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Recognizing speech in background noise is a strenuous daily activity, yet most humans can master it. An explanation of how
the human brain deals with such sensory uncertainty during speech recognition is to-date missing. Previous work has shown
that recognition of speech without background noise involves modulation of the auditory thalamus (medial geniculate body;
MGB): there are higher responses in left MGB for speech recognition tasks that require tracking of fast-varying stimulus
properties in contrast to relatively constant stimulus properties (e.g., speaker identity tasks) despite the same stimulus input.
Here, we tested the hypotheses that (1) this task-dependent modulation for speech recognition increases in parallel with the
sensory uncertainty in the speech signal, i.e., the amount of background noise; and that (2) this increase is present in the
ventral MGB, which corresponds to the primary sensory part of the auditory thalamus. In accordance with our hypothesis,
we show, by using ultra-high-resolution functional magnetic resonance imaging (fMRI) in male and female human partici-
pants, that the task-dependent modulation of the left ventral MGB (vMGB) for speech is particularly strong when recognizing
speech in noisy listening conditions in contrast to situations where the speech signal is clear. The results imply that speech
in noise recognition is supported by modifications at the level of the subcortical sensory pathway providing driving input to
the auditory cortex.
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Significance Statement

Speech recognition in noisy environments is a challenging everyday task. One reason why humans can master this task is the
recruitment of additional cognitive resources as reflected in recruitment of non-language cerebral cortex areas. Here, we show
that also modulation in the primary sensory pathway is specifically involved in speech in noise recognition. We found that the
left primary sensory thalamus (ventral medial geniculate body; vMGB) is more involved when recognizing speech signals as
opposed to a control task (speaker identity recognition) when heard in background noise versus when the noise was absent.
This finding implies that the brain optimizes sensory processing in subcortical sensory pathway structures in a task-specific
manner to deal with speech recognition in noisy environments.

Introduction
Roaring engines, the hammering from a construction site, the
chit-chat of many children in a classroom are just some
examples of background noises which continuously accom-
pany us. Nevertheless, humans have a remarkable ability to

hear and understand the conversation partner, even under
these severe listening conditions (Cherry, 1953).

Understanding speech in noise is a complex task that involves
both sensory and cognitive processes (Moore et al., 1985;
Bregman, 1994; Best et al., 2007; Sayles and Winter, 2008; Shinn-
Cunningham and Best, 2008; Song et al., 2011; Adank, 2012;
Bronkhorst, 2015; Peelle, 2018; Alavash et al., 2019). However, a
more mechanistic explanation of why the human brain masters
speech recognition in noise relatively well is missing. Such expla-
nation could advance the understanding of difficulties with
speech-in-noise perception in several clinical populations such as
age-related hearing impairment (Schoof and Rosen, 2016), au-
tism spectrum disorder (Alcántara et al., 2004), auditory process-
ing disorder (Iliadou et al., 2017), or developmental dyslexia
(Chandrasekaran et al., 2009; Ziegler et al., 2009). Furthermore, a
more mechanistic understanding of speech-in-noise recognition
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might also trigger new insight on why artificial speech recognition
systems still have difficulties with noisy situations (Scharenborg,
2007; Gupta et al., 2016).

One mechanistic account of brain function that attempts to
explain how the human brain deals with uncertainty in the stim-
ulus input is the Bayesian brain hypothesis. It assumes that the
brain represents information probabilistically and uses an inter-
nal generative model and predictive coding for the most effective
processing of sensory input (Knill and Pouget, 2004; Friston,
2005; Kiebel et al., 2008; Friston and Kiebel, 2009). Such type of
processing has the potential to explain why the human brain is
robust to sensory uncertainty, e.g., when recognizing speech de-
spite noise in the speech signal (Srinivasan et al., 1982; Knill and
Pouget, 2004). Although predictive coding is often discussed in
the context of cerebral cortex organization (Hesselmann et al.,
2010; Shipp et al., 2013), it may also be a governing principle of
the interactions between cerebral cortex and subcortical sensory
pathway structures (Mumford, 1992; von Kriegstein et al., 2008;
Huang and Rao, 2011; Bastos et al., 2012; Adams et al., 2013;
Seth and Friston, 2016).

In humans, responses in the auditory sensory thalamus
(medial geniculate body; MGB) are higher for speech tasks (that
emphasize recognition of fast-varying speech properties) in con-
trast to control tasks (that require recognition of relatively con-
stant properties of the speech signal, such as the speaker identity
or the sound intensity level). This response difference holds even
if the stimulus input is the same (von Kriegstein et al., 2008; Díaz
et al., 2012), indicating that the effect is dependent on the specific
tasks. We will therefore call it task-dependent modulation in the
following. The task-dependent modulation seems to be behavior-
ally relevant for speech recognition: performance level in audi-
tory speech recognition positively correlates with the amount of
task-dependent modulation in the MGB of the left hemisphere
(von Kriegstein et al., 2008; Mihai et al., 2019). This behaviorally
relevant task-dependent modulation was located in the ventral
part of the MGB (vMGB), which is the primary subsection of the
MGB (Mihai et al., 2019). These findings have been interpreted
by extending the Bayesian brain hypothesis to cortico-subcortical
interactions: cerebral cortex areas provide dynamic predictions
about the incoming sensory input to the sensory thalamus to
optimally encode the trajectory of the fast-varying and predict-
able speech input (von Kriegstein et al., 2008; Díaz et al., 2012).
If this is the case, then the task-dependent modulation of the
vMGB should be especially strong when the fast dynamics of
speech have to be recognized in conditions with high sensory
uncertainty (Yu and Dayan, 2005; Feldman and Friston, 2010;
Díaz et al., 2012; Van de Cruys et al., 2014), for example when
the incoming signal is disturbed (Yu and Dayan, 2005; Friston
and Kiebel, 2009; Feldman and Friston, 2010; Gordon et al.,
2017). In the present study, we tested this hypothesis.

Materials and Methods
Study overview
Presentation of speech in background noise is an ecologically valid way
to increase uncertainty about the speech input (Chandrasekaran and
Kraus, 2010a). We, therefore, tested, whether the task-dependent modu-
lation of the left vMGB for speech is higher when the speech stimuli are
embedded in a noisy as opposed to a clear background. We used ultra-
high field functional magnetic resonance imaging (fMRI) at 7 T and a
design that has been shown to elicit task-dependent modulation of the
MGB in previous studies (von Kriegstein et al., 2008; Díaz et al., 2012).
We complemented the design by a noise factor: the speech stimuli [i.e.,
vowel-consonant-vowel (VCV) syllables] were presented with and

without background noise (Fig. 1). The experiment was a 2� 2 factorial
design with the factors task (speech task, speaker task) and noise (noise,
clear). To test our hypothesis, we performed a task � noise interaction
analysis with the prediction that the task-dependent modulation of the
left vMGB increases with decreasing signal-to-noise ratios (SNRs; i.e.,
increasing uncertainty about the speech sounds). We focused on the left
vMGB for two reasons. First, its response showed behavioral relevance for
speech recognition in previous studies (von Kriegstein et al., 2008; Mihai et
al., 2019). Second, developmental dyslexia, a condition that is often associ-
ated with speech-in-noise recognition difficulties (Chandrasekaran et al.,
2009; Ziegler et al., 2009), has been associated with reduced task-dependent
modulation of the left MGB in comparison to controls (Díaz et al., 2012) as
well as decreased connections between left MGB and left auditory associa-
tion cortex (Tschentscher et al., 2019).

