 
movement time decrease over time did not differ across stimulation conditions (IA trial*day*condition, (F (2, 
52) = 0.04, p = 0.96, ηp

2 =  0.002,  BF10 = 0.16).
Accuracy in TT (3 × 20 × 2 RM-ANOVA) was not affected by tDCS (IA trial*day*condition, (F (38, 950) = 1.25, 

p = 0.14, ηp
2 = 0.05,  BF10 = 0.008, ME condition, F (1,25) = 0.69, p = 0.42, ηp

2 = 0.03,  BF10 = 0.377), see also Fig. 3a. 
Also TrT accuracy (3 × 2 × 2 RM-ANOVA) was not modulated by tDCS (IA trial*day*condition, F (1,26) = 0.06, 
p = 0.81, ηp

2 = 0.002,  BF10 = 0.24, ME condition, F (1,26) = 0.06, p = 0.81, ηp
2 = 0.002,  BF10 = 0.39). Movement spe-

cific accuracy (MSA, see Fig. 2 for details on calculation) was not affected by tDCS (MWU, TD1: U = 138, p = 0.3, 
 BF10 = 0.56; TD2: U = 121, p = 0.74,  BF10 = 0.35; TD3: U = 120, p = 0.52,  BF10 = 0.41) and also online gain scores did 
not differ between stimulation conditions (TD 1: MWU, U = 121.5, p = 0.47,  BF10 = 0.42, TD 2: MWU, U = 121, 
p = 0.72,  BF10 = 0.37 TD 3: MWU, U = 121, p = 0.72,  BF10 = 0.36). Furthermore, offline gain scores did not differ 
neither between TD 1 and 2 (consolidation 1: MWU, U = 138.5, p = 0.28,  BF10 = 0.53) nor between TD 2 and 3 
(consolidation 2: MWU, U = 99, p = 0.58,  BF10 = 0.42), see also Fig. 3a.

Spatial variability did not differ between stimulation conditions in none of the time-normalized data 
points (all p-values > 0.05/200, bonferoni threshold: 0.00025), see Fig. 4a. Also regarding mean spatial vari-
ability (3 × 2 RM-ANOVA), we found no effect of the stimulation condition (ME condition, F (1, 28) = 1.09, 
p = 0.31, ηp

2 = 0.038,  BF10 = 0.47) and also the amount of variability reduction did not differ across conditions 
(IA day*condition, F (1.63, 45.78) = 1.27, p = 0.29, ηp

2 = 0.04,  BF10 = 0.41).
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Figure 2.  Line Graph shows median values ± 95% Confidence Interval. Green line represents OA, orange line 
represents YA.
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YA. Movement time (3 × 20 × 2 RM-ANOVA) decrease in TT was not affected by tDCS (IA trial*day*condition, 
(F (38, 1064) = 1.35, p = 0.08, ηp

2 = 0.05,  BF10 = 0.004). Generally, average movement times did not differ across 
stimulation conditions (ME condition, F (1, 28) = 4.05, p = 0.05, ηp

2 = 0.13,  BF10 = 1.55). Also in TrT (3 × 2 × 2 RM-
ANOVA), tDCS did not affect movement times (ME condition, F (1, 28) = 0.65, p = 0.43, ηp

2 = 0.02,  BF10 = 0.53) 
and also movement time decrease over time did not differ across stimulation conditions (IA trial*day*condition, 
(F (1.36, 38.18) = 0.32, p = 0.64, ηp

2 = 0.01,  BF10 = 0.22).
TDCS did not affect accuracy (3 × 20 × 2 RM-ANOVA) learning in TT (IA trial*day*condition, F (38, 

1064) = 1.006, p = 0.46, ηp
2 = 0.04,  BF10 = 0.004). However, accuracy was higher in the a-tDCS compared with 

s-tDCS group in TT (ME condition, F (1, 28) = 15.65, p < 0.001, ηp
2 = 0.36,  BF10 = 39.45), already starting from 

the first learning trial (t (25.57) = 2.68, p = 0.013,  BF10 = 4.39), see also Fig. 3b. To evaluate potential baseline dif-
ferences between conditions in more detail, the RM-ANOVA was rerun using the accuracy value from the first 
transfer trial (TrT 1) as a covariate. Here, we still found higher accuracy values in a-tDCS compared with s-tDCS 
conditions (ME condition, F (1, 27) = 10.91, p = 0.003, ηp

