
Closure of the entanglement gap at quantum criticality: The case of the Quantum
Spherical Model
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The study of entanglement spectra is a powerful tool to detect or elucidate universal behaviour in
quantum many-body systems. We investigate the scaling of the entanglement (or Schmidt) gap δξ,
i.e., the lowest laying gap of the entanglement spectrum, at a two-dimensional quantum critical point.
We focus on the paradigmatic quantum spherical model, which exhibits a second-order transition,
and is mappable to free bosons with an additional external constraint. We analytically show that
the Schmidt gap vanishes at the critical point, although only logarithmically. For a system on a
torus and the half-system bipartition, the entanglement gap vanishes as π2

/ ln(L), with L the linear
system size. The entanglement gap is nonzero in the paramagnetic phase and exhibits a faster decay
in the ordered phase. The rescaled gap δξ ln(L) exhibits a crossing for different system sizes at the
transition, although logarithmic corrections prevent a precise verification of the finite-size scaling.
Interestingly, the change of the entanglement gap across the phase diagram is reflected in the zero-
mode eigenvector of the spin-spin correlator. At the transition quantum fluctuations give rise to
a non-trivial structure of the eigenvector, whereas in the ordered phase it is flat. We also show
that the vanishing of the entanglement gap at criticality can be qualitatively but not quantitatively
captured by neglecting the structure of the zero-mode eigenvector.

I. INTRODUCTION

In the last two decades the study of quantum entangle-
ment has revolutionised our understanding of quantum
many-body systems [1–4]. The main ingredient to ad-
dress entanglement-related questions in a quantum sys-
tem S is the reduced density matrix ρA of a subsystem
A ⊂ S. Given the ground-state ∣Ψ⟩ of S and a spatial
bipartition of S = A∪ Ā (see e.g. Fig. 1), ρA is defined as

ρA = Tr
Ā
∣Ψ⟩⟨Ψ∣. (1)

The entanglement spectrum (ES) {ξi = − ln(λi) ∣λi ∈

spec(ρA)} has been the subject of intense investigation.
Pioneering studies [5–8] were fueled by the rapid success
of the density matrix renormalisation group [9, 10] to
simulate one-dimensional quantum many-body systems.
The interest in the ES was revived after it was discov-
ered that for fractional quantum Hall states the lower
part of the ES contains universal information about the
edge modes and the conformal field theory (CFT) de-
scribing them [11]. This sparked intense theoretical ac-
tivity to clarify the nature of the ES in fractional quan-
tum Hall systems [12–23], topologically ordered phases
of matter [24–26], frustrated and magnetically ordered
systems [23, 27–39], CFT systems [40–43], and systems
with impurities [44].

In this work we investigate the ES in critical two-
dimensional quantum many-body systems. We focus on

∗ swald@pks.mpg.de

the lowest laying entanglement gap δξ defined as

δξ = ξ1 − ξ0, (2)

where ξ0 and ξ1 are the lowest and the first excited
ES level, respectively. The behaviour of the entangle-
ment gap at quantum critical points has not been thor-
oughly addressed, except for one-dimensional systems [5–
7, 13, 29, 30, 34, 45, 46]. Several exact results suggest
that at one-dimensional quantum critical points δξ van-
ishes. For instance, in CFT systems δξ decays logarith-
mically as ∝ 1/ ln(L) with the subsystem’s length L [40].
Similar scaling is found in corner transfer matrix calcu-
lations [45] (see also [8] for a review). Higher-dimensions
are far less explored. Interestingly, it has been argued
that the closing of the entanglement gap does not neces-
sarily signal critical behaviour [23]. Similar conclusions
have been reached by considering the ES of a bipartition
in momentum space [47]. Still, the ES can be useful to
distinguish different phases of matter. This is the case for
systems that exhibit order by breaking of a continuous
symmetry [31]. It has been suggested that deep in the
ordered phase the lower part of the ES contains the fin-
gerprints of symmetry breaking, being reminiscent of the
so-called Anderson tower-of-states [48–50]. This has been
verified by analytical calculations in the quantum rotor
model [31], numerical simulations in the two-dimensional
Bose-Hubbard model in the superfluid phase [33] (see also
[39]), and also in two-dimensional Heisenberg models on
the square [36] and on the kagome lattice [38]. A sig-
nature of the tower-of-states scenario is that the gaps in
the lower part of the ES decay as a power-law with the
subsystem volume, with multiplicative logarithmic cor-
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FIG. 1. Bipartition of the two dimensional lattice as A ∪ Ā.
Periodic boundary conditions in both directions are used. (a)
A bipartition with straight boundary between A and Ā. A
contains ∣A∣ = L × `x sites and spans the full lattice along the
ŷ direction. (b) Bipartition with a corner. Now ∣A∣ = `x`y.
We also define the ratios ωx(y) = `x(y)/L. We mostly consider
the the case with ωy = 1.

rections [31]. Higher ES levels are expected to exhibit a
much slower decay [31, 33, 37]. The behaviour of the en-
tanglement gap upon approaching the critical point has
not been investigated thoroughly.

Here we address this issue in the quantum spherical
model [51–55] (QSM). The QSM is a paradigmatic many-
body system in which the effects of strongly interacting
degrees of freedom may be studied at a considerably low
cost, as the model can be mapped to free bosons subject
to an additional external constraint. Despite its simplic-
ity it exhibits several salient features of realistic quantum
many-body systems. For instance, its classical version
served as a testing ground for the theory of critical phe-
nomena and finite size scaling [56]. In two dimensions
the QSM exhibits a standard paramagnetic (disordered)
phase and a ferromagnetic (ordered) one, which are sep-
arated by a second order quantum phase transition. The
universality class of the transition is that of the three-
dimensional classical O(N) vector model [57] in the large
N limit [52, 53, 58]. Surprisingly, entanglement proper-
ties of the QSM are rather unexplored, although there is
recent interest [59–61]. We should stress that although
the results that we are going to derive for the ES cannot
be considered general, they certainly represent an inter-
esting case study, and can be useful to understand the
generic behaviour of ES in quantum many-body systems.

