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a b s t r a c t 

Research into the human connectome (i.e., all connections in the human brain) with the use of resting state 
functional MRI has rapidly increased in popularity in recent years, especially with the growing availability of 
large-scale neuroimaging datasets. The goal of this review article is to describe innovations in functional con- 
nectome representations that have come about in the past 8 years, since the 2013 NeuroImage special issue on 
‘Mapping the Connectome’. In the period, research has shifted from group-level brain parcellations towards the 
characterization of the individualized connectome and of relationships between individual connectomic differ- 
ences and behavioral/clinical variation. Achieving subject-specific accuracy in parcel boundaries while retaining 
cross-subject correspondence is challenging, and a variety of different approaches are being developed to meet 
this challenge, including improved alignment, improved noise reduction, and robust group-to-subject mapping 
approaches. Beyond the interest in the individualized connectome, new representations of the data are being 
studied to complement the traditional parcellated connectome representation (i.e., pairwise connections between 
distinct brain regions), such as methods that capture overlapping and smoothly varying patterns of connectivity 
(‘gradients’). These different connectome representations offer complimentary insights into the inherent func- 
tional organization of the brain, but challenges for functional connectome research remain. Interpretability will 
be improved by future research towards gaining insights into the neural mechanisms underlying connectome 
observations obtained from functional MRI. Validation studies comparing different connectome representations 
are also needed to build consensus and confidence to proceed with clinical trials that may produce meaningful 
clinical translation of connectome insights. 
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. Introduction 

The goal of mapping the human connectome (i.e., building a model
f all connections in the human brain) can be tackled at different scales
anging from single neurons to macroscale brain regions/networks
 Betzel and Bassett, 2017 ), and using different modalities such as struc-
ural and functional measurements. In this review article we focus on
acroscale functional connectomics as measured with functional mag-
etic resonance imaging (fMRI), most commonly obtained while partici-
ants are at rest. Propelled by major investment from the National Insti-
ute of Health (NIH), the success of the young adult Human Connectome
roject (HCP-YA; 2010–2016 ( Van Essen et al., 2013 )) has paved the
ay for subsequent consortia efforts to study the connectome in disease
opulations ( Tozzi et al., 2020 ), and across the lifespan ( Harms et al.,
018 ). Advances and insights from the HCP-YA have also informed re-
ent population neuroimaging studies such as the UK Biobank imaging
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tudy ( N = 100,000 older adults; ( Miller et al., 2016 )) and the longi-
udinal ABCD study ( N = 10,000 children followed up for 10 years;
 Casey et al., 2018 )). Across these big data efforts, connectome research
lays a central role to study individualized prediction ( Finn et al., 2015 ;
avor et al., 2016 ), correlates of behavior ( Smith et al., 2015 ), and mark-
rs of disease ( van den Heuvel and Sporns, 2019 ). 

Modern connectomic research builds on a rich history that has de-
eloped from early microscopy and mapping insights from the 19th and
0th century ( Brodmann, 1908 ; Catani et al., 2013 ; Nieuwenhuys, 2013 ;
riarhou, 2007 ; Van Essen and Glasser, 2018 ; Vogt and Vogt, 1903 ),
hrough the early days of functional PET and MR connectivity
 Biswal, 2012 ; Snyder and Raichle, 2012 ), to the riches of present day
ig data (whether it is ‘deep’ with many data points per subject or

wide’ with many subjects) and computational resources ( Smith and
ichols, 2018 ). In this article, we present an overview of the new de-
elopments that have occured over the past eight years, since the last
euroImage special issue on ‘Mapping the Connectome’ ( Smith, 2013 ).
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1 For example due to T1-recovery related spin history effects, due to interac- 
tions between the head coil receive field and head motion, due to head motion 
breaking the assumptions of the pulse sequence such as differential excitation 
and readout locations in space, and due motion changing the magnetic field in- 
homogeneities magnetic leading to differential susceptibility induced gradient 
echo signal loss. 
e discuss how approaches and ideas about connectome representa-
ions of fMRI data have advanced and the remaining open questions
nd challenges that lie ahead. 

By studying the macroscale functional connectome with fMRI,
he field has gained substantial insights into the inherent organiza-
ional principles of the human brain. Early work focused on uncov-
ring group-level gross patterns of connectivity, including the discov-
ry of the default mode network ( Raichle et al., 2001 ), and addi-
ional reproducible networks that mimic task-related activation pat-
erns ( Smith et al., 2009 ), and that are linked to underlying struc-
ural connectivity ( Honey et al., 2009 ). Recent years have seen a shift
rom these landmark early efforts to map group-level patterns of con-
ectivity towards between-subject studies of behavior ( Kashyap et al.,
019 ; Smith et al., 2015 ), and interrogations of individualized func-
ional organization ( Bijsterbosch et al., 2018 ; Braga and Buckner, 2017 ;
ordon et al., 2017 ; Kong et al., 2019 ; Wang et al., 2015 ). This shift