2 = 0.29,  BF10 = 18.47) but still no difference in accuracy 
increase over time (IA trial*day*condition, F (38, 1026) = 0.94, p = 0.58, ηp

2 = 0.03,  BF10 = 0.004). Accuracy dif-
ferences between conditions were still present at the retention session 1 week after the last training session (ME 
condition, F (1,28) = 5.19, p = 0.03, ηp

2 = 0.16,  BF10 = 1.62). Interestingly, TrT accuracy (3 × 2 × 2 RM-ANOVA) 
did not differ between conditions (ME condition, F (1, 28) = 0.9, p = 0.35, ηp

2 = 0.03,  BF10 = 0.44), also not over 
time (IA trial*day*condition, F (2, 56) = 0.64, p = 0.53, ηp

2 = 0.02,  BF10 = 0.26). MSA was not affected by tDCS 
(MWU, TD1: U = 85, p = 0.26,  BF10 = 0.45; TD2: U = 131.5, p = 0.44,  BF10 = 0.47; U = 155, p = 0.08,  BF10 = 1.03) 
and also regarding online gain, no tDCS effects were found (TD 1: MWU, U = 152, p = 0.1,  BF10 = 0.82, TD 2: 
MWU, U = 123, p = 0.66,  BF10 = 0.35, TD 3: MWU, U = 116, p = 0.86,  BF10 = 0.35). Furthermore, consolidation 
was not affected by tDCS (consolidation 1: MWU, U = 70, p = 0.08,  BF10 = 1.05, consolidation 2: MWU, U = 103, 
p = 0.7,  BF10 = 0.37).

Spatial variability of each time-normalized data point did not differ between stimulation groups (all p-val-
ues > 0.05/200, bonferoni threshold: 0.00025, see also Fig. 4b), indicating no group difference in spatial variabil-
ity. Mean spatial Variability (3 × 2 RM-ANOVA) was comparable across tDCS conditions (ME condition, F (1, 
28) = 0.47, p = 0.5, ηp

2 = 0.02,  BF10 = 0.37) and we found no difference in variability reduction depending on the 
stimulation condition (IA day*condition, F (1.12, 31.39) = 0.13, p = 0.75, ηp

2 = 0.01,  BF10 = 0.38), see also Fig. 4b.
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Figure 3.  (a) OA. (b) YA. Line Graph shows median values ± 95% Confidence Interval. Red line represents 
a-tDCS group, blue line represents s-tDCS group. Separated values represent transfer trials, connected lines 
represent training trials. Dotted lines indicate separation of training days. Boxplots show median with 25th and 
75th percentiles. Outliers are depicted as dots. Red boxes represent the a-tDCS group, blue boxes represent the 
s-tDCS group.
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Discussion
The present study investigated the effect of multiple tDCS sessions over the M1 hand area on explicit and implicit 
measures of motor skill learning comparing YA and OA. Our results revealed that both age groups were able to 
learn the APT. While movement time reduced and accuracy increased over time, spatial variability decreased over 
time, indicating both explicit and implicit APT learning. As hypothesized, OA showed higher movement times 
than YA, while the amount of reduction over time did not differ, indicating similar learning rates. Contrary to 
our hypothesis (i), accuracy and spatial variability did not differ between YA and OA. Furthermore, against our 
hypothesis (ii), tDCS did not affect offline nor online APT learning in either group. However, in YA, accuracy was 
higher in the a-tDCS group compared with s-tDCS. This enhancement in accuracy, however, was not restricted 
to the learned movement since MSA was not affected by the stimulation and was also not accompanied by a 
related reduction in spatial variability. We also did not find a cumulative effect of multiple stimulation sessions, 
as hypothesized in (iii), which has previously been described in similar multi-session tDCS learning  studies9,54.

