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Summary 
A fundamental and unanswered question concerns the key topological features of connectivity that 

are critically relevant for generating the dynamics underlying efficient cortical function. A candidate 

feature that has recently emerged is that the connectivity of the mammalian cortex follows an 

exponential distance rule, which uniquely includes a small proportion of long-range high-weight 

anatomical connections. We investigate how these long-range connections influence whole-brain 

dynamics with coupled oscillators. To understand the causal function of long-range connections, we 

first studied these connections in simple ring structures and then in complex empirical brain 

architectures. A small proportion of long-range connections are sufficient for significantly improving 

information transmission, i.e. information cascade. Large-scale empirical neuroimaging modelling 

point to the immense functional benefits for information processing of a brain architecture with long-

range coupling that improves the information cascade thanks to the underlying turbulent regime of 

brain dynamics. 
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Introduction 
In Nature, complex dynamics are ubiquitous and have been shown to be fundamental in numerous 

model systems, ranging from the stable oscillations of the heart to turbulent fluid dynamics and brain 

dynamics 1-3. Until recently, many physical systems have been successfully modelled with oscillators 

exhibiting short-range diffusive nearest-neighbour coupling as well as non-local exponential distance 

decay coupling, in this manner reflecting the nature of spatially extended physical systems. 

Nevertheless, the brain is a unique exception to this common coupling rule, using exceptional long-

range connections that emerge from the operation of an exponential distance rule (EDR) both in non-

human primates 4, 5 and rodents 6. Here, we address the deep question concerning the role of long-

range connections in the human brain and more importantly, how this unique brain architecture 

supports and constrains the dynamics that ensure the efficiency of information processing.  

 In physics, oscillators have been used to model many physical systems, going from the simplest 

linear, harmonic oscillator to non-linear oscillators 7. Small perturbations to linear oscillators lead to 

changes in oscillation amplitudes, while perturbations to non-linear oscillators lead to self-regulating 

relaxation and a return to the same region in phase space. With an ordinary differential equation of a 

complex order parameter, the Stuart-Landau model of a single oscillator provides the simplest 

nonlinear extension of a linear oscillator that mathematically describes the onset of spontaneous 

oscillations (i.e. bifurcation from fixed-point dynamics towards a limit cycle). When dealing with a 

large-scale system, this obviously has to be extended to a spatially coupled system of oscillators, 

giving rise to a wealth of spatiotemporal patterns, ranging from regular laminar waveforms to highly 

turbulent dynamics.  

 The simplest type of spatial interaction is diffusive coupling between nearest neighbours. A 

continuous extension of the Stuart-Landau oscillators with diffusive coupling leads to the complex 

Ginzburg-Landau equation, which has been shown to accurately model many physical systems 1. 

More general types of interactions can be expressed in a non-locally coupled system, assuming, for 

example, exponential decay in the coupling strengths as a function of distance. Kawamura, Nakao 

and Kuramoto demonstrated the emergence of turbulence in a supercritical regime of the system 8, 9.  

 Recent research using consistent tract-tracing studies shows that the anatomical architecture of the 

cortex reveals evidence of a similar exponential coupling of functional cortical areas 4-6. In addition 

these investigations demonstrated the non-random features of the rare long-distance connections and 

their role in the specificity and non-homogeneity of the cortical architecture 10, 11. Interestingly, the 

weight-distance relations make this architecture unique among known physical systems. However, 

most importantly, the functional relevance of these long-range exceptions to brain dynamics is 

unresolved.  
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 Here we investigate the functional consequences of introducing long-range connections on top of 

the non-local coupled system of oscillators. First, we examine the functional effects of this in the 

simplest possible ring structures, using three different types of coupling: diffusive, exponential decay, 

and exponential decay with additional long-range connections. This shows that a low proportion of 

long-range connections critically supporting a turbulent-like regime are important to significantly 

improve the transmission of information across the system, i.e. the information cascade.  

 We investigated the effects of these topological features in the human brain. Specifically, we 

modelled the effects of modifying the whole-brain architecture when describing very large-scale 

empirical neuroimaging data from 1003 people in the human connectome project (HCP). From 

diffusion (dMRI) tractographic data we identified the relationship between connection weight (in 

tractography referred to as streamline density) and distance, and found that an EDR fits well the 

empirical tractographic connectivity data in the human cortex. We then identified the rare long-range 

exceptions, which correspond to those long-range connections with stronger weights than expected 

from the EDR. With whole-brain modelling we investigated the functional consequences of adding 

these exceptions to the EDR architecture, and again showed that this leads to a significant 

enhancement in fitting the empirical data and in supporting the information cascade in turbulent-like 

brain dynamics.  

 The long-range connections were in turn demonstrated to play a crucial role in the task processing 

underlying cognition. The results demonstrate the immense functional benefits in information 

processing introduced by evolution in the unique brain architecture with long-range coupling 

improving information cascade thanks to the underlying turbulent-like regime of brain dynamics. 

 

Results 
The study of turbulence in modern physics has led to enormous progress in the fields of fluid and 

oscillator dynamics 1-3. It is well-known that coupled oscillators fit brain dynamics 12-14. However, 

for the brain to function optimally, it has to support efficient information transfer and here we 

hypothesise that turbulence provides the intrinsic backbone necessary for brain dynamics. In 

particular, we hypothesise that the existence in the brain of a small proportion of long-range 

connections is a decisive factor for optimising information processing via the underlying turbulence. 

This information processing is quantitatively characterised through measures of turbulence, 

functional connectivity and the information cascade (Figure 1A).  

 Historically, in fluid dynamics the study of turbulence was greatly influenced by Richardson’s 

concept of cascading eddies reflecting energy transfer (see cartoon in middle panel of Figure 1A), 

where the hierarchical organisation of different sizes of eddies is schematised for the turbulent so-
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called ‘inertial subrange’, i.e. the range where turbulence kinetic energy is transferred without loss 

from large to smaller scales. Here, we propose that this hierarchical organisation of oscillators leads 

to an information cascade in the inertial subrange. We investigated the following quantitative 

measures of information processing (turbulence, functional connectivity and information cascade), 

first in a ring (Figure 1B) and then in empirical large-scale human brain data (Figure 1C).  

 Our first measure of turbulence comes from the study of coupled oscillators and in particular the 

seminal studies by Kuramoto investigating turbulence in coupled oscillators 1. Specifically, in a 

coupled oscillator framework, the Kuramoto local order parameter represents a spatial average of the 

complex phase factor of weighted coupling of local oscillators.  

