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Remote sensing of solar-induced chlorophyll fluorescence (SIF) provides new possibilities to estimate terrestrial gross primary
production (GPP). To mitigate the angular and canopy structural effects on original SIF observed by sensors (SIFobs), it is
recommended to derive total canopy SIF emission (SIFtotal) of leaves within a canopy using canopy interception (i0) and
reflectance of vegetation (RV). However, the effects of the uncertainties in i0 and RV on the estimation of SIFtotal have not been
well understood. Here, we evaluated such effects on the estimation of GPP using the Soil-Canopy-Observation of
Photosynthesis and the Energy balance (SCOPE) model. The SCOPE simulations showed that the R2 between GPP and SIFtotal
was clearly higher than that between GPP and SIFobs and the differences in R2 (ΔR2) tend to decrease with the increasing levels
of uncertainties in i0 and RV. The resultant ΔR2 decreased to zero when the uncertainty level in i0 and RV was ~30% for red
band SIF (RSIF, 683 nm) and ~20% for far-red band SIF (FRSIF, 740 nm). In addition, as compared to the TROPOspheric
Monitoring Instrument (TROPOMI) SIFobs at both red and far-red bands, SIFtotal derived using any combination of i0 (from
MCD15, VNP15, and CGLS LAI products) and RV (from MCD34, MCD19, and VNP43 BRDF products) showed comparable
improvements in estimating GPP. With this study, we suggest a way to advance our understanding in the estimation of a more
physiological relevant SIF datasets (SIFtotal) using current satellite products.

1. Introduction

Recently, solar-induced chlorophyll fluorescence (SIF) has
been shown to be a good indicator of terrestrial gross pri-
mary production (GPP) [1–3]. Over the past decade, many
efforts have been devoted into the satellite SIF retrievals
using existing instruments such as the Japanese Greenhouse
Gases Observing Satellite (GOSAT), the Global Ozone Mon-
itoring Experiment-2 (GOME-2), the Orbiting Carbon
Observatory-2/3 (OCO-2/3), the TROPOspheric Monitor-
ing Instrument (TROPOMI), and the Chinese Carbon Diox-
ide Observation Satellite Mission (TanSat) [4–10]. These

satellite SIF data have been increasingly used to estimate
global terrestrial GPP in two different approaches: con-
straining process-based biosphere models [11–14] and
establishing the empirical relationship between GPP and
SIF [2, 3, 15, 16].

However, only a portion of fluorescence, which is origi-
nally emitted by chlorophyll-a molecules in the photosyn-
thesis system [17, 18], escapes from canopies and then is
observed by sensors (SIFobs) in a particular observation
direction [19–21]. The difference in escape probability
among biomes could also cause the difference in the GPP-
SIFobs relationship. For example, SIF escapes less from
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needle leaf forest than broadleaf forest canopies due to the
higher clumping effect of needle leaf forest [22], and this dif-
ference in SIF escape probability between these two types of
forests should be considered in the relationship between
GPP and SIFobs.

Therefore, it is required to estimate the total canopy SIF
emission (SIFtotal) to mitigate the canopy structural and
angular effects on the estimation of GPP from satellite SIF
data [20, 23–26]. Several studies have proposed methods
to derive SIFtotal from SIFobs using statistically based
approaches, such as random forest algorithm [23], and
physically based approaches, such as the spectral invariant
theory that requires canopy interception (i0) and canopy
reflectance of vegetation (RV) [19, 25]. Regardless of statis-
tically or physically based approaches, auxiliary data such
as MERIS Terrestrial Chlorophyll Index (MTCI) and can-
opy reflectance at bands of 685nm, 710nm, and 785 nm
are required by Liu et al. [23] and near-infrared reflectance
of vegetation (NIRV) and leaf area index (LAI) are required
by Zhang et al. [26]. Due to its simplicity and efficiency in
deriving SIFtotal, the approach based on NIRV and i0 has been
adopted by Zhang et al. [26] to derive global SIFtotal from
OCO-2 SIFobs. A more consistent relationship between GPP
and SIFtotal across C3 plants is established, demonstrating
the advantage of SIFtotal for global GPP estimation.

Although better relationships of SIFtotal with GPP than
SIFobs have been reported for TROPOMI [20] and OCO-2
SIF [26], uncertainties in the above-mentioned satellite
products are still considerable, which could impact the rela-
tionships between GPP and SIFtotal. Currently, the trade-off
between the advantage of accounting for the escape proba-
bility and the disadvantage of the uncertainty in the auxiliary
data has not been well investigated to better understand the
usefulness of SIFtotal. Nevertheless, it is difficult to accurately
estimate the uncertainties for all satellite products. As a pow-
erful tool, the Soil-Canopy-Observation of Photosynthesis
and the Energy balance (SCOPE) model [27] can capture
the physical mechanisms behind photosynthesis and fluores-
cence, and it has been extensively used in the community of
SIF remote sensing [28–31]. Therefore, the SCOPE model
can be used to simulate the uncertainty effect on the
relationships between GPP and SIFtotal by artificially adding
random uncertainty.