In addition to testing our main hypothesis, the design also allowed
the exploration of the role of the inferior colliculus (IC), the midbrain
station of the auditory sensory pathway, in speech-in-noise recognition.

Participants
The Ethics committee of the Medical Faculty, University of Leipzig,
Germany, approved the study. We recruited 17 participants (mean age
27.7, SD 2.5 years, 10 female; 15 of these participated in a previous study;
Mihai et al., 2019) from the database of the Max Planck Institute for
Human Cognitive and Brain Sciences (MPI-CBS), Leipzig, Germany.
The sample size was based on the amount of data acquisition time allo-
cated by the MPI-CBS directorial board to the study. The participants
were right-handed (as assessed by the Edinburgh Handedness Inventory;
Oldfield, 1971), and native German speakers. Participants provided writ-
ten informed consent. None of the participants reported a history of psy-
chiatric or neurologic disorders, hearing difficulties, or current use of
psychoactive medications. Normal hearing abilities were confirmed with
pure tone audiometry (250–8000Hz; Madsen Micromate 304, GN
Otometrics) with a threshold equal to and below 25dB. To exclude pos-
sible undiagnosed developmental dyslexics, we tested the participant’s
reading speed and reading comprehension using the German LGVT: 6–
12 test (Schneider et al., 2007). The cutoff for both reading scores was set
to those levels mentioned in the test instructions as the “lower average
and above” performance range (i.e., 26–100% of the calculated popula-
tion distribution). None of the participants performed below the cut off

Figure 1. Design and trial structure of the experiment. In the speech task, listeners per-
formed a one-back syllable task. They pressed a button whenever there was a change in syl-
lable in contrast to the immediately preceding one, independent of speaker change. The
speaker task used precisely the same stimulus material and trial structure. The task was to
press a button when there was a change in speaker identity in contrast to the immediately
preceding one, independent of syllable change. The speakers’ voices were resynthesized from
the recordings of one speaker’s voice to only differ in constant speaker individuating features
(i.e., the vocal tract length (VTL) and the fundamental frequency of the voice). This ensured
that the speaker task could not be done on dynamic speaker individuating features (e.g., idi-
osyncrasies in pronunciations of phonemes). An initial task instruction screen informed partic-
ipants about which task to perform. Participants heard stimuli either with concomitant
speech-shaped noise (noise condition) or without background noise (clear condition). Thus,
the experiment had four conditions: speech task/noise, speaker task/noise, speech task/clear,
speaker task/clear. Stimuli in the speech and speaker tasks were precisely identical.
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performance (mean 68.7%, SD 20.6%, lowest mean score: 36%). In addi-
tion, participants were tested on rapid automatized naming (RAN) of
letters, numbers, and objects (Denckla and Rudel, 1976). The time
required to name letters and numbers predicts reading ability and is lon-
ger in developmental dyslexics compared with typical readers, whereas
the time to name objects is not a reliable predictor of reading ability in
adults (Semrud-Clikeman et al., 2000). Participants scored well within
the range of control participants for letters (mean 17.25, SD 2.52 s),
numbers (mean 16.79, SD 2.63 s), and objects (mean 29.65, SD 4.47 s),
based on results from a previous study (Díaz et al., 2012; letters: 16.09,
SD 2.60; numbers: 16.49, SD 2.35; objects: 30.84, SD 5.85; age of partici-
pants was also comparable 23.5, SD 2.8 years). Furthermore, none of the
participants exhibited a clinically relevant number of traits associated
with autism spectrum disorder as assessed by the autism spectrum quo-
tient [AQ; mean: 15.9, SD 4.1; cutoff: 32–50 (Baron-Cohen et al., 2001)].
We tested AQ as autism can be associated with difficulties in speech-in-
noise perception (Alcántara et al., 2004; Groen et al., 2009). Participants
received monetary compensation for participating in the study.

Stimuli
We recorded 79 different VCV syllables with an average duration of
784ms, SD 67ms. These recordings constitute a subsample from those
used in Mihai et al. (2019). These were spoken by one male voice (age
29years), recorded with a video camera (Canon Legria HFS10, Canon)
and a Røde NTG-1 microphone (Røde Microphones) connected to a pre-
amplifier (TubeMP Project Series, Applied Research and Technology) in
a sound-attenuated room. The sampling rate was 48kHz at 16bits.
Auditory stimuli were cut and flanked by Hamming windows of 15ms at
the beginning and end, converted to mono, and root-mean-square equal-
ized using Python 3.6 (Python Software Foundation; www.python.org).
The 79 auditory files were resynthesized with TANDEM-STRAIGHT
(Banno et al., 2007) to create three different speakers: 79 auditory files
with a vocal tract length (VTL) of 17 cm and glottal pulse rate (GPR) of
100Hz, 79 with VTL of 16 cm and GPR of 150Hz, and 79 with VTL of
14 cm and GPR of 300Hz. This procedure resulted in 237 different audi-
tory stimuli. The parameter choice (VTL and GPR) was motivated by the
fact that a VTL difference of 25% and a GPR difference of 45% suffices
for listeners to hear different speaker identities (Gaudrain et al., 2009;
Kreitewolf et al., 2014). Additionally, we conducted pilot experiments (12
pilot participants which did not participate in the main experiment) to
fine-tune the combination of VTL and GPR that resulted in a balanced
behavioral accuracy score between the speech and speaker tasks. The pilot
experiments were conducted outside the MRI machine, but included con-
tinuous recordings of MRI gradient noise to simulate a real MRI
environment.

We embedded the 237 stimuli in background noise to create the
stimuli for the condition with background noise. The background noise
consisted of normally distributed random (white) noise filtered with a
speech-shaped envelope. We calculated the envelope from the sum of all
VCV stimuli presented in the experiment. We used speech-shaped noise
as it has a stronger masking effect than stationary random non-speech
noise (Carhart et al., 1975). Before each experimental run, the noise was
computed and added to the stimuli included in the run with a SNR of
2 dB. The SNR choice was based on a pilot study that showed a perform-
ance decrease of at least 5% but no greater than 15% between the clear
and noise condition. In the pilot study, we started at an SNR of �10dB
and increased this value until we converged on an SNR of 2 dB.
Calculations were performed in MATLAB 8.6 (The MathWorks Inc.) on
Ubuntu Linux 16.04 (Canonical Ltd.).

Procedure
We conceived the experiment as a 2� 2 factorial design. The first factor
was task (speech, speaker) similar to previous experiments that reported
task-dependent modulation of the MGB (von Kriegstein et al., 2008;
Díaz et al., 2012; Mihai et al., 2019). The second factor was background
noise (clear, noise; Fig. 1). Participants listened to blocks of auditory
VCV syllables and were asked to perform the two types of tasks: the
speech task and the speaker task. In the speech task, participants
reported via button press whether the current syllable was different from

the previous one (1-back task). In the speaker task, participants reported
via button press whether the current speaker was different from the pre-
vious one. The blocks had either syllables with background noise (noise
condition) or without background noise (clear condition).