Here we consider a two-dimensional lattice of linear
size L with periodic boundary conditions in both direc-
tions. The typical bipartitions that we use are reported
in Fig. 1. Figure 1 (a) shows a bipartition with a straight
boundary between A and its complement, with A span-
ning the full lattice along the ŷ direction. This is not
the case in Fig. 1 (b), where the boundary has a corner.
The effect of corners in the scaling of the entanglement
entropies is nontrivial, and it has been studied intensely
in the last decade [4, 62–69]. Since the QSM is mappable
to free bosons, entanglement-related observables can be
calculated from the two-point correlations functions [8].

Here we show that δξ (cf. (2)) is nonzero in the param-
agnetic phase, whereas it vanishes in the ordered phase,
as expected [31]. This is compatible with the numeri-

cal results in [33] (see also [36, 38]). At the quantum
critical point, in the case of straight boundary the en-
tanglement gap vanishes as π2/ ln(L). However, we show
that logarithmic corrections are present, which make it
difficult to robustly verify the finite-size scaling of δξ. We
also show that the behaviour of the entanglement gap is
reflected in the zero-mode eigenvector of the spin-spin
correlation matrix. As the transition is approached from
the paramagnetic side, the eigenvector flattens, meaning
that all its components become equal. This reflects the
presence of a zero mode. Exactly at criticality, the eigen-
vector is not flat in the thermodynamic limit, due to the
presence of strong fluctuations, whereas it is flat in the
ordered phase. Interestingly, we show that by neglect-
ing the structure of the eigenvector at the critical point,
i.e., by approximating the eigenvector with the flat vec-

tor, we obtain that δξ = A/
√

ln(L), which accounts for
the vanishing of the entanglement gap, although it is not
quantitatively accurate. We clarify how the behaviour

as A/
√

ln(L) arises from some interesting multiplicative
logarithmic corrections in the expectation values of the
QSM correlators with the flat vector. Interestingly, the
constant A depends only on low-energy properties of the
model and on the geometry of the bipartition.

The manuscript is organised as follows. In section II
we introduce the QSM and its phase diagram. In sec-
tion III we define the quantities of interest. In section IV
we discuss the finite-size scaling in the QSM. Specifically,
in subsection IV A we focus on the so-called gap equation,
which ensures the external constraint in the QSM. In sub-
sections IV B and IV C we derive the finite-size scaling of
the spin and momentum correlation functions, respec-
tively. In section V we investigate the critical behaviour
of δξ. Our prediction is discussed in section V A, and
it is compared against numerical results in section V B.
We describe the behaviour of δξ across the phase dia-
gram of the QSM in subsection V B 1, whereas we ad-
dress the vanishing of δξ and its finite-size scaling in
subsections V B 2 and V B 3, respectively. In section VI
we discuss how the entanglement gap is related to the
zero-mode eigenvector of the correlator, which we intro-
duce in subsection VI A. In subsection VI B we show that
by assuming that the eigenvector is flat at criticality one
can qualitatively explain the vanishing of the entangle-
ment gap. We conclude in section VII. In Appendix A
we report the derivation of the finite-size scaling of the
correlation functions in the QSM. In Appendix B we de-
rive the expectation values of the correlators with the flat
vector.

II. QUANTUM SPHERICAL MODEL

The QSM [52–54] on a two dimensional cubic lattice of
linear size L and volume V = L2 is defined by the Hamil-
tonian

H =
g

2
∑
n

p2 − J ∑
⟨n,m⟩

snsm + (µ − 2)∑
n

s2n. (3)
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Here, n = (nx, ny) ∈ [1, . . . , L]2 denotes a generic lat-
tice site, and ⟨n,m⟩ a lattice bond joining two nearest-
neighbour sites. J > 0 is the ferromagnetic exchange
constant and we choose J = 1 in the remainder of the
paper. The canonically conjugated variables sn and pn
satisfy the standard bosonic commutation relations

[pn, pm] = [sn, sm] = 0, [sn, pm] = iδnm. (4)

We refer to pn as momentum variable, and to the pa-
rameter g as quantum coupling as the model reduces to
the famous classical spherical model [70, 71] in the limit
g → 0. The Lagrange multiplier µ is called spherical pa-
rameter and fixes the spherical constraint, i.e.

∑
n

⟨s2n⟩ = V. (5)

This means that all allowed configurations of the QSM
are located around the sphere in configuration space that
is defined by Eq. (5). Critical properties of the QSM
are determined through the self-consistent behaviour of
µ [53]. The two dimensional QSM does not exhibit a
finite temperature phase transition [70, 71], although it
possesses a ground-state transition, i.e., at T = 0 [52–54].

We now briefly review how to diagonalise the Hamil-
tonian (3) and describe its critical behaviour. First, we
exploit the translational invariance of the model by per-
forming a Fourier transform as

pn =
1

√
V
∑
k

e−inkπk , sn =
1

√
V
∑
k

einkqk. (6)

Here the sum over k = (kx, ky) runs in the first Bril-
louin zone ki = 2π/Lj, with j ∈ [−L/2, L/2] integer. The
Hamiltonian (3) in Fourier space reads

H =∑
k

g

2
πkπ−k +Λ2

k qkq−k (7)

with the single-particle dispersion relation

Λk =
√
µ + ωk with ωk = 2 − coskx − cosky (8)

In order to fully diagonalise (7) we introduce bosonic lad-

der operators bk and b†k obeying standard bosonic com-
mutation relations viz.

qk = αk

bk + b
†
−k√

2
, πk =

i

αk

b†k − b−k√
2

(9)

with the parameter α2
k =

√
g/2Λ−1

k . In terms of these
ladder operators, the Hamiltonian (7) is diagonal and
reads

H =∑
k

Ek(b
†
kbk + 1/2), with Ek =

√
2gΛk. (10)

Entanglement-related properties of Gaussian systems
such as the QSM stem from the two-point correlation
functions ⟨snsm⟩ and ⟨pnpm⟩. In equilibrium at zero

temperature T = 0, the eigenmodes k of the system are
occupied according to

⟨bkbk′⟩ = ⟨b†kb
†
k′
⟩ = ⟨b†

k′
bk⟩ = 0, ⟨bk′b

†
k⟩ = δkk′ . (11)