s critical because there exists substantial inter-individual variability
n brain functional organization, especially in the association cortices
 Mueller et al., 2013 ). Inter-individual variability is a fundamental prop-
rty of the human brain that is already prominent in newborn infants
 Stoecklein et al., 2020 ). Moreover, similar spatial distribution of inter-
ndividual variability may be present in macaque monkeys and humans
hich differentiates the multimodal association areas from primary ar-
as ( Ren et al., 2020 ), suggesting that this phenomenon has an evolu-
ionary history. In line with this group-to-subject shift in applied sci-
ntific findings, methodological efforts are slowly shifting away from
he creation of group-based functional atlases ( Craddock et al., 2012 ;
ower et al., 2011 ; Yeo et al., 2011 ), towards methods that capture unbi-
sed individualized connectome variation in healthy subjects as well as
n patients ( Bijsterbosch et al., 2019 ; Brennan et al., 2019 ; Glasser et al.,
016a ; Hacker et al., 2013 ; Harrison et al., 2020 ; Haxby et al., 2020 ;
ebois et al., 2021 ; Li et al., 2019 ; Wang et al., 2020a ; Wang et al.,
020b ). In parallel with this appreciation of between-subject differ-
nces, the field has also started to move beyond focusing only on the
iew of the brain as a modular set of regions/networks with clear bound-
ries to also study smooth gradients of organization ( Huntenburg et al.,
018 ; Margulies et al., 2016 ; Valk et al., 2020 ), and complex spatio-
emporal modes of function ( Abbas et al., 2019 ; Vidaurre et al., 2018 ).
hese different representations of the functional connectome offer com-
limentary (rather than mutually exclusive) insights into brain organi-
ation, which is recognized in the modern ( Bijsterbosch et al., 2020 ;
lasser et al., 2016a ; Van Essen and Glasser, 2018 ), and historical lit-
rature ( Mesulam and Mufson, 1985 ). The goal of this review article is
o provide a brief primer on the various representations of the human
onnectome that have emerged in recent years. 

We begin by reviewing advances in preprocessing strategies to ad-
ress systematic confounds in functional connectomes ( Section 2 ). We
ummarize the traditional conceptualization of the functional connec-
ome based on parcellating the brain into a set of distinct regions
 Section 3 ), and then discuss non-parcellated connectome representa-
ions such as gradients ( Section 4 ). The shift towards individualized
onnectome representations and associated challenges is the topic of
ection 5 . In the conclusion ( Section 6 ), we highlight future areas of re-
earch that will be important next steps towards the maturation of the
eld of rfMRI connectomics. 

. Advances in data preprocessing 

Selective yet effective fMRI data clean up is critically important for
ll connectome representations, especially for individual subject repre-
entations of brain connectivity and activity (see Section 5 ). For exam-
le, the HCP’s approach to brain imaging preprocessing and analysis
elies on multiple denoising stages. The overall goal is to remove the
MRI fluctuations that are related to head motion, respiratory and car-
iac physiology, scanner artifacts, and thermal noise without removing
eurally related fMRI activation. Validating such an approach is chal-
2 
enging and we recommend the use of experimental modulation of the
xpected neural signal (i.e., a task-based paradigm) to ensure that de-
oising steps are only removing noise and retaining all neural signals.
ndeed, we have shown that the use of spatial ICA (ideally combining
cross fMRI runs in each individual subject) and the machine learning
omponent classifier FIX ( Griffanti et al., 2014 ; Salimi-Khorshidi et al.,
014 ) are highly accurate at removing spatially specific artifacts from
ead motion, physiology, and scanner artifacts ( Glasser et al., 2018 ).
his approach is analogous to the popular “scrubbing ” approach advo-
ated by others ( Power et al., 2020 ; Power et al., 2012 ), but ICA has the
dvantage of removing variance in proportion to the amount of noise in
 given frame (a weighted or “soft ” scrubbing rather than an all or noth-
ng approach) and also cleaning those timepoints that lie below a scrub-
ing threshold without removing neural signal ( Glasser et al., 2018 ).
ndeed, recent work has shown that physically restraining subjects re-
ults in additional noise reduction benefits above and beyond scrubbing
ven in low motion, unscrubbed timepoints ( Power et al., 2019 ), indi-
ating that cleaning the non-scrubbed timepoints is also important. Al-
hough both scrubbing and spatial ICA-based denoising reduce temporal
egrees of freedom, so long as there is shared information amongst the
rtifacts, ICA-based denoising will remove fewer temporal degrees of
reedom than scrubbing, which will improve statistical power. Residual
mage distortions remain after standard methods of rigid image align-
ent ( Montez et al., 2021 ) arising from head motion changing the mag-
etic field inhomogeneity and slice-to-volume mis-registrations in gradi-
nt echo EPI data.These distortions will require explicit susceptibility by
otion interaction modeling ( Andersson et al., 2001 ; Andersson et al.,
018 ) and slice-to-volume alignment ( Andersson et al., 2017 ) for opti-
al correction (and to avoid showing up as artifacts in ICA). Relevant

ools already exist for spin echo diffusion MRI and are coming in the fu-
ure for gradient echo fMRI in FSL and the HCP preprocessing pipelines.

Importantly, multiple publications have shown that spatial-ICA-
ased denoising does not remove artifactual global blood flow changes
elated to blood partial pressure of CO2 arising from changes in res-
iratory rate and depth ( Burgess et al., 2016 ; Glasser et al., 2018 ;
ower, 2017 ; Power et al., 2017 ; Siegel et al., 2017 ). Early work of-
en confused the causality of these global respiratory effects, attribut-
ng them to subject motion given that they are at times correlated
 Power et al., 2015 ; Power et al., 2014 ; Satterthwaite et al., 2012 ).
owever, more recent work with multi-echo fMRI has shown that spa-

ially specific artifacts related to head motion arise from different S0-
ependent mechanisms, 1 and global respiratory artifacts arise from a
2 ∗ -dependent mechanism just like the neural signal does ( Power et al.,
018 ). Moreover, head motion, like any other “task ” or behavior, pro-
uces both T2 ∗ -dependent neural BOLD and artifactual S0-related ef-
ects on the fMRI timeseries ( Glasser et al., 2018 ; Power et al., 2020 ). 

