
Deep recurrent networks predicting the gap evolution in adiabatic quantum computing

Naeimeh Mohseni,1, 2 Carlos Navarrete-Benlloch,3, 4, 1 Tim Byrnes,5, 6, 7, 8, 9, ∗ and Florian Marquardt1, 2

1Max-Planck-Institut für die Physik des Lichts, Staudtstrasse 2, 91058 Erlangen, Germany
2Physics Department, University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany

3Wilczek Quantum Center, School of Physics and Astronomy,
Shanghai Jiao Tong University, Shanghai 200240, China

4Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
5New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China

6State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences,
East China Normal University, Shanghai 200062, China

7NYU-ECNU Institute of Physics at NYU Shanghai,
3663 Zhongshan Road North, Shanghai 200062, China

8National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
9Department of Physics, New York University, New York, NY 10003, USA

(Dated: September 20, 2021)

One of the main challenges in quantum physics is predicting efficiently the dynamics of observables
in many-body problems out of equilibrium. A particular example occurs in adiabatic quantum
computing, where finding the structure of the instantaneous gap of the Hamiltonian is crucial in
order to optimize the speed of the computation. Inspired by this challenge, in this work we explore
the potential of deep learning for discovering a mapping from the parameters that fully identify a
problem Hamiltonian to the full evolution of the gap during an adiabatic sweep applying different
network architectures. Through this example, we find that a limiting factor for the learnability of
the dynamics is the size of the input, that is, how the number of parameters needed to identify the
Hamiltonian scales with the system size. We demonstrate that a long short-term memory network
succeeds in predicting the gap when the parameter space scales linearly with system size. Remarkably,
we show that once this architecture is combined with a convolutional neural network to deal with
the spatial structure of the model, the gap evolution can even be predicted for system sizes larger
than the ones seen by the neural network during training. This provides a significant speedup in
comparison with the existing exact and approximate algorithms in calculating the gap.

I. INTRODUCTION

Machine learning based on neural networks has demon-
strated significant predictive capability for many chal-
lenging problems [1, 2]. In particular, its application
in studying quantum many-body systems has attracted
significant attention in the last few years [3]. A few
notable successes include the use of neural networks in
identifying quantum phases of matter and learning phase
transitions [4–8], quantum state tomography [9, 10], en-
hancing quantum Monte Carlo methods [11, 12], solving
optimization problems [13, 14], quantum control [15], the
efficient representation of quantum states [16, 17], and
tackling quantum many-body dynamics [17–20].

Adiabatic quantum computing (AQC) is an example of
a quantum many-body dynamical process, and was pro-
posed as an approach for solving optimization problems
[21]. The sweep time in AQC for which adiabaticity can
be achieved is proportional to a negative power of the
minimum energy gap between the two lowest energy levels
during the sweep [22–24]. Therefore, one way of optimiz-
ing the computation time is by spending the majority
of the evolution time in the vicinity of the anti-crossing.
Creating such an annealing schedule requires prior knowl-
edge of the gap structure, which is known to be as hard as

∗ Corresponding author: tim.byrnes@nyu.edu

All-to-All

Nearest neighbor

a b
En

er
gy

FIG. 1. (a) A neural network learns the gap dynamics by
observing the gap dynamics generated by a classical computer
or a quantum computer. For the purposes of this work, we train
the network on the data generated by a classical computer.
(b) Spin models studied in this work that are taken to be the
problem Hamiltonian in AQC. Either all spins or only nearest
neighbors are connected with random couplings.

solving the original problem [25]. There are a handful of
cases for which analytical expressions for the spectral gap
exist [22, 26–28], but mostly the gap can only be deter-
mined numerically either based on exact diagonalization
or approximate algorithms [29, 30] which are limited to
relatively small system sizes. Therefore, in general there
is no intuition about how the spectral gap is related to

ar
X

iv
:2

10
9.

08
49

2v
1

 [
qu

an
t-

ph
]

 1
7

Se
p

20
21

2

the structure of the problem Hamiltonian.
It is of interest to characterize the complexity of learn-

ing the full gap evolution during the adiabatic sweep
by applying a classical machine (neural network) that is
trained on the data generated by a quantum computer
or numerical simulations (Fig. 1 (a)). In the former case
we have a hybrid quantum-classical algorithm. Such algo-
rithms have recently attracted a lot of interest and have
been examined in different contexts [18, 31, 32], as they
can be applied for regimes that the run-time of the exact
numerical simulations are prohibitive but the network can
be still trained on the data generated via experiment. One
should note that in AQC a highly precise estimation of
the gap is not necessary as long as it is not overestimated
significantly, since diabatic excitations are not produced
as long as the adiabatic sweep time is longer than that
required by the gap. It is also interesting to investigate
how the difficulty of the task is related to the complexity
of the problem Hamiltonian and what are the cases for
which a neural network can assist in gap approximation.

Inspired by these open questions, here we explore the
power of a neural network in discovering a mapping from
the parameters that fully specify the adiabatic Hamil-
tonian to the evolution of the gap by having it observe
the dynamics of the gap for many different realizations
of a random problem Hamiltonian. For the purposes of
this work, we train the neural network on the data gen-
erated from numerical simulations rather than quantum
hardware. However, our methods could equally be ap-
plied in a quantum-classical hybrid scenario. As for the
problem Hamiltonian in AQC, we consider spin models
in two extreme limits: either all spins are connected, or
only nearest neighbors in 1D are (Fig. 1 (b)). We then
compare the standard fully-connected neural networks
(FCNNs) against a particular type of recurrent neural net-
works called long short-term memory (LSTM) for the task
of learning the gap evolution during the sweep for both of
these spin models. We observe that our neural networks
are able to learn the mapping for the nearest neighbor
connected model with a good precision, but they fail for
the all-to-all connected case. We also find that LSTM
networks, which are typically used for sequence process-
ing and prediction, including audio signal analysis [33]
and language translation [34], excel at this task. These
architectures are known to be good at capturing both
long-term and short-term dependencies in sequences. This
characteristic is extremely useful as it gives the LSTM
network the power to handle complex dynamics.

Remarkably, we demonstrate for the nearest neighbor
connected model that a convolutional long short-memory
(CONVLSTM) [35] can predict the gap for system sizes
larger than those that the network has been trained on.
This architecture combines a convolutional neural network
(CNN) to deal with the spatial structure of the input with
the LSTM that tracks the time evolution.

While throughout this work we concentrate on the
particular task of gap prediction in AQC, our study pro-
vides insight for more general many-body dynamics. We

a
 Input neurons

 Internal memory

Output neurons

b

g(t)

. .
. .

Time

g(t-1)

g(0)J(0)

J(t-1)

J(t)

K(0)

K(t)

K(t-1)

LSTM Network

g(t)

g(t-1)

g(0)

. .
. .

FCNN

J,K

. .
 .

.