Task instructions were presented for 2 s before each block and con-
sisted of white written words on a black background (German words
“Silbe” for syllable indicating the speech task, and “Person” for person
indicating the speaker task). After the instruction, the block of syllables
started (Fig. 1). Each block contained twelve stimuli. Each stimulus had
a duration of ;784ms, and the stimulus presentation was followed by
400ms of silence. Within one block both syllables and speakers changed
at least twice, with a theoretical maximum of nine changes. The theoreti-
cal maximum was derived from random sampling of seven instances
from three possible change types: no change, speech change, speaker
change, and change of speech and speaker. The average length of a block
was 15.80 s, SD 0.52 s. The presentation of the stimuli was randomized
and balanced with regard to the amount of speaker identity and syllable
changes within a block. The same block containing speaker identity
changes also contained syllable changes. These blocks were repeated,
once with the instruction to perform the speaker identity task and the
other time to perform the speech task. This procedure ensured that sub-
jects heard exactly the same stimuli while performing the two different
tasks.

The experiment was divided into four runs. The first three runs had
a duration of 12:56min and included 40 blocks: 10 for each of the four
conditions (speech task/noise, speaker task/noise, speech task/clear,
speaker task/clear). A fourth run had a duration of 6:32min and
included 20 blocks (five for each of the four conditions). For two partici-
pants, only the first three runs were recorded because of time con-
straints. Participants could rest for 1 min between runs.

Participants were familiarized with the three speakers’ voices to
ensure that they could perform the speaker-identity task of the main
experiment. The speaker familiarization took place 30min before the
fMRI experiment. It consisted of a presentation of the speakers and a
test phase. In the presentation phase, the speakers were presented in six
blocks, each containing nine pseudo-randomly chosen VCV stimuli
from the 237 total. Each block contained one speaker-identity only.
Participants were alerted to the onset of a new speaker identity block by
the presentation of white words on a black screen indicating speaker 1,
speaker 2, or speaker 3. Participants listened to the voices with the
instruction to memorize the speaker’s voice. In the following test phase
participants were presented with four blocks of nine trials that each con-
tained randomly chosen syllable pairs spoken by the three speakers. The
syllable pairs could be from the same or a different speaker. We asked
participants to indicate whether the speakers of the two syllables were
the same by pressing keypad buttons “1” for yes and “2” for no.
Participants received visual feedback for correct (the green flashing
German word for correct: “Richtig”) and incorrect (the red flashing
German word for incorrect: “Falsch”) answers. The speaker familiariza-
tion consisted of three 2:50-min runs (each run contained one presenta-
tion and one test phase). If participants scored below 80% on the last
run, they performed an additional run until they scored above 80%. All
participants exceeded the 80% cutoff value.

The experiments were programmed in the MATLAB Psychophysics
Toolbox [Psychtoolbox-3, www.psychtoolbox.com (Brainard, 1997)]
running on MATLAB 8.6 (The MathWorks Inc.) on Ubuntu Linux
16.04 (Canonical Ltd.). The sound was delivered through a MrConfon
amplifier and headphones (manufactured 2008; MrConfon GmbH).

Data acquisition and processing
MRI data were acquired using a Siemens Magnetom 7 T scanner
(Siemens AG) with an eight-channel head coil. We convened on the
eight-channel coil, because of its spaciousness which allowed the use of
higher quality headphones (manufactured 2008; MrConfon GmbH).
fMRI data were acquired using echoplanar imaging (EPI) sequences. We
used partial brain coverage with 30 slices. The volume was oriented in
parallel to the superior temporal gyrus such that the slices encompassed
the MGB, the IC, and the Heschl’s gyrus.
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The EPI sequences had the following acquisition parameters:
TR= 1600ms, TE=19ms, flip angle 65°, GRAPPA (Griswold et al.,
2002) with acceleration factor 2, 33% phase oversampling, matrix size
88, field of view (FoV) of 132� 132 mm, phase partial Fourier 6/8, voxel
size 1.5-mm isotropic resolution, interleaved acquisition, anterior to pos-
terior phase-encode direction. The first three runs consisted of 485 vol-
umes (12:56min), and the fourth run consisted of 245 volumes
(6:32min). During fMRI data acquisition, we also acquired physiological
values (heart rate, and respiration rate) using a BIOPAC MP150 system
(BIOPAC Systems Inc.).

To address geometric distortions in EPI images we recorded gradient
echo-based field maps which had the following acquisition parameters:
TR= 1500ms, TE1= 6.00ms, TE2= 7.02ms, flip angle 60°, 0% phase
oversampling, matrix size 100, FoV 220 � 220 mm, phase partial
Fourier off, voxel size 2.2-mm isotropic resolution, interleaved acquisi-
tion, anterior to posterior phase-encode direction. Resulting images
from field map recordings were two magnitude images and one phase
difference image.

Structural images were recorded using an MP2RAGE (Marques et
al., 2010) T1 protocol: 700-mm isotropic resolution, TE= 2.45ms,
TR= 5000ms, TI1= 900ms, TI2= 2750ms, flip angle 1 = 5°, flip angle
2 = 3°, FoV 224� 224 mm, GRAPPA acceleration factor 2, duration
10:57min.

Behavioral data analysis
Button presses (hits, misses) were binomially distributed, and were thus
modeled using a binomial logistic regression which predicts the proba-
bility of correct button presses based on four independent variables
(speech task/noise, speaker task/noise, speech task/clear, speaker task/
clear) in a Bayesian framework (McElreath, 2018).

To pool over participants and runs we modeled the correlation
between intercepts and slopes. For the model implementation and data
analysis, we used PyMC3 3.5 (Salvatier et al., 2016), a probabilistic pro-
gramming package for Python 3.6. We sampled with a No-U-Turn
Sampler (Hoffman and Gelman, 2014) with four parallel chains. Per
chain, we had 5000 samples with 5000 as warm-up. The data entering
the model was mean centered by subtracting the mean and dividing by 2
SDs (Gelman and Hill, 2006). This transformation does not change the
fit of the linear model and the coefficients are interpretable in compari-
son to the mean of the data. The reason behind this transformation is
the faster and more accurate convergence of the Markov chain sampling
(McElreath, 2018).

There were the following effects of interest: main effects (clear–noise,
speech task–speaker task), the interaction (speech task/noise–speaker
task/noise)–(speech task/clear–speaker task/clear), simple main effects
(speech task/noise–speaker task/noise, speech task/clear–speaker task/
clear). For the effects of interest, we calculated means from the posterior
distributions and 95% highest posterior density intervals (HDPs). The
HPD is the probability that the mean lies within the interval (Gelman et
al., 2013; McElreath, 2018), this means that we are 95% sure the mean
lies within the specified interval bounds. If the posterior probability dis-
tribution of odds ratios does not strongly overlap one (i.e., the HPD
excludes one), then it is assumed that there is a detectable difference
between conditions (Bunce and McElreath, 2017; McElreath, 2018).