In the HCP’s denoising approach, individual subject spatial ICA-
ased denoising is applied immediately after spatial minimal prepro-
essing ( Glasser et al., 2013 ), and prior to cross-subject areal-feature-
ased registration ( Robinson et al., 2018 ; Robsinson et al., 2014), en-
uring that spatially specific artifacts that might influence cross-subject
egistration are removed and at the same time avoiding changes to the
eural signal that might influence such registration. Using areal-feature-
ased cross-subject registration has an additional advantage with group-
efined parcellations because it ensures that most differences in the
ize, shape, and position of cortical areas are represented as spatial dif-
erences in the registration, rather than differences in measured brain
unctional activity or connectivity. Notably, such spatial bias in con-
ectivity can be substantial when considering network-level organiza-
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ion ( Bijsterbosch et al., 2018 ), and limiting the information ‘leakage’
t the level of cortical areas is therefore an important step towards dis-
mbiguating spatial and connectivity information. This may have im-
ortant implications for identifying brain measures that are relevant to
ehavior or other traits outside the scanner, and avoid inaccurately at-
ributing areal differences as functional connectivity or activity differ-
nces. Thus, measures of brain areal size, shape, and position (which
an be represented at the areal level as surface areas or volumes or at
he grayordinate level as isotropic and anisotropic distortion maps or
egistration induced displacement maps) represent a fertile untapped
esource for biomarkers ( Kong et al., 2019 ; Li et al., 2019 ). 

Subsequent to cross-subject areal-feature-based registration, the
CP’s denoising approach has been extended to perform group level
enoising of global respiratory noise with temporal ICA ( Glasser et al.,
018 ; Power et al., 2020 ), making use of the improved cross-subject
orrespondence. Temporal ICA is used because, in contrast to spatial
CA, it is able to represent spatially global fluctuations in a single or
 few components, rather than mixing them across all components so
s to satisfy a spatial orthogonality constraint (instead, the components
re constrained to be temporally orthogonal). ICA performs best when
here are many samples along the axis being orthogonalized, which
s why spatial ICA-based denoising is done at the individual subject
evel where hundreds of thousands of voxels are available and tempo-
al ICA works best at the group level where again hundreds of thou-
ands of timepoints are available in large datasets. Components repre-
enting global respiratory noise can thus be removed selectively using
emporal ICA while retaining neural signal in its unchanged form. In-
eed, this is a key advantage of temporal ICA over global signal re-
ression ( Glasser et al., 2018 ), which removes task-related neural signal
 Glasser et al., 2018 ) and spuriously increases anti-correlations in func-
ional connectivity ( Glasser et al., 2018 ; Murphy et al., 2009 ). Inter-
stingly, the use of aggressive regression of movement regressors (i.e.,
egressing out all variance explained by movement regressors) has also
een shown to remove task-related neural signal ( Glasser et al., 2019 ),
nd thus, is no longer recommended in the HCP approach to brain imag-
ng. Similarly, other unselective approaches to functional MRI denois-
ng including band-pass filtering, tissue-based nuisance regressors, and
lind tissue-based PCA decompositions have yet to be validated using
ask-fMRI-based paradigms with a known ground truth and likely are
ot beneficial above and beyond spatial and temporal ICA cleanup. For
xample, head motion also causes neurally driven BOLD changes in the
imeseries because motor and sensory cortices activate during head mo-
ion ( Glasser et al., 2018 ; Power et al., 2020 ). There are also neural
ignals that correlate with respiration during a task or resting state (e.g.
timulus correlated breathing) ( Glasser et al., 2018 ). Overall ICA-based
leanup for HCP-style high spatial and temporal resolution data aims
o retain all neural signal in the fMRI scan (including the neural acti-
ation resulting from to e.g., head motion or neural signal that is cor-
elated with respiration), while removing all temporal artifacts arising
rom head motion or respiration. One can always then choose the neural
ignal that one wants to look at according to the goals of one’s study af-
er such selective denoising (e.g., choosing to remove all traces of head
otion from the data including those that arise from neural activation

nd thereby reducing fluctuations in the head sensorimotor functional
etwork accordingly). We recommend that such study paradigm choices
bout which neural signal to retain should be conscious decisions that
re justified in a study’s methods rather than being silently imposed
y non-selective denoising approaches. Datasets without the emerging
tandards of high spatial and temporal resolution may be more limited
n their denoising options because neural and artifactual contributions
annot be fully separated, and such limitations should be carefully con-
idered when planning new fMRI studies. 

Finally, thermal noise presents an interesting challenge for data
leanup. Although methods have been developed to reduce thermal
oise while at the same time not spatially or temporally smoothing the
ata ( Glasser et al., 2016b ), similar to temporal smoothing, these meth-
3 
ds reduce temporal degrees of freedom, which reduces statistical ef-
ciency. Thus, the optimal approach for thermal noise removal likely
epends on the planned analysis approach, with correlation-based ap-
roaches (e.g. the pairwise correlation of two noisy signals when com-
uting a dense connectome) potentially benefiting more from thermal
oise removal than regression-based approaches such as dual regression
the relationship between noisy data and relatively noise free compo-
ent timeseries derived from weighted averages across the brain). That
aid, the most effective approach across a wide spectrum of analyses
ikely involves neuroanatomically-informed spatial smoothing (e.g., as
chieved in good-quality parcellations) ( Glasser et al., 2016a ), because
t reduces thermal noise without reducing temporal degrees of freedom.