From Eq. (11), we can thus immediately derive the two-
point correlation functions [54]

Snm = ⟨snsm⟩ =
1

2V
∑
k

ei(n−m)⋅kα2
k, (12)

Pnm = ⟨pnpm⟩ =
1

2V
∑
k

e−i(n−m)⋅kα−2k , (13)

Knm = ⟨snpm⟩ =
i

2
δnm. (14)

Importantly, from (12) and (13) one obtains the relation

Pnm =
1

g
∫ dµSnm, (15)

which allows to relate the critical behaviour of the
spin correlator to that of the momentum correlator.
From (12), one can rewrite the spherical constraint (5)
as

∑
n

Snn = V ⇒
2

g
=

1

V
∑
k

1

Ek
. (16)

This equation is also called gap equation [72] and implies
that only the average number of bosons is fixed. From
the finite-size expressions (12) (13) and (16), the ther-
modynamic limit L→∞ is obtained in the usual way by
replacing

2πkj

L
→ k′j ,

1

L2 ∑
kx,ky

→ ∏
j=x,y

∫

π

−π

dk′j

2π
. (17)

A crucial observation is that the correlator (12) and the
spherical parameter (16) exhibit a singularity for k = 0,
due to the zero mode. We anticipate that this will play
an important role in the behaviour of the entanglement
gap. This contribution of the zero mode to the entan-
glement entropy was previously investigated focusing on
the harmonic chain [73].

We now summarise the zero-temperature critical be-
haviour of the QSM. In two dimensions the model ex-
hibits a second order phase transition at a critical value
gc. For g < gc the ground-state of (3) exhibits magnetic
order. At g > gc the ground-state is paramagnetic. The
behaviour of the QSM is determined by the scaling of
the spherical parameter µ. In the thermodynamic limit,
in the paramagnetic phase one has that µ is finite and
nonzero. On the other hand, one has µ = 0 at the critical
point, and in the ordered phase. The value of gc can be
determined analytically. In the thermodynamic limit the
spherical constraint (16) is rewritten as

√
2

g
=

2

π2

K2 ( 1
2
−
µ+2
4

√

2 −
2
√
µ(µ+4)

µ+2
)

[(1 + µ
2
) (µ +

√
µ(µ + 4) + 2) − 1]

1
4

(18)
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with the complete elliptic integral [74]

K(x) = ∫

π
2

0

dθ
√

1 − x2 sin2
(θ)

. (19)

The critical coupling gc follows by imposing the condition
µ = 0. This yields

gc =
π4

2
K−4

(1/2 − 1/
√

2) ≃ 9.67826. (20)

The different phases of the model correspond to different
finite-size scaling behaviours of µ. In the paramagnetic
phase one has µ = O(1) in the limit L → ∞. At the
critical point one can show that µ = O(1/L2), whereas in
the ordered phase µ = O(1/L4) (see section IV). These
behaviours are numerically illustrated in Fig. 2. The uni-
versality class of the ground state transition [53] is that
of the large-N vector model in three dimensions, as ex-
pected from general renormalisation group arguments.
Critical properties of the large-N vector model have been
characterised analytically [56] and finite-size corrections
have also been investigated [75–79].

III. ENTANGLEMENT SPECTRA AND
ENTANGLEMENT GAPS

Here we are interested in the ground-state entanglement
spectrum of the QSM, focussing on the two bipartitions
depicted in Fig. 1. The lattice, with periodic boundary
conditions, is divided into two regions A and Ā. Region A
is of size ∣A∣ = `x× `y and we define the corresponding as-
pect ratios ωx = `x/L and ωy = `y/L, with 0 ≤ ωx,y ≤ 1. In
Fig. 1 (a) the subsystem A spans the full lattice along the
ŷ direction implying that the boundary between the two
subsystems A and Ā is straight. This case corresponds to
ωy = 1. In Fig. 1 (b), the boundary presents a corner and
is thus not straight. The presence of corners has striking
consequences for entanglement entropies, giving rise to
sub-leading universal logarithmic corrections [62–66, 80].
The effects of corners in the scaling of the ES have not
been investigated yet.

For the case of a straight boundary with periodic
boundary conditions the momentum ky is a good quan-
tum number for the correlation matrices (12) and (13),
and for the ES. This will be exploited in section V to
reduce the computation of the ES of the QSM to that of
an effective one-dimensional model. This dimensional re-
duction has been employed to study symmetry-resolved
entanglement entropies [81]. This rather simple observa-
tion will also allow to obtain analytically the scaling of
the entanglement gap at the critical point, by exploiting
corner transfer matrix results [5–7, 45].

We now review the calculation of entanglement-related
quantities in the QSM. Since the QSM is essentially map-
pable to a free bosonic model (see section II), its entan-
glement properties are derived from the two-point cor-
relation functions (12) and (13) (see Ref. [8] for a re-
view). The crucial ingredient is the correlation matrix C

restricted to the subsystem A, viz.

CA = SA ⋅ PA, (21)

with SA and PA being the correlation matrices defined
in (12) and (13), restricted to the subsystem A. Since in
the remainder we mostly consider the restricted correla-
tion matrices SA and PA, we will often omit the subscript
A to lighten the notation.

For free bosons the reduced density matrix of subsys-
tem A is a quadratic operator and is written as [8]

ρA = Z−1e−HA , HA =∑
k

εkb
†
kbk. (22)

Here HA is the so-called entanglement Hamiltonian, εk
are the single-particle ES levels, bk are free-bosonic op-
erators and Z ensures the normalisation of the reduced
density matrix TrρA = 1. The spectrum {ek}k=1,...,∣A∣ of
the correlation matrix CA is simply related to that of HA
viz.