The fluorescence spectrum emitted by chlorophyll-a
molecules in the 650-850 nm range has two peaks in the
red (~685nm, RSIF) and far-red (~740 nm, FRSIF) [17, 18,
32]. Both RSIF and FRSIF originate from photosystem I
(PS I) and photosystem II (PS II) [17]. RSIF is mainly from
PS II, which is better linked to photochemical quenching
and nonphotochemical quenching [33, 34]. As expected,
RSIF should be more sensitive to GPP than FRSIF [35]. This
is supported by a global sensitivity analysis of the SCOPE
model [36]. In addition, Zhang et al. [37] also reported that
RSIF shows better seasonal correlation with photosynthesis
than FRSIF from Scots pine at the leaf scale during the
spring recovery of photosynthesis. Furthermore, canopy
SIFtotal at both red (RSIFtotal) and far-red band (FRSIFtotal)
has also been investigated with field observations [24, 38],
but their performance in estimating GPP has not been inves-

tigated and compared with satellite observations. Moreover,
the signal of RSIF is weaker than that of FRSIF due to the
stronger reabsorption of pigments, which reduces the
retrieval accuracy of RSIF compared to FRSIF [9, 39].

In this work, the main objectives are (1) to investigate
the effect of uncertainties in i0 and RV on the relationships
between GPP and SIFtotal based on the SCOPE model simu-
lations and (2) to evaluate the sensitivity of estimated SIFtotal
to uncertainties in multiple satellite LAI and BRDF products.

2. Materials and Methods

2.1. TROPOMI SIF Data. Both RSIF and FRSIF from TRO-
POMI were used in this study (ftp://fluo.gps.caltech.edu/
data/). The Sentinel 5 Precursor (S-5P) satellite with a single
payload of TROPOMI was launched on 13 October 2017 on
a near-polar, sun-synchronous orbit. The repeat cycle in the
nadir direction is 17 days, and the overpass time at equator
is ~13 : 30 local time. S-5P has a varying across track spatial
resolutions of 3.5-14 km according to pixel position but a
fixed along track spatial resolution of 7.2 km (5.6 km after
6 August 2019). Recently, TROPOMI SIF has been success-
fully retrieved using a data-driven approach based on a sin-
gular value decomposition technique in the atmospheric
windows of 663-685.3 nm for RSIF [39] and 743-758nm
for FRSIF [9]. Details about the retrieval process can be
referred to Köhler et al. [9] and Köhler et al. [39] and hence
not shown here for simplicity.

2.2. Derivation of Total Canopy SIF Emission at the
Photosystem Level (SIFtotal). A full description of the theoret-
ical basis behind the derivation of SIFtotal can be found in
recent studies [19, 20, 25, 40]. Only a brief description is pre-
sented here. The escape probability of fluorescence from leaf
surface to canopy (f LC) for dense canopies and black soil can
be approximately estimated as follows [19]:

f LC =
Rλ

i0 × ωλ

, ð1Þ

where Rλ is the bidirectional reflectance factor in the same
wavelength (λ) and observation direction as SIFobs and ωλ
is leaf albedo (leaf reflectance + transmittance). To reduce
soil effects on Rλ for sparse canopies, Zeng et al. [25]
proposed to replace Rλ at near-infrared band with near-
infrared reflectance of vegetation (NIRV), which is the prod-
uct of reflectance in near-infrared band and normalized
difference vegetation index (NDVI) [41]:

NIRV = NDVI × Rnir,

NDVI = Rnir − Rred
Rnir + Rred

,
ð2Þ

where Rnir and Rred are the reflectance at near-infrared and
red bands, respectively. Similarly, red reflectance of vegeta-
tion (RedV) was calculated with Rred and NDVI [24]:

RedV = NDVI2 × Rred: ð3Þ
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To avoid confusion, Rred is the reflectance of whole can-
opy (vegetation + soil) in the red band and RedV is the
reflectance of vegetation in the red band. Since no corre-
sponding reflectance data is currently available for satellite
SIF at the same sun-viewing geometry as SIF, the
RossThick-LiSparseR (RTLSR) BRDF model can be used to
simulate reflectance at red and near-infrared bands that
can be further used to calculate RedV and NIRV. Therefore,
RedV and NIRV can be used as Rλ in Equation (1) for calcu-
lating f LC for RSIF and FRSIF, respectively. Parameters to
drive the RTLSR BRDF model can be available from existing
BRDF products and details are presented in Section 2.3. i0 is
commonly calculated with G-function (G), leaf area index
(LAI), clumping index (CI), and solar zenith angle (SZA, θ)
as follows [42]:

i0 = 1 − EXP −G θð Þ × LAI × CI
cos θ

� �
,

G θð Þ = ϕ1 + ϕ2 × cos θ,
ϕ1 = 0:5 − 0:663χL − 0:33χL

2,
ϕ2 = 0:877 1 − 2ϕ1ð Þ,

ð4Þ

where the empirical derived parameters ϕ1 and ϕ2 are depen-
dent on χL, which is the departure of leaf angles from a ran-
dom distribution, and χL is assigned as biome-specific values
based on the Common Land Model 4.5 (CLM 4.5) [43]. We
derive the global values of χL based on MODIS plant func-
tional type classification (MCD12Q1), and the spatial maps
of χL can be found in Figure 1. The CI data was fromHe et al.
[22]. Details of LAI products used in this study are presented
in Section 2.4. The sensitivities of the calculation of SIFtotal to
different BRDF and LAI products were systematically evalu-
ated to serve as a reference for the calculation of satellite
SIFtotal.