The predictors included in the behavioral data model were: task (xS:
1 = speech task, 0 = speaker task), and background noise (xN: 1 = noise,
0 = clear). We also included the two-way interaction of task and noise
condition. Because data were collected across participants and runs, we
included random effects for both of these in the logistic model.
Furthermore, since ;11% of the data exhibited ceiling effects (i.e., some
participants scored at the highest possible level) which would result in
underestimated means and SDs (Uttl, 2005), we treated these data as
right-censored and modeled them using a Potential class (Lauritzen et
al., 1990; Jordan, 1998) as implemented in PyMC3. This method integra-
tes the censored values using the log of the complementary normal cu-
mulative distribution function (Gelman et al., 2013; McElreath, 2018). In
essence, we sampled twice, once for the observed values without the cen-
sored data points, and once for the censored values only. The model is
described below:

Li;j ;Binomialð1; pi;jÞ

pi;j ¼
(
p�i;j; for p�i;j,c
c; for p�i;j � c

logitðp�i;jÞ ¼ Ai;j 1BS;i;jxS 1BN;i;jxN 1BSN;i;jxSxN; for i ¼ 1; :::; I; j

¼ 1; :::; J

Ai;j ¼ a1aparticipant½i� 1arun½j�

BS;i;j ¼ b S 1 b S;participant½i� 1 b S;run½j�

BN;i;j ¼ b N 1 b N;participant½i� 1 b N;run½j�

BSN;i;j ¼ b SN 1 b SN;participant½i� 1 b SN;run½j�

aparticipant

b S;participant

b N;participant

b SN;participant

2
6664

3
7775;MVNormal

a
b S

b N

b SN

2
664

3
775; Sparticipant

0
BB@

1
CCA

arun

b S;run

b N;run

b SN;run

2
664

3
775;MVNormal

a
b S

b N

b SN

2
664

3
775; Srun

0
BB@

1
CCA

Ssubject ¼
sa 0 0 0
0 sb S

0 0
0 0 sb N

0
0 0 0 sb SN

2
664

3
775Rsubject

sa 0 0 0
0 sb S

0 0
0 0 sb N

0
0 0 0 sb SN

2
664

3
775

Srun ¼
sa 0 0 0
0 sb S

0 0
0 0 sb N

0
0 0 0 sb SN

2
664

3
775Rrun

sa 0 0 0
0 sb S

0 0
0 0 sb N

0
0 0 0 sb SN

2
664

3
775

a;Normalð0; 5Þ

b S ;Normalð0; 5Þ

b N ;Normalð0; 5Þ

b SN ;Normalð0; 5Þ

ðs participant;s runÞ;HalfCauchyð1Þ

s corr;participant ;HalfCauchyð1Þ

s corr;run ;HalfCauchyð1Þ

Rparticipant ; LKJcorrð4;s corr;participantÞ

Rrun ; LKJcorrð4;s corr;runÞ
I represents the participants and J the runs. The model is compart-

mentalized into submodels for the intercepts and slopes. Ai;j is the
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submodel for the intercept for observations i; j. Similarly, BS;i;j;BN;i;j,
and BSN;i;j are the submodels for the speech task–speaker task slope,
clear-noise slope and the interaction slope, respectively; Ssubject/Srun are
the covariance matrices for participant/run. Rsubject/Rrun are the priors
for the correlation matrices modeled as LKJ probability densities
(Lewandowski et al., 2009). Weakly informative priors for the intercept
(a) and additional coefficients (e.g., b S), random effects for participant
and run (b S;subject; b S;run), and multivariate priors for participants and
runs identify the model by constraining the position of pi;j to reasonable
values. Here, we used normal distributions as priors. Furthermore, pi;j is
defined as the ramp function equal to the proportion of hits when these
are known and below the ceiling (c), and set to the ceiling if they are
equal to or greater than the ceiling c.

We additionally analyzed the reaction times, similarly to the model
described above but without consideration of ceiling effects as they are
non-existent. Posterior distributions were computed for each condition,
and we computed main effects and the interaction between task and
noise. If the posterior probability distribution of the difference scores
and the interaction does not strongly overlap zero (i.e., the HPD
excludes zero), then it is assumed that there is a detectable difference
(Bunce and McElreath, 2017; McElreath, 2018).

fMRI data analysis
Preprocessing of fMRI data
The MP2RAGE images were first segmented using SPM’s segment func-
tion (SPM 12, version 12.6906, Wellcome Trust Center for Human
Neuroimaging, University College London, United Kingdom; http://
www.fil.ion.ucl.ac.uk/spm) running on MATLAB 8.6 (The MathWorks
Inc.) in Ubuntu Linux 16.04 (Canonical Ltd.). The resulting gray and
white matter segmentations were summed and binarized to remove vox-
els that contain air, scalp, skull and cerebrospinal fluid from structural
images using the ImCalc function of SPM.

We used the template image created for a previous study (Mihai et al.,
2019) using structural MP2RAGE images from the 28 participants of that
study. We chose this template since 15 participants in the current study are
included in this image, and the vMGB mask (described below) is in the
same space as the template image. The choice of this common template
reduces warping artefacts, which would be introduced with a different tem-
plate, as both the vMGB mask and the functional data of the present study
would need to be warped to a common space. This additional warping
introduces artifacts that are more pronounced at a small scale like the
vMGB size. With the use of the common template we avoided warping the
vMGB mask to a new template. The template was created and registered to
Montreal Neurological Institute (MNI) space with ANTs (Avants et al.,
2008) and the MNI152 template provided by FSL 5.0.8 (Smith et al., 2004).
All MP2RAGE images were preprocessed with Freesurfer (Fischl et al.,
2004; Han and Fischl, 2007) using the recon-all command to obtain boun-
daries between gray and white matter, which were later used in the func-
tional to structural registration step.

Preprocessing and statistical analyses pipelines were coded in nipype
1.1.2 (Gorgolewski et al., 2011). Head motion and susceptibility distor-
tion by movement interaction of functional runs were corrected using
the Realign and Unwarp method (Andersson et al., 2001) in SPM 12.
This step also makes use of a voxel displacement map (VDM), which
addresses the problem of geometric distortions in EPI caused by magnetic
field inhomogeneity. The VDMwas calculated using field map recordings,
which provided the absolute value and the phase difference image files,
using the FieldMap Toolbox (Jezzard and Balaban, 1995) of SPM 12.
Outlier runs were detected using ArtifactDetect (composite threshold of
translation and rotation: 1; intensity Z-threshold: 3; global threshold: 8;
https://www.nitrc.org/projects/artifact_detect/). Coregistration matrices
for realigned functional runs per participant were computed based on
each participant’s structural image using Freesurfer’s BBregister function
(register mean EPI image to T1). We used a whole-brain EPI volume as
an intermediate file in the coregistration step to avoid registration prob-
lems because of the limited FoV of the functional runs. Warping using
coregistration matrices (after conversion to the ITK coordinate system)
and resampling to 1 mm isovoxel was performed using ANTs. Before
model creation, we smoothed the data in SPM12 using a 1-mm kernel at
full-width half maximum (FWHM).

Physiologic data
Physiologic data (heart rate and respiration rate) were processed by the
PhysIO Toolbox (Kasper et al., 2017) to obtain Fourier expansions of each,
to enter these into the design matrix (see below, Testing our hypothesis in
the left vMGB). Since heartbeats and respiration result in undesired cortical
and subcortical artefacts, regressing these out increases the specificity of
fMRI responses to the task of interest (Kasper et al., 2017). These artefacts
occur in abundance around the thalamus (Kasper et al., 2017).

Testing our hypothesis in the left vMGB
Models were set up in SPM 12 using the native space data for each par-
ticipant. We modeled five conditions of interest: speech task/noise,
speaker task/noise, speech task/clear, speaker task/clear, and task
instruction. Onset times and durations were used to create boxcar func-
tions, which were convolved with the hemodynamic response function
(HRF) provided by SPM 12. The design matrix also included the follow-
ing nuisance regressors: three cardiac, four respiratory, and a cardiac �
respiratory interaction regressor. We additionally entered the outlier
regressors from the ArtifactDetect step.