√
ek =

1

2
coth(

εk
2
) . (23)

The normalisation factor Z is obtained as

Z =

∣A∣

∏
j=1

(
√
ej +

1

2
). (24)

The ES, i.e., the spectrum of the entanglement Hamil-
tonian HA, is obtained by filling the single-particle lev-
els εk in all the possible ways. To construct the ES, it
is convenient to introduce the bosonic occupation num-
bers αk = 0,1, . . . in the levels εk. The generic ES level
ξ({αk}) is written as

ξ({αk}) = lnZ +

∣A∣

∑
j=1

αjεj . (25)

The eigenvalues ek satisfy the constraint ek > 1/4, im-
plying that εk > 0. Clearly, the lowest ES level ξ0 cor-
responds to the vacuum state with αk = 0 for all k. Let
us order the εk as ε1 ≤ ε2 ≤ ⋅ ⋅ ⋅ ≤ ε∣A∣. The first excited
ES level is obtained by populating the smallest single
particle level ε1. Thus, the lowest entanglement gap δξ
(Schmidt gap) is defined as

δξ ≡ ξ1 − ξ0 = ε1. (26)

Here we focus on δξ, although one can define higher
gaps [82].

IV. FINITE-SIZE CRITICAL CORRELATORS
IN THE QSM

As explained in section III, entanglement-related observ-
ables, and also the entanglement gap, in the QSM are en-
tirely encoded in the two-point correlation functions (12)
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FIG. 2. Spherical parameter µ as a function of linear size
L at the quantum critical point at gc (circles), in the ordered
phase (squares), and in the paramagnetic phase (diamonds).
Note the different scaling with L in the different phases and
at the critical point. The dashed-dotted line is the analytic
behaviour γ2

2/(2L
2
). The dashed line is a fit.

and (13). In the following sections we derive the finite-
size behaviour of these two-point correlation functions.
In section IV A we discuss the gap equation (16). In sec-
tions IV B and IV C we the focus on the spin and momen-
tum correlators respectively. For the classical spherical
model similar results were obtained [75, 83].

A. Spherical parameter

Here we derive the finite-size scaling of the spherical pa-
rameter µ at the quantum phase transition. The result is
not new [56] but it is a useful initiation for the discussion
of the correlators. To treat the sum over k in (12) we
observe that the following identity holds

1

L2∑
k

1
√
µ + ωk

= 2∫
∞

0

dt
√
π
e−(µ+2)t

2

[I0(t
2
)

+

∞

∑
′

l=−∞

IlL(t
2
)]

2
,

(27)

where the prime in the sum indicates that the l = 0 con-
tribution is removed, and Iν are modified Bessel func-
tions of the first kind [74]. To derive (27), we introduce
an auxiliary integration [72] over t to represent the term

(µ + ωk)
−1/2, then we employ Poisson’s summation for-

mula. Further details are reported in Appendix A. The
first term in the brackets in (27) does not depend ex-
plicitly on L, and gives the thermodynamic contribution.
However, there is an implicit dependence on L through µ.
The second term is the genuine finite-size contribution.
We are interested in the leading finite-size behaviour for
large L. In this limit the integral in (27) can be treated
by using a saddle point approximation.

In order to use (16), we decompose the diagonal cor-

relator Snn as

Snn = S(th)nn + S(L)nn , (28)

with the thermodynamic contribution

S(th)nn =
1

8π2 ∫ dkα2
k (29)

corresponding to the term I0(t
2)2 in (27). The remaining

terms in (27) are collected in S(L)nn .1 After expanding the

square in (27), we observe that S(L)nn is written as

S(L)nn =

√
gc

√
2π
∫

∞

0
dte−(µ+2)t

2
∞

∑
l,l′=−∞

IlL(t
2
)Il′L(t

2
). (30)

In order to extract the large L behaviour of (30) we em-
ploy a standard saddle point approximation. The cal-
culation is straightforward and details are reported in
Appendix A.

A striking simplification occurs at the critical point
and in the ordered phase, where µ → 0. One can verify
numerically that at the thermodynamical critical point
µ ∝ 1/L2. This is expected because µ ∝ m2 = 1/ξ2corr,
with m the mass of the theory and ξcorr the correlation
length, and at the critical point ξcorr ∝ L. In the limit
µ → 0, one obtains the surprisingly elegant result (see
Appendix A)

S(L)nn = −

√
gc

πL
[ ln (1 − e−

√
2µL

)−
∞

∑
l,l′=1

e−L
√

2µ(l2+l′2)

√
l2 + l′2

]. (31)

Interestingly, in (31) the first term is of one-dimensional
nature, and it is obtained by isolating the terms with
either l = 0 or l′ = 0 in the sum in (30). In the second
term in (31) the scaling as µ ∝ 1/L2 gives rise to a non-
trivial behaviour of the correlator as it cancels the factor
L in the exponential. It also implies that terms with large
l, l′ are exponentially suppressed, and the sums converge
quickly. Double sums as in (31) appear often in lattice
calculations, and have been investigated in the past [75,
76, 83]. In some cases they can be expressed in terms of
generalised Riemann zeta functions [84].

Using Eqs. (29) and (31) in the gap equation (16) at
criticality yields

1 =

√
gc

8
√

2π2 ∫

π

−π

dk
√
µ + ωk

+

√
gc

πL

∞

∑
l,l′=1

e−L
√

2µ(l2+l′2)

√
l2 + l′2

−

√
gc

πL
ln (1 − e−

√
2µL

) . (32)

The integral in (32) has to be considered carefully due
to a ∝ 1/L contribution in the µ → 0 limit which can be
extracted as [61]

∫
dk

√
µ + ωk

= ∫
dk

√
ωk

− 4π
√
µ + . . . , (33)

1 A similar decomposition as (28) holds for the generic spin-spin
correlator Snm (see section IVB).
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where the dots denote subleading terms in 1/L. The sec-
ond term in (33) is the singular term that determines the
critical behaviour of three-dimensional QSM at the ther-
mal phase transition [61]. This is not surprising because
the universality class of the quantum phase transition
in two dimensions is the same [52, 53]. Based on the
expected finite-size scaling µ ∝ 1/L2 it is convenient to
define