FIG. 2. Schematic representation of the neural networks
considered in this work. (a) Fully connected neural network
(FCNN) with the bare parameters J and K as the input and
the full gap evolution as the output. (b) The long short-
memory (LSTM) network with J(t) = λ(t)J and K(t) =
λ(t)K as the input and the gap as the output denoted by
g(t). Arrows between the modules (dark blue cells) indicate
the content of the internal neural memory being passed to the
next time step.

conclude that an important limiting factor for the learn-
ability of such dynamics is the way in which the number
of parameters needed to identify the Hamiltonian scales
with the system size. Moreover, our study demonstrates
the promise of convolutional recurrent neural networks
for extrapolating the dynamics of inhomogeneous time-
dependent quantum many-body models beyond the sys-
tem sizes that they are trained on.

II. PROBLEM DEFINITION

In this section, we define the models that we explore
in this work. We also introduce the neural network archi-
tectures that we apply and explain how we train them.

A. Model

We consider the AQC Hamiltonian defined as

H = [1− λ(t)]H0 + λ(t)Hp, (1)

3

with

Hp =

M∑
i,j=1

Jijσ
z
i σ

z
j +

M∑
i=1

Kiσ
z
i , (2a)

H0 = −
M∑
i=1

σxi , (2b)

where σαi with α = x, z are Pauli operators, and Jij
and Ki are random coefficients that identify the problem
Hamiltonian. λ(t) is a time-varying parameter that is
swept from 0 to 1. The system is initially prepared in the
ground state of H0 and the Hamiltonian gradually tran-
sitions to the desired problem Hamiltonian Hp. Based
on the adiabatic theorem if one performs the sweep suffi-
ciently slowly, the system will remain in its instantaneous
ground state throughout the evolution [21]. In this work
we consider the adiabatic schedule λ(t) = t/τ where τ
denotes the adiabatic duration.

As mentioned previously, our goal is to find a mapping
from the parameters (Jij ,Ki), which we collect in a matrix
J and a vector K, to the full gap evolution. In addition
to assisting in the search for the best annealing schedule,
such a mapping may also help to classify harder problem
instances from easier ones in terms of the gap. We study
two limiting cases of problem Hamiltonians: i) All-to-
all connected spin models and ii) 1D nearest neighbor
connected models.

B. Neural network architectures

We apply three neural network architectures for our
goal: an FCNN, an LSTM network, and a CONVLSTM
network. For the FCNN architecture, we feed into the
neural network the parameters J and K that fully identify
the problem Hamiltonian and the neural network provides
as output the full gap evolution during the sweep (Fig. 2
(a)), which we signify by

(J ,K)
FCNN−−−−→ g(t), (3)

where g(t) denotes the full gap evolution during the adia-
batic sweep.

In the LSTM architecture, the input is not just the
bare parameters that identify the problem Hamiltonian,
but the effective contribution of these parameters during
the whole sweep, namely λ(t)J and λ(t)K (Fig. 2 (b)).
These coefficients effectively identify the full adiabatic
Hamiltonian during the sweep. In this case, then we have

(λ(t)J , λ(t)K)
LSTM−−−−→ g(t). (4)

The most important difference between these two archi-
tectures is that the LSTM receives as input the effective
contribution of the parameters at each time step and
computes the gap for that time step, eventually working
its way sequentially through the whole time interval. In

contrast, the FCNN has to work out the full gap evolution
at once. In addition, as shown in Fig. 2(b), the LSTM
architecture is composed of modules (dark blue cells).
Each module is made of a few gates (see Sec. II of the
Supplemental Material for more details) which decide on
the flow of information in and out of each module at each
time.

To study the possibility of extrapolating the predictions
to system sizes beyond what the neural network has been
trained on we also apply a CONVLSTM network [35].
This architecture is designed for data with spatio-temporal
input [36]. It combines a CNN to deal with the spatial
structure of the input with the LSTM that tracks the time
evolution. CNNs can be applied for variable input size
therefore helping to scale up the predictions to larger sizes
[1, 37] (See Supplemental Material Secs. I and II for more
details). Inspired by this feature and using an appropriate
preparation of the input such that we can present properly
the spatio-temporal structure of the input to the network
we explore the power of the CONVLSTM in predicting
the gap for larger system sizes than that it has been
trained on. The input and the output of the network in
this case are signified as

(λ(t)J(x), λ(t)K(x))
CONVLSTM−−−−−−−−→ g(t), (5)

where J(x) and K(x) should properly present the spatial
structure of the problem Hamiltonian as we explain in
more detail in Sec. IV.

C. Training

To train the neural network, we generate a set of ran-
dom parameters J and K for the particular system size of
interest. We then diagonalize the Hamiltonian during the
sweep to calculate the first two eigenvalues and therefore
the full gap evolution. All these parameters are taken
from a uniform distribution in the interval [−1, 1]. To
improve the performance of the neural network at regions
where the gap is smaller, we train it on the log(g(t) + 1)
rather than g(t).

Out of the generated random instances, we keep a set
to evaluate the neural network, which we call the test set,
and a set for validation. The validation set is used to
fine tune the hyperparameters of the neural network, but
no training occurs on this set. The remaining instances
are used for training. To evaluate the performance of the
neural network, we calculate the mean square error MSE
on our test set defined as

MSE = 〈|gtrue(t)− gpredict(t)|2〉n,t, (6)

where the gtrue and the gpredict denote the true gap calcu-
lated by diagonalizing the Hamiltonian and the predicted
gap obtained by the neural network, respectively. The
average is taken over the number of instances n and time.

4

Dashed lines: LSTM
Solid lines: FCNN

N
um

be
r o

f i
ns

ta
nc

es

Gap

c

M

M
SE

G
ap

G
ap

Time
0 302010 0 302010

All-to-All e

g

M=9

M=9

M=9

M
SE

M=9

Nearest Neighbour, 90,000

All-to-All, 90,000
All-to-All, 450,000

All-to-All

Nearest Neighbour

a

epochs

Nearest Neighbour

Predicted

Predicted Predicted

True

True True

True
Predicted

Time

M=9

d

f Nearest Neighbour

All-to-All

J1

J1

J2

Nearest Neighbour

Dashed lines: LSTM
Solid lines: FCNN

M=9

Training
Validation

All-to-All

Training
Validation

M
SE

epochs

M=9

2.51.50.5

4000

2000

1
-1

0

1
-1

0

1

0 1-1

0.001

0.5

10 -2

1 25 50

10 -1

1 50 150100

10 -3

10 -1

1

1

2

2

b

M=9

M=9

True

True

Predicted

M=9

M=9

Predicted

J2

0 1-1

FIG. 3. Comparing the performance of the LSTM network and FCNN in predicting the gap evolution during the adiabatic sweep
for the all-to-all and the nearest neighbor connected models. Validation MSE versus epochs for system size M = 9 applying the
FCNN (solid lines) and LSTM network (dashed lines) for (a) the nearest neighbor and (b) all-to-all connected model. 90,000
samples are used to train the neural network and 10,000 samples are used for the validation. Predicted gap (solid line) and
exact gap (dashed line) in terms of time for a few typical problem instances for the (c) nearest neighbor connected model and
(d) all-to-all connected models. (e) The error MSE versus system size on the test set (containing 1000 samples for each system
size) for the nearest neighbor and all-to-all connected models applying both FCNN (solid curves) and LSTM network (dashed
curves). The numbers on the legend denote the training set size. The shown points are average over 5 attempts for training. (f)
Histogram of the gap during the whole sweep for both the nearest neighbor and all-to-all connected models. (g) The true and
predicted minimum gap versus couplings J1 and J2, where all other couplings and local terms are fixed.