 Specifically, the amplitude turbulence, 𝑅!(𝑥̅, 𝑡), is defined as the modulus of the local order 

parameter for a given brain node as a function of time: 

 𝑅!(𝑥̅, 𝑡)𝑒"#!(%̅,() = k∫ 𝑑𝑥̅′𝐺!(𝑥̅ − 𝑥̅*)
+
,+ e-.(%̅",/) (1) 

where 𝜑(𝑥̅, 𝑡) are the phases of the spatiotemporal data, 𝐺! is the local weighting kernel 𝐺!(𝑥̅) =

𝑒,!|%̅| , k  is the normalisation factor [∫ 𝑑𝑥̅′𝐺!(𝑥̅ − 𝑥̅*)
+
,+ ],1  and 𝜆  is defines the scaling of local 

weighting. In other words, 𝑅! defines local levels of synchronisation at a given scale, 𝜆, as function 

of space, 𝑥̅, and time, 𝑡. This measure captures what we here call vortex space, 𝑅!, over time, inspired 

by the rotational vortices found in fluid dynamics, but of course not identical. 

 The level of amplitude turbulence is defined as the standard deviation of the modulus of Kuramoto 

local order parameter and can be applied to the empirical data of any physical system. The amplitude 

turbulence, 𝐷, corresponds to the standard deviation across time and space of 𝑅!: 

 𝐷 = 〈𝑅!2〉%,( − 〈𝑅!〉%,(2  (2) 

where the brackets 〈 〉%,( denotes averages across space and time.  

 Except for a very recent study 15, amplitude turbulence has been studied exclusively in the 

supercritical regime of the Stuart-Landau coupled oscillators 8, 9. Yet, given that a range of papers 

have demonstrated that the Stuart-Landau oscillators fit the neuroimaging brain data when used in 

the subcritical regime at the edge of the bifurcation 14, 16-18, it was recently demonstrated to fit the 

functional MRI data from 1003 participants and to exhibit amplitude turbulence as characterised by 

Equation 2 15. The subcritical regime at the edge of the bifurcation is not showing deterministic 

spatiotemporal chaos in the way found in under the supercritical regime but rather some very 

interesting state dynamics, perhaps best described as turbulent-like or turbulent fluctuation, which 

are described by Equation 2. Interestingly, in the supercritical regime, turbulence is directly linked to 

the shear parameter of the Stuart-Landau equation, which is not needed for the subcritical regime at 

the brink of the bifurcation 15 and thus is not included here. 
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 The second measure of functional connectivity comes from the proposal that at an abstract level 

information transfer is analogous to energy transfer. Indeed, the ability to facilitate fast energy 

transfer in fluids is one of the most relevant aspects of turbulence 3, 19, 20. Meticulous mathematical 

research suggests close links between disturbance propagation and the transmission of information 

from one spatial point to another 2, 21. Thus, one way to characterize information processing is to 

conceive functional connectivity as a function of a given distance, given by FC(r). In fact, this can be 

derived from Kolmogorov’s concept of structure function for a given distance, S(r), of a variable u 
19, 20 in spatiotemporal data in the following manner: 

 𝑆(r) = 〈(𝑢(𝑥̅ + 𝑟) − 𝑢(𝑥̅))2〉%,( = 2[𝐹𝐶(0) − 𝐹𝐶(r)] (3) 

In Equation 3, the basic functional connectivity, FC, between two points separated by the Euclidean 

distance r, is given by: 

 𝐹𝐶(𝑟) = 〈𝑢(𝑥̅ + 𝑟)𝑢(𝑥̅)〉%,( (4) 

where the symbol 〈 〉%,( refers to the average across the spatial location 𝑥̅ of the nodes and time. 

Using these relations we are able to study the impact of different architectures on the functional 

connectivity for long-range distances (FC long-range). 

 The third measure of information cascade uses the concept of vortex space, 𝑅!, and is defined as 

the average across scales, 𝜆, of the information cascade flow, which indicates the predictability of a 

given vortex space at scale 𝜆 from the vortex space at scale 𝜆 − Δ𝜆 (where Δ𝜆 is the discretisation of 

scale). In other words, the measure captures information transfer across scales through local 

synchronization in vortex space. Mathematically, information cascade flow can be expressed as: 

 ℱ(𝜆) = 〈𝑐𝑜𝑟𝑟((𝑅!(𝑥̅, 𝑡 + Δ𝑡), 𝑅!,3!(𝑥̅, 𝑡))〉% (5) 

where Δ𝑡 is the size of the time step and where the symbol 〈 〉% refers to the spatial average of the 

correlation over time, 𝑐𝑜𝑟𝑟((𝑅!, 𝑅!,3!	). The information cascade is the average of ℱ(𝜆) across 

different scales, 𝜆: 

 𝐼 = 〈ℱ(𝜆)〉! (6) 

where the symbol 〈 〉! refers to the average across 𝜆. 

 

Long-range connections in ring structure improves information processing 

In order to understand the causal role of long-range connections on dynamics, we first study the 

simplest system, namely a ring architecture. We constructed three different types of ring 

architectures: nearest neighbour (NN, black ring), EDR (blue ring) and rare long-range (LR, red ring) 

connectivity coupling. This allowed us to create three corresponding models of coupled Stuart-
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Landau oscillators, where for various scenarios we measured turbulence, averaged functional 

connectivity at long-range distances (FC long-range) and information cascade (Figure 2).  

 The model used a system of coupled Stuart-Landau oscillators, which is given by the following 

set of coupled equations: 

 45#
4/
= a6x6 − [x62 + y62]x6 −ω6y6 + G∑ C678

9:1 Px9(t) − x6R + 𝜈;η6(t) (7) 

 4<#
4/
= a6y6 − [x62 + y62]y6 +ω6x6 + G∑ C678

9:1 Py9(t) − y6R + 𝜈;η;(t) (8) 

where η6(t) is additive Gaussian noise with standard deviation ν = 0.01. The subindex n denotes 

that individual oscillators are taken from (1..N=1000). Individual Stuart-Landau oscillators have a 

supercritical bifurcation a6=0, so that if a6>0, the system engages in a stable limit cycle with 

frequency 𝑓; = ω6/2𝜋. If a6<0, then local dynamics are at a stable fixed point representing a low 

activity noisy state. Here we used the local bifurcation parameters, a6 = −0.02, i.e. at the brink of 

local bifurcations. The global coupling strength is denoted G, while C69 defines the coupling matrix. 