. The parcellated connectome 

To achieve the connectomics goal of mapping all connections in the
rain, an important first step is to set the units of the map (i.e., the
lements between which connections will be drawn). As an intuitive ex-
mple, say we want to map out all social interactions in a country. If we
reat each person as a unit and draw out all interactions amongst all peo-
le, this ‘social connectome’ of a country would be very dense and dif-
cult to interpret. Therefore, we may want to group people together so
hat we can map out connections between households, families, neigh-
orhoods, or other social groupings like school/work departments or
nstitutions. As the units become bigger, the number of connections in
he social connectome as a whole reduces because social interactions
ithin a unit are no longer considered as between-unit connections. The

ame holds for the functional connectome, such that there is ambiguity
etween representing connectivity information as part of the unit defi-
ition or as between-unit connections. This analogy also points to ambi-
uities in the criteria used to determine the units. For example, should a
ollege student who lives on campus during the week and returns home
n weekends be included in the family-home household unit or in the
ollege dorm household unit, or both? Similar questions and ambiguities
xist when determining brain units for functional connectomics. 

The smallest possible units in fMRI are the measurement voxels, or
ray matter vertices after surface-based preprocessing ( Glasser et al.,
013 ). Notably, these smallest measurement units already contain thou-
ands of neurons and are therefore far removed from the smallest rel-
vant biological units of individual neurons or even synapses. It is less
ommon in functional connectomics to map connections between all
oxels/vertices and instead voxels are typically grouped together into
arger regions, although recent findings suggest that fine-scale “dense ”
onnectivity may contain behaviorally relevant information that is lost
n the coarse-scale regional connectome ( Feilong et al., 2020 ). Never-
heless, analyses are often performed at the ‘areal’ level to gain com-
utational, statistical, and interpretational efficiencies ( Eickhoff et al.,
018 ; Glasser et al., 2016b ). Such grouping of data is reasonable as each
rain area is thought to contribute distinctly to the neural computations
arried out within the functional network underlying a given behavior
 Van Essen and Glasser, 2018 ). Brain areas also often have specialized
rchitecture (i.e., internal organization and local connectivity), a unique
attern of distant connectivity with other areas, and may spatially repre-
ent topographic maps of sensory or motor systems ( Sereno et al., 1995 ),
r cognitive systems ( Huth et al., 2016 ). Therefore, a lower rank par-
ellation of the brain into a smaller number of units each made up of
any voxels/vertices is most frequently used for the functional connec-

ome. Of note, variation of size within a given parcellation may influence
he discoverability and polygenicity across parcels ( van der Meer et al.,
020 ). Thus, depending on the study goal a parcellation with more or
ess equally sized parcels may be preferred. 

For brevity, we present a brief overview of the main criteria for brain
arcellations in Table 1 and summarize the characteristics of several
idely used publicly available parcellations in Table 2 (for further de-

ail see ( Bijsterbosch et al., 2017b )). The nomenclature for brain units
efined by brain parcellations is diverse, and units may be referred
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Table 1. 

Overview of the main criteria that brain parcellations can be characterized by. 

Parcellation criteria Options 

Hard vs Soft Binary parcels have voxel values of either zero (not in parcel) or 1 (in 
parcel). These “hard ” parcellations often do not allow for overlap (i.e., 
voxels being part of more than one parcel). 

Weighted parcels have voxel values across a range. These “soft ”
parcellations therefore have fuzzy borders and allow for 
overlap (i.e., a voxel with high weights in multiple parcels). 

Areal/regional vs 
Network 

Areal/regional (contiguous) parcels are blobs of spatially neighboring 
voxels. Bilateral homologous brain regions are therefore separate 
parcels. 

Network (non-contiguous) parcels are whole-brain patterns of 
multiple blobs that are not all interconnected. 

Dimensionality A wide range of dimensionalities have been used ranging from 6 to 10 
parcels at the lower end to 1000 parcels at the higher end. It is possible 
to define a hierarchical parcellation with a low number of combined 
parcels at the top and increasing splits into smaller parcels further 
down the hierarchy. 

Sample Publicly released high quality parcellations are mostly derived from 

young healthy participants. 
Deriving a parcellation from a specific study sample may fit the 
population better (especially if different ages or if 
psychopathology is present). 

Modality Parcellations defined based on functional data are more relevant to 
functional studies than those based on gyral and sulcal landmarks. 

Consensus across imaging modalities (e.g., thickness, myelin, 
resting state, task) can be used for a multimodal parcellation. 

Table 2. 

Summary of several commonly used publicly available functional brain parcellations. 

Parcellation Voxel values Spatial dispersion Parcel #Population Modality Coverage 

Binary Weight Areal/regional Network rfMRI Multi-modal 

Smith ( Smith et al., 2009 ) ✔ ✔ 10 Young healthy ✔ Whole brain 
Yeo, Krienen ( Yeo et al., 2011 ) ✔ ✔ 7/17/98 Young healthy ✔ Cortical 
Power ( Power et al., 2011 ) ✔ ✔ 103/226 Young healthy ✔ Cortical 
Craddock ( Craddock et al., 2012 ) ✔ ✔ 353 Young healthy ✔ Whole brain 
Shen ( Shen et al., 2013 ) ✔ ✔ 213 Young healthy ✔ Whole brain 
Wang ( Wang et al., 2015 ) ✔ ✔ 18 Young healthy ✔ Cortical 
Gordon ( Gordon et al., 2016 ) ✔ ✔ 422 Young healthy ✔ Cortical 
Glasser ( Glasser et al., 
2016a ) = HCP-MMP1.0 

✔ ✔ 360 Young healthy ✔ Cortical 

Schaefer ( Schaefer et al., 2018 ) ✔ ✔ 100 - 1000 Young healthy 
(HCP) 

✔ Cortical 
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o as nodes, parcels, networks, or regions. Naming conventions based
n anatomical principles have been suggested for low-dimensional net-
ork parcellations ( Uddin et al., 2019 ), and for higher dimensional
real/regional parcellations ( Glasser et al., 2016a ). 