Our results are in line with previous findings showing that APT-learning is associated with improvements 
in  accuracy4. However, participants showed much higher accuracy than those of the original study, and longer 
movement times. We found mean movement times between three to six seconds, while in the previous study 
participants trained at a medium movement time range of 620  ms4. Since Shmuelof et al.4 showed a generaliza-
tion of skill learning across all included movement time categories, we assumed that it is not necessary to restrict 
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Figure 4.  (a) OA. (b) YA. Plots 1–3 show spatial variability across all training days, lines represent mean 
values ± standard deviation. Plot 4 shows p-values for each of the 200 t-tests across all three training days 
investigating group differences in spatial variability of the cursors’ radial position (solid lines: blue: day 1, 
orange: day 2, yellow: day 3) as well as the p-value threshold corrected for multiple comparisons (dashed line, 
bonferoni-corrected p-value = 0.00025).
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movement times to a certain range but instruct participants to perform as fast as possible. However, we suspect 
participants were not aware of how fast they could perform the task and therefore performed at a convenient 
speed level. Participants’ strategy may have been to prioritize error avoidance over speed, which is potentially 
why high accuracy values were observed. This behavior may have altered the relative duration of learning  stages7 
but also the relative recruitment of brain  regions69–71. Furthermore, in young participants, accuracy values were 
close to 100 percent at the end of the training sessions. The missing effect of tDCS-induced APT skill learning 
could be attributed to the fact, that participants performed at their peak performance (ceiling) level. However, 
since we observed a main effect of stimulation and no initial ceiling was observed, we argue, that further improve-
ment was still possible.

Furthermore, our findings underline the importance of investigating motor skill acquisition in different 
cohorts since learning strategies may differ tremendously between age groups. It is well known that aging is asso-
ciated with a progressive decline in motor functioning with evidence for reaction or response time  slowing27,36,72, 
diminished accuracy in movement  execution30 and increased motor output  variability38,43,44,73. Different age 
groups have been shown to use different strategies to learn novel tasks especially during the fast initial phase of 
 learning74,75 and compensatory strategies in aged individuals such as slowing of movement time are especially 
relevant for perceptual and higher-order cognitive  processing29,42,76. Our data supports these findings showing 
that OA perform the APT with slower reaction times and potentially thereby increase accuracy up to a level of 
 YA29. Thus, one could speculate that high levels of accuracy in OA are achieved with a different behavioral strategy 
than YA. In line with this argument are the different trajectory variability courses visible in YA and OA, even 
though mean spatial variability was not affected by age. While OA show similar spatial variability throughout the 
movement, YA show greater variability at the end of the movement. Shmuelof and colleagues interpret decreases 
in trajectory variability around the average path as improvements in feedforward control, while trajectories with 
large deviations at the end of the movement represent feedback  improvements4. Following this idea, OA APT 
performance may improve mostly from information during the motor task (knowledge of performance) for 
example via immediate feedback of the cursor position. YA, instead, may rather profit from information after 
task performance for example via feedback on movement time and error rates (knowledge of result). However, 
this needs to be explicitly tested in future studies examining the effect of different feedback conditions on 
APT learning in different age cohorts. Age-related alterations on motor behavior are related to functional and 
structural alterations on a brain level including grey and white matter loss but also differential neural activation 
 patterns30,77–83. It cannot be ruled out that APT learning in OA is not primarily associated with M1 activation 
but rather relies on higher-order brain regions such as (pre)-frontal cortices. This question needs to be addressed 
by future studies, which should aim at identifying brain regions associated with APT learning in OA to unravel 
potential targets for the application of non-invasive brain stimulation. Furthermore, aging also changes the pro-
pensity for plasticity  modulation84,85, which may limit the potential of tDCS to induce a facilitatory learning effect 
in OA. However, tDCS over M1 did not facilitate APT learning in YA either. Therefore, methodological issues 
such as duration or time point of the stimulation but also insufficient current intensity could be held responsible 
for the limited tDCS effect on  learning86. Our current density (0.028 mA/cm2) was a little bit lower as the one 
previously  used9,54,61 which may have reduced tDCS  efficacy87. In contrast, stimulation duration was set to 20 min 
which falls within the range, commonly  used9,54. Furthermore, also subject factors such as biological variation 
but also the current neuronal state of the target region influence the responsiveness to  tDCS88, making direkt 
monocausal inferences from missing tDCS effects on learning impossible. Similar multi-session tDCS learning 
 studies9,54 mainly found a cumulative M1 tDCS effect on offline learning gains, highlighting the importance 
of M1 in early consolidation. In our study design, no tDCS effect on offline learning was found, contradicting 
previous findings. Additional analyses using BF indicate inconclusive evidence to interpret this finding as a null 
effect. One potential explanation for the divergent results between previous and our study may originate from 
differences in the motor task since the exact role of M1 differs depending on the type of motor learning task 
being  learned45,54. APT learning is mainly associated with the reduction of variability of a motor action. In this 
regard, acquisition of task-specific synergies, which mainly update during task performance, could have mainly 
happened in  M167, explaining at least the missing tDCS effect on offline learning performance. Furthermore, 
a previous study interpreted the APT learning-related increase in M1 activation as a recruitment of additional 
 neurons67. However, tDCS effects are mainly based on mechanisms enhancing synaptic  plasticity50, thus may 
not be suitable for enhancing APT learning-associated recruitment processes within M1. Furthermore, the 
calculation of BFs in addition to conventional statistical analyses allow judgements for or against H0. However, 
even though BFs provide important  information89, one has to keep in mind their negative aspects such that BFs 
are very sensitive to prior distributions, which can be too difficult to choose or depend on the belief that one 
true model exists, which may not always be the  case90. Therefore, our assumption that our data provides only 
inconclusive evidence should be handled with caution. However, future studies in this field should nevertheless 
aim to use bigger samples to gain clear evidence for or against tDCS effects on offline APT accuracy learning.