To derive SIFtotal at the photosystem level, the escape
probability of fluorescence from photosystem to the leaf sur-
face (f PL) was introduced [24]. Therefore, the escape proba-
bility of SIF (f PC or f esc) from photosystem level to canopy
level in any direction is calculated as follows:

f esc =
f PL × f LC

π
= Rλ × f PL
π × i0 × ωλ

= Rλ

π × i0 × Kλ

, ð5Þ

Both ωλ and f PL are negatively related to the absorptance
of pigments, such as chlorophylls a + b (Cab). In other
words, high Cab causes low ωλ and f PL, and vice versa. To
simplify Equation (5), we define Kλ as the ratio of ωλ to
f PL and assume Kλ can be roughly estimated with Cab.
Based on SCOPE model simulations (see Section 2.6), Kλ
for RSIF at 683nm quickly decreased with Cab and started
to saturate when Cab > 40μg/cm2 (Figure 2). In comparison,
Kλ for FRSIF at 740 nm showed less variations within the
ranges of 1.2–1.6. Due to the lack of accurate Cab informa-
tion, we simply set Kλ as 0.6 and 1.2 for RSIF and FRSIF,
respectively, which are suitable for a wide range of Cab.
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Figure 1: The spatial map of xL based on MODIS plant functional type classification (MCD12Q1) according to the biome-specific value
used in the Common Land Model 4.5 (CLM 4.5). xL represents the departure of leaf angles from a random distribution.
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Figure 2: The relationships between Cab and the ratio of leaf
albedo (ω) to the escape probability of fluorescence from
photosystem to leaf surface (f PL) at 683 nm (red) and 740 nm
(blue) based on the SCOPE model simulation.
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Finally, SIFtotal at the photosynthesis level can be calculated
as follows:

SIFtotal =
SIFobs
f esc

: ð6Þ

2.3. Bidirectional Reflectance Distribution Function (BRDF)
Parameter Products. To be consistent with the same sun-
viewing geometry as TROPOMI SIF, reflectance at red and
far-red bands was simulated using the semiempirical models
required for RedV and NIRV calculation, such as RossThick-
LiSparseR (RTLSR) as follows:

R θ, υ, ϕ, λð Þ = f iso + f volKvol θ, υ, ϕ, λð Þ + f geoKgeo θ, υ, ϕ, λð Þ,
ð7Þ

where θ, υ, and ϕ are the solar zenith, view zenith, and rela-
tive azimuth angles, respectively. The first term (f iso) on the
right-hand side of Equation (7) represents Lambertian
reflectance. f vol and f geo are the coefficients for volume-
scattering (Kvol) and geometric-optical (Kgeo) kernels,
respectively. These coefficients (f iso, f vol, and f geo) are avail-
able for three BRDF products, including MCD43A1,
VNP43IA1, and MCD19A3, used in this study. Several
major information (such as spatial and temporal resolu-
tions) about these products is listed in Table 1, and more
details (such as retrieval algorithm) can be found in the
listed references. These coefficients provided by both
MCD43A1 and VNP43IA1 were derived using the top-of-
canopy reflectance with varying sun-target-viewing geome-
tries after atmospheric correction [44]. The coefficients in
MCD19A3 were directly derived from top-of-atmosphere
L1B reflectance using the MultiAngle Implementation of
Atmospheric Correction (MAIAC) algorithm [45, 46]. Both
MCD43A1 and VNP43IA1 were released at a daily interval,
while MCD19A3 was released in an 8-day interval. For all
three products, the BRDF parameters with best quality were
used in this study according to the QA layer. The RedV
(NIRV) derived from MCD43 BRDF, VNP43 BRDF, and
MCD19 BRDF were denoted as MCD43 RedV (NIRV),

VNP43 RedV (NIRV), and MCD19 RedV (NIRV), respec-
tively. In addition, the differences in band configurations
between TROPOMI and MODIS/VIIRS sensors were
ignored due the marginal RMSE < 0:007 and 0.04 for red
and NIR bands, respectively (Figure 3).