Once the units for the functional connectome have been defined,
he subsequent steps for defining the parcellated connectome involve
xtraction of node time series and defining the method to estimate
airwise connections between nodes (also known as edges). For bi-
ary parcellations, the node time series is often defined as the aver-
ge time series across all voxels within the parcel. For weighted par-
ellations such as those derived using Independent Component Analysis
ICA, ( Beckmann and Smith, 2004 )), the node time series can be ex-
racted using dual regression ( Nickerson et al., 2017 ) or back projection
 Calhoun et al., 2001 ). Once the node time series have been extracted,
dges are often defined as either the full correlation (Pearson’s), the par-
ial correlation (after residualizing the two node time series with respect
o all other nodes) with or without regularization, or the covariance
 Smith et al., 2013 ). 

Over the past eight years, there have been a number of important ad-
ances for parcellated representations of the connectome. The develop-
ent of the HCP-MMP1.0 brain parcellation based on multimodal HCP-
A data (task, rest, myelin, cortical thickness) bridges between anatom-

cal and functional mapping efforts and highlights examples of atypical
opological organization ( Glasser et al., 2016a ). Although some parcella-
ions treat “homogeneity ” as the end goal to be optimized ( Gordon et al.,
016 ; Schaefer et al., 2018 ), it should be noted that brain areas are
ften not homogeneous ( Van Essen and Glasser, 2018 ) and spatially
verlapping weighted components such as those from ICA or proba-
ilistic functional modes will therefore achieve higher homogeneity (see
ection 4 ). Nevertheless, the HCP’s parcellation provides an alternative
omatotopic subregional parcellation for sensorimotor cortex that is al-
4 
eady being used together with the areal parcellation in translational
tudies ( Chandrasekaran et al., 2020 ). It also provides a cortical areal
lassifier that enables mapping cortical areas in individual subjects, even
hen those areas are atypical in layouts and not aligned with the best
vailable surface registration methods (see Section 5 ). Furthermore, the
haracterization of the parcellated connectome as a fingerprint has been
 valuable catalyst for efforts to predict behavior and clinical symp-
omatology ( Brennan et al., 2019 ; Finn et al., 2015 ; Lebois et al., 2021 ;
i et al., 2019 ; Wang et al., 2020a ; Wang et al., 2020b ). Related to
hese efforts, recent work has shown that transformations of parcellated
onnectivity estimates (such as tangent space projections) can improve
erformance when using subsequent machine learning methods for be-
avioral prediction ( Dadi et al., 2019 ; Pervaiz et al., 2020 ). Although
he parcellated connectome is still the most common representation for
unctional connectomics, criticisms have also started to emerge. For ex-
mple, it has been shown that between-subject connectivity differences
n the parcellated connectome are mixed with spatial variability in net-
ork topography ( Bijsterbosch et al., 2018 ; Li et al., 2019 ), which has

ed to increased interest in non-parcellated and/or individualized con-
ectome representations ( Sections 4 and 5 ). There has also been in-
reased interest in node-based analysis that investigate signal fluctua-
ion instead of signal correlations ( Bijsterbosch et al., 2017a ; Duff et al.,
018 ; Miller et al., 2016 ). Lastly, although causal inference on the di-
ectionality of connections is of great interest ( Reid et al., 2019 ), the
emporal slowness of fMRI and regional variability in the hemodynamic
esponse function ( Friston, 2009 ) limit the accuracy of many causal con-
ectivity estimates, especially lag-based methods ( Smith et al., 2011 ).
evertheless, recent methodological advances such as Bayesian Nets and
ynamic causal models for resting state may hold promise for causal in-
erences ( Mumford and Ramsey, 2014 ; Park et al., 2018 ). 
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. Non-parcellated connectome representations 

The parcellated connectome approaches discussed in the previous
ection provide an intuitive framework for mapping the functional con-
ections in the brain. At the same time, in many cortical parcels, borders
ary depending on the chosen modality and may not show clear bor-
ers in all modalities or with all analysis approaches ( Haak and Beck-
ann, 2020 ; Huntenburg et al., 2018 ; Von Bonin and Bailey, 1947 ).

imply averaging within parcels assumes that connectivity profiles are
omogeneous within a specific parcel, with only one dominant pattern
 Haak and Beckmann, 2020 ). However, function and microstructure are
ften highly variable within a region, and inconsistent across modalities.
oreover, variations in both function and structure display “multiplic-

ty ” (i.e., overlap) and are organized along more than one meaningful
xis of variance ( Haak and Beckmann, 2020 ). Such challenges of diverse
nd overlapping functional organization cannot be overcome by using
ner grained parcellations ( Bijsterbosch et al., 2020 ), but rather may be
est studied by multidimensional connectome representations. 

One approach to account for multiplicity is to allow for spatial over-
ap in the definition of network organization. For example, Probabilistic
unctional Modes (PROFUMO) is a Bayesian dimensionality reduction
lgorithm that estimates network structure using temporal and spatial
riors, thereby avoiding the spatial independence constraint that is en-
orced either explicitly or implicitly in other parcellation methods (such
s ICA) ( Harrison et al., 2020 ; Harrison et al., 2015 ). The definition of
otentially overlapping networks adds a spatial overlap correlation ma-
rix in addition to the temporal correlation matrix, and previous work
as shown that individual differences in spatial network overlap may
e more strongly associated with behavior than individual differences
n temporal correlation ( Bijsterbosch et al., 2019 ). 