µ =
γ22

2L2
, (34)

where the constant γ2 is to be determined and the factor 2
is for later convenience. We substitute the Ansatz (34) in
the gap equation (32), and use the spherical constraint in
the thermodynamic limit (16) at criticality, where µ = 0.
This yields

γ2
4
−

∞

∑
l,l′=1

e−γ2

√
(l2+l′2)

√
l2 + l′2

+ ln (1 − e−γ2) = 0, (35)

where the first term is (33) and the other two are ob-
tained from (30). Eq. (35) can be solved numerically to
obtain the universal constant γ2 ≃ 1.51196. Note that
Eq. (35) has also been found in the context of the large
N limit of the three dimensional N−vector model [56, 77].
The behaviour of µ in the different regions of the phase
diagram of the QSM and the accuracy of (34) are ver-
ified in Fig. 2 where we show the numerical solution of
Eq. (16). In the paramagnetic region for g > gc one has
µ = O(1). At the critical point and in the ferromagnetic
phase µ→ 0 in the limit L→∞. The dashed-dotted line
is the analytic result (34) with γ2 obtained from (35).
Below the critical point we expect µ ∝ 1/L4 [56], which
is confirmed by the fit (dashed line).

B. Spin-spin correlation function Snm

We now discuss the finite-size scaling of the spin-spin cor-
relation function (12) at the quantum critical point. We
only discuss the final result, reporting the details of the
derivation in Appendix A. First, one can again decom-
pose the correlator as

Snm = S(th)nm + S(L)nm, (36)

with the thermodynamic contribution

S(th)nm =

√
gc

2
√

2(2π)2
∫ dk

eik(n−m)
√
µ + ωk

. (37)

As in Eq. (29) there is an implicit dependence on L via
µ. The finite-size part has the surprisingly simple form

S(L)nm =

√
gc

4π

∞

∑
′

l,l′=−∞

e−
√
2µFll′(n,m)

Fll′(n,m)
. (38)

Here we defined

Fll′(n,m) =
√

(lL + nx −mx)
2 + (l′L + ny −my)

2. (39)

The prime in the sum means that the term (l, l′) = (0,0)
has been removed. Again, Eq. (38) holds in the limit
L → ∞ and µ → 0. The general expression, which is
valid also in the paramagnetic phase, is reported in Ap-
pendix A. From Eq. (38), it is clear that the correlators
Snm depend only on nx−mx and ny−my, as expected due
to translation invariance. Moreover, one has that Snm is
periodic along the two directions, i.e., it is invariant un-
der ny−my → ny−my±L and nx−mx → nx−mx±L. This
is enforced by the infinite sums over l, l′. For a biparti-
tion with straight boundary between the two subsystems
(Fig. 1 (a)) the invariance under ny−my → ny−my±L re-
mains true also for the correlator restricted to A. Finally,

S(L)nm exhibits an interesting singularity structure. For
ωy = 1 the denominator in Eq. (38) is singular, whereas
it is regular for ωy < 1. Specifically, the terms with l = 0
and l′ = ±1 in (38) exhibit a singularity in the limit
nx −mx → 0 and ny −my → ±L. On the other hand,
terms with ∣l′∣ > 1 or ∣l∣ > 1 in (38) are not singular.
The same singularity appears if ωx = 1 and ωy < 1. We
anticipate that these singularities will give rise to multi-
plicative logarithmic corrections in the expectation value
of the correlators that we will show in section VI.

C. Momentum correlation function Pnm

The same finite-size analysis as in section IV B can be
carried out for the momentum correlator Pnm (cf. (13)).
Following the decomposition

Pnm = P(th)nm + P(L)nm, (40)

with

P(th)nm =
1

4
√

2gcπ2 ∫

π

−π
dkeik(n−m)

√
µ + ωk, (41)

the finite-size part P(L)nm has the same structure as (38),
and it reads

P(L)nm =

−
1

4π
√
gc

∞

∑
′

l,l′=−∞

e−
√
2µFll′(n,m)

F 2
ll′(n,m)

[
1

Fll′(n,m)
+
√

2µ].

(42)

This expression is obtained from the spin-spin correlator,
cf. Eq (38), by using (15). As for (38), the finite-size
term (42) is singular if subsystem A spans the full lattice
in one of the two directions, i.e., if ωx = 1 or ωy = 1. For
ωy = 1 the singularity occurs for l = 0 and l′ = ±1 in the
limit nx −mx → 0 and ny −my → ±L. Note that the first
term in Eq. (42) exhibits a stronger singularity than the
second one.
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V. CRITICAL BEHAVIOUR OF THE
ENTANGLEMENT GAP

We now discuss the critical behaviour of the entangle-
ment gap δξ. In subsection V A, by using a dimensional
reduction, we provide an exact result for the case of a
smooth boundary between the subsystems. In subsec-
tion V B we discuss numerical results. We first discuss the
behaviour of the entanglement gap across the phase dia-
gram of the QSM in subsection V B 1. In subsection V B 2
we show that at the critical point the entanglement gap
vanishes logarithmically with the system size. Finally, in
subsection V B 3 we investigate the finite-size scaling δξ
near criticality.

A. Exact result via dimensional reduction

Let us focus on the bipartition with ωy = 1 (see Fig. 1
a). Periodic boundary conditions along the ŷ direction
imply that the momentum ky is a good quantum num-
ber for the correlation matrix CA (cf. (21)) restricted to
subsystem A. Moreover, translation invariance implies
that by performing a Fourier transform along the ŷ di-
rection the Hamiltonian (3) can be written as the sum of
L decoupled quadratic one-dimensional systems [8]. This
dimensional reduction is effective for any free system,
and has been recently employed to study the so-called
symmetry-resolved entanglement entropies [81]. The fact
that ky is a good quantum number implies that the cor-
relation matrix CA has a block structure with each block
corresponding to a different ky viz.