We did see a difference in accuracy between both tDCS groups in YA, potentially indicating an involvement 
of M1 in APT performance at least in young age. BFs support this suggestion for a main stimulation effect on 
accuracy. However, even though we used appropriate randomization to select group membership, we cannot 
completely rule out that group differences already existed prior to tDCS since no baseline measurement was 
included to maintain task naivety. In favour of an existing effect, we hypothesize that M1-stimulation induced 
a performance-enhancing state which facilitated APT performance from the very beginning. This finding is 
consistent with Shmuelof et al., showing M1-activation from the beginning of APT  learning67 and highlights 
the important role of M1 in initial skill acquisition in  YA7,91. Brain activity prior to learning is undoubtedly an 
important predictor of subsequent motor  performance92 and previous studies also found tDCS applied before 
learning facilitated subsequent skill acquisition  rates93–95. By contrast, no tDCS-induced effect was found on 
spatial variability in either group. This finding contradicts our primary hypothesis that tDCS affects both explicit 
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and implicit APT learning. We do see within-session and between-session reductions of spatial variability, indi-
cating APT learning. In a taxonomy proposed by Krakauer and Mazzoni, M1 is mainly involved in variability 
reduction during skill  learning10—which is in line with other  research67. However, we found no evidence for 
M1 tDCS-induced reductions in spatial variability. One reason for this mismatch may be the the low statistical 
power induced by the relatively low number of participants but also the multiple testing. Looking at the p-value 
figure, it is observable that group-differences in spatial variability are closest to significance at position points 
95–110, which indicate the turning point from an upwards to a downwards movement in the arc channel during 
the training trials. Thus, it could be speculated that lower spatial variability values at these critical turning points 
may have resulted in higher accuracy values in the a-tDCS group. However, since our data does not support this 
hypothesis, so far our results do not show that enhancing explicit parameters of task success such as accuracy 
necessarily correlate with differences in implicit parameters of movement execution such as spatial variability.

In summary, we provide novel evidence that APT learning occurs both in YA and OA but also reveal age-
related differences in learning strategies related to higher movement times in OA. While no tDCS-induced 
differences in APT learning were observable over time, we did see a group effect of M1 tDCS on accuracy in YA 
from the very beginning, potentially indicating a tDCS-induced performance-enhancing brain state. However, 
tDCS-induced differences in accuracy values did not translate into tDCS-induced differences in spatial vari-
ability, indicating no necessary interaction between explicit and implicit APT learning. Mechanisms of action 
of tDCS-suppported motor training should be oberseved more carefully, while also considering age-related 
differences in motor learning abilities.