Another way to address multiplicity is by profiling cortical organiza-
ion based on the relationships between voxels or vertices, and extract-
ng multiple axes of eigenvariance within that organization ( Haak and
eckmann, 2020 ; Huntenburg et al., 2018 ; Margulies et al., 2016 ;
arquand et al., 2017 ; Paquola et al., 2019 ). Such methods can be ap-

lied at the regional ( Haak et al., 2018 ; Marquand et al., 2017 ; Vos de
ael et al., 2018 ), or at the global level to study so-called gradients or

atural axes in functional brain organization ( Huntenburg et al., 2018 ;
argulies et al., 2016 ). These approaches capture the similarity of con-

ectivity profiles between two given units (voxels, vertices, parcels) and
rder them as a function of their similarity. E.g. two units with similar
radient values have similar functional connectivity profiles, and can
e interpreted as integrated, whereas two units with maximally differ-
ng gradient scores have different connectivity profiles, and can be in-
erpreted as functionally segregated ( Shine et al., 2019 ). Gradients can
e reliably derived from connectome information ( Hong et al., 2020 )
nd capture both functional and structural features of brain organiza-
ion ( Huntenburg et al., 2018 ). The resulting overlapping axes of orga-
ization known as smooth connectivity ‘gradients’ capture the internal
rganizational principles of a certain region or assembly of regions, and
rovide a low dimensional coordinate system of neural organization. 

Genetic, transcriptomic, and evolutionary patterns have been shown
o follow gradual axes of change along the cortex and hippocampus
 Burt et al., 2018 ; Margulies et al., 2016 ; Valk et al., 2020 ; Vogel et al.,
020 ; Xu et al., 2020 ), supporting the intrinsic relationship between
he physical layout of the brain and its function ( Fornito et al., 2019 ;
esulam, 1998 ). For example, at the global level, it has been shown that

he principal axis of intrinsic functional organization follows a trajec-
ory from unimodal, primary, regions to transmodal association cortices
 Margulies et al., 2016 ), aligning with cortical expansion and functional
eorganization in primate evolution ( Van Essen and Dierker, 2007 ;
u et al., 2020 ). A different, tertiary, organizational pattern juxtaposes

he default mode network with the multi-demand network ( Assem et al.,
021 ; Assem et al., 2020 ; Duncan, 2010 ), possibly reflecting a balance
hat underlies working memory performance and goal-directed cogni-
ion ( Murphy et al., 2020 ; Spreng et al., 2010 ). Conversely, at the re-
5 
ional level it has been shown that functional organizational axes within
he hippocampus align with anterior to posterior patterns and functional
o-activation, whereas lateral-medial patterning is associated with cor-
ical microstructure as measured by T1w/T2w contrast ( Vos de Wael
t al., 2018 ). Also the internal organization of the human striatum seems
o be governed by smooth axes within intrinsic functional organization,
eflecting its connections to the cortex and capturing behavioral vari-
bility ( Marquand et al., 2017 ). Although the understanding of how dif-
erent gradients organize brain regions and their interrelationship is still
t its beginning, it has provided novel information and understanding
f brain organization, its development, evolution and disorder. For ex-
mple, Hong and colleagues have been able to show alterations of func-
ional organization along the principal functional gradient in Autism
pectrum Disorders, aligning with notions of altered cortical develop-
ent in ASD ( Hong et al., 2019 ). 

Additional connectome representations that incorporate dynamic
emporal information have also emerged, including hidden markov
odels ( Vidaurre et al., 2018 ), and quasi periodic waves ( Abbas et al.,
019 ). Parcellated and non-parcellated connectome representations pro-
ide complementary insights, and may even be meaningfully com-
ined ( Dohmatob et al., 2021 ). At the same time, integrating the
omplementary insights across connectome representations becomes
ncreasingly challenging because the implications of new results ob-
ained using one connectome representation for other representations
re often not clearcut. Increased comparative and collaborative efforts
re therefore needed to ensure cumulative growth and avoid siloing
 Bijsterbosch et al., 2020 ). 

In summary, this section described a number of advances in con-
ectome representations that move beyond the traditional parcellated
pproach. In Table 3 we provide a summary of some key advantages
nd disadvantages of these non-parcellated connectome representations
ompared to the traditional parcellated approach. Overall, although
here certainly has been a historical tension between the functional seg-
egation versus holistic views of brain function have engendered debate
or over 100 years ( Zilles and Amunts, 2010 ) with early physicians such
s Broca, Wernicke, and Lichtheim finding that brain functions were
ost when specific parts of the brain were damaged and classical neu-
oanatomists like the Vogts and Brodmann working to identify cortical
reas based on differences in microscopically visible properties (myelo
nd cytoarchitecture). Then other neuroanatomists such as Bailey and
on Bonin or Lashley and Clark expressed skepticism of many of Brod-
ann’s and the Vogts’ boundaries and favored coarser, more gradual and

gradient-like ” subdivisions. Although the juxtaposition between sharp
oundaries and smooth gradient-based approaches might appear as a
ore modern version of this debate. There can be well-defined bound-

ries between cortical areas (e.g. visual areas) and yet riding on top
f these more gradual gradients in functional connectivity from early
o late areas along the dorsal and ventral visual streams. Thus, these
oncepts are not in our view mutually exclusive. Indeed Van Essen and
lasser ( Van Essen and Glasser, 2018 ) attempted to bridge the cortical
rea and functional network concepts in relation to human behavior by
ositing that “any specific behavior might have a distinctive functional
etwork, similar behaviors may have largely overlapping functional net-
orks, and each cortical area may be responsible for a portion of the

omputations necessary to produce a behavior when working in concert
ith its partners in that behavior’s functional network. ”. 