In the case of the ring, we defined three different types of ring architectures with circular boundary 

conditions, where the nodes n are ordered sequentially.  

1) Nearest neighbour (NN) ring architecture, and where C69 = 1, if q=n±1 or C69 = 0, otherwise.  

2) The EDR ring architecture is given by 

 C67 = e,=$(>(6,7))  (9) 

Where r(n, q) is the distance between nodes n and q, given by the absolute value divided by a scaling 

factor 𝑘=10, i.e. |q − n|/𝑘. The coupling decay factor is given by λ? = 1. 

 3) Rare long-range (LR) is similar to the EDR ring architecture but with additional random 

connections. We add these connections similar to the small-world procedure described in Watts and 

Strogatz 22 by going over all connections and replacing pairs randomly with a probability of 𝑝 and 

allocating these connections a coupling strength of 0.25. 

 

Long-range connections improve information processing in ring architecture 

Figure 2 shows the three measures of turbulence, functional connectivity of long-range connections 

(FC long-range) and information cascade resulting from running the Stuart-Landau model in the three 

architectures for 1000 timesteps over 100 trials. Specifically, turbulence is computed as usual 8 at the 

scale λ = λ?. The FC long-range was computed as the mean value of functional connectivity pairs 

with the top 20% largest distance. The range of scales of λ used for estimating ℱ and I was given by 

λ = [4	2	1	0.5	0.25	0.125	0.0625	0.0312].  

 First, Figure 2A shows these measures as a function of global coupling, G, in all three 

architectures. For the EDR+LR model, we used p=0.05 as the probability of long-range connections 
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and found the largest effect was on FC long-range and information cascade (compare the non-

overlapping red curves with the blue and grey curves for all values of G). This means that long-range 

connectivity has a strong impact on information processing as revealed by the increase of functional 

correlations in the long-range connections and in the transmission of information reflected by the 

information cascade. It is interesting to note that in contrast to the other models, the NN model does 

not increase with G for the measures of FC long-range and information cascade. In contrast, the level 

of turbulence increases with G in all three architectures.  

  Second, Figure 2B shows the effect of rewiring of long-range coupling. For the optimal global 

coupling of the EDR+LR model, G=0.65, we plot the same three measures for all three architectures 

but now as a function of the probability of rewiring long-range connections. We observe the same 

effect as when systematically varying G and p=0.05 is close to optimal (see the red curve in the 

middle panel of Figure 2B).  

 Third, Figure 2C shows the supporting role of turbulent fluctuations on the impact of long-range 

connections on information processing. Here the three panels show the effect of low levels of 

turbulent fluctuations with a low global coupling G=0.01 in the three architectures. The boxplots 

reveal low levels of turbulent fluctuations for all three cases, and comparatively modest effects of 

long-range coupling on FC long-range and information cascade. However, Figure 2D shows that 

increases in turbulent fluctuation levels to the optimal point of the EDR+LR model, G=0.65. Under 

these conditions the effect of long-range connections is highly significant for both FC long-range 

(middle panel) and information cascade (rightmost panel).  

 Further insight on the low and high turbulent fluctuation regimes is provided by Figure 2E. Here, 

we investigated the EDR+LR model (with rewiring of long-range connections p=0.05) in the low 

(G=0.01) and high (G=0.65) turbulent fluctuation regime. The first column shows snapshots of phases 

associated with the low (top) and high (bottom) turbulent fluctuation regime. As can be seen, phases 

are more clearly clustered in the high compared to low regime, reflecting local cluster synchronisation 

resembling turbulent vortices. The second column shows the distribution of the FC long-range for the 

low (top) and high turbulent fluctuation regimes (bottom); this reveals a strong increase of the FC 

long-range across all pairs in the high compared to low regime.  

 Finally, we were able to show explicitly how information transmission across vortex space is 

influenced by long-range coupling. Figure 2F shows the information cascade flow (i.e. a measure 

across scales), rather than the information cascade (i.e. the average across scales) as shown in 

previous figures. As can be seen, at optimal global coupling, there is a strong effect of long-range 

connectivity (compare red line, p=0.05 with blue line, p=0). The baseline (grey line) is added as a 

reference and corresponds to the information cascade of surrogates of the same timeseries where the 

time-ordering of phases were shuffled (100 repeats). We show the normalised information cascade 
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flow (normalised with respect to baseline in the bottom plot), which shows exactly the same effect. 

Note in the normalised version, the flattening linear decay of information transfer for the model 

without long-range connections. In contrast, the EDR+LR model shows high information across all 

scales that decays slowly, explicitly reflecting the information cascade. 

Advantage of the uniqueness of human brain architecture  

The above results illustrate the advantage for information processing of adding long-range 

connections to a Stuart-Landau oscillator model with a simple exponential distance coupling rule on 

a ring. However, these results need to be corroborated with a real biological information processing 

system.  

 As stated in the introduction and shown in Figure 3A, the mammalian cortex is well-described by 

an architecture with long-range exceptions on top of an EDR 4. The causal relevance of the two 

elements can be investigated with whole-brain modelling, where the key elements of EDR or 

EDR+LR can be manipulated and checked against the empirical data. 

 Given the success of fitting whole-brain models using Stuart-Landau coupled oscillators to 

empirical brain dynamics, we turn now our attention to demonstrate the effects of rare long-range 

connections in the unique brain architecture.  

 Reaching this goal requires a large-scale state-of-the-art dataset with both anatomical and 

functional dynamical data. This is available in the HCP dataset with 1003 human healthy subjects. 

Firstly, we find evidence that the human brain possesses a similarly unique architecture to that 

described in non-human primates and rodents. Secondly, we explore whole-brain modelling with 

Stuart-Landau oscillators so as to investigate the functional impact of different aspects -of brain 

architecture on information processing.  

 The anatomical structural connectivity of the human brain can be estimated using dMRI 

tractography. We estimated empirical HCP dMRI tractography of the human brain by estimating the 

streamline densities (i.e. connection weights) between the pairs of regions in the fine-grained 

Schaefer parcellations (with 1000 parcels) as a function of the Euclidian distance between nodes 

(Figure 3B). For each region pair, we computed the Euclidean distance, r, in MNI space (Figure 3C) 

in order to access the spatial information required to investigate the rules underlying coupled 

connectivity.   