III. GAP EVOLUTION LEARNABILITY

In this section, we study the learnability of the gap
applying the different neural network architectures that
we discussed above. We study the performance of our
neural network architectures in predicting the gap for
spin models in two extreme limits: either all spins are
connected or only nearest neighbors in 1D. We inspect
how the prediction accuracy scales with system size for
both models applying our different network architectures.

In Fig. 3(a) and (b), we show the MSE over training
and validation sets in terms of epochs for the nearest
neighbor and all-to-all connected models. The number
of epochs indicates the number of times that the net-
work has seen all the training instances. For the nearest
neighbor connected model, it can be seen that for both ar-
chitectures the error decreases with the number of epochs.
However, it is evident that the LSTM network performs
better (Fig. 3(a)). In contrast, for the all-to-all connected
model, the network overfits (Fig. 3(b)). For this model
we just showed the results using LSTM network as we
observed the same behavior applying the FCNN as well.
Investigating different factors such as the network size
and the training set size, we learned that the latter is the
main bottleneck in this case.

In Figs. 3(c) and (d), we show the predicted and the true
gap for a few typical instances applying LSTM network.
It is clear that our network fails to predict the gap for the

all-to-all connected instances while successfully predicts
the gap with a high accuracy for the nearest neighbor
connected instances.

In Fig. 3 (e), we study how the error scales with the sys-
tem size for a fixed number of training samples specified
in the legend. The shown errors are found by averag-
ing over 1000 test instances. Let us focus first on the
nearest neighbor connected model. It is obvious that the
LSTM network has a considerably higher precision and
the error in prediction scales more favorably in terms
of system size for this architecture in comparison with
the FCNN (compare the pink solid line with the pink
dashed line). We attribute this to the fact that the LSTM
architecture has memory and is able to record both long
and short-term dependencies. This architecture has the
built-in the notion of causality, while the FCNN needs
to learn causality on its own as it has no notion of time.
Applying the same number of training samples for the
all-to-all connected model (blue lines), the error grows
more dramatically with system size in comparison with
the nearest neighbor connected model. The error can be
decreased by increasing the training set size, but even a
factor 5 (green lines) is not enough to achieve reasonable
accuracy for larger system sizes (say M > 6). This im-
plies that the number of samples required to train the
network explodes with the system size when aiming at a
given error in the predictions. As a consequence of this
explosion, the LSTM network does not seem to show a
better performance in comparison with the FCNN for

5

M > 5 in the figure when 90,000 instances are used for
training (compare dashed and solid blue lines).

We have explored some reasons why the network fails
for the all-to-all connected model, while it succeeds for the
nearest neighbor model when for a given system size M
the Hilbert space dimension is the same for both models.
We conjecture the main reason is due to the way in which
the parameter space size scales with the system size for
each model: linearly for the nearest neighbor model and
quadratically for the all-to-all connected one. Note that by
parameter space size we mean the number of parameters
that identify the model. One may think that another
reason might be that the nearest neighbor connected
model can be also simpler in terms of the gap size and
complexity of the gap trajectories. To investigate this, we
compare the gap size during the sweep for both the nearest
neighbor and the all-to-all connected models for system
size M = 9 in Fig. 3 (f). It is apparent that, in general the
typical size of the gap is similar for both models. Moreover,
in Fig. 3 (g), for a typical problem instance we compare
the dependence of the minimum gap with two couplings
J1 and J2, with all other parameters fixed. As can be
seen, the pattern of the minimum gap in the all-to-all
connected model does not appear to be more complicated
than the nearest neighbor connected model. However,
network fails in predicting the minimum gap for the all-
to-all connected model. While Fig. 3 (g) is for a single
problem instance, we observed the similar complexity for
the minimum gap for both models via inspection of ∼ 20
randomly generated problem instances. Another potential
reason is that the local nature of the connectivities in
the nearest neighbor model can make it easier for the
network to learn the dynamics of the gap. If that were
to be true, then one should expect an improvement by
encoding the all-to-all connected model into a local model.
In Sec. V, we introduce such an encoding through the
so called Lechner-Hauke-Zoller (LHZ) mapping [38], and
find the same scaling of the error with the system size.

In order to provide further evidence for our claim that
the main bottleneck for a successful training comes from
how the parameter space scales with the system size, here
we compare the performance of our neural network for
both spin models with sizes for which they contain the
same number of parameters. In particular, the number
of couplings for the M = 5 all-to-all connected model
is 10, the same as for the M = 10 nearest neighbor
connected model. Using the same number of training
samples for both models, we observe that the network
reaches MSE = 0.0006 for the all-to-all connected model
and MSE = 0.0002 for the nearest neighbor connected
model. These errors are comparable, and the performance
for the nearest neighbor model is just slightly better. This
result supports our conjecture.

As a last remark of this section, one may argue that
it might be easier for the network to learn the times for
which the gap becomes small, rather than the full gap
evolution. We have also investigated this and observed
that the network still fails for the all-to-all connected

model. Our conjecture is that this is again a consequence
of the quadratic scaling of the parameter space size with
the system size.

IV. EXTRAPOLATION

In this section, we explore the possibility of the network
to predict the gap for system sizes beyond those which it is
trained. As indicated already, the potential architectures
for this goal are CNNs, which can be applied for an input
with variable size. These architectures are known to be
good for extracting features on local models. Therefore,
we apply to the nearest neighbor connected model the
CONVLSTM architecture which is designed for sequence
prediction problems with spatial structure. This network
extends the fully connected LSTM architecture to have a
convolutional structure in both the input-to-module (dark
blue sheet Fig. 4(a)) and module-to-module (light blue
sheet Fig. 4(a)) transitions.

In Fig. 4(a), we show the input of the network with a
1D spatial structure and containing three features at each
site. The first feature represents the corresponding local
parameter K at each site. The second and third ones
represent the couplings J , arranged so as to emphasize
that each site is connected to its two nearest neighbors.
See Supplemental Material Sec. III for more details on the
technical implementation and the layout of the network.