. The individualized connectome 

Brain maps are often instantiated first at the group level and this is
articularly valid if there has been care taken to ensure that individ-
al subjects’ brain areas line up as well as is possible ( Coalson et al.,
018 ; Glasser et al., 2016a ). The use of group averages helps to de-
ne what is typical in a population, achieves correspondence across
ubjects to enable like-for-like comparisons, and averaging across sub-
ects can markedly improve the contrast-to-noise ratio for subtle effects.
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Table 3. 

Summary of relative advantages and disadvantages of parcellated and non-parcellated connectome representations. 

Connectome 
representation Advantages Disadvantages 

Parcellated Intuitive to interpret Relatively simple analysis Hard, non-overlapping parcels do not capture smooth variation or overlapping 
functional organization 
Group-defined parcellations do not match individualized organization 

PROFUMO Hierarchical model achieves between-subject correspondence 
and accurately captures individual subject organization 

Relatively more difficult to interpret 
Network decomposition is relatively sensitivity to potentially minor changes in 
the data (similar to ICA) 

Global gradient Continuous space captures fundamental organization axes 
Spatial relationships between regions/networks can be revealed 

Alignment of gradients between individuals and across studies is not trivial 
May miss out on nuanced differences (if only the top eigenvectors are explored) 
Difficult to disentangle global from local effects when performing brain-wide 
gradient analysis. 

Local (areal) 
gradient 

Identifies overlapping patterns of organization that is 
overlooked in other representations 

Localized (within-region) analysis that doesn’t easily integrate with whole-brain 
connectome studies 
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hose advantages aside, it is well known that even when areal-feature-
ased cortical surface registration is used to precisely align cortical ar-
as ( Robinson et al., 2018 ; Robinson et al., 2014 ), a significant fraction
f individual subjects will have atypical layouts of at least some cor-
ical areas ( Glasser et al., 2016a ). Thus, individualized representations
f connectomes will likely be most accurate for most subjects. This ac-
uracy will represent a tradeoff between correctly capturing true indi-
idual variability in cortical areal borders and the inherently increased
ncertainty of mapping individual subject areal boundaries using a lim-
ted amount of data with lower contrast-to-noise ratio than group level
ata. Indeed, recent explorations of this tradeoff ( Laumann et al., 2015 ;
ueller et al., 2015 ), showed that increasing the amount of resting state

MRI data markedly improved the reliability of individual estimates of
rain connectivity. Further work is needed to evaluate the effects of dif-
ering amounts, paradigms (e.g., resting state vs traditional task vs nat-
ralistic movies), and field strengths (e.g., 3T vs 7T) of fMRI data on the
ccuracy of cross-subject areal feature based registration and individual
ubject areal classification. 

Individual subject parcellation may be achieved using a variety of
pproaches. One approach relies on learning the multi-modal areal fin-
erprint of each human cortical area and using grayordinate-wise multi-
odal maps in individuals to find each cortical area using a machine

earning areal classifier ( Glasser et al., 2016b ; Hacker et al., 2013 ). Im-
ortantly, such an approach is capable of identifying cortical areas even
n individuals whose areas have atypical layouts and thus will not be
ligned with areal-feature-based surface registration. Similar to such
egistration, and as mentioned above, the optimal amount, type, and
eld strength of fMRI used for areal classification has not yet been char-
cterized and ongoing work seeks to do this. Additionally, accurate in-
ividual subject areal classification will enable exploration of the neu-
obiological significance of atypical brain areas and answer the ques-
ion of whether humans all have the same set of brain areas or if some
ave extra areas and some are missing areas. Accurate fMRI denoising
 Section 2 ) will be critical to ensuring that noise does not “create a brain
rea ” in an individual subject and that neural signal is not removed to
ause a “missing brain area. ”

Another approach attempts to identify functional networks defined
t the group-level in each individual subject’s brain ( Wang et al., 2015 ).
unctional organization for each individual is determined based on func-
ional connectivity using an iterative adjusting algorithm guided by the
roup-level atlas and inter-subject variability pre-estimated in the pop-
lation ( Mueller et al., 2013 ). The central idea is to allow idiosyncrasies
f the individual to drive the network solution. Critically, the influ-
nce of the population-based atlas on the individual brain parcellation
s not identical for every subject or every brain region, and is flexibly
djusted based on the known distribution of individual variability and
he signal-to-noise distribution in the particular subject. Specifically, a
eighting strategy is applied where the population-based atlas will have

ess impact than the individual subject’s data on brain regions known
6 
o have high levels of inter-subject variability, or brain regions show-
ng good SNR in a particular subject. It has been shown that functional
etworks localized using this technology may be validated by invasive
ortical stimulation mapping in surgical patients ( Shen et al., 2020 ;
ang et al., 2015 ). A further hierarchical Bayesian approach that it-

ratively optimizes functional networks at the group and individual lev-
ls is probabilistic functional modes (PROFUMO) ( Harrison et al., 2020 ;
arrison et al., 2015 ). 