 Figure 3D shows the fitting of weights of connections as a function of distance, r, by an 

exponential decay function. This means that the human structural anatomical connectivity exhibits a 

fitted EDR as reflected by the red line with an optimal λ? = 0.18 mm-1 fitting the empirical mean 

dMRI connectivity matrix across participants (blue line). This is lower than the values λ? =

0.78	mm,1 found in mice and similar to the value λ? = 0.19 mm-1 found in non-human primates 4, 5. 
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Unlike the results in mice and non-human primates, the estimate found here is based on dMRI 

tractography and may be overestimating the λ? , which is likely to be smaller. In fact, fitting the 

functional neuroimaging data with λ? as a free parameter yielded values lower than the one estimated 

here from the structural data 15. Nevertheless, for consistency we use the latter here.  The figure also 

shows the remarkable similarity between the two matrices representing the empirical dMRI structural 

connectivity matrix (left subpanel) and the optimally fitted EDR connectivity (right subpanel).  

 Although dMRI is not ideal for estimating precise anatomical connections 23, we designed an 

algorithm to identify rare long-range outliers to the EDR, i.e. connections that are much stronger than 

average as derived from the EDR. This algorithm first computes the distribution of weight 

connections at a given distance, r, in the average dMRI connectivity matrix. We then selected only 

those connection pairs that are 3 standard deviations above the mean weighting of connection at that 

given distance, r.  

 We found that similar to the cortical anatomy of non-human primates and rodents 4-6, human 

structural anatomy is characterized by a small proportion (1.23%) of rare long-range outliers of the 

EDR. Figure 3E shows the relative percentage exceptions of long-range connections (for pairs at a 

given distance) as a function of that distance. Clearly, long-range outliers increase in relative 

percentage with increasing distances.  

 Furthermore, Figure 3F shows the relative streamline density as a function of distance for the 

pairs of exceptions at a given distance. Note the general trend for an increase of relative streamline 

density in the long-range connections, again suggesting that the EDR outliers that are expected to 

play a predominant role in shaping dynamics are more prevalent at longer-distances. 

 For visualization, Figure 3G shows a rendering of the combined HCP tractography in MNI space 

(without cerebellum and brainstem). Crucially, the edge-complete connectome can be compared with 

the relative simplicity of the spatial location of the long-range outliers shown in Figure 3H. Here, we 

computed the regions with long-range exceptions (larger than 40mm for the reasons outlined above) 

where the regions were computed as the degree of the long-range exception matrix. We render these 

regions on various views of the human brain. What is clear from this rendering is that the regions 

with long-range connections are mainly outside of primary sensory regions. Instead they are found in 

higher association cortex, which has been shown by many studies to be involved in higher brain 

function 24. 

 

Rare long-range EDR outliers in brain architecture improve information processing 

Whole-brain models offer the advantage that they can be systematically altered to fit the empirical 

data making it possible to test different hypotheses 25. Here, we aimed to investigate the effect of rare 

long-range EDR outliers. From the empirical anatomical data, we extracted two connectivity 
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matrices, C67, with the EDR and with long-range connections on top (EDR+LR). In this way, the 

human EDR matrix is implemented using Equation 9 as used for the ring architecture, but now 

employing three-dimensional empirical neuroimaging data. This enabled us to estimate r(n, p) as the 

Euclidean distance between regions n and p in 3D MNI brain space, and the decay, λ? was estimated 

from the human dMRI tractography as mentioned above. This yields λ? = 0.18mm-1, which is lower 

than the values λ? = 0.78 mm-1 found in mice and similar to the value λ? = 0.19 mm-1 found in non-

human primates 4, 5. And again, similar for the EDR+LR ring architecture, we estimated the long-

range EDR outliers (specified above) from the human dMRI tractography and added this to the human 

EDR.  

 We used these two coupling matrices in whole-brain models of Stuart-Landau oscillators fitting 

the empirical functional neuroimaging from 1003 human subjects. The BOLD fMRI time series were 

transformed to phase space by filtering the signals in the range between 0.008-0.08 Hz and using the 

Hilbert transforms to extract the phase changes of the signal for each node over time (see Methods). 

We chose the respective optima for investigating the role of long-range connections for information 

processing.  

 The key findings are shown in Figure 4. In Figure 4A, we show the evolution of the error of the 

FC fitting to the empirical data for both models as a function of the global coupling strength, G. The 

error of the FC fitting is given by the square root of the difference between the simulated and 

empirical FC matrices. We found for each model an optimal working point with GEDR=1.55 and 

GEDR+LR=1.3, both with a very good level of fit to the empirical data. We used these values as the 

basis of the following investigations to study our two hypotheses.  

 Unlike the model with the ring architecture, the model with empirical brain data allows us to 

directly test our hypotheses. Figure 4B shows boxplots of the errors of the FC fitting for the two 

models at the corresponding optimal working point. As hypothesised, the EDR+LR with the long-

range connections perform significantly better in fitting the empirical data (p<0.001, Wilcoxon rank 

sum). This confirms and extends the results from the simple ring architecture to the human brain and 

emphasises the important role of the long-range connections for brain function.  

 The model allows testing whether the long-range connections are important for real brains. Our 

hypothesis implies that the EDR+LR model should have increased FC long-range, whilst providing 

an improved fitting of the empirical data (smaller error). We focused on the absolute value of the FC 

long-range connections and selected pairs with long-range distances over 40 mm for the two models, 

repeated 100 times.  

 As hypothesised, the results in Figure 4C show a significant increase for FC long-range for the 

EDR+LR model (p<0.001, Wilcoxon rank sum). The increase in FC long-range for the EDR+LR 

model is concomitant with a smaller error (shown in Figure 4B). Thus, similar to the ring EDR+LR 
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model, the long-range connections in the human EDR+LR model increase the FC long-range while 

having a smaller fitting. The result thus confirms that this increase is what happens in real data.  

 Furthermore, we wanted to test our hypothesis that the long-range connections are a decisive factor 

for improving information processing. Figure 4D shows that the human EDR+LR model 

significantly increase information cascade (p<0.001, Wilcoxon rank sum) compared to the EDR 

model. A more detailed investigation of this is shown in Figure 4E, which plots the information 

cascade flow for the two models. Again, we found an increase for the EDR+LR model (red line) 

compared with EDR models (grey line) as function of the scales in vortex space. These results are in 

line with our hypotheses and demonstrate the functional importance of long-range connections for 

information processing.  