Methods
Sample characteristics. In total, 60 healthy individuals aged between 21 and 78 years (32 females) were 
enrolled in this double‐blinded, sham‐controlled study. 30 individuals were aged between 18 and 35  years 
(YA, mean age: 27.07 ± 3.8  years, 17 females) and 30 individuals were older than 55  years (OA, mean age: 
67.97 years ± 5.3 years, 15 females). Participants were right-handed, indicated by a score > 40 in the Edinburgh 
Handedness  Inventory96 and a similar number of people within each age group reported regular computer gam-
ing and joystick eperience (see also Table 1). Highly-skilled participants such as professional musicians and ath-
letes were excluded from participation. All participants gave written informed consent and the study procedures 
were approved by the local ethics committee of the University of Leipzig and conducted in accordance with the 
declaration of Helsinki. To exclude the presence of any neurological disease and/or contraindications relevant 
for the study procedures outlined below, all participants underwent a detailed neurological examination prior to 
the testing phase. Additionally, all participants were free of any medication affecting the central nervous system 
and were task naïve.

Study design. The study comprised of four training days with the first three conducted on consecutive days 
separated by a 24-h break. Training day 4 was conducted 1 week after training day 3 to investigate potential 
effects on long-term retention. Before training day 1, participants were randomly allocated by a second experi-
mentor to either receive 20 min of daily anodal tDCS (a-tDCS) or sham tDCS (s-tDCS), where the stimulator 
was put on for 30 s only to ensure  blinding52. TDCS was put on five minutes prior to the start of the motor task. 
During the APT, participants performed 20 tt and two trt to investigate short-term transfer effects of each TD. 
On TD 4, participants performed another 20 learning and 2 transfer trials but no tDCS was applied (see also 
Fig. 2 for details).

APT. Motor task. The  APT4 required participants to move a cursor on the computer screen by moving a 
joystick with their left wrist. Similar to the original task, we also chose the left wrist in our right-handed study 
cohort to maximize the dynamic learning range. In all four training sessions, participants sat facing a computer 
screen where a semicircular channel was presented using the Presentation software (Neurobehavioral Systems, 
Inc., version 14.7). They were instructed to guide a cursor through the channel from one end to the other without 
exceeding the channels boundaries as fast and as accurately as possible (see also Fig. 4 for details, please also note 
that informed consent was obtained to publish the participants’ image in an online open access publication). 
Before the training started, participants familiarized themselves with the joystick by moving the cursor freely 
within a white square field on the screen. At the beginning of each trial, the semicircular channel was presented 
and participants were instructed to start the trial only when ready. As a result, the experiment was not consid-
ered to be a speeded reaction time task protocol. For starting the trial, participants had to move the cursor into 
the start box positioned on the left side of the channel. Entering this start zone initiated time-keeping and was in-
dicated to the participant by a change in the start box colour to yellow. Time-keeping continued until the cursor 
reached the stop box on the right side of the channel. During TT, participants performed an upwards movement 
in clockwise direction followed by a downwards movement to enter the stop box. During TrT, a mirrored version 
of the channel was presented, where a downwards movement in a counter-clockwise direction was followed by 
an upwards movement to enter the stop box (see also Fig. 1). Maximum trial duration was set to 30 s. After this 
time interval, the trial stopped and was marked as incomplete.

Information on performance. Cursor position was visible throughout the whole movement. Thereby, partici-
pants received feedback about their current position in the channel. Additionally, after each trial, the trajectory 
of the cursor was projected on the screen. To maximize information gain, portions of the participant’s move-
ments inside the channel were colored in white and portions outside the channel in red. Furthermore, total time 
(in seconds) and error (in percent of the fraction of movements outside the channel), were calculated online and 
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displayed on the screen after each trial. Thereby, participants received knowledge of performance in the form of 
trajectory projections as well as knowledge of result by the information about time and error rates.