Parameter estimates were computed for each condition at the first level
using restricted maximum likelihood (REML) as implemented in SPM 12.
Parameter estimates for each of the four conditions of interest (speech task/
noise, speaker task/noise, speech task/clear, speaker task/clear) were regis-
tered to the MNI structural template using a two-step registration in ANTs.
First, a quick registration was performed on the whole head using rigid,
affine and diffeomorphic transformations (using symmetric normalization;
SyN), and the mutual information similarity metric.

Second, the high-quality registration was confined to the volume that
was covered by the 30 slices of the EPI images. These volumes include
the IC, MGB, and primary and secondary auditory cortices. This step
used affine and SyN transformations and mean squares and neighbor-
hood cross-correlation similarity measures. We performed the registra-
tion to MNI space by linearly interpolating the contrast images using the
composite transforms from the high-quality registration.

We extracted parameter estimates for each of the four conditions of
interest per participant, averaged over all voxels from the region of inter-
est, i.e., the left vMGB. To locate the left vMGB, we used the mask from
(Mihai et al., 2019), which included 15 of the 17 participants of the pres-
ent study (Fig. 2). The left vMGB ROI comprised 41 voxels.

We analyzed the extracted parameter estimates in a Bayesian frame-
work (McElreath, 2018). The data entering the model was mean centered
by subtracting the mean and dividing by 2 SDs (Gelman and Hill, 2006).
This transformation does not change the fit of the linear model and the

Figure 2. Location of the left MGB masks. A, The mean structural image across partici-
pants (n= 33) in MNI space. The red squares denote the approximate location of the left
MGB and encompass the zoomed in view in B. B, Closeup of the left vMGB (yellow). The
tonotopic gradient two is shown in cyan. Panels correspond to sagittal, coronal, and axial sli-
ces (P: posterior, A: anterior, S: superior, I: inferior, L: left, R: right).
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coefficients are interpretable in comparison to the mean of the data. The
reason behind this transformation is the faster and more accurate con-
vergence of the Markov chain sampling (McElreath, 2018). The model
was implemented in PyMC3 with a No-U-Turn Sampler with four paral-
lel chains. Per chain, we sampled posterior distributions which had 5000
samples with 5000 as warm-up. The predictors included in the model
were: task (xS: 1= speech task, 0 = speaker task), and background noise
(xN: 1 = noise, 0 = clear). We also included the two-way interaction of
task and noise condition. Because data were collected across participants,
it was reasonable to include random effects. To pool over participants,
we modeled the correlation between intercepts and slopes over partici-
pants. The interaction model is described below:

Li ;Tðmi; �; l Þ

mi ¼ Ai 1BS;ixS 1BN;ixN 1BSN;ixSxN ; for i ¼ 1; :::; I

Ai ¼ a1aparticipant½i�
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I represents the participants. The model is compartmentalized into
submodels for the intercepts and slopes. Ai is the submodel for the inter-
cept for observations i. Similarly, BS;i;BN;i, and BSN;i are the submodels

for the speech task -speaker task slope, clear-noise slope and the interac-
tion slope, respectively; S is the covariance matrix and R is the prior
for the correlation matrix modeled as an LKJ probability density
(Lewandowski et al., 2009). Weakly informative priors for the intercept
(a) and additional coefficients (e.g., b S), random effects for participant
(b S;subject), and multivariate priors for participants identify the model by
constraining the position of mi to reasonable values. Here, we used
Student’s t distributions as priors.

From the model output, we calculated posterior distributions for
each condition of interest (speech task/noise, speaker task/noise, speech
task/clear, speaker task/clear). Posterior distributions, in comparison to
point estimates, have the advantage of quantifying uncertainty about
each parameter. We summarized each posterior distribution using the
mean as a point estimate (posterior mean) together with a 95% HPD.
The HPD is the probability that the mean lies within the interval
(Gelman et al., 2013; McElreath, 2018), e.g., we are 95% sure the mean
lies within the specified interval bounds. We computed the following
contrasts of interest: interaction (speech task/noise–speaker task/noise)–
(speech task/clear–speaker task/clear); simple main effects (speech task/
noise–speaker task/noise), (speech task/clear–speaker task/clear); main
effect of task (speech task–speaker task). Differences between conditions
were converted to effect sizes [Hedge’s g* (Hedges and Olkin, 1985)].
Hedge’s g*, like Cohen’s d (Cohen, 1988), is a population parameter that
computes the difference in means between two variables normalized by
the pooled SD with the benefit of correcting for small sample sizes.
Based on Cohen (1988), we interpreted effect sizes on a spectrum rang-
ing from small (g* � 0.2), to medium (g* � 0.5), to large (g* � 0.8), and
beyond. If the HPD did not overlap zero, we considered this to be a ro-
bust effect (Bunce and McElreath, 2017; McElreath, 2018). However, we
caution readers that if the HPD includes zero, it does not mean that the
effect is missing (Amrhein et al., 2019). Instead, we quantify and inter-
pret the magnitude (by the point estimate) and its uncertainty (by the
HPD) provided by the data and our assumptions (Anderson, 2019).

Analyses of the left IC
The study design and acquisition parameters also allowed us to explore the
involvement of the IC in speech-in-noise recognition [for a rationale of
these exploratory analyses, see Results, Exploratory analyses on the central
nucleus of the IC (cIC)]. To analyze the task � noise interaction and the
main effect of task in the bilateral IC we used the same analysis procedures
as described for the left vMGB (see above, Testing our hypothesis in the left
vMGB). As region of interest, we used the IC masks described in (Mihai et
al., 2019) and limited them to the tonotopic parts of the IC, i.e., the central
nucleus (Fig. 3), which corresponds to the primary auditory pathway
(Davis, 2005). We will call it cIC in the following.

Figure 3. Tonotopy gradients in the ICs. The colored parts show one slice of the mean
tonotopic map across participants in the left and right IC in coronal view (S: superior, I: infe-
rior, L: left, R: right). Individual tonotopies showed high variability (results not shown). The
mean tonotopy revealed a gradient from low frequencies in lateral locations to high frequen-
cies in medial locations (Mihai et al., 2019). The maps were used to construct a region of in-
terest for the cIC.
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Furthermore, we performed a Pearson’s
correlation calculation to analyze the correla-
tion (speech–speaker task correlated with
speech accuracy score) in the left cIC. The
motivation for this test was based on similar
correlations (i.e., speech–control task corre-
lated with speech accuracy score) found in two
previous experiments in the left cIC [von
Kriegstein et al., 2008, experiments 1 and 2; for
further details see Results, Exploratory analyses
on the central nucleus of the IC (cIC)].

Experimental design and statistical analysis
(summary as requested by journal
requirements)
Sample size and demographic details of partici-
pants are described above (Participants), the
design of the study is described above
(Procedure), statistical test used for the analysis
of the behavioral data are described above
(Behavioral data analysis), and for the analysis
of the fMRI data, see above (Testing our hy-
pothesis in the left vMGB). We did not prereg-
ister the study. Our hypothesis was derived a
priori based on the Bayesian brain hypothesis
and our previous work (described in
Introduction and above, Study overview).