2.4. Leaf Area Index (LAI) Products. Three LAI products
were used, including MODIS LAI (MCD15A2H), VIIRS
LAI (VNP15A2H), and CGLS LAI (GEOV2) (see details in
Table 2). MCD15A2H and VNP15A2H retrieval algorithms
are based on a 3-D radiative transfer model that can simulate
spectral canopy properties for each biome [47, 48]. A look-
up-table technique was developed as the main method to
retrieve LAI. When the main method failed, a back-up solu-
tion based on the empirical relationships between LAI and
NDVI was used [48]. Note that only LAI retrievals from
the main method were used in this study. CGLS LAI
(version GEOV2) was derived from PROBA-V using an
artificial neural network (ANN) that was trained based on
MODIS/TERRA collection 5 and CYCLOPES V3.1 data
[49, 50]. The LAI values outside the expected ranges were
excluded according to the quality flag (QFLAG) provided
in the CGLS products. The temporal series of CGLS LAI
were smoothed, with a temporal resolution of 10 days [51],
and MCD15A2H and VNP15A2H were composited over 8
days [52]. The uncertainty in i0 (σi0) was calculated using
the error propagation model as follows:

σi0 =
G θð Þ × CI
cos θ × EXP −G θð Þ × CI × LAI

cos θ

� �
× σLAI, ð8Þ

where σLAI is the retrieval uncertainty in LAI products. In
this study, σLAI was obtained from the standard deviation
provided in MCD15 and VNP15 LAI products and the
RMSE (root mean square error) provided in CGLS LAI
product. The i0 derived from MCD15 LAI, VNP15 LAI,
and CGLS LAI were denoted as MCD15 i0, VNP15 i0, and
CGLS i0, respectively. All absolute uncertainties in LAI and
i0 were divided by their own values to represent the relative
uncertainties (in %) following Fang et al. [53].

Table 1: Information about the three BRDF products used in this study.

Short name MCD43 MCD19 VNP43

Product name MCD43A1 MCD19A3 VNP43IA1

Version V006 V006 V001

Input data
MOD09GA
MYD09GA

MOD02
MYD02

VNP09GA
VNP39GA

Equatorial crossing time 10 : 30 & 13 : 30 10 : 30 & 13 : 30 13 : 30

Temporal coverage 2000 - 2000 - 2012 -

Global coverage interval Daily 8-day Daily

Spatial resolution 500m 1 km 500m

Reference [44, 74] [45, 46] [71, 73]

Data source WWW1 WWW1 WWW1

Note: WWW1: search.earthdata.nasa.gov.
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2.5. GPP from Tower Flux Sites. We collected GPP from 50
flux tower sites from four flux databases, including Ameri-
Flux (https://ameriflux.lbl.gov/), OzFlux (http://data.ozflux
.org.au/portal/home), European Flux Database (https://
www.europe-fluxdata.eu/home), and ChinaFlux after check-
ing data availability for years 2018 and 2019 and land homo-
geneity (Table 3). The standard gap-filling approach was
applied to half-hour flux (such as net ecosystem CO2
exchange) and meteorological data (such as air temperature,
vapor pressure deficit, and shortwave incoming radiation)
[54]. Subsequently, the gap-filled data were used to calculate
half-hourly GPP with the night-time partitioning proce-
dures, in which the daytime respiration was estimated from
air temperature using the model calibrated with nighttime
data [55]. For each flux site, the monthly TROPOMI SIF

was determined as the mean value of all cloud-free observa-
tions (cloud fraction < 0:2) within a 10 km radius of the site
location. These days with cloudy fraction < 0:2 were denoted
as clear-sky days. The half-hour GPP data on clear-sky days
were averaged to monthly GPP to match with the satellite
SIF. Similarly, LAI and BRDF data for each site were also
aggregated to a 10 km radius to be consistent with SIF.

2.6. SCOPE Model Simulation. The effects of the uncertainty
on i0, NIRV, and RedV for the performance of SIFtotal in GPP
estimation were first analyzed using the SCOPE model
(v1.73) [27] before analyzing the satellite SIF data and in situ
GPP. The SCOPE model can simulate both SIF and GPP,
providing a tool to investigate the relationships between
GPP and two SIF metrics (SIFobs and SIFtotal). We simulated
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Figure 3: The comparison of red and NIR reflectance from different spectral regions based on the SCOPE simulations.

Table 2: Information about the three LAI products used in this study.

Short name MCD15 VNP15 CGLS

Product name MCD15A2H VNP15A2H LAI_1km

Version V006 V001 GEOV2

Input data MOD09GA, MYD09GA VNP09GA PROBA-V

Equatorial crossing time 10 : 30 & 13 : 30 13 : 30 10 : 30

Temporal coverage 2000 - 2012 - 2000 - 2020

Global coverage interval 8-day 8-day 10-day

Spatial resolution 500m 500m 1 km

Reference [47, 48] [67, 75] [76, 51]

Data source WWW1 WWW1 WWW2

Note: WWW1: search.earthdata.nasa.gov; WWW2: land.copernicus.eu/global/.
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Table 3: Flux tower sites used in this study.