We train the network on system sizes M ∈ [3, 9], and
then evaluate it on the test samples with system sizes
M ∈ [3, 22]. We observed that our CONVLSTM network
succeeds in predicting the gap both for the system sizes
that it has been trained on and larger system sizes than
that. In Fig. 4 (b), we show the predicted gap (solid
line) and the true gap (dashed line) as a function of time
for three typical problem instances with M = 20, 21, 22.
As can be seen, the network is able to approximate the
gap during the evolution with a good precision. We also
find that there is a correlation between the size of the
gap and the accuracy of the network. In Fig. 4 (c), we
show the true gap against the predicted gap for the full
gap evolution for 20 test instances. It is clear that close
to the regions where the gap is smaller, the performance
of the network is less accurate, even on an absolute level.

In Fig. 4 (d), we show how the prediction error in
prediction scales with the system size. The highlighted
region marks the system sizes that the network has not
been trained on. We have not been able to conclude
whether the error scales polynomially or exponentially,
since both functions fitted relatively well.

In the previous section, we observed for the all-to-all
connected model, using 90,000 samples for training, the
network is able to learn the gap on small system sizes
with M < 7. We are interested to study whether a
CONVLSTM network that is trained on that small sizes
can still extrapolate the predictions to the larger system
sizes. To apply CONVLSTM network for the all-to-all
connected model, we need to map it to a local model.

6

G
ap

Time

Predicted
True

0.5

2
1.5
1

30
0 10 20 M=20

M=21

M=22

M

g(0)

g(t)

g(t-1)

CONV-LSTM

Input Output

Time

1D Spatio-temporal Input

Extrapolation

a

M

M
SE

b
d

. .
 .

.

exp (0.15M)

M=21

M=12

True gap

Pr
ed

ic
te

d
ga

p

c

. .
 .

.

Features

2

20
0

0
1

2
1

1

5 10 15 20

0.002

0.001

M

3

Training

2

0
1

M=18

FIG. 4. Extrapolating the gap to the larger system sizes applying 1D-CONVLSTM network for the nearest neighbor connected
model. (a) Schematic representation of the CONVLSTM with spatio-temporal inputs (light blue sheets). Arrows between the
modules (dark blue cells) indicate the content of the internal neural memory being passed to the next time step and the dark
blue sheet denotes a convolutional structure for module-to-module transitions. (b) Predicted (solid line) and true gap (dashed
line) in terms of time for three typical problem instances. (c) The predicted gap versus the true gap for the full adiabatic
evolution. For each system size the plot contains 20 problem instances. (d) The MSE error in predicting the gap versus system
size. Network is trained on system sizes with M ∈ [3, 9] and is evaluated on test samples with M ∈ [3, 22]. The shown errors
are averaged over 200 random problem instances for each system size. The highlighted region marks the system sizes that the
network has not been trained on. 90,000 samples are used to train the network.

This is because CNNs are good at extracting features
on the local models as neurons of different layers are
locally connected. In the next section we map the all-
to-all connected model to a local model and explore the
potential of CONVLSTM for extrapolating the predictions
to larger system sizes.

V. MAPPING THE ALL-TO-ALL CONNECTED
MODEL TO A LOCAL MODEL

In this section we first investigate whether the highly
non-local nature of the all-to-all connected model is one
of the reasons that makes it hard for the network to
predict the gap. To understand this, we apply the LHZ
mapping [38] to encode this model into a model with
only local connectivities and check if the network per-
forms better. LHZ maps the graph of the M all-to-all
connected logical qubits (Fig. 5 (a)) onto a planar graph
with Np = M(M − 1)/2 physical qubits and only local
connectivities (Fig. 5 (b)). Within this mapping, the
original problem Hamiltonian (2a) can be encoded into
the following Hamiltonian in the physical qubit basis

HLHZ
p =

Np∑
k=1

Jkσ
z
k − C

∑
〈i,j,k,l〉

σzi σ
z
jσ

z
kσ

z
l , (7)

where 〈i, j, k, l〉 denotes sum over nearest neighbor spins.
Energy penalties in the second term which involve M −

Np + 1 four-body interactions (the four qubits around
each small pink circle shown in Fig. 5 (b)) are introduced
to enforce the system in the low energy sub-space. In the
bottom row only three qubits are connected, for which
three-body constrains are introduced instead.

Single-body terms in the original model, which corre-
spond to a local field acting on the logical qubits, can be
also implemented adding an auxiliary logical qubit (light
blue qubit in Fig. 5 (a)) fixed to state |0〉, which is
an eigenstate of σz with eigenvalue +1. Interaction of
this auxiliary logical qubit with the rest of the qubits
implements these local terms, which correspond to M
extra physical qubits (light blue qubits in Fig. 5 (b)) in
the LHZ architecture [38].

In Fig. 5 (c), we compare the performance of the
LHZ model with the originally all-to-all connected model
applying the standard LSTM network. 90,000 instances
are applied to train the network for each model and
system sizes up to M = 5, for which the LHZ model
already contains 15 physical qubits. We also show the
results for the nearest neighbor connected model for the
purpose of comparing the scaling. We observe that for
the LHZ model the error still scales exponentially with
the system size. While we have not been able to analyze
for larger M values, these results seem to suggest that
the locality of the connectivities should not improve the
way that error scales with the system size.

In Fig. 5 (d), we compare the typical size of the
gap for both models. As can be seen, the LHZ model

7

12

13

14

15 26

25

24

23

16

34

35

36

46

45 56

a b

12 23 34 45

14 15

13
24

35

1 2 3 4 5

c

d

16

6

16

56

46

36
25

fF
eatures

M
SE

TimeGap

G
ap

M

M
=5

M=5

e

N
um

be
r o

f i
ns

ta
nc

es All-to-All
LHZ

M=6

Predicted
True

M=4

Nearest neighbor

LHZ
All to All

10 -3

10 -1

3 6 9

0.5

2
1.5
1

30
0 10 202.51.50.5

4000

2000

1

FIG. 5. The power of the LSTM network in predicting the full gap evolution during an adiabatic sweep for the LHZ model.
(a) An all-to-all connected model with system size M = 5 where the light blue circle shows an auxiliary logical qubit (fixed to
1) to implement single-body terms. (b) The LHZ architecture where the light blue circles show physical qubits that encode
single-body terms. The four qubits around each small pink circle (plaquette) consist four-body constraints. (c) The error for
predicting the gap evolution averaged over 1000 realizations for all three investigated models versus system size applying LSTM
network. 90,000 instances are used to train the network for all the shown models and system sizes. (d) Histogram of the
gap during the sweep for the all-to-all connected and LHZ models for system size M = 4. (e) Spatio-temporal input of the
2D-CONVLSTM containing one feature at each site which presents the couplings. The couplings are arranged on the shown
square such that they respect the connectivities in (b). The dashed squares and three-angles denote connections between qubits
that identify the three-body and four-body constraints on LHZ model. The square at top left shows the second feature which
identifies for the network where a qubit exists. (f) Exact gap and predicted gap (applying 2D-CONVLSTM) in terms of time for
three particular problem instances with size M = 6 where network has not been trained on.

has substantially more instances with smaller gap size as
compared to the all-to-all connected model, but still the
network achieves a comparable or even better precision.
This confirms our conjecture that the main bottleneck is
not the size of the gap, but rather the way in which the
parameter space size scales with the system size.