Results
Behavioral results
Accuracy
Participants performed well above chance
level in all four conditions (.82% correct;
Table 1; Fig. 4A). Table 1 contains the pro-
portion of hits converted from log-odds
(Fig. 4A) for an easier understanding of the
values relative to chance level (50% or log-
odds of 0).

Performing the tasks with background
noise was more difficult than the condi-
tions without background noise for both
the speech and the speaker task (Fig. 4B,
for details on statistics, see figure and
legend). The rate of hits in the speech task
was the same as in the speaker task (Fig.
4C). There was a detectable interaction
between task and noise (Fig. 4D,E), but
simple main effects [i.e., speech task/
noise–speaker task/noise (Fig. 4F) and
speech task/clear–speaker task/clear (Fig. 4G)] were not present.
We also observed ceiling effects in 11% of the cases, which were
modeled accordingly (Materials and Methods, Behavioral data
analysis).

Reaction times
The reaction times analysis showed that for the speech task partici-
pants required on average 0.166 [0.114, 0.222] s longer to react than
for the speaker task (Fig. 5). This effect is explained by the fact that
VCV syllables had constant vowels and only the consonants

changed within one block. Therefore, listeners had to wait for the
consonant to detect a change. Whereas, for the speaker identity task
the GPR and the auditory effect of the VTL play an important role
(Gaudrain et al., 2009; Kreitewolf et al., 2018), which can be com-
puted already at the start of the syllable. The difference in reaction
times between the noise and clear condition was on average 0.059
[0.010, 0.113] s. This difference showed that the noise condition
required a minimal amount of extra processing time, yet this differ-
ence was on average very small. Lastly, the task � noise interaction
was on average 0.022 s with the HPD overlapping zero ([�0.028,
0.076] s), which is not a meaningful effect.

Table 1. Behavioral results

Speech task/noise Speaker task/noise Speech task/clear Speaker task/clear

Hit rate [95% HPD] 0.82 [0.62, 0.95] 0.87 [0.74, 0.96] 0.92 [0.83, 0.98] 0.90 [0.81, 0.97]

The proportion of hits for each of the four conditions in the experiment. HDP: highest posterior density interval.

Figure 4. Behavioral results. We performed a binomial logistic regression to compute the rate of hits and misses in each condi-
tion because behavioral data were binomially distributed. For this reason, results are reported in log odds and odds ratios. The results
showed a detectable main effect of noise and interaction between noise and task. There was no main effect of task, and no detecta-
ble simple main effects (speech task/noise�speaker task/noise; speech task/clear�speaker task/clear). A, Log odds of hits and
misses for each condition. The gray dots indicate mean responses for individual participants, the red dots and accompanying num-
bers denote the posterior mean per condition, and the dark red lines demarcate the 95% HPD. The rate of hits compared with
misses is plotted on a log scale to allow for a linear representation. B, Mean odds ratio for the clear and noise conditions. The odds
of hits in the clear condition were on average twice as high as in the noise condition (the mean odds ratio was 1.978 [1.076,
2.957]). The HPD excluded 1 and indicated a detectable difference between conditions: no difference would be assumed if the odds
ratio was 1 (50/50 chance or 1:1 ratio; Chen, 2003). C, Mean odds ratio for the speech task–speaker task conditions. The mean odds
ratio was;1 indicating no difference between the speech and speaker task conditions. D, Visualization of the interaction (task�
noise) as a comparison of slopes with 95% HPD. E, The ratio of odds ratios of the simple main effects speech task/noise–speaker
task/noise and speech task/clear–speaker task/clear. The mean and 95% HPD was 0.557 [0.306, 0.844]. The HPD excluded 1 indicat-
ing an interaction effect. F, Mean odds ratio for the simple main effect speech task/noise–speaker task/noise. The rate of hits in the
speech task/noise condition was on average ;1/3 lower than the rate of hits in the speaker task/noise condition; however, the
HPD strongly overlapped 1 indicating that there was no difference between conditions. G, Mean odds ratio for the simple main
effect speech task/clear–speaker task/clear. The rate of hits in the speech task/clear condition was on average ;1/3 higher than
the rate of hits in the speaker task/clear condition; however, the HPD strongly overlapped 1 indicating that there was no detectable
difference between conditions.
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fMRI results
The task-dependent modulation of left vMGBwas increased for recog-
nizing speech-in-noise in contrast to the clear speech condition
We localized the left vMGB based on an independent functional
localizer (Fig. 6B). Following our hypothesis, there was increased
BOLD response for the task � noise interaction [(speech task/
noise–speaker task/noise)–(speech task/clear–speaker task/
clear)] in the left vMGB (Fig. 6A,B). The interaction effect had a
mean large effect size ranging across participants from a small
effect to a very large effect (g* = 2.549 [0.211, 5.066]; Fig. 6C,D).

The 95% HPD of the interaction effect
excluded 0, indicating that this was a ro-
bust effect (Bunce and McElreath, 2017;
McElreath, 2018). Simple main effect
analyses showed that the direction
of the interaction was as expec-
ted. The speech task/noise condition
yielded higher left vMGB responses in
contrast to the speaker task/noise
condition, ranging from a medium to
a very large effect across participants (g*
= 1.104 [0.407, 1.798]; Fig. 6E). Conver-
sely, the left vMGB response difference
between the speech task and speaker task
in the clear condition had a small effect
size (g* = 0.243 [�0.366, 0.854]; Fig. 6F),
ranging from a negative medium effect to
a positive large effect across participants,
and the HPD overlapped 0. The main
effect of task (speech vs speaker) was
large and robust (g* = 0.679 [0.192,
1.200]), while the main effect of condi-
tion (noise vs clear) was of medium
size and its HPD overlapped zero (g*
= �0.377 [�0.893, 0.108]).

The results showed that the task-de-
pendent modulation of the left vMGB for
the speech task was increased when partic-
ipants recognized speech vs. speaker iden-
tity in background noise in contrast to
speech vs. speaker identity without back-
ground noise (task � noise interaction).
This finding cannot be explained by dif-
ferences in stimulus input as the same
stimulus material was used for the speech
and the speaker task. The results are also
unlikely because of differences in task dif-
ficulty between conditions, as the behav-
ioral results showed no detectable
differences in performance for the simple
main effects.

We did not have a specific hypothesis
on the right vMGB, as there is currently
no indication that the task-dependent
modulation in this region is behaviorally
relevant (von Kriegstein et al., 2008;
Mihai et al., 2019) or dysfunctional in
disorders associated with speech-in-
noise processing difficulties (Díaz et al.,
2012; Tschentscher et al., 2019).
Exploring the interaction in the right
vMGB revealed no interaction effect as
the HPD strongly overlapped zero (g* =
�0.544 [�3.093, 2.459]). Additionally,

we computed a three-way interaction (task � noise � hemi-
sphere) for the vMGB. The HPD of all effects overlapped zero
(g* = 0.10 [�0.22, 0.40]). Thus, it is still an open question
whether there is a difference in effect between the left and right
vMGB when deciphering speech in noise.