Site ID Lat Lon Vegetation type Reference

AU-Das -14.1592 131.3881 SAV [77]

AU-Dry -15.2588 132.3706 SAV [78]

AU-Gin -31.3764 115.7139 WSA —

AU-How -12.4952 131.1501 WSA [79]

AU-Lit -13.1790 130.7945 SAV [80]

AU-Lon -23.5233 144.3104 GRA —

AU-Rob -17.1175 145.6301 EBF [80]

AU-Wom -37.4222 144.0944 EBF —

CN-Aro 38.0444 100.4647 GRA [81]

CN-Dam 38.8555 100.3722 C4C [82]

CN-Xil 43.5506 116.6722 GRA [83]

CN-Yuc 36.8333 116.5667 C3C before June; C4C after June [84]

ES-Abr 38.7018 -6.7859 SAV [85]

ES-LM1 39.9427 -5.7787 SAV [86]

ES-LM2 39.9346 -5.7759 SAV [86]

FI-Hyy 61.8474 24.2948 ENF [87]

FI-Var 67.7549 29.6100 ENF —

IT-Tor 45.8444 7.5781 GRA [88]

RU-Fy2 56.4476 32.9019 ENF [89]

RU-Fyo 56.4615 32.9221 ENF [89]

US-Bi2 38.1090 -121.5350 C4C [90]

US-Ha1 42.5378 -72.1715 DBF [91]

US-Ho1 45.2041 -68.7402 ENF —

US-MMS 39.3232 -86.4131 DBF —

US-Ne1 41.1651 -96.4766 C4C [92]

US-Ne2 41.1649 -96.4701 C3C (2018); C4C (2019) [92]

US-Ne3 41.1797 -96.4397 C3C (2018); C4C (2019) [92]

US-NR1 40.0329 -105.5464 ENF [93]

US-Ro4 44.6781 -93.0723 GRA —

US-Ro5 44.6910 -93.0576 C4C (2018); C3C (2019) —

US-Ro6 44.6946 -93.0578 C3C —

US-Rpf 65.1198 -147.4290 DBF [94]

US-Syv 46.2420 -89.3477 MF [95]

US-ton 38.4316 -120.9660 WSA [96]

US-Var 38.4133 -120.9507 GRA [96]

US-Vcm 35.8884 -106.5321 ENF —

US-WCr 45.8059 -90.0799 DBF [97]

US-Wkg 31.7365 -109.9419 GRA [98]

US-xAB 45.7624 -122.3303 ENF —

US-xAE 35.4106 -99.0588 GRA —

US-xBR 44.0639 -71.2873 DBF —

US-xCL 33.4012 -97.5700 GRA —

US-xDC 47.1617 -99.1066 GRA —

US-xDL 32.5417 -87.8039 MF —

US-xHA 42.5369 -72.1727 DBF —

US-xKA 39.1104 -96.6130 GRA —

US-xKZ 39.1008 -96.5631 GRA —
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5000 scenarios with the random combinations of biochemi-
cal, structural, and meteorological parameters listed in
Table 4. To be consistent with TROPOMI SIF, the simulated
RSIFobs and FRSIFobs were extracted at narrow bands cen-
tered at 683nm and 740 nm, respectively. Different levels
of random uncertainty ranging from 0 to 40% were added
to i0, NIRV, and RedV to investigate the sensitivity of SIFtotal
to the uncertainty in remote sensing products. Note that the
SCOPE simulations can be considered the instantaneous
observations for GPP and SIF [27]. In addition, only the
C3 photosynthesis pathway was considered for simplicity,
because similar results can be expected between C3 and C4
photosynthesis pathways. The sun and view geometric infor-
mation was represented as solar zenith angle, view zenith
angle, and relative azimuthal angle. For each simulation sce-
nario, random combinations of all parameters in their own
ranges (Table 4) were generated.

3. Results

3.1. Sensitivity of the GPP-SIFtotal Relationships to
Uncertainty in i0, RedV, and NIRV. The relationships of
instantaneous GPP with RSIFobs and FRSIFobs based on the
SCOPE simulations are shown in Figure 4(a) and 4(b), in
which hyperbolic models were suitable for capturing the
nonlinearity. Without considering the variation in the
escape probability, RSIFobs was weakly and nonlinearly
related to GPP (R2 = 0:38, Figure 4(a)), and FRSIFobs was
moderately and nonlinearly related to GPP (R2 = 0:65,
Figure 4(b)). These R2 for RSIFobs vs. GPP and FRSIFobs

vs. GPP were set as the benchmark to evaluate the usefulness
of SIFtotal after considering the escape probability effect.
When the uncertainties were not added into RedV, NIRV,
and i0, both RSIFtotal and FRSIFtotal exhibited improved rela-
tionships with GPP. R2 increased from 0.38 for GPP vs. RSI-
Fobs to 0.76 for GPP vs. RSIFtotal (Figure 4(c)), and R2

increased from 0.65 for GPP vs. FRSIFobs to 0.79 for GPP
and FRSIFtotal (Figure 4(d)). The SCOPE simulation demon-
strated the usefulness of SIFtotal to improve the link to GPP
by accounting for the varying escape probability.