Now we explore whether mapping the all-to-all con-
nected model to a local model and applying a CONVL-
STM network helps to extrapolate the predictions to larger
system sizes. For this case we need a 2D-CONVLSTM as
the LHZ model has a 2D spatial structure. In Fig. 5 (e),
we show the spatio-temporal input of our 2D-CONVLSTM
for the case with M = 5. Each site contains one feature
which represents the coefficients J . These couplings are
arranged on the shown square such that they respect the
connectivities in the LHZ model. Dashed squares and tri-
angles mark qubits around each small pink circle in Fig. 5
(b). We train the network on system sizes M ∈ {3, 4, 5}
and evaluate it on system size M = 6 (Fig. 5 (e)), which
is the largest size (includes 21 physical qubits) that we
are able to generate a few samples for. As can be seen,
the network is still able to predict the gap for a larger

system size that it has not been trained on, but not with
a high accuracy such as in the nearest neighbor connected
model. Due to the numerical limitations we have not
been able to evaluate our network for larger system sizes,
but considering the low precision for M = 6, we expect
the network to fail for the larger sizes. We attribute this
partially again to the fact that the quadratic scaling of the
parameter space with system size necessitates exponen-
tially growing resources for training. However we expect
our 2D CONVLSTM succeeds in predicting the dynamics
of 2D models for which the parameter space size scales
more favorably with the system size.

VI. SPEEDUP

In this section we discuss the potential speedup that
can be achieved by employing the network for the nearest-
neighbor model, for which we have shown the network
succeeds in making predictions and in extrapolating.

Supervised training of neural networks can be motivated
in many ways, e.g. an explicit algorithm to turn the input

8

into the desired output may not even be known in principle
(as in image classification). However, for a scenario like
the one discussed here, a numerically exact algorithm
exists. One can then think of at least three reasons why
training and deploying a network might still be beneficial:
(i) the run-time of the network is so much shorter than
the run-time of the exact algorithm, and we will use it for
prediction on so many problem instances, that it is worth
to invest the numerical effort needed to generate the large
amount of training examples in the first place; (ii) the
run-time of the algorithm scales very unfavourably with
system size and the network is able to make reasonably
accurate predictions also for larger sizes, even if it was
not trained on those; (iii) there is a regime where the
run-time of the exact algorithm is prohibitive, but data
may be generated in another way (e.g. via experiments),
and the network can still be made to learn in this regime
and be used for prediction. We will discuss the last point
(training from experiments) in the following subsection
and focus on the numerical speedup here.

A real advantage will be obtained if the eventual number
of problem instances Nuse that we intend to apply the
network to is sufficiently large. Specifically if Ntrain is the
number of training samples we needed to achieve good
accuracy, we have to fulfill the inequality

Ntrain(τAlg + τtrain) +NuseτNN < NuseτAlg,

where τAlg is the run-time of the algorithm itself and τNN is
that of the neural network, for one problem instance. τtrain
denotes training time spent per one training sample during
all epochs. If a network trained on small systems can also
be applied to larger system sizes, where the algorithm
run-time becomes τAlg,Large, we need to insert that larger
value on the right-hand-side, making application of the
neural network more favourable (even if its own run-time
might also increase somewhat).

With this in mind, let us provide some illustrative num-
bers with all the caveats regarding the dependence on
computer hardware and algorithm. We trained the net-
work on small system sizes, which is inexpensive, taking
just a few hours to generate Ntrain = 90, 000 samples, plus
about one day to train the network. The largest system
size for which we have been able to generate a few tens
of instances to evaluate the neural network is M = 22.
For this size, it takes one and a half hours to calculate
the gap evolution for a single instance when applying
the Lanczos algorithm. In contrast, once the neural net-
work is trained, it is able to predict the gap evolution
for this system size in 5ms. Assuming a scenario with
these illustrative numbers, we can use the formula above
to conclude that application of the neural network would
become favourable if it were deployed on Nuse > 20 actual
problem instances which is notably less than the number
of training samples, due to the performance gains via
extrapolation. Any application on more instances would
yield strong time (and memory) savings in comparison to
direct use of the algorithm.

In addition, besides motivating the use of a neural
network via this speedup, we point out that there are
also other approaches to make use of the existing training
data: One could, e.g., train a neural network to solve the
inverse problem, i.e. by observing the gap evolution it
could try to indicate the underlying parameters in the
Hamiltonian. This is otherwise a very difficult problem,
for which no obvious straightforward algorithm exists, but
which a neural network can learn to solve.

VII. HYBRID ALGORITHM

Our protocol can be adapted to training the neural
network on larger system sizes from data generated by
a quantum annealer. In this section we comment on the
cost of such a hybrid implementation. We emphasize that
there are a lot of caveats for such implementation, and
we point out some of them in this section. Therefore, the
following ideas should be taken as raw estimations.

The gap can be measured by applying different methods.
Spectroscopic techniques are widely used for this purpose,
for example using Ramsey-like interferometry [39, 40]. In
all methods one needs to measure a time trajectory of
some observable. At each time point t the experiment
has to be run n times, resulting in an error that scales
as ∼ 1/

√
n, set by the projection noise. Including the

number N of samples that we need to prepare for training,
overall we then need nNtN runs, where Nt stands for the
number of time points. The number of training samples
depends on the system size M we want to train the
neural network on. Since in this work we have trained
the network on sizes up to M = 9, it is not easy to see
a clear scaling for the number of samples required to
achieve a given accuracy. Therefore, we roughly estimate
N ∼ 2× 105 from our experience assuming one trains the
network on the problem instances with M = 50. Then,
taking Nt ∼ 50 and n ∼ 104, one would require around
1011 runs. This implies that it seems feasible to train
the network on data generated from quantum annealers
implemented on platforms for which each run takes up to
a few microseconds, which would then require about one
day to generate data to train the network. This is indeed
the case for superconducting circuit platforms [41], which
we propose then as our main experimental candidate.

In the future, it will be an interesting challenge to
explore how much a network can deal with more noisy
measurement data, reducing the need to accumulate statis-
tics. Some efficiency improvements are possible, e.g. one
might allow for a larger statistical error (smaller n) if the
time points are closely spaced, because the network will
then effectively try to interpolate smoothly through the
noisy observations.

9

VIII. CONCLUSION AND OUTLOOK

In this work, we explored the power of deep learning
in discovering a mapping from the parameters that fully
identify a problem Hamiltonian to the full gap evolution
during an adiabatic sweep. We demonstrated the CON-
VLSTM network succeeds in predicting the gap on the
nearest neighbor connected models for which the num-
ber of parameters that identify the model scales linearly
with the system size. Our CONVLSTM network is even
able to predict the gap for system sizes larger than that
it has been trained on and may provide some speedup
in comparison with the existing exact and approximate
algorithms.