Transcranial direct current stimulation (tDCS). For tDCS, a weak direct current of 1 mA generated 
from a battery driven stimulator (neuroConn, Ilmenau, Germany) was delivered for 20 min via saline-soaked 
sponge electrodes. Stimulation was switched on five minutes prior to the start of training since a previous study 
suggested that this time period is sufficient to induce enduring excitability increases within  M197. Either a-tDCS 
or s-tDCS was applied to the right M1 contralateral to the left wrist. Stimulation was performed double-blinded 
to ensure unbiased results. Specifically, a second experimenter was responsible for controlling the stimulation 
but was otherwise not in contact with participants or the primary experimenter. To evaluate, whether blinding of 
conditions was effective, participants were asked to judge their group belonging after the third day of experimen-
tal testing by choosing between the options: “real stimulation” or “no stimulation”. The anatomical landmark for 
the right M1 hand area was identified with neuronavigation (Brainsight Version 2; Rogue Research, Montreal, 
QC, Canada) using the MNI coordinates (x, y, and z) 40, 20, and  5498,99. After localization with the neuronavi-
gation system, the skin was prepared using alcohol pads to ensure good contact of the stimulation electrodes 
applied to the head. The impedance of stimulation electrodes was always kept below 10 kΩ for each participant. 
The anode (7 × 5 cm) was positioned over the right M1, the cathode (10 × 10 cm) was placed over the frontal 
orbit. Flexible elastic straps were used to additionally fixate the electrodes on the head. Current was ramped up 
for 30 s in the beginning of tDCS eliciting a transient tingling sensation on the scalp that faded over seconds 
and also ramped down for 30 s as described  previously52. During s-tDCS, the current was increased, maintained 
and decreased for 30 s each. Before and after tDCS, participants rated their level of attention (1 = not attentive, 
10 = very attentive), fatigue (1 = very fatiqued, 10 = no fatigue) and discomfort (1 = no discomfort, 10 = strong 
discomfort) on a visual analogue scale (VAS) to ensure potential differences between groups did not originate 
from differences in these global parameters.

tDCS current flow simulation. We simulated electric field distributions based on a finite element model of a 
representative head inside the open-source SimNIBS  software100 to approximate current flow. The anode was 
defined according to our anatomical landmark (40, 20, 54 as x, y and z) with a size of 7 × 5 cm, the cathodes 
center position was defined at Fpz with a size of 10 × 10 cm. A current of 1 mA was selected. Maximum electrical 
field strength (0.2 V/m) was determined below the anode, corresponding to the hand area of right M1 but also 
in premotor areas between both electrodes (see Fig. 5).

Data analysis. Data was analyzed both online and offline. Online analysis for movement time and error 
rates was performed by Presentation that controlled the experiment. Calculation of movement times was done by 
counting the number of data points captured from start to stop signal multiplied with 13.333 ms (sampling rate: 
75 Hz, 1 data point every 13.333 ms) divided by 1000. For error rate calculation, each captured data point was 
screened for being inside or outside the channel. The number of data points outside the channel divided by the 
total number of data points was then multiplied with 100 to compute percentage error rates. For offline analysis, 
we used custom routines written in MATrix LABoratory R2018B (MATLAB, The MathWorks, Natick, MA). For 
offline calculations, movement times and error rates were extracted from the logfiles created by Presentation. 
Accuracy rates were calculated as 1-error rate which corresponds to the percentage of fraction of movements 
in channel. For investigating potential stimulation effects on accuracy in more detail, we additionally calculated 
MSA as well as online and offline gain scores. MSA was calculated for each training day as the difference of the 
accuracy value of the last learning trial per training day and the second transfer trial accuracy (t20–tr 2), see also 

Figure 5.  TDCS current flow simulation. Anode is depicted as red rectangle and cathode as blue rectangle 
projected on a standard head model. Normalized electrical field strength (V/m) is indicated through colormaps 
with blue representing lowest and red representing highest field strengths, respectively. The current flow image 
was created using the SIMNIBS software version 3.1.2100.
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Fig. 2. Online gain scores were calculated for each training day representing within-day learning as the difference 
between first and last learning trial accuracy (t20–t1), while offline gain scores were calculated between training 
days analog  to9 to investigate between-day consolidation effects.