Figure 5 shows the 2-D distribution of R2 for hyperbolic
models between GPP and SIFtotal derived from i0, RedV, and
NIRV with different levels of uncertainties. In general, R2

decreased with the increased level of uncertainties in i0,
RedV, and NIRV. The black lines in Figure 5 represent the
contour lines with R2 of 0.38 for RSIFobs and 0.65 for FRSI-
Fobs. As compared to RSIFobs, RSIFtotal would be well related
to GPP when the uncertainty in i0 and RedV is less than
~30% (Figure 5(a)). Similarly, if the uncertainty in i0 and
NIRV is less than ~20%, FRSIFtotal would also be better
related to GPP than FRSIFobs (Figure 5(b)). However, when
the uncertainties in RedV, NIRV, and i0 exceeded the uncer-
tainty threshold (~30% for RSIF and~20% for FRSIF), the
estimated SIFtotal was too noisy and could not improve the
relationships with GPP compared to SIFobs.

3.2. Comparison of i0, RedV, and NIRV among Different
Products. High consistencies were found among MCD15 i0,
VNP15 i0, and CGLS i0 (Figure 6). The correlation between
MCD15 i0 and VNP15 i0 was as high as 0.99 (Figure 6(a)),

Table 3: Continued.

Site ID Lat Lon Vegetation type Reference

US-xST 45.5089 -89.5864 DBF —

US-xTA 32.9505 -87.3933 ENF —

US-xUN 46.2339 -89.5373 MF —

C3C: C3 crop; C4C: C4 crop; DBF: deciduous broadleaf forest; EBF: evergreen broadleaf forest; ENF: evergreen needle leaf forest; GRA: grass; MF: mixed forest;
SAV: savanna; WSA: wood savanna.

Table 4: The input parameters of the SCOPE model simulations.

Parameter Meaning Ranges

Cab (μg/cm2) Chlorophyll content 1-80

Cca (μg/cm2) Carotenoid content 1-20

Cdm (g/cm2) Dry matter content 0.001-0.02

Cw (g/cm2) Water content 0.004-0.04

N Leaf thickness parameters 1-3

LIDFa, LIDFb Leaf inclination and variation
Planophile (1, 0), erectophile (-1, 0), Plagiophile (0, -1),

extremophile (0, 1), Spherical (-0.35, -0.15), uniform (0, 0)

LAI (m2/m2) Leaf area index 0.5-7

tts (°) Solar zenith angle 0-60

tto (°) View zenith angle 0-60

psi (°) Relative azimuthal angle 0-180

Rin (W/m2) Incoming shortwave radiation (0.4-2.5μm) 100-1000
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which was expected due to their similar retrieval algorithms
for LAI. In contrast, CGLS i0 exhibited good but weaker rela-
tionships with MCD15 i0 (R2 = 0:92 in Figure 6(b)) and
VNP15 i0 (R

2 = 0:90 in Figure 6(c)). In addition, three LAI
products showed similar levels of uncertainty after normaliz-
ing uncertainties with each LAI itself (Figures 7(a)–7(c)).
The uncertainties in percentage were estimated as 23.51%,
22.95%, and 22.86% for MCD15 LAI, VNP15 LAI, and
CGLS LAI, respectively (Figures 7(a)–7(c)). Therefore, i0
derived from these LAI products also showed similar

levels of uncertainty in the range of 16.27%-17.10%
(Figures 7(d)–7(f)). Fortunately, the uncertainty levels of
i0 derived from all three satellite LAI products were less
than the thresholds (30% for RSIF and 20% for FRSIF)
determined by the SCOPE simulations (Figure 5).

Moderately to highly strong relationships were found
among RedV derived from three BRDF products with R2 in
the range of 0.82 to 0.93, and only a few data points diverged
from the regression line (Figures 8(a)–8(c)). This indicated
that these BRDF products estimated consistent vegetation
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reflectance in the red band overall. Compared to the red
band, stronger and more consistent relationships were found
for NIRV, with R2 > 0:95 (Figures 8(d)–8(f)). Since these
BRDF products did not provide uncertainty information,
the uncertainty of RedV and NIRV was not compared in this
study.

3.3. Tower Flux GPP against TROPOMI RSIF and FRSIF.
The scatter plots of GPP against RSIFobs and FRSIFobs
from TROPOMI are shown in Figure 9, in which C3 and
C4 plants were separated due to their distinct photosynthe-

sis pathways. The nonlinear model was used in the instan-
taneous GPP and SIF based on the SCOPE simulations,
but linear models were efficient to capture the relation-
ships between monthly GPP and SIF for both C3 and C4
plants. In general, FRSIFobs showed better relationships
with GPP than RSIFobs regardless of C3 and C4 plants,
which was consistent with the SCOPE simulations. In
addition, higher R2 and slope of linear model were
observed for C4 plants than that for C3 plants. This higher
slope for C4 plants is attributed to the lower photorespira-
tion and higher efficiency of photosynthesis in plants with
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C4 metabolism than C3 plants [56, 57]. We also observed
an interesting phenomenon that the intercept was positive
and negative for C3 and C4 plants, respectively. Theoreti-
cally, both SIF and GPP are from APAR, so the intercept
should be zero (when APAR is zero) under natural condi-
tions. The nonzero intercept reported here could be caused
by the regression model uncertainties, the bias in satellite
SIF retrievals, the bias in flux tower GPP partition, and
the environmental stress.