While during this work we concentrated on the gap
prediction in AQC, our study can provide insight for
more general many-body dynamics. We conclude that
a limiting factor for the learnability of such dynamics
applying supervised learning is the way that parameters
identifying the model scale with the system size. Our
study supports the promise of CONVLSTM networks in
predicting the dynamics of inhomogeneous many-body
systems and their potential for extrapolating the dynamics
beyond what the neural network is trained on.

Our scheme can also be applied in the context of quan-
tum approximation optimization algorithms as it can be
viewed as a trotterized version of AQC with parametrized
annealing pathway. This can be explored as a future work.
Overall, our scheme supports the previous efforts [3, 18]
demonstrating the capability of neural networks as an
instrumental tool for intuitive comprehension and rapid
exploration of quantum many-body dynamics.

ACKNOWLEDGMENTS

T. B. is supported by the National Natural Science
Foundation of China (62071301); State Council of the
People’s Republic of China (D1210036A); NSFC Research
Fund for International Young Scientists (11850410426);
NYU-ECNU Institute of Physics at NYU Shanghai; the
Science and Technology Commission of Shanghai Munici-
pality (19XD1423000); the China Science and Technology
Exchange Center (NGA-16-001). CNB appreciates sup-
port from a Shanghai talent program and from the Shang-
hai Municipal Science and Technology Major Project
(Grant No. 2019SHZDZX01).

Supplemental Material

In this Supplemental Material we provide a brief review of the convolutional neural network and a particular type of
convolutional recurrent neural network called convolutional long short-term memory. We also provide details related
to the layout of the network architectures that we applied.

I. CONVOLUTIONAL NEURAL NETWORKS

Convolutional neural networks (CNNs) are specific type
of networks with a grid-structured topology [1]. The
data used with a convolutional network contain a few
features at each point of the spatial grid. For example,
a 2D-CNN receives an input with shape (w, h, c) where
w and h represent the height and width of the spatial
structure of the input, and c represents the number of
features at each point of the spatial grid [1]. In our
work, features at each site of the grid are identified by
the coefficients that describe the spatial structure of our
problem Hamiltonians as we showed in Fig. 3 (a) and
Fig. 4 (e). Each convolutional layer is made of filters that
are bunch of stacked kernels. Kernels are responsible to
extract features of the input.

CNNs have built-in affine invariance so they can recog-
nize patterns that are shifted or tilted in the input. One
known benefit of CNNs is that they can be applied for
input with varying spacial structure helping to scale up
the predictions to the larger sizes. Due to this feature,
they do not use the standard matrix multiplication but
convolution instead. These are the main features that we
exploited in this work to extrapolate the prediction of our
network to the large sizes. The type of affine invariance

and the locality that is required for these architectures to
make best of them all exist in our nearest neighbour or
the encoded version of the all-to-all connected models.

II. CONVOLUTIONAL RECURRENT NEURAL
NETWORKS

In this section, we provide a brief review of the recurrent
neural networks (RNNs) and a particular type of that
called long short-term memory (LSTM). Then we explain
an extended version of that called convolutional LSTM
(CONVLSTM) network which we applied in this study.

RNNs are built of a chain of repeating modules of neural
networks. Such a network introduces a feedback loop such
that the output of the network at the current time depends
on the current input (xt), called the external input, and
also on the perceived information from the past, called
the hidden input (ht−1) [37]. Such a network is able to
record the history for – in principle – arbitrary long times,
since weights are not time-dependent and therefore the
number of trainable parameters does not grow with the
time interval. For training such a network, the gradient
of the cost function needs to be backpropagated from
the output towards the input layer, as in feedforward

10

tanh

tanhσ σ σ

Ot
Ctit

ft
~

.

Ct-1 Ct Forget gate

Input gate

Output gate

NN layer

Pointwise operation

ht-1 ht

xt

Copy

xt-1 xt

yt-1 yty0

x0

ht

FIG. S1. An CONVLSTM network made of a chain of repeat-
ing modules, where each module includes three gates and both.
Both the input-to-state and module-to-module transitions
have a convolutional structure.

networks, and also along backward along the time axis.
However, RNNs are prone to run into a fundamental

problem, the “vanishing/exploding gradient problem”,
i. e., that the size of the gradient decreases (or some-
times increases) exponentially during backpropagation.
In principle, this problem can also occur in traditional
feedforward networks, especially if they are deep. How-
ever, this effect is typically much stronger for RNNs since
the time series can get very long. This seriously limited
the trainability of early RNN architectures, which were
not capable of capturing long-term dependencies. This
problem led to the development of RNNs with cleverly
designed gated units (controlling memory access) to avoid
the exponential growth or vanishing of the gradient, and
therefore permitting to train RNNs that capture both long
and short-term dependencies. The first such architecture
is called LSTM, developed by Hochreiter and Schmidhu-
ber in the late 90s [42]. As an RNN architecture, standard
LSTM is also built of a chain of repeating modules, as
is shown in Fig. S1, where the repeating modules have
a more complicated structure than in a simple recurrent
network. Each module includes three gates, where each
gate is composed out of a sigmoid network layer, together
with the point-wise multiplication on top of it. Next,
we explain step by step how these three gates together
control how the memory needs to be accessed. We label
weights w and biases b by subscripts according to the
name of the corresponding layer.

• Forget gate layer: this gate uses the hidden state
ht−1 from the previous time step and the external
input xt at a particular time step t (with the bias
bf and the weight wf) to decide whether to keep
the memory, or to discard the information that is

of less importance, applying a sigmoid activation.

ft = σ (Wf · [ht−1, xt] + bf) . (S1)

σ denotes sigmoid function and the dot stands for
matrix multiplication. Eventually, the output of
the forget gate is multiplied with the module state
(Ct).

• Input gate layer: the operation of this gate is a
three-step process,

– first a sigmoid layer decides which data should
be stored (very similar to the forget gate)

it = σ (Wi · [ht−1, xt] + bi) . (S2)

– hidden state and current input also will be
passed into the tanh function to push values
between -1 and 1 to regulate the network and
stored in C̃t.

C̃t = tanh (WC · [ht−1, xt] + bC) . (S3)

– the outcome of the two previous steps will
be combined via multiplication operation and
then this information is added to the module
state (ft ∗ Ct−1).

Ct = ft ∗ Ct−1 + it ∗ C̃t. (S4)

Here the ∗ denotes element-wise multiplication.

• Output gate layer: the operation of this gate which
decides the value of the next hidden input can be
decomposed into two steps,

– run a sigmoid layer on the previous hidden
state and the current input, which decides
what parts of the module state are going to be
carried

Ot = σ (Wo [ht−1, xt] + bo) . (S5)

– passing the module state through tanh to
squish the values to be between -1 and 1, and
finally multiply it by the output of the sigmoid
gate so that we only pass to the next module
some selected parts

ht = Ot ∗ tanh (Ct) . (S6)

When data besides temporal structure have also spa-
tial structure the extended version of this architecture
called CONVLSTM can be applied. In this case there
is convolutional structure in both the input-to-module
and module-to-module transitions [36] (shown with blue
sheets in Fig. S1) and the internal matrix multiplications
are exchanged with the convolution operations.