 We were interested in investigating other functional consequences of long-range connections in 

the human brain. The advantage of using a model means that we can measure the sensitivity of the 

model to external perturbation, which is a standard physics measure usually called susceptibility. 

Indeed, this measure can be obtained by perturbing the whole-brain model at the optimal working 

point by randomly changing the local bifurcation parameter, a6, in the range [-0.02:0] at the node 

level n. Susceptibility is then estimated by measuring the modulus of the local Kuramoto order 

parameter, i.e. 𝑅i=$(𝑥̅, 𝑡) for the perturbed case, and 𝑅=$(𝑥̅, 𝑡) for the unperturbed case. Thus, we 

define susceptibility s follows: 

 𝜒 = 〈〈〈𝑅i=$(𝑥̅, 𝑡)〉( − 〈𝑅=$(𝑥̅, 𝑡)〉()〉(@"AB?〉% (10) 

where 〈 〉(, 〈 〉(@"AB? and 〈 〉% are the mean averages across time, trials and space, respectively. As 

can be seen from Figure 4F, again the long-range connection model outperforms the simple EDR 

model. Thus, the long-range connections add sensitivity to external stimulation, which could be 

important for task-related information processing (see below). 

 As a complementary measure of the effects of long-range connections on information processing, 

we tested the level of predictability in vortex space for 𝑞 steps in the future. The predictability is 

computed by the correlation 𝑐𝑜𝑟𝑟((𝑅=$(𝑥̅, 𝑡), 𝑅=$(𝑥̅, 𝑡 + 𝑞)), where 𝑐𝑜𝑟𝑟( signifies correlation across 

time. As shown in Figure 4G, again the EDR+LR model with long-range connections outperforms 

the EDR model being better able to predict the future state of the brain.  

 Importantly, as shown in Figure 4H, this functional enhancement of information processing is 

happening in the turbulent-like regime (compare empirical, EDR+LR and EDR models). In order to 

show the significance of this, we constructed and computed turbulent fluctuations on surrogate data 

which are shuffled while maintaining the spatiotemporal characteristics of the empirical data 26. The 

significant difference (p<0.001, Wilcoxon rank sum) offers further confirmation that turbulence 

provides the underlying intrinsic backbone necessary for optimal information processing. This 
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finding is consistent with the existence of turbulent-like empirical brain dynamics 15 but extends this 

by showing the explicit link to information processing.  

 In order to fully appreciate the spacetime evolution of turbulent fluctuations in vortex space, we 

have produced Supplementary movies V1 and V2, which show the spatiotemporal evolution of the 

local Kuramoto parameter 𝑅!(𝑥̅, 𝑡) in the ring architecture and in the empirical brain data. 

 Finally, we were interested in providing potential evidence for the involvement of the long-range 

connections in the generation of resting state networks. Figure 4I shows the level of fitting of both 

models with the seven Yeo resting state networks. As can be seen both models provide good fits to 

the resting state networks, but the EDR+LR model is significantly better at fitting the visual, saliency, 

control network (CON) and default mode network (DMN) (all p<0.001, Wilcoxon rank sum). This 

important result suggests that while the EDR could well be the underlying anatomical skeleton 

enabling resting state networks, the long-range connections enhance the generation of the resting state 

networks. 

 

Discussion 
The brain appears to be unique in terms of its complex architecture spanning multiple scales. Unlike 

other known physical systems, where the elements communicate with nearest and close neighbouring 

elements (such as for example fluids or the heart), the brain uniquely possesses distant connections 

including a small contingent of long-range anatomical outliers, which – given their crucial role – we 

hypothesise have been under strong evolutionary pressure.  

 Here, we first use the non-invasive method of dMRI to show that the connectivity of the human 

cortex is similar to other animals, where large-scale tract-tracing experiments have shown that the 

underlying connectivity follows an EDR, where a small proportion of rare long-range outliers form 

connections with stronger weights than expected from the EDR. Importantly, we were able to use 

modelling to causally demonstrate the significant functional consequences of these rare long-range 

exceptions in terms of information processing.  

 Given that functional brain activity is well described by coupled oscillators 12, 13, 17, 18, 27, we first 

studied oscillators in the simplest possible ring architectures. We demonstrated that all three different 

ring architectures of coupled oscillators (with nearest neighbour, EDR and EDR with long-range 

exceptions, EDR+LR) are capable of supporting a turbulent fluctuation regime but are not all equally 

efficient for information transfer. Even if turbulent fluctuations are naturally suited to information 

transmission, we show that a small proportion of long-range connections significantly amplifies 

information flow as reflected in a concomitant increase of long-range FC, and, more importantly, in 
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the information cascade (defined as a measure of information flow providing predictability across 

scales). 

 These findings address the functional significance of the architecture principals that we examined 

in the human brain, where our hypothesis can be corroborated empirically. We built a whole-brain 

resting state model exploiting a large empirical neuroimaging dataset of 1003 human subjects. We 

tested our hypothesis concerning the relevance of long-range connections for information 

transmission by contrasting two whole-brain models, EDR and EDR+LR, structurally fitted based on 

the empirical anatomical connectome. In terms of function, the latter better fitted the functional 

empirical data and in addition showed an increase in the specific measures of long-range FC and 

information cascade. Importantly, the model with EDR+LR also better fitted the emergence of the 

classical resting-state networks. This demonstrated the potentially immense functional benefits for 

information processing in the turbulent fluctuation regime sustained by the brain architecture with 

long-range coupling. 

 The theoretical results from the model with the ring architecture shows that any small proportion 

of long-range connections can improve the information cascade (independent of their spatial 

location). However, the empirical results using a model with the brain architecture clearly show that 

these long-range exceptions are not spatially random but closely linked to the emergence of 

functionally important resting-state networks. Given that these networks have been shown to play a 

key role in task-based processing 28-30, we speculate that this suggests that evolution has improved on 

the basic EDR by refining long-range exceptions thereby improving brain function most notably its 

ability to perform certain behaviours optimising survival. This will need to be further explored in 

cross-species investigations.  