CA =⊕
ky

C(ky)A , ky =
2π

L
j, j = 0,1, . . . L − 1. (43)

It is straightforward to diagonalise a given block with
fixed ky by imposing that the eigenvectors of CA are also
eigenvectors of the momentum along ŷ with the given
eigenvalue ky. Since we are interested only in the largest
eigenvalue e1 of CA a further simplification occurs. As
the critical behaviour is associated with the formation of
a uniform magnetization, it is natural to expect that e1
is in the sector with ky = 0. This can be readily checked
numerically. Thus, in the following we restrict the cal-
culation to ky = 0. By imposing that the eigenvectors of
CA are “flat” along ŷ, i.e., they do not depend on y, the
problem is reduced to the diagonalisation of the reduced
correlation matrix

C(ky=0)A = S(ky=0)A ⋅ P(ky=0)A , (44)

where we defined the reduced spin and momentum cor-
relators as

S(ky=0)A (nx −mx) =
1

2L
∑
kx

ei(nx−mx)kxα2
kx , (45)

P(ky=0)A (nx −mx) =
1

2L
∑
kx

e−i(nx−mx)kxα−2kx . (46)

Eqs. (45) and (46) depend only on the coordinates nx−mx

along the x̂ direction, and subsystem A is the interval of
length `x. Here αkx corresponds to αk in Eq. (9) with
ky = 0. The correlators (45) and (46) and hence (44)
are formally the same as those of the so-called massive
harmonic chain with frequency Ω =

√
2µ [8]. The full

ES of the massive harmonic chain for the bipartition in
two semi-infinite chains has been calculated by using the
corner transfer matrix approach [8]. The reduced density
matrix ρA, up to a trivial renormalisation, is written as

ρA ∼ e−Hctm , (47)

with the corner transfer matrix Hamiltonian

Hctm =
∞

∑
j=0

ε(2j + 1)β†
jβj , ε =

πK(
√

1 − κ2)

K(κ)
, (48)

where βj are bosonic ladder operators. Here K(x) is the
complete elliptic integral of the first kind (see Eq. (19)).
The parameter κ is given in terms of Ω as [81]

κ =
1

2
(2 +Ω2

−Ω
√

4 +Ω2). (49)

Eq. (47) holds if A is the half-infinite line. In this limit,
as it is clear from Eq. (48), the single-particle ES lev-
els are equally spaced [8] with spacing ε. To determine
the finite-size scaling of the entanglement gap δξ we use
the fact that for L → ∞ at criticality µ ∝ 1/L2 (see
Eq. (34)). By substituting (34) in the corner transfer
matrix results (48) and (49), we obtain that in the large
L limit δξ decays logarithmically with L as

δξ =
π2

ln( 8L
γ2

)
+O(ln−3(L)), (50)

Note the dependence on the universal constant γ2. To
derive (50), one can also observe that close to the crit-
ical point, on the paramagnetic side, Eq. (48) gives
δξ = π2/ ln(ξcorr). Eq. (50) then follows from standard
scaling arguments. A similar decay of the entanglement
gap as in (50) is obtained for critical one-dimensional
systems [8], both fermionic and bosonic ones. An im-
portant remark is that the corner transfer matrix cal-
culation is valid for the bipartition in two semi-infinite
systems, which implies that there is only one boundary
between the two subsystems, in contrast with the bipar-
titions Fig. 1, which contain two boundaries because we
are using periodic boundary conditions. Despite that, as
it will be clear in section V B, Eq. (50) gives the leading
behaviour for large L of δξ. We anticipate that a loga-
rithmic subleading term as O(ln−2(L)), which is missing
in Eq. (50), is present. From Eqs. (22) and (50) one
obtains that the eigenvalue e1 of CA is given as

e1 =
1

6
+

1

π4
ln2

(
8L

γ2
) +O(ln−2(L)). (51)

Importantly, the missing O(ln−2(L)) term in (50) will
give a O(ln(L)) contribution in (51).
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FIG. 3. Entanglement gap δξ as a function of g and linear
size L: Overview across the phase diagram. The results are
for the bipartition in Fig. 1 (a) with `x = L/2. The vertical
line marks the critical point at gc. The continuous line is
the result in the thermodynamic limit. Inset: Scaling of the
entanglement gap in the ordered phase at g < gc.

B. Numerical results

In this section we discuss numerical results confirming
the validity of the logarithmic scaling of the entangle-
ment gap at criticality. We provide numerical evidence
that the prefactor of the logarithmic decay obeys the
standard finite-size scaling behaviour. For instance, it
exhibits a crossing for different system sizes at the criti-
cal point. However, logarithmic corrections are present,
and a precise finite-size scaling analysis is very challeng-
ing.

1. Overview

Before discussing the scaling of δξ at the critical point,
it is useful to focus on its behaviour across the phase di-
agram of the QSM, see Fig. 3. The figure shows δξ as
a function of g for several system sizes L. The entan-
glement spectrum is calculated for the bipartition with
straight boundary, i.e., ωy = 1 and ωx = 1/2 (see Fig. 1
(a)). In Fig. 3 the solid line is δξ as obtained by using
the value of the spherical constraint µ in the thermody-
namic limit L → ∞ (cf. (32)). This yields µ = O(1) in
the paramagnetic phase and µ = 0 in the ferromagnetic
phase and at criticality (g ≤ gc). The thermodynamic
entanglement gap is obtained by substituting the ther-
modynamic value of µ in the finite-size expressions for
the correlators (cf. (12) and (13)) and taking the limit
L → ∞ after. This procedure gives the correct thermo-
dynamic behaviour of δξ, at least away from the critical
point. Although we use the finite-size expressions for the
correlators, we observe that δξ converges quickly to its
thermodynamic value. This is expected because the be-
haviour of the QSM is determined by the scaling of µ.
In the ordered phase and at the critical point the spin

10 100 1000 10000

L

0.5

1

1.5

2

2.5

e
1

g≈9.47 (ordered)

g=g
c
≈9.67826

g≈9.88 (paramagnetic)

1/π
4
 ln

2
(8 x/γ

2
)+A

0
+A

1
 ln(8 x/γ

2
)

FIG. 4. Largest eigenvalue e1 of the correlation matrix. Data
are for the bipartition in Fig. 1 (a) with ωx = 1/2 and ωy = 1.
e1 is plotted versus linear size L. In the ordered phase (di-
amonds) we observe a fast increase with L, whereas in the
paramagnetic phase e1 = O(1). Note the logarithmic diver-
gence as e1 ∝ ln2

(L) at the critical point at gc. The dashed
dotted line is a fit to e1 = 1/π4 ln2

(8L/γ2)+A0+A1 ln(8L/γ2),
with A0,A1 fitting parameters.

correlator (12) diverges due to the zero mode. Thus, we
regularise the zero-mode by fixing µ = 10−6. As it is clear
from Fig. 3, this analysis, although it is not rigorous, sug-
gests that δξ = 0 in the ordered phase, whereas µ is finite
and nonzero in the paramagnetic phase.