Exploratory analyses on the central nucleus of the IC (cIC)
In exploratory analyses, we investigated the bilateral cIC involve-
ment during speech processing. The reason for these exploratory

Figure 5. Reaction times results. A, Mean centered reaction times for each condition. The blue lines indicate individual aver-
age reaction times, the black line denotes the estimated reaction time per condition averaged over participants and runs, the
gray shaded area denotes the 95% HPD. B, Mean reaction time difference between the speech and speaker task. On average,
participants took 0.166 [0.114, 0.222] s longer to react in the speech than to the speaker task. C, Mean reaction time difference
between the noise and the clear condition. On average, participants took 0.059 [0.010, 0.113] s longer to react during the noise
versus clear condition. There was no task� noise interaction.

Figure 6. fMRI results. A, The mean T1 structural image across participants in MNI space. Red rectangles denote the approx-
imate location of the left MGB and encompass the zoomed-in views in B, Letters indicate anatomic terms of location: A, ante-
rior; P, posterior; S, superior; I, inferior; L, left; R, right. Panels A, B share the same orientation across columns, i.e., from left to
right: sagittal, coronal, and axial. B, Statistical parametric map of the interaction (yellow-red color code): (speech task/noise-
�speaker task/noise)–(speech task/clear–speaker task/clear) overlaid on the mean structural T1 image. Crosshairs point to
MNI coordinate (�11, �28, �6). The white outline shows the boundary of the vMGB mask; the green boundary delineates
the non-tonotopic parts of the MGB. C, Parameter estimates (mean-centred) within the vMGB mask. Open circles denote pa-
rameter estimates of the speech task condition; filled circles denote parameter estimates of the speaker task condition. Dashed
black line: the relationship between noise condition (noise, clear) and parameter estimates in the speech task. Solid black line:
the relationship between noise condition (noise, clear) and parameter estimates in the speaker task. The shaded gray area
shows the 95% HPD. D–F, Bayesian analysis of the parameter estimates. D, The effect size of the interaction: the effect size for
the interaction effect was very large (2.549 [0.211, 5.066]) and the HPD excluded zero (indicated by the dashed vertical line).
E, Simple main effect: speech task/noise�speaker task/noise. The mean effect size was large (1.104 [0.407, 1.798]). The HPD
excluded zero. F, Simple main effect: speech task/clear�speaker task/clear. The mean effect size was small (0.243 [�0.366,
0.854]). The HPD contained zero.
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analyses were studies using auditory brainstem responses (ABRs)
during passive listening to speech sounds that have shown that the
quality of speech sound representation (i.e., as measured by the
frequency following response; FFR) explains interindividual vari-
ability in speech-in-noise recognition abilities (Chandrasekaran et
al., 2009; Song et al., 2011; Schoof and Rosen, 2016; Selinger et al.,
2016). These findings indicated that there might be subcortical
nuclei beyond the MGB that are involved in speech-in-noise per-
ception, potentially also sources in the auditory brainstem, partic-
ularly the IC (Chandrasekaran and Kraus, 2010b). Four previous
fMRI experiments, however, have shown that there is no signifi-
cant task-dependent modulation (i.e., higher BOLD responses for
a speech in contrast to a control task on the same stimuli) of the
IC (von Kriegstein et al., 2008; Díaz et al., 2012; Mihai et al., 2019).
Two of them showed a significant positive correlation between the
amount of BOLD response difference between a speech and a con-
trol task in the left IC and the speech recognition performance
across participants (von Kriegstein et al., 2008, experiments 1 and
2), but the others did not. Thus, the role of the IC in speech recog-
nition and speech-in-noise recognition is to date unclear. In the
present data, there was a small effect of task in the left cIC
(speech–speaker, left g* = 0.309 [�0.286, 0.902] and right g* =
0.126 [�0.393, 0.646], however, the HPD overlapped zero. The
task � noise interaction contained no explanatory power (left: g*
= 0.049 [�0.103, 0.202], right: g* = �0.010 [�0.136, 0.111]) and
introduced overfitting. We, therefore, excluded it from the model,
and the reported results were computed from the model without
an interaction term.

The correlation between the task-dependent modulation (i.e.,
speech–speaker task contrast) and the speech recognition scores
across participants in the left cIC was not significant in the cur-
rent study (r=0.15, p=0.566; Fig. 7).

Exploratory analyses in the cerebral cortex
Prompted by a reviewer, we decided to also explore responses in
the cerebral cortex, as this will give a more complete picture of
speech-in-noise processing in the brain. We examined the task�
noise interaction in the motion-sensitive planum temporale
(mPT) as described previously (Tschentscher et al., 2019) in the
left and right hemisphere in SPM (small-volume corrected with a
sphere of a radius of 8 mm, FWHM smoothing kernel of 6 mm).
There were responses in left mPT [MNI coordinate (�52, �32,
6), t=5.64, familywise error (FEW) corrected p=0.011] and
right mPT [MNI coordinate (48, �30, 13), t= 5.30, FWE cor-
rected p= 0.019]. Additionally, we examined the left and right
primary auditory cortex (Te1.0, small volume corrected with a
mask from the Anatomy Toolbox from SPM). Responses were
found only in the left hemisphere [left Te1.0 MNI coordinate
(�44, �20, �1), t= 4.44, p= 0.034; right Te1.0 (47, �17, 5),
t=2.73, p= 0.415]. None of the cerebral cortex responses sur-
vived multiple comparison corrections for the numbers of
regions tested (corrected p = 0.0125 for four regions).

Discussion
We showed that the task-dependent modulation for speech of
the left hemispheric primary sensory thalamus (vMGB) is partic-
ularly strong when recognizing speech in noisy listening condi-
tions in contrast to conditions where the speech signal is clear.
This finding confirmed our a priori hypothesis which was based
on explaining speech-in-noise recognition and sensory thalamus
function within a Bayesian brain framework. Exploratory analy-
ses showed that there was no detectable influence of noise on the

responses for the contrast between speech and speaker task in
the right vMGB, or in the auditory midbrain, i.e., the cICs.

Bayesian approaches to brain function propose that the brain
uses internal dynamic models to predict the trajectory of the sen-
sory input (Knill and Pouget, 2004; Friston, 2005; Kiebel et al.,
2008; Friston and Kiebel, 2009). Thus, slower dynamics of the in-
ternal dynamic model (e.g., syllable and word representations)
could be encoded by auditory cerebral cortex areas (Giraud et al.,
2000; Davis and Johnsrude, 2007; Hickok and Poeppel, 2007;
Wang et al., 2008; Mattys et al., 2012; Price, 2012), and provide
predictions about the faster dynamics of the input arriving at
lower levels of the anatomic hierarchy (Kiebel et al., 2008; von
Kriegstein et al., 2008). In this view, dynamic predictions modu-
late the response properties of the first-order sensory thalamus
to optimize the early stages of speech recognition (Mihai et al.,
2019). In speech processing, such a mechanism might be espe-
cially useful as the signal includes rapid dynamics, that are pre-
dictable (e.g., because of co-articulation or learned statistical
regularities in words; Saffran, 2003). In addition, speech often
has to be computed online under conditions of (sensory) uncer-
tainty. Uncertainty refers to the limiting reliability of sensory in-
formation about the world (Knill and Pouget, 2004). Examples
include the density of hair cells in the cochlea that limit fre-
quency resolution, the neural noise-induced at different process-
ing stages or, as was the case in the current study, background
environmental noise that surrounds the stimulus of interest. An
internal generative model about the fast sensory dynamics (Knill
and Pouget, 2004; Friston, 2005; Kiebel et al., 2008; Friston and
Kiebel, 2009) of speech could lead to enhanced stimulus repre-
sentation in the subcortical sensory pathway and by that provides
improved signal quality to the auditory cortex. Such a mecha-
nism would result in more efficient processing when taxing con-
ditions, such as background noise, confront the perceptual
system. The interaction between task and noise in the left vMGB
is in congruence with such a mechanism. It shows that the task-
dependent modulation of the left vMGB is increased in a situa-
tion with high sensory uncertainty in contrast to the situation
with lower sensory uncertainty. Although the results are in ac-
cordance with the Bayesian brain hypothesis, the study was not
meant to test directly whether predictive coding is used in the au-
ditory pathway. To test this it would be necessary to manipulate
predictability of the stimuli (Tabas et al., 2020).