 In addition, it is of significant interest that the whole-brain model is operating in the subcritical 

regime at the edge of the bifurcation which means that the dynamics are not showing deterministic 

spatiotemporal chaos as is the case under the supercritical regime. We have decided to call the very 

interesting dynamics found in this regime for turbulent-like or turbulent fluctuation in order to capture 

the significant variability of the Kuramoto local order parameter, which is used for characterising 

amplitude turbulence in the supercritical regime. Indeed, this parameter describes the level of local 

synchronisation and therefore its variability is associated with turbulent-like fluctuations. This highly 

relevant turbulent-like regime for fitting empirical brain dynamics clearly warrants further 

investigations. 

 Research has investigated the hierarchical organisation of brain structure and function 31-34, which 

has demonstrated a common network available for the orchestration of task and rest 15. Previous 

research has demonstrated that the turbulent core of brain activity is largely overlapping with brain 

regions known to be involved in lower level sensory processing 15. We therefore hypothesise that the 
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anatomical basis of this orchestration could be well served by the long-range outliers, which 

effectively are able to control brain activity in the turbulent core sustained by the underlying EDR. 

An obvious next step would therefore be to study a task in a large empirical dataset, a challenging 

prospect given the difficulty at the required granularity for whole-brain models to capture the 

dynamical complexity specific to a given task. 

 Structural analysis of the cortical network has emphasised its spatial embedding, showing that 

weight and distance of connections are tightly interwined. Connection weights span 5 orders of 

magnitude and the action of the EDR means that the average connection weight declines 

exponentially with distance 4. A corollary of the decline in weight is that neighbouring areas show 

100% connectivity with connection densities falling to very low levels with distance. These 

considerations suggest that long-distance connections confer a high degree of binary specificity to 

the cortical network which is amply confirmed by statistical analysis 10. Further, this analysis shows 

that long-distance connections carry precise signatures that ensure an important role of globalisation 

to a small group of areas. An intriguing finding of the present study is that the weight values of long-

range connections appear to play a decisive role, given the marked differences between EDR and 

EDR+LR models in supporting the turbulent-like dynamics of information processing.  

 The present study provides a potential framework for explaining the relatively fast speed of 

computations needed for survival of the individual and species, which requires the fast interaction 

between feedforward and feedback brain connections. Given that the relatively slow average 

transmission delay between neurons, which is typically on the order of 40 ms between neurons, it has 

long been a conundrum how the brain can quickly distinguish between different categories of stimuli. 

Take for example the neuroimaging studies using magnetoencephalography (MEG) which have 

shown activity around 130-170 ms in the fusiform face area (FFA) when faces are presented (xx 

Kanwisher). This rapid processing is likely potentiated by scale-free network processing in the 

turbulent core in the sensory regions and could potentially be a purely feedforward phenomenon. 

Crucially, however, human neuroimaging experiments have shown that the feedback provided by the 

long-range exceptions must play a key role in directing the flow of information 35, 36. As an example, 

MEG studies of infant and adult faces have shown activity in the FFA for both stimuli but with 

simultaneous activity in the orbitofrontal cortex (OFC) at around 130ms only for the infant faces 36. 

Interestingly, even small deviations from the infant face template such as cleft lip, leads to much 

diminished activity in the OFC 37. This ‘parental instinct’ is found in even non-parents and clearly 

plays a role in directing attention to the special category of infants, presumably to ensure that we 

provide the necessary caregiving, even when we are not the parents 38. The long-range feedback from 

the OFC, presumably via the inferior longitudinal fasciculus, is controlling the rapid information 

processing flow, prioritising infant faces 36, 37 and sounds 39 over other less important stimuli.  
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 The crucial functional role played by the long-range exceptions in controlling the turbulent-like 

core has important implications for the hierarchical organisation of brain processing. One function of 

the EDR is that it confers a core-periphery structure in the cortex, where the core is largely centred 

on the prefrontal cortex 4, 11. The high-efficiency cortical core has been speculated to provide the 

structural underpinnings of the Global Workspace hypothesis 40, 41, which proposes that recurrent 

processing in the core allows amplification and globalization of conscious states 11, 32, 42. These results 

also provide important underpinnings for other theories of consciousness such as the Integrated 

Information Theory (IIT) 43 and the Temporo-spatial Theory of Consciousness (TTC) 44, given that 

the turbulent-like regime promotes the efficient information cascade needed for spatiotemporal 

integration. A better and more detailed investigation of the role of particular EDR outliers is expected 

to give an improved understanding of the link between structure and higher cognitive function. 

Furthermore, since the cortical core as defined by the EDR is found across species 4-6, 45, the 

exploration of its involvement in turbulence across species would lead to a better understanding of 

comparative cognitive function. 

 The shaping of functional activity by a fixed anatomical structure is a conundrum that brings to 

mind Thomas Aquinas famous dictum: “Quidquid recipitur ad modum recipientis recipitur”, i.e. 

container (or recipient) shapes the content. It has been proposed that the flexibility of brain function 

associated with the rich palette of behaviours is linked to changeable connectivity through for 

example neuromodulation 27, 46. This effective connectivity is known also to change with brain states 

such as wakefulness, light and deep sleep. Thus, it would of considerable interest to investigate how 

the information cascade changes in different brain states.  

 In addition, we hypothesise that turbulence, information cascade and especially the lack of control 

of these may play a central role in neuropsychiatric disorders. The present framework would lend 

itself well to causally describe the emotional and information processing changes found in 

neuropsychiatric disorders and may provide a novel way to find sensitive and specific biomarkers. 

 These findings also pose a question regarding the role of long-range outliers across species. Future 

research could investigate the causal link between the underlying brain architecture of different 

species, dynamical working point, turbulence, information cascade and behavioural complexity. 

Ultimately, this could help cast new light on the deep question what makes us human.  
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Methods 

Neuroimaging Ethics 
The Washington University–University of Minnesota (WU-Minn HCP) Consortium obtained full 

informed consent from all participants, and research procedures and ethical guidelines were followed 

in accordance with Washington University institutional review board approval. 

Neuroimaging Participants 
The data set used for this investigation was selected from the March 2017 public data release from 

the Human Connectome Project (HCP) where we chose a sample of 1003 participants.  

  

Schaefer parcellation 
Schaefer and colleagues created a publicly available population atlas of cerebral cortical parcellation 

based on estimation from a large data set (N = 1489) 47. They provide parcellations of 400, 600, 800, 

and 1000 areas available in surface spaces, as well as MNI152 volumetric space. We used here the 

Schaefer parcellation with 1000 areas and estimated the Euclidean distances from the MNI152 

volumetric space and extracted the timeseries from HCP using the HCP surface space version. 