Let us now discuss the finite-size behaviour of δξ. In
the paramagnetic phase, i.e. g > gc, the approach to
the thermodynamic limit is exponential, which is ex-
pected because the model is massive. For g < gc, i.e.,
in the ferromagnetic phase, the data suggest a vanish-
ing gap. The scaling of the entanglement gap in mag-
netically ordered phases has been investigated exten-
sively [31, 33, 36, 38, 39]. For instance, in Ref. [31] it
was predicted that in the presence of continuous sym-
metry breaking in generic dimension d, δξ should decay
as

δξ ∝ (Ld−1 ln(L))−1. (52)

In d = 1 one recovers the logarithmic decay as 1/ ln(L),
reflecting the absence of symmetry breaking. In d > 1
Eq. (52) yields a “fast” power-law decay with a multi-
plicative logarithmic correction. An important remark is
that Eq. (52) applies to the gaps in the lower part of the
entanglement spectrum, i.e., the part which is related to
the Anderson tower of states. Gaps in the higher part of
the entanglement spectrum are expected to vanish loga-
rithmically [31].

2. Vanishing of the entanglement gap at the quantum
critical point

We now focus on the scaling of the entanglement gap at
the quantum critical point gc ≃ 9.67826. First, instead
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FIG. 5. Largest eigenvalue e1 of the correlation matrix: Sub-
leading logarithmic correction. Plot of e1 − 1/π4 ln2

(8L/γ2)
versus ln(L). The data are the same as in Fig. 4. The line
is a fit to A0 +A1 ln(8L/γ2), with A0,A1 fitting parameters.
The fit gives A1 ≃ 0.041. The inset shows e1 obtained by us-
ing µ = γ2

2/(2L) and fixing γ2 = 8. e1 is plotted versus ln2
(L).

The line is a fit to A′0 + 1/π4 ln2
(L).

of δξ we, equivalently, consider the scaling of the largest
eigenvalue e1 of CA. We show our numerical results for
e1 in Fig. 4 as a function of L (note the logarithmic scale
on the x-axis). To highlight the different scaling as com-
pared to other regions of the phase diagram, we report
also data in the paramagnetic phase (square symbols)
and in the ferromagnetic phase (diamonds). Within the
ordered phase e1 increases faster than logarihmically. In
the paramagnetic region e1 exhibits a mild increase for
small L, saturating at L → ∞. This is a consequence of
the finite correlation length in the paramagnetic phase.
A dramatically different behaviour is visible at critical-
ity (circles), for which we report data up to L ∼ 40000.2

Interestingly, for moderately large L the behaviour of
δξ is compatible with a logarithmic increase, although
Eq. (51) suggests a ln2

(L) scaling. This should be at-
tributed to the presence of a sub-leading logarithmic term
ln(L) (cf. (51)). A fit to A2 ln2

(8L/γ2)+A0+A1 ln(8L/γ2)
(dashed-dotted line) gives A2 ≃ 0.01, which is in good
agreement with the prediction 1/π4. One also obtains
A1 ≃ 0.04 and A0 ≃ 0.16. Note that A0 ≃ 1/6, as pre-
dicted by (51).

To further corroborate our results, in Fig. 5 we show
e1 − 1/π4 ln(8L/γ2) versus L using a logarithmic scale on
the x-axis. The data are the same as in Fig. 4. The
continuous line is a fit to

e1 −
1

π4
ln (

8L

γ2
) = A0 +A1 ln (

8L

γ2
) (53)

with A0 and A1 fitting constants. The logarithmic be-
haviour is perfect. Note that this logarithmic term is

2 Note that since ωy = 1, we can use dimensional reduction to
attain large system sizes (see section VA).
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FIG. 6. Finite-size scaling of the rescaled entanglement gap
δξ ln(L) plotted as function of g. Here L is the system size.
The vertical line marks the critical point.

not predicted by (51). Its origin could be attributed to
the fact that the corner transfer matrix result is obtained
for the semi-infinite system, i.e., the biparititon with one
boundary. It is interesting to investigate the dependence
on γ2 of the constant A1 in (53). In the inset in Fig. 5
we show e1 obtained by fixing µ = γ22/(2L

2) with γ2 = 8

in (12) and (13). In the inset e1 is plotted versus ln2
(L).

The dashed-dotted line is a fit to 1/π4 ln2
(L) +A′

0. The
perfect linear behaviour suggests that the subleading log-
arithmic term is absent or its prefactor is small. A fit to
1/π4 ln2

(8L/γ2) + A
′
0 + A

′
1 ln(L) gives A′

1 ≈ 0.0007. It
would be interesting to investigate this behaviour more
systematically. One possible scenario is that the prefac-
tor of the logarithmic term is of the form A′

1 = ln(γ2/8).