Cursor position data was low-pass filtered (zero-lag, third-order Butterworth filter, cutoff frequency 14 Hz) 
analog to Shmuelof et al.4 and filtering was applied at the trial level to remove any artifacts of returning the 
joystick to the home position. Averaging was performed only for data values outside the start box, data points 
within the start box were discarded from the analysis. Trial-by-trial variability was calculated to investigate the 
effect of tDCS-combined practice on trajectory on the cursors time-normalized radial position data. Data was 
resampled to 200 evenly spaced data points and then variance and average radial position was computed for each 
subject and time point. To additionally investigate mean spatial variability, average radial position was averaged 
across all 200 data points, see also Fig. 2.

Statistical analysis. Statistical analyses were performed using the Statistical Software Package for Social 
Sciences (SPSS Version 27, IBM, Armonk, NY, USA). Difference scores of pre-post ratings for the VAS score 
ratings were compared across all subgroups using the between-subject factors group (old, young) and condition 
(a-tDCS, s-tDCS) in a repeated-measures analyses of variance (RM-ANOVA).

Aging effects on APT learning were calculated using only the data of the s-tDCS groups (N = 15 young and 
N = 15 old). Effects of age on movement time and accuracy were calculated for tt using RM-ANOVAs with 
between-subject factor group (young, old) and within-subject factors day (TD1–3) and trial (t1–t20). Likewise, 
effects on transfer movement time accuracy were calculated using RM-ANOVAs, see also Fig. 2. To investigate 
whether spatial variability of radial position differed between groups, we performed independent-samples t-tests 
or the non-parametric equivalent for every normalized time point, resulting in n = 200 tests for each training 
day. For investigating aging effects on mean spatial variability, we additionally performed a RM-ANOVA with 
factor group (old, young) and factor day (TD 1–3).

TDCS effects were calculated for each age group, separately to be able to parcellate aging effects from stimula-
tion effects and decrease the number of factors in the analysis. TDCS effects on movement time and accuracy 
were calculated for training trials using RM-ANOVAs with between-subject factor condition (a-tDCS, s-tDCS) 
and within-subject factors day (TD 1–3) and trial (t1–t20) for each age cohort. Likewise, effects on trt move-
ment time and accuracy were calculated using RM-ANOVAs. Furthermore, MSA, online and offline gain scores 
were compared across conditions using independent-samples t-tests or the non-parametric equivalent in case of 
non-normal distribution. TDCS effects on spatial variability were also investigated using independent-samples 
t-tests or the non-parametric equivalent for every normalized time point. Mean spatial variability was compared 
across conditions using an RM-ANOVA with factor condition (a-tDCS, s-tDCS) and factor day (TD 1–3), see 
also Fig. 2c (Supplementary Information).

Partial eta-squared (ηp2) for ANOVA’s are provided as measures of effect size and used to aid in the inter-
pretation of inferential statistics. To control for multiple comparisions, p-values were adjusted according to the 
false-discovery-rate101. Conventional inferential statistics analyses are used to quantify our research hypotheses 
(H1) against the null hypothesis (H0). However, since conventional significance testing does not allow to state 
evidence for  H0102, non-significant outcomes provide no information whether they represent real null findings 
or inconclusive evidence for example due to low sample sizes. To add this information, Bayes Factors  (BF10) were 
calculated and provided in addition to the inferential data, quantifying how well H1 predicts the empirical data 
relative to  H0103,104. Following recent recommendations, we considered  BF10 > 1 as evidence for H1 over H0 with 
values > 3 suggesting noteworthy evidence, while  BF10 < 1 indicated evidence for H0 over H1 with values < 0.33 
suggesting noteworthy  evidence105. Furthermore,  BF10s between 0.33 and 3 are considered inconclusive evidence 
for either  hypothesis105.  BF10 were calculated using the statistical software package JASP (Jeffrey’s Amazing 
Statistics  Program106).

Data availability
The data that support the findings of this study are available on request from the corresponding author, E.K. 
The data are not publicly available due to data protection policies practiced at our institute, e.g. their containing 
information that could compromise the privacy of research participants.
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