11

III. NEURAL NETWORKS LAYOUT

In this section we present the layout of the architectures
that we applied for the gap prediction task during the
adiabatic sweep. We have specified and trained all these
different architectures with Keras [43], a deep-learning
framework written for Python.

A. Fully connected neural network

In Table. I, we summarize the details related to the
layout of our fully connected neural network (FCNN) for
different system sizes and all the models that we explored.
The training set size for all models and system sizes
is 90,000. Since for the all-to-all connected model, the
number of samples required for training explodes with
the system size, network fails in predicting the gap for
M > 7 using 90,000 samples for training.

The activation function for all the layers except the last
layer is the rectified linear activation function (“ReLU”).
For the last layer the activation function is “linear”. As
optimizer we always use “adam”.

FCNN All-to-All NN LHZ
System size # HL #N/L # HL #N/L # HL #N/L

M=5 5 500 5 500 3 500
M=6 7 700 5 500 4 500
M=7 Fails 6 700 - -
M=8 Fails 6 700 - -
M=9 Fails 6 700 - -

TABLE I. The layout of the FCNN for different system sizes.
HL and # N/L denote the number of hidden layers and the
number of neurons per layer, respectively.

B. Convolutional long short-term memory

In this section, we present the layout of the 1D and 2D
CONVLSTM architectures that we applied in the main
text.

1D-CONVLSTM In Table. II, we present the layout
of our 1D-CONVLSTM network applied in Sec. III B.
CONVLSTM layers capture the temporal-spatial depen-
dencies of the input. TimeDistributed is a wrapper that
applies a layer to every temporal slice of an input. We use
this wrapper together with the global max pooling and
dense layers to transfer the input with temporal-spatial
structure to the output with temporal structure.

Dense layers kill the translational invariance, therefore
making the network fail to extrapolate the predictions
to larger sizes. To overcome this problem, we did a pre-
processing of the input data, as we explain next. Assume
that we want to train the network on sizes M ∈ [3,MT]
with N training samples for each system size, finally
evaluating it on M ∈ [3,ME], with ME > MT the largest

extrapolation we explore. We prepare a four-dimensional
array with size N(MT −3)×Nt×ME×3 filled with zeros.
Here N(MT − 3) is the total number of training samples,
Nt denotes the number of time steps, and 3 denotes the
number of features as we explained in the main text. Now
for each sample and time step we place the string with
MT coupling coefficients randomly within the ME zeros
in this third dimension of the array. We found out that
this helps the network to succeed in extrapolating.

Layers Filters Kernel size Activation function
CONVLSTM1D 20 3 -
CONVLSTM1D 40 3 -
CONVLSTM1D 60 3 -
CONVLSTM1D 40 3 -
CONVLSTM1D 20 3 -
TimeDistributed(Global max pooling) -

TimeDistributed(Dense(100))) linear
TimeDistributed(Dense(1)) linear

TABLE II. The layout of the 2D-CONVLSTM

Note that in a CNN by default, a filter starts at the left
of the input with the left-hand side of the filter placed on
the far left pixels of the input. The filter is then stepped
across the input until the right-hand side of the filter is
placed on the far right pixels of the image. This means,
the edge of the input are only exposed to the edge of
the filter. However, starting the filter outside the frame
of the image can give the pixels on the border of the
image more of an opportunity for interacting with the
filter and therefore more of an opportunity for features to
be detected by the filter, and in turn, an output feature
map that has the same shape as the input image. This
needs to add the border of input some pixels which is
called padding. But to make it clear for the network
where exactly the edge of the input starts we add a row
of features which is filled with ones for the range of pixels
that input starts and ends identifying where a qubit exists
and where not.
2D-CONVLSTM In Table. III, we present the layout

of our 2D-CONVLSTM network applied in Sec. III C.
We prepare the input of this network also with the same
pre-processing instruction that we explained for our 1D-
CONVLSTM.

Layers Filters Kernel size Activation function
CONVLSTM2D 20 (2,2) -
CONVLSTM2D 40 (2,2) -
CONVLSTM2D 60 (2,2)
CONVLSTM2D 40 (2,2) -
CONVLSTM2D 20 (2,2) -
TimeDistributed(Global max pooling) -

TimeDistributed(Dense(100))) linear
TimeDistributed(Dense(1)) linear

TABLE III. The layout of the 2D-CONVLSTM applied in Sec.
III C.

12

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville,
Deep learning (MIT press, 2016).

[2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, “Deep
learning,” nature 521, 436–444 (2015).

[3] Juan Carrasquilla and Giacomo Torlai, “Neural networks
in quantum many-body physics: a hands-on tutorial,”
arXiv preprint arXiv:2101.11099 (2021).

[4] Evert PL Van Nieuwenburg, Ye-Hua Liu, and Sebastian D
Huber, “Learning phase transitions by confusion,” Nature
Physics 13, 435–439 (2017).

[5] Lei Wang, “Discovering phase transitions with unsuper-
vised learning,” Phys. Rev. B 94, 195105 (2016).

[6] Sebastian J Wetzel, “Unsupervised learning of phase tran-
sitions: From principal component analysis to variational
autoencoders,” Physical Review E 96, 022140 (2017).

[7] Juan Carrasquilla and Roger G Melko, “Machine learning
phases of matter,” Nature Physics 13, 431–434 (2017).

[8] Matthew JS Beach, Anna Golubeva, and Roger G Melko,
“Machine learning vortices at the kosterlitz-thouless tran-
sition,” Physical Review B 97, 045207 (2018).

[9] Giacomo Torlai, Guglielmo Mazzola, Juan Carrasquilla,
Matthias Troyer, Roger Melko, and Giuseppe Car-
leo, “Neural-network quantum state tomography,” Nature
Physics 14, 447–450 (2018).

[10] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D. Ro-
driguez, and J. Ignacio Cirac, “Neural-network quantum
states, string-bond states, and chiral topological states,”
Phys. Rev. X 8, 011006 (2018).

[11] Li Huang and Lei Wang, “Accelerated monte carlo simu-
lations with restricted boltzmann machines,” Phys. Rev.
B 95, 035105 (2017).

[12] Troels Arnfred Bojesen, “Policy-guided monte carlo:
Reinforcement-learning markov chain dynamics,” Physical
Review E 98, 063303 (2018).

[13] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop
Ghosh, “Accelerating quantum approximate optimiza-
tion algorithm using machine learning,” in 2020 Design,
Automation & Test in Europe Conference & Exhibition
(DATE) (IEEE, 2020) pp. 686–689.

[14] Matija Medvidović and Giuseppe Carleo, “Classical vari-
ational simulation of the quantum approximate optimiza-
tion algorithm,” npj Quantum Information 7, 1–7 (2021).