Both the speech task and the speaker task required attention
to the stimuli. Attention can interact to provide a better decoding

Figure 7. A, Correlation analysis between the parameter estimates of the contrast
speech–speaker task in the left cIC and the proportion of hits in the speech task. B,
Correlation analysis between the parameter estimates of the contrast speech/clear–speaker/
clear task in the left cIC and the proportion of hits in the speech/clear task. Most data points
are close to the ceiling on the right of the behavioral score. For both correlations, the degrees
of freedom were 16.
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of the stimuli we choose to attend to (Schröger et al., 2015), and
can optimize predictions of incoming signals (Smout et al., 2019)
resulting in a top-down and bottom up signal integration
(Gordon et al., 2019). Attention can be formulated in predictive
coding accounts (Spratling, 2008; Feldman and Friston, 2010;
Ransom et al., 2017). In such a view, attention results in
increased precision of predictions for example by modulating the
synaptic gain of prediction error units (Feldman and Friston,
2010; Smout et al., 2019). It is to date an open question whether
the task-dependent modulation observed for speech recognition
in the present and previous studies in sensory thalamic nuclei
(von Kriegstein et al., 2008; Díaz et al., 2012, 2018; Mihai et al.,
2019) operate through the same mechanisms as attentional mod-
ulation (O’Connor et al., 2002; Schneider and Kastner, 2009;
Schneider, 2011; Ling et al., 2015).

Speech-in-noise recognition abilities are thought to rely (1)
on additional cognitive resources (for review, see Peelle, 2018)
and (2) on the fidelity of speech sound representation in brain-
stem nuclei, as measured by ABR recordings (for review, see
Anderson and Kraus, 2010). For example, studies investigating
speech-in-noise recognition at the level of the cerebral cortex
found networks that include areas pertaining to linguistic, atten-
tional, working memory, and motor planning (Salvi et al., 2002;
Scott et al., 2004; Wong et al., 2008; Bishop and Miller, 2009).
These results suggested that during speech recognition in chal-
lenging listening conditions additional cerebral cortex regions
are recruited that likely complement the processing of sound in
the core speech network (for review, see Peelle, 2018). The pres-
ent study showed that besides the additional cerebral cortex
region recruitment, a specific part of the sensory pathway is also
modulated during speech-in-noise recognition: the left vMGB.

ABR recordings during passive listening to speech sounds
have shown that the quality of speech sound representation (i.e.,
as measured by the FFR) explains interindividual variability in
speech-in-noise recognition abilities (Chandrasekaran et al., 2009;
Song et al., 2011; Schoof and Rosen, 2016; Selinger et al., 2016)
and can be modulated by attention to speech in situations with
two competing speech streams (Forte et al., 2017). It is difficult to
directly relate the results of these FFR studies on participants with
varying speech-in-noise recognition abilities (Chandrasekaran et
al., 2009; Song et al., 2011; Schoof and Rosen, 2016; Selinger et al.,
2016) to the studies on task-dependent modulation of structures
in the subcortical sensory pathway (von Kriegstein et al., 2008;
Díaz et al., 2012; Mihai et al., 2019), they involve very different
measurement modalities and the FFR studies focus mostly on
speech-in-noise perception in passive listening designs. One major
candidate for the FFR source is the IC. Particularly for speech, the
FFR, as recorded by EEG, seems to be dominated by brainstem
and auditory nerve sources (for review, see Chandrasekaran et al.,
2014; Bidelman, 2018). The results of the present study, however,
do not provide evidence for a specific involvement of the IC when
recognizing speech-in-noise. The choice of syllables for the speech
task emphasizes predictions at the phonetic level. One possibility
is that task-dependent modulation of the left MGB in conditions
with high sensory uncertainty, might be particularly relevant for
such processing at the phonetic level as the MGB might be opti-
mized for this type of fast-varying information (Giraud et al.,
2000; von Kriegstein et al., 2008). Whether the IC might play a dif-
ferent role in speech-in-noise processing is an open question.

We speculate that the task-dependent vMGB modulation
might be a result of feedback from cerebral cortex areas. The
strength of the feedback could be enhanced when speech has
to be recognized in background noise. The task-dependent

feedback may emanate directly from primary auditory or
association cortices, or indirectly via other structures such as
the reticular nucleus with its inhibitory connections to the
MGB (Rouiller and de Ribaupierre, 1985). Feedback cortico-
thalamic projections from layer 6 in A1 to the vMGB, but
also from association cortices such as the mPT (Tschentscher
et al., 2019), may modulate information ascending through
the lemniscal pathway, rather than convey information to
the vMGB (Llano and Sherman, 2008; Lee, 2013).

Difficulties in understanding speech-in-noise accompany de-
velopmental disorders like autism spectrum disorder, develop-
mental dyslexia, and auditory processing disorders (Alcántara et
al., 2004; Chandrasekaran et al., 2009; Wong et al., 2009; Ziegler
et al., 2009; Bellis and Bellis, 2015; Schoof and Rosen, 2016;
Schelinski and von Kriegstein, 2019). In the case of developmen-
tal dyslexia, previous studies have found that developmental dys-
lexics do not have the same amount of task-dependent
modulation of the left MGB for speech recognition as controls
(Díaz et al., 2012) and also do not display the same context-sensi-
tivity of brainstem responses to speech sounds as typical readers
(Chandrasekaran et al., 2009). In addition, diffusion-weighted
imaging studies have found reduced structural connections
between the MGB and cerebral cortex (i.e., the mPT) of the left
hemisphere in developmental dyslexics compared with controls
(see Müller-Axt et al., 2017 for similar findings in the visual mo-
dality; Tschentscher et al., 2019). These altered structures might
account for the difficulties in understanding speech-in-noise in
developmental dyslexia. Consider distinguishing speech sounds
like “dad” and “had” in a busy marketplace. For typically devel-
oped individuals, vMGB responses might be modulated to opti-
mally encode the subtle but predictable spectrotemporal cues
that enable the explicit recognition of speech sounds. This modu-
lation would enhance speech recognition. For developmental
dyslexics, however, this vMGB modulation may be impaired and
may explain their difficulty with speech perception in noise
(Boets et al., 2007; Ziegler et al., 2009; Díaz et al., 2012).

In conclusion, the results presented here suggest that the left
vMGB is particularly involved in decoding speech as opposed to
identifying the speaker if there is background noise. This
enhancement may be because of top-down processes that act on
subcortical sensory structures, such as the primary auditory thal-
amus, to better predict dynamic incoming signals in conditions
with high sensory uncertainty.
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