After accounting for the difference in escape probability,
the relationships of GPP with RSIFtotal and FRSIFtotal are
presented in Figures 10 and 11. The poorest relationship
was obtained between GPP and RSIFtotal in C3 plants with
R2 from 0.55 to 0.57 (Figure 10), which was still higher than
the R2 between GPP and SIFobs (R

2 = 0:49 in Figure 9(a)).
Subsequently, R2 between GPP and FRSIFtotal in C3 plants
ranged between 0.72 and 0.77 (Figure 11), which outper-
formed the relationship between GPP and FRSIFobs
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(R2 = 0:70 in Figure 9(b)). As for C4 plants, RSIFtotal also
improved the relationships with GPP from RSIFobs
(Figure 10). However, FRSIFtotal did not show improvement
in R2 for C4 plants (Figure 11), since the R

2 between FRSI-
Fobs and GPP has reached to 0.88 (Figure 9(b)). Although

there was no clear difference in R2 obtained by different
combinations of i0 and RedV or NIRV, we observed slightly
higher R2 obtained by MCD19 RedV and NIRV than those
by MCD43 and VNP43 in terms of the relationship between
GPP and FRSIFtotal.

Figure 10: Relationships between tower-based GPP and TROPOMI RSIFtotal calculated with different combinations of RedV and i0. RedV
was calculated with MCD43 (first row), VNP43 (second row), and MCD19 (third row). i0 was calculated with MCD15 (first column),
VNP15 (second column), and CGLS (third column). For simplicity, these sites were classified into two types: C3 and C4 plants, with
following number indicating R2. All regression models are statistically significant (p value < 0.001).
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The escape probability of SIF (fesc) estimated with
Equation (5) is also compared with that from the SCOPE
simulations (Figure 12). For RSIF at 685nm, fesc calcu-

lated with RedV and i0 from different combinations of
BRDF and LAI products was clearly higher than that from
the SCOPE simulations. Therefore, RSIFtotal (=RSIFobs/fesc)

M
CD

19

M
CD

19

Figure 11: Relationships between tower-based GPP and TROPOMI FRSIFtotal calculated with different combinations of NIRV and i0. NIRV

was calculated with MCD43 (first row), VNP43 (second row), and MCD19 (third row). i0 was calculated with MCD15 (first column),
VNP15 (second column), and CGLS (third column). For simplicity, these sites were classified into two types: C3 and C4 plants, with
following number indicating R2. All regression models are statistically significant (p value < 0.001).
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was underestimated in this study. A further work is still
required to reduce the underestimation of RSIFtotal. In con-
trast, fesc at 740nm from SCOPE simulations was better con-
sistent with that calculated with NIRV and i0, demonstrating
the success of NIRV + i0 in calculating fesc at 740nm.

4. Discussion

4.1. Comparison between the SCOPE Simulation and
TROPOMI SIFtotal. The superiority of SIFtotal in GPP estima-
tion has been shown by recent studies [20, 23, 24]. However,
the sensitivity of SIFtotal to uncertainty in i0, NIRV, and RedV
has not been well understood. Based on the SCOPE simula-
tions, the improvement in R2 (ΔR2) can reach up to 0.38 and
0.14 for RSIFtotal and FRSIFtotal, respectively, when no uncer-
tainty existing in i0, NIRV, and RedV (Figure 4). However,
the differences in R2 tend to decrease with the increasing
level of uncertainty in i0, NIRV, and RedV as shown in
Figure 5, revealing the adverse effect of uncertainty on the
relationships between GPP and SIFtotal. Since the uncertainty
in satellite data is unavailable, ΔR2 for actual scenarios is
likely to be less than the maximum values used in this study.
For example, the actual ΔR2 only ranges between 0.02
(2.86%) and 0.07 (10.00%) for TROPOMI FRSIFtotal in C3

plants (Figure 11), which is close to the reported ΔR2

(0.04, 5.40%) obtained by OCO-2 FRSIFtotal [26]. The lower
ΔR2 in actual scenarios is attributed to the uncertainty in i0,
NIRV, and RedV. The uncertainties from clumping index, G-
function, and leaf albedo can also contribute to the lower
ΔR2, although LAI and BRDF products are the main source
of the uncertainties in SIFtotal. The comparison between sim-
ulation and measurement promotes our understanding of
the use of SIFtotal. Furthermore, this study discusses the
potential uncertainty in LAI and BRDF products as below.