[15] Marin Bukov, Alexandre G. R. Day, Dries Sels, Phillip
Weinberg, Anatoli Polkovnikov, and Pankaj Mehta, “Re-
inforcement learning in different phases of quantum con-
trol,” Phys. Rev. X 8, 031086 (2018).

[16] Giuseppe Carleo and Matthias Troyer, “Solving the quan-
tum many-body problem with artificial neural networks,”
Science 355, 602–606 (2017).

[17] Markus Schmitt and Markus Heyl, “Quantum many-body
dynamics in two dimensions with artificial neural net-
works,” Phys. Rev. Lett. 125, 100503 (2020).

[18] Naeimeh Mohseni, Thomas Fösel, Lingzhen Guo, Car-
los Navarrete-Benlloch, and Florian Marquardt, “Deep
learning of quantum many-body dynamics via random
driving,” (2021), arXiv:2105.00352 [quant-ph].

[19] Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Vic-
tor V Albert, and John Preskill, “Provably efficient ma-
chine learning for quantum many-body problems,” arXiv
preprint arXiv:2106.12627 (2021).

[20] Filippo Vicentini, “Machine learning toolbox for quantum

many body physics,” Nature Reviews Physics 3, 156–156
(2021).

[21] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and
Michael Sipser, “Quantum computation by adiabatic evo-
lution,” arXiv preprint quant-ph/0001106 (2000).

[22] Jérémie Roland and Nicolas J Cerf, “Quantum search by
local adiabatic evolution,” Physical Review A 65, 042308
(2002).

[23] Daniel A Lidar, Ali T Rezakhani, and Alioscia Hamma,
“Adiabatic approximation with exponential accuracy for
many-body systems and quantum computation,” Journal
of Mathematical Physics 50, 102106 (2009).

[24] Dorit Aharonov and Amnon Ta-Shma, “Adiabatic quan-
tum state generation and statistical zero knowledge,” in
Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing (2003) pp. 20–29.

[25] MHS Amin and V Choi, “First-order quantum phase
transition in adiabatic quantum computation,” Physical
Review A 80, 062326 (2009).

[26] Gernot Schaller, “Adiabatic preparation without quantum
phase transitions,” Phys. Rev. A 78, 032328 (2008).

[27] Ralf Schützhold, “Dynamical quantum phase transitions,”
Journal of Low Temperature Physics 153, 228–243 (2008).

[28] Marko Žnidarič and Martin Horvat, “Exponential com-
plexity of an adiabatic algorithm for an np-complete prob-
lem,” Phys. Rev. A 73, 022329 (2006).

[29] A. P. Young, S. Knysh, and V. N. Smelyanskiy, “Size
dependence of the minimum excitation gap in the quan-
tum adiabatic algorithm,” Phys. Rev. Lett. 101, 170503
(2008).

[30] Naeimeh Mohseni, Marek Narozniak, Alexey N Pyrkov,
Valentin Ivannikov, Jonathan P Dowling, and Tim
Byrnes, “Error suppression in adiabatic quantum com-
puting with qubit ensembles,” npj Quantum Information
7, 1–10 (2021).

[31] Murphy Yuezhen Niu, Andrew M Dai, Li Li, Augus-
tus Odena, Zhengli Zhao, Vadim Smelyanskyi, Hartmut
Neven, and Sergio Boixo, “Learnability and complexity
of quantum samples,” arXiv preprint arXiv:2010.11983
(2020).

[32] Hsin-Yuan Huang, Richard Kueng, and John Preskill,
“Information-theoretic bounds on quantum advantage in
machine learning,” Phys. Rev. Lett. 126, 190505 (2021).

[33] Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton, “Speech recognition with deep recurrent neural
networks,” in 2013 IEEE international conference on
acoustics, speech and signal processing (Ieee, 2013) pp.
6645–6649.

[34] Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur, “Recurrent neu-
ral network based language model,” in Eleventh annual
conference of the international speech communication as-
sociation (2010).

[35] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung,
Wai-Kin Wong, and Wang-chun Woo, “Convolutional
lstm network: A machine learning approach for precip-
itation nowcasting,” in Advances in neural information
processing systems (2015) pp. 802–810.

[36] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Ye-
ung, Wai-Kin Wong, and Wang-chun Woo, “Convolu-
tional lstm network: A machine learning approach for pre-

http://dx.doi.org/ 10.1103/PhysRevB.94.195105
http://dx.doi.org/10.1103/PhysRevX.8.011006
http://dx.doi.org/ 10.1103/PhysRevX.8.031086
http://dx.doi.org/10.1103/PhysRevLett.125.100503
http://arxiv.org/abs/2105.00352
http://dx.doi.org/ 10.1103/PhysRevA.78.032328
http://dx.doi.org/10.1103/PhysRevA.73.022329
http://dx.doi.org/10.1103/PhysRevLett.101.170503
http://dx.doi.org/10.1103/PhysRevLett.101.170503
http://dx.doi.org/10.1103/PhysRevLett.126.190505

13

cipitation nowcasting,” arXiv preprint arXiv:1506.04214
(2015).

[37] Michael A Nielsen, Neural networks and deep learning,
Vol. 2018 (Determination press San Francisco, CA, 2015).

[38] Wolfgang Lechner, Philipp Hauke, and Peter Zoller, “A
quantum annealing architecture with all-to-all connectiv-
ity from local interactions,” Science advances 1, e1500838
(2015).

[39] Yuichiro Matsuzaki, Hideaki Hakoshima, Kenji Sugisaki,
Yuya Seki, and Shiro Kawabata, “Direct estimation of
the energy gap between the ground state and excited state
with quantum annealing,” Japanese Journal of Applied

Physics 60, SBBI02 (2021).
[40] Antonio E Russo, Kenneth Michael Rudinger, Ben-

jamin CA Morrison, and Andrew David Baczewski, “Eval-
uating energy differences on a quantum computer with ro-
bust phase estimation,” arXiv preprint arXiv:2007.08697
(2020).

[41] Tameem Albash and Daniel A Lidar, “Demonstration of a
scaling advantage for a quantum annealer over simulated
annealing,” Physical Review X 8, 031016 (2018).

[42] S Hochreiter and J Schmidhuber, “Long short-term mem-
ory. neural computation, vol. 9,№ 8, 1997, pp,” (1735).

[43] François Chollet et al., “Keras,” https://keras.io

(2015).

https://keras.io

	Deep recurrent networks predicting the gap evolution in adiabatic quantum computing
	Abstract
	I Introduction
	II Problem definition
	A Model
	B Neural network architectures
	C Training

	III Gap evolution learnability
	IV Extrapolation
	V Mapping the all-to-all connected model to a local model
	VI Speedup
	VII Hybrid algorithm
	VIII Conclusion and outlook
	 Acknowledgments
	I Convolutional neural networks
	II Convolutional Recurrent Neural Networks
	III Neural networks layout
	A Fully connected neural network
	B Convolutional long short-term memory

	 References