Neuroimaging acquisition for fMRI HCP  
The 1003 HCP participants were scanned on a 3-T connectome-Skyra scanner (Siemens). We used 

one resting state fMRI acquisition of approximately 15 minutes acquired on the same day, with eyes 

open with relaxed fixation on a projected bright cross-hair on a dark background. The HCP website 

(http://www.humanconnectome.org/) provides the full details of participants, the acquisition protocol 

and preprocessing of the data for resting state.  

Preprocessing and extraction of functional timeseries in fMRI resting data 
The preprocessing of the HCP resting state and task datasets is described in details on the HCP 

website. Briefly, the data is preprocessed using the HCP pipeline which is using standardized methods 

using FSL (FMRIB Software Library), FreeSurfer, and the Connectome Workbench software 48, 49. 

This preprocessing included correction for spatial and gradient distortions and head motion, intensity 

normalization and bias field removal, registration to the T1 weighted structural image, transformation 

to the 2mm Montreal Neurological Institute (MNI) space, and using the FIX artefact removal 

procedure 49, 50. The head motion parameters were regressed out and structured artefacts were 

removed by ICA+FIX processing (Independent Component Analysis followed by FMRIB’s ICA-

based X-noiseifier 51, 52). Preprocessed timeseries of all grayordinates are in HCP CIFTI grayordinates 

standard space and available in the surface-based CIFTI file for each participants for resting state. 
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 We used a custom-made Matlab script using the ft_read_cifti function (Fieldtrip toolbox 53) to 

extract the average timeseries of all the grayordinates in each region of the Schaefer parcellation, 

which are defined in the HCP CIFTI grayordinates standard space. Furthermore, the BOLD time 

series were transformed to phase space by filtering the signals in the range between 0.008-0.08 Hz, 

where we chose the typical highpass cutoff to filter low-frequency signal drifts 54, and the lowpass 

cutoff to filter the physiological noise, which tends to dominate the higher frequencies 54, 55. We then 

applied the Hilbert transforms in order to obtain the phases of the signal for each brain node as a 

function of the time.  We computed the functional connectivity (FC) as the correlation between the 

BOLD timeseries in all 1000 regions in the Schaefer Parcellation.  

 

Structural connectivity using dMRI 
The Human Connectome Project (HCP) database contains diffusion spectrum and T2-weighted 

imaging data from 32 participants with the acquisition parameters described in details on the HCP 

website 56. The freely available Lead-DBS software package (http://www.lead-dbs.org/) provides the 

preprocessing which is described in details in Horn and colleagues 57 but briefly, the data was 

processed using a generalized q-sampling imaging algorithm implemented in DSI studio (http://dsi-

studio.labsolver.org). Segmentation of the T2-weighted anatomical images produced a white-matter 

mask and co-registering the images to the b0 image of the diffusion data using SPM12. In each HCP 

participant, 200,000 fibres were sampled within the white-matter mask. Fibres were transformed into 

MNI space using Lead-DBS 58. We used the standardized methods in Lead-DBS to produce the 

structural connectomes for both Schaefer 1000 parcellation Scheme 47 where the connectivity has 

been normalised to a maximum of 0.2. 

 

Stuart-Landau Model 
The Stuart-Landau model consists of coupled dynamical oscillators in a given architecture. We used 

two different architectures: 1) ring architecture with nearest neighbour, EDR and EDR+LR coupling, 

and 2) anatomical brain architecture with EDR and EDR+LR coupling fitted to the empirical data. 

The local dynamics of each mode is described by the normal form of a supercritical Hopf bifurcation, 

also known as the Stuart-Landau Oscillator, which is the canonical model for studying the transition 

from noisy to oscillatory dynamics 59. This has been shown to fit brain dynamics well, where the 

complex interactions between Hopf oscillators have been shown to reproduce significant features of 

brain dynamics observed in electrophysiology 12, 13, MEG 17 and fMRI 14, 18. 
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 The dynamics of an uncoupled Stuart-Landau node n is given by the following set of coupled 

dynamical equations, which describes the normal form of a supercritical Hopf bifurcation in Cartesian 

coordinates: 

 45#
4/
= a6x6 − [x62 + y62]x6 −ω6y6 + 	νη6(t) (11) 

 4<#
4/
= a6y6 − [x62 + y62]y6 +ω6x6 + 	νη6(t) (12) 

 

where η6(t)  is additive Gaussian noise with standard deviation ν . This normal form has a 

supercritical bifurcation a6=0, so that if a6>0, the system engages in a stable limit cycle with 

frequency 𝑓; = ω6/2𝜋. On the other hand, when a6<0, the local dynamics are in a stable fixed point 

representing a low activity noisy state.  
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Figures 

 
Figure 1. Overview of analysis and modelling. We used modelling of oscillators with different 

architectures of coupling to study the effects on the underlying dynamics. A) The information 

processing capability of turbulence can be measured in terms of the functional connectivity (FC) as 

a function of distance and in terms of the efficiency of the transfer of information, i.e. the information 

cascade. B) We modelled Stuart-Landau oscillators with three distinct ring architectures of coupling: 

diffusive, exponential distance rule (EDR), and EDR plus a small proportion of long-range 

connections. For each model, we study the degree of turbulence, functional connectivity in long-

range distances (FC long-range) and information cascade. C) We then proceed to model large-scale 

empirical functional neuroimaging from 1003 people in the human connectome. We fit the EDR from 

the anatomical dMRI connectivity data. Then we build two models with the Stuart-Landau oscillators 

coupled using EDR and EDR plus long-range connections. Again, we measure the resulting 

turbulence, FC long-range and information cascade. The best fitted results demonstrate the large 

impact of anatomical long-range connections on the information processing underlying brain 

function. 
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Figure 2. Long-range connections in ring structure improves information processing. We coupled 

Stuart-Landau oscillators in different types of ring architectures: nearest neighbour (NN, black ring), 

exponential distance rule (EDR, blue ring) and EDR+long-range (LR, red ring) connections. We 

measured turbulence, averaged functional connectivity at long-range distances (FC long-range) and 

information cascade in various scenarios. A) First, we plot these measures as a function of global 

coupling, G, in the models. In the EDR+LR model, p=0.05, as the probability of long-range 

connections. The EDR+LR model is the best, showing long-range connectivity having a large effect 

on FC long-range and information cascade (compare the red curves with the blue and grey curves). 