4.2. Impacts of Different Satellite LAI and BRDF Products on
the Estimation of SIFtotal. Numerous studies have intercom-
pared existing LAI products from regional to global scales
in terms of spatiotemporal consistency and reported many

difference among these products [58–68]. These inherent
uncertainties in LAI products result from both retrieval
algorithms and input data [48]. For example, to improve
the inversion efficiency for MCD15 and VNP15, several
biome-specific variables (e.g., canopy structure, leaf type,
and soil brightness) are defined beforehand in the inversion
process. As a result, the biome-specific assignments could
result in uncertainty for LAI retrievals for mixed or misclas-
sified pixels [48]. In addition, the uncertainty in atmosphere
parameters could propagate into the atmospheric correction
process [69], bringing also uncertainty to reflectance and
hence LAI retrievals.

For most studies, CGLS product shows better accuracy
as compared to MCD15 and VNP15. For example, Brown
et al. [58] reported the better agreements between reference
LAI and CGLS LAI than MCD15 and VNP15 LAI. However,
this study observes consistent relationships among MCD15,
VNP15, and CGLS i0 with R2 ranging from 0.90 to 0.99
(Figure 6) and similar uncertainty level (~17%) in i0
(Figure 7). As expected, improved estimation of GPP from
SIFtotal is available if uncertainty in i0 is further reduced.
This can be obtained by new satellite sensors with improved
spectral and spatial resolutions and more accurate retrieval
algorithm, such as ESA’s forthcoming FLuorescence
EXplorer (FLEX) mission in tandem with Sentinel-3 [70].
Since i0 and fraction of absorbed photosynthetically active
radiation (FAPAR) are highly related [25], SIFtotal calculated
with FPAR also exhibits similar results as compared SIFtotal
calculated with i0 (results not shown).

Several studies also reported the high consistency
between MCD43 and VNP43 NDVI [71] and MCD43 and
MCD19 NIR [72], which supports the high consistency in
NIRV (the product of NDVI and NIR reflectance) among
MCD43, VNP43, and MCD19 (Figure 8). Therefore, mar-
ginal differences are expected in relationship between GPP
and SIFtotal calculated from different RedV and NIRV
(Figures 10 and 11). In terms of FRSIFtotal, the slightly higher
R2 for MCD19 than those for MCD43 and VNP43 could be
attributed to the advantage of MAIAC algorithm adopted by
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MCD19. In addition, MODIS is onboard two satellites
(Terra and Aqua) with two equator local crossing times of
10:30 and 13:30, and VIIRS is only onboard one satellite
(Suomi-NPP) with an equator local crossing time of 13:30;
the former could provide more angular samplings and full
inversion for BRDF parameters than the latter [73]. How-
ever, the equator local crossing time for VIIRS is consistent
with that for TROPOMI SIF, which should be more suitable
for TROPOMI SIF than MCD43 and MCD19. With the
additional VIIRS launched in 2017 and to be launched in
the future as part of the JPSS program, an increased pixel
number of full inversions will be available to generate the
VNP43 product. As a result, reducing uncertainty in
VNP43 could improve the calculation of SIFtotal and the esti-
mation of GPP.

5. Conclusions

Previous studies have shown that SIFtotal was more useful for
GPP estimation than SIFobs across multiple scales. However,
the advantage of SIFtotal in improving GPP estimation could
be masked by the uncertainty in the derivation of i0, NIRV,
and RedV, which were required by the calculation of SIFtotal.
In this study, we first investigated the effect of the uncer-
tainty in i0, RedV, and NIRV on the calculation of SIFtotal
and the relationships between SIFtotal and GPP based on
the SCOPE model simulations. As a result, SIFtotal per-
formed better than SIFobs for both red and far-red bands in
capturing the link with GPP. The improvement in R2 (ΔR2)
for SIFtotal and GPP relationships was 0.38 and 0.14 for RSIF-

total and FRSIFtotal from RSIFobs and FRSIFobs, respectively.
With the increasing uncertainty in i0, NIRV, and RedV, RSIF-

total and FRSIFtotal showed degraded relationships with GPP.
Furthermore, ΔR2 decreased to zero when the uncertainty
levels were higher than ~30% in i0 and RedV (for estimation
of RSIFtotal) and ~20% in i0 and NIRV (for estimation of
FRSIFtotal) based on the SCOPE model simulation. Then, this
study calculated RSIFtotal and FRSIFtotal from TROPOMI
RSIFobs and FRSIFobs with different combinations of i0 (from
MCD15, VNP15, and CGLS LAI) and RedV and NIRV (from
MCD43, MCD19, and VNP43). In general, TROPOMI RSIF-

total and FRSIFtotal exhibited better relationships with flux
tower GPP than RSIFobs and FRSIFobs. Due to the compara-
ble uncertainty levels among these different satellite products
(such as LAI), the estimation of SIFtotal was less sensitive to
the choice of satellite products. Our results based on SCOPE
simulations and TROPOMI data contribute to our under-
standing of the estimation of SIFtotal using current satellite
products, which would advance the use of satellite SIF data
for global terrestrial GPP estimation.
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