A final approach to brain alignment, hyperalignment, is worth men-
ioning here. The area-feature-based approach to cross-subject registra-
ion mentioned above clearly improves the correspondence of brain ar-
as across subjects ( Coalson et al., 2018 ), but is limited in that it cannot
ccount for topology-breaking cross-subject differences. For example, if
rain areas swap positions or split and join as does area 55b in 11% of
ubjects ( Glasser et al., 2016a ), areal feature-based registration is unable
o align them. The HCP’s approach to brain imaging preprocessing and
nalysis relies on the areal classifier to handle such topologically incom-
atible differences at the brain area level, but what if one wants to align
cross subjects at an even more fine-grained level while at the same
ime allowing topological incompatibilities? Hyperalignment promises
uch alignment ( Haxby et al., 2020 ), and indeed does show improve-
ents beyond and above areal-feature-based registration ( Feilong et al.,
020 ). Hyperalignment forgoes the traditional spatial alignment goals
f achieving voxel-to-voxel or vertex-to-vertex correspondence across
ndividuals, and instead aligns subjects based purely on activation or
orrelation information. A hybrid strategy might use the areal classi-
er to identify corresponding areal searchlights across subjects to en-
ble well constrained within-area hyperalignment, as topological cross-
ubject correspondence is unlikely at neurobiologically lower levels of
he hierarchy than cortical areas, given the break down at this level
lready in many subjects. 

Moving from group-parcellations to individualized connectome rep-
esentations offers many advantages. Firstly, the mean time series ex-
racted from a parcel forms the basis of many connectomic analyses,
nd this average time series does not represent a meaningful func-
ional unit if the boundaries of the parcel do not functionally align
or the individual ( Allen et al., 2012 ). Secondly, studying the individ-
alized connectome offers insights into previously untapped sources
f between-subject variation such as differences in the size, shape,
osition and non-topological variation of brain areas and networks
 Bijsterbosch et al., 2018 ; Glasser et al., 2016a ; Kong et al., 2019 ).
hirdly, accurately capturing individualized areal/network boundaries
elps to disambiguate between spatial and temporal origins of individ-
al differences, which is important to ensure appropriate interpreta-
ion of results ( Bijsterbosch et al., 2019 ). In general, the importance
f accurately modeling individual connectomes increases along with
ncreased interest in individual difference research such as correla-
ions with behavior, individual-level predictions, and clinical biomarker
tudies. 
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Fig. 1.. Overview of methods and parcella- 
tions as a function of algorithmic constraints 
(x-axis; parcellated to non-parcellated) and in- 
put data (y-axis; individual subject to group). 
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For individual difference research, sample size is another impor-
ant consideration because sampling variability leads to inflated and
nconsistent correlations between connectome representations and non-
maging variables such as behavior/ lifestyle/ cognition/ symptoms
 Marek et al., 2020 ). Importantly, we have to adjust our expectations
nd appreciate that realistic and reproducible effect sizes of brain-
ehavior correlations are likely (much) smaller than previously reported
 Lindquist, 2021 ), and accordingly larger samples are needed to reliably
nd reproducibly detect these effects. In the past, most studies had rela-
ively small sample sizes and therefore required high thresholds for sig-
ificance due to simple power restrictions and by definition any findings
hat passed significance had a relatively high effect size. However, these
ndings have often failed to replicate in new samples ( Ioannidis, 2017 ;
oldrack et al., 2017 ), because they are largely driven by sampling vari-
bility ( Marek et al., 2020 ). The availability of large-scale neuroimag-
ng datasets offers opportunities for addressing past challenges with re-
roducibility. However, this requires an acceptance that small, but re-
roducible, effect sizes are the norm and are worthy of investigation
 Lindquist, 2021 ). 

. Conclusion 

The field has come a long way in the years since the last NeuroImage
pecial issue on the connectome. The way the functional connectome
s conceptualized (both theoretically and analytically) has expanded
o take into consideration overlapping networks and multiple organi-
ational axes/gradients. These different representations of resting state
MRI data offer very valuable and complementary insights into the orga-
izational principles of brain function. Additionally, greater awareness
f between-subject variability has driven detailed assessments of the in-
ividualized connectome and methodological advances in preprocess-
ng, cross-subject registration, and individualized parcellation. In Fig. 1 ,
e provide a schematic of recent brain representations positioned along

he two major axes of innovation (i.e., non-parcellated and individu-
lized representations). The positioning of connectome representations
long this schematic are relative and approximate based on implementa-
ions and examples in the current literature (i.e., axes do not represent
uantifiable units). Nevertheless, we hope that this schematic - along
7 
ith the summary Tables in this article - will aid the reader in their
nderstanding of the relationships between different representations of
he connectome. 

Given the expansive landscape of definitions, methods, and trade-
ffs in studying the connectome, the term ‘functional connectivity’ has
ecome overly broad and perhaps inaccurate. Therefore, greater speci-
city is needed to describe how we represent the brain, which assump-
ions and constraints are required, and how these might affect results
nd interpretation ( Bijsterbosch et al., 2020 ). 

Looking ahead, many unanswered questions about the functional
onnectome remain. Further research is needed to better understand
he biological basis of fMRI-derived connectomes. For example, detailed
omparisons of non-invasive functional connectomes to invasively de-
ned structural connectomes or invasive functional recordings in non-
uman primates may enable validation of the best ways to model func-
ional connectivity ( Bentley et al., 2016 ; Hayashi et al., 2021 ). Addition-
lly, more work is needed to establish the clinical utility of connectomic
easures, for example for early diagnosis (e.g., in Alzheimer’s Disease),

nd prediction of treatment response (e.g., in Major Depressive Disor-
er). Although existing small-scale studies are suggestive of meaningful
ffects, full-scale clinical trials are needed to achieve meaningful clinical
ranslation and impact patients. One factor that reduces the likelihood of
uch clinical trials is the lack of white-paper agreement on appropriate
reprocessing and analysis approaches. To move towards such agree-
ent, more comparative benchmarking research ( Botvinik-Nezer et al.,
020 ; Ciric et al., 2017 ; Dadi et al., 2019 ), standardization (e.g., BIDS),
nd collaboration is needed. 
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