B) Using the optimal global coupling of the EDR+LR model, G=0.65, we plot the same three 
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measures but now as a function of the probability of long-range connections. Again, we find that the 

EDR+LR model is the best (compare the red curves with the blue and grey curves). C) We 

investigated the effects of turbulence on functional connectivity and information cascade. The figure 

shows a row of boxplots for the measures for the three ring architectures with a low level turbulence 

with a low global coupling G=0.01. In this low-level of turbulence regime, the effect of the long-

range connections is moderate. D) However, if we increase the level of turbulence at the optimal 

point of the EDR+LR model, G=0.65, the effect of the long-range connections is highly significant 

for both FC long-range (middle panel) and information cascade (rightmost panel). E) We were 

interested in comparing low and high turbulence regime and investigated the EDR+LR model with 

G=0.01 (low turbulence), and G=0.65 (high turbulence regime) in both cases in p=0.05. The figure 

shows a column with snapshots of phases in the low turbulent regime (top) and high turbulent regime 

(bottom). The phases are clearly more clustered for the high compared to low turbulent regime. The 

second column shows the distribution of the FC long-range for the low turbulent regime (top) and 

high turbulent regime (bottom). Again, note the strong increase of the FC long-range for the high 

compared to low turbulent regime. F) We show the information cascade flow for the three different 

ring architectures at the optimal global coupling, revealing the effect of the long-range connectivity. 

The bottom is a normalised version of the top plot with respect to the baseline (see text). This 

demonstrates explicitly how the information transmission across the scale of the vortex space is 

affected by the long-range coupling. 
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Figure 3. The human brain has a unique natural architecture with long-range anatomical 

connections on top of exponential distance rule (EDR). A) consistent tract tracing studies in non-

human primates have shown that most of the underlying brain connectivity follows the exponential 

decay described by the EDR 4. Here is shown the histogram of interareal projection lengths for all 

labelled neurons (n = 6,494,974), where the blue line shows the exponential fit with a decay rate 0.19 

mm-1. B) In order to assess whether this EDR holds for the human brain, we used the fine-grained 

Schaefer parcellation with 1000 parcels, here shown as slices in MNI space and on the surface of the 

HCP CIFTI space. C) We computed the Euclidean distance, r, in MNI space between pairs of regions. 

Here we show two examples of the pairs with r=8-10 mm (top) and r=160-162 mm (bottom). D) We 

estimated the empirical HCP dMRI tractography of the human brain, as shown by the streamline 

densities between the pairs of regions in the Schaefer parcellations as a function of the Euclidian 

distance between the nodes. We found that the EDR is a good approximation of the human structural 
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anatomical connectivity as shown by the red line showing the fitted EDR with an optimal 𝜆=0.18 mm-

1 fitting the empirical dMRI tractography (blue line). Equally, the remarkable similarity can be 

appreciated by comparing the two matrices showing the structural connectivity matrices for the 

empirical dMRI tractography (left subpanel) and the optimally fitted EDR connectivity (right 

subpanel). E) However, our results also demonstrate that similar to the non-primates, the anatomy 

is also characterized by a small proportion (1.23%) of long-range outliers of the EDR. We identify 

an exception by computing the distribution for a given distance, and selecting those connections that 

are 3 standard deviations above the mean. Here, we plot the relative percentage of long-range 

outliers (for pairs at a given distance) as a function of that distance. Note the increase in relative 

percentage, especially for the longest-range connections. F) For these exceptions, we show relative 

streamline densities (for the pairs at a given distance) as a function of distance. Note the general 

tendency for an increase in the long-range connections. G) We plot a rendering of the combined HCP 

tractography in MNI space. H) The panel shows a rendering on the human brain of the regions (in 

blue) as a degree of the matrix of the long-range EDR outliers. I) Note how these EDR long-range 

outliers are concentrated outside of primary sensory regions (in yellow, as indexed by the myelin 

ratio) and instead in higher association brain regions shown by many studies to be involved in higher 

brain function.  
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Figure 4. Whole-brain modelling shows how long-range connections in human brain improves 

information processing. From the empirical anatomical data, we extracted two matrices with the 

exponential distance rule (EDR) and EDR+long-range (EDR+LR) connections. We then used these 

two coupling matrices in a whole-brain model of Stuart-Landau oscillators fitting the empirical 

functional neuroimaging, and chose the respective optimum for analysing the suitability of these 

architectures for information processing. A) The panel shows the error of the FC fitting to the 

empirical data for both models as a function of the global coupling strength, G. We use the respective 

minima (grey line, GEDR=1.55 and red line, GEDR+LR=1.3) as the basis of the following investigations. 

B) The panel shows boxplots of the errors of the FC fitting for the two models. The EDR+LR with the 

long-range connections perform significantly better (p<0.001, Wilcoxon rank sum). This extends the 

results from the ring architecture to the human brain and emphasises the important role of the long-

range connections. C) The panel shows boxplots of the mean values of the FC long-range (involving 

pairs with distances over 40mm) for the two models across 100 trials. There is a significant increase 

for the EDR+LR model (p<0.001, Wilcoxon rank sum), which confirms the important role of long-

range connections also found in the ring architecture (shown in Figure 2). D) Still, this raises the 
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important question of the function of the long-range connections for information processing and 

specifically for the information cascade. The panel confirms their significant role (p<0.001, Wilcoxon 

rank sum) for increasing information cascade in the human brain architecture (compare the 

EDR+LR with EDR models). E) The information cascade flow is also increased for the EDR+LR 

model with long-range connections (compare red line for EDR+LR and grey line for EDR models) 

as function of the scales in vortex space. F) Using whole-brain modelling allows to measure the 

susceptibility (the reaction to external perturbation, see text) of the two models and again the long-

range connections outperform the EDR model. G) We can also measure the predictability in vortex 

space for n steps in the future (shown on x-axis). Again, the EDR+LR model with long-range 

connections outperforms the EDR model. H) Showing the amplitude turbulence for the empirical 

(Emp) data, surrogate (Surr) data, EDR+LR and EDR models. Both the empirical data and the two 

models are in the turbulent regime. I) The seven subpanels show brain renderings of the seven Yeo 

resting state networks with the corresponding boxplots of the FC fitting of the two models (smaller 

values are better). Again, the EDR+LR model outperforms the EDR model and is able to better fit 

the visual, saliency, control network (CON) and default mode network (DMN). This suggests that the 

long-range connections are fundamental for the generation of the classic resting state networks. 
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