3. Finite-size scaling analysis

Having established the logarithmic vanishing of δξ at the
critical point, it is natural to investigate its behaviour in
the vicinity of the quantum phase transition. A natural
idea is that δξ obeys standard finite-size scaling [85]

δξ ln(L) = f((g − gc)L
1/ν

) + . . . , (54)

where the dots stand for scaling corrections, f(x) is a
scaling function and ν is the exponent that governs the
divergence of the correlation length at the critical point.
For the QSM one has ν = 1 [53] . The scaling function
f(x) is determined by the universality class of the QSM,
and, in principle, can be calculated. Under the assump-
tion that the f(x) is analytic, one can expand (54) near
gc to obtain

δξ ln(L) = f(0) + (g − gc)L
1/ν

+ . . . , (55)

From the analysis in section V A one should expect
f(0) = π2 ≃ 9.8. Eq. (55) implies that the data for δξ for
different system sizes should exhibit a crossing at gc. This
crossing method for the entanglement gap has been used
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FIG. 7. Scaling behaviour of the rescaled entanglement gap.
δξ ln(L) plotted against (g − gc)L

1/ν . Here gc ≃ 9.67826, and
ν = 1 is the correlation length critical exponent.

to detect a quantum phase transition in a system of cou-
pled one-dimensional models [35]. However, since δξ has
logarithmic corrections, one should expect strong limita-
tions, as we are going to show. The scaling Ansatz (54)
implies that by plotting the rescaled gap δξ ln(L) as a

function of the scaling variable (g − gc)L
1/ν one should

observe a data collapse for different system sizes, pro-
vided that scaling corrections can be neglected.

Our finite-size data for δξ as a function of g for sev-
eral system sizes L are shown in Fig. 6 focussing on the
vicinity g ≈ gc. We only show data for moderately large
system sizes L ≲ 200. Clearly, the data exhibit a crossing
at g ≈ 9.6, which is close to the critical point gc ≃ 9.67826.
This is quite remarkable because logarithmic corrections
are present. In fact, we observe that even including larger
system sizes, it is challenging to obtain a more precise es-
timate of gc. In Fig. 7 we perform a data collapse analy-
sis plotting the rescaled entanglement gap δξ ln(L) versus

the scaling variable (g−gc)L
1/ν . Since we expect that the

scaling behaviour is determined by the QSM universality
class, we fix ν = 1. Due to the logarithmic scaling cor-
rections, the data collapse is poor. From section V A one
should expect f(0) = π2. On the other hand, the data up
to L ≲ 104 suggest f(0) ≈ 7, which is quite far from the
expected value f(0) ≃ 9.8. As it is shown in the inset,
a very slow drift towards the asymptotic value is visible,
compatible with the presence of logarithmic corrections.
In conclusion, our analysis suggests that the scaling of
the entanglement gap can be used to estimate the posi-
tion of the quantum critical point, although extracting
the critical exponent ν and the scaling function requires
knowledge of the logarithmic corrections.

VI. ENTANGLEMENT GAP AND THE
ZERO-MODE EIGENVECTOR

In this section we discuss how the vanishing of the en-
tanglement gap is reflected in the eigenstate of the corre-
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FIG. 8. Eigenvector corresponding to the largest eigenvalues
of the correlation matrix Snm (zero-mode eigenvector). Data
are for the straight bipartition with ωy = 1 and ωx = 1/2.

Eigenvector’s components are rescaled by ∣A∣1/2. On the x-
axis i is a label. In the ordered phase for g < gc the eigenvector
becomes flat in the thermodynamic limit, in contrast with the
behaviour at the critical point at gc, and in the paramagnetic
phase.

lation matrix that corresponds to the zero mode. More-
over, we show that assuming a flat structure of the zero-
mode eigenvector at criticality allows one to capture qual-
itatively the logarithmic vanishing of the entanglement
gap. Within this approximation the vanishing of δξ is re-
lated to some interesting multiplicative logarithmic cor-
rections in the correlators. Finally, the result suggests
that the presence of corners in the bipartition affects the
vanishing of the gap.

A. The zero-mode eigenvector

Let us consider the eigenvector ∣ψ0⟩ corresponding to the
largest eigenvalue of the spin-spin correlator SA. This
eigenvector is closely related to that of CA correspond-
ing to e1, which gives the smallest single-particle ES
level. Its behaviour is summarised in Fig. 8, showing the
components of the eigenvector for different system sizes
and in different regions of the phase diagram. We con-
sider the bipartition with straight boundary ωy = 1 and
ωx = 1/2 (see Fig. 1 a). Upon increasing L all the com-
ponents decay to zero. Thus, it is convenient to rescale
by ∣A∣1/2 =

√
`x`y (see Fig. 1). We define the flat vector

∣1⟩ in region A as

∣1⟩ =
1

√
∣A∣

(1,1, . . . ,1)T . (56)

It is clear from Fig. 8 in the thermodynamic limit in the
ordered phase one has that ∣ψ0⟩→ ∣1⟩, up to an irrelevant
global phase.

The structure of ∣ψ0⟩ for g > gc can be understood as
follows. Deep in the paramagnetic phase the correlation
length is small. In the limit g →∞ spin-spin correlators
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become ultra-local, viz.

Snm = δnm + ε(δ∣nx−mx∣,1 + δ∣ny−my ∣,1), (57)

with ε vanishing for g → ∞. In the case ωy = 1, it is
straightforward to determine the eigenvector of (57) cor-
responding to the largest eigenvalue in the sector with
ky = 0. Due to ωy = 1, the eigenvector is “flat” along
ŷ, and has a non-trivial dependence only on the x co-
ordinate. The components of the eigenvector are given
as

ψnx,ny =
1

∣A∣1/2
sin (

πnx
`x

). (58)

The dotted line in Fig. 8 shows the eigenvector ∣ψ0⟩ for
g = 10 and the data are in perfect agreement with (58).

Upon approaching the quantum critical point, the
zero-mode eigenvector flattens, reflecting that the sys-
tem develops ferromagnetic order. To understand that,
let us consider the spin correlator (12) in the thermody-
namic limit. Upon increasing L, as µ→ 0, the correlator
develops a singularity for k = 0 which encodes the criti-
cal behaviour of the QSM. In the limit of large L one can
isolate the contribution of the zero mode as [73]

Snm = S(th)nm +
c

√
µ
+ . . . , (59)

where c is a constant. Here the first term is obtained
by setting µ = 0 and by replacing the sum in (12) with
an integral and the second term is the contribution of
the zero mode k = 0. The second contribution in (59)
does not depend on n and m, and is divergent in the
limit µ → 0. In this limit one has that the flat vector
becomes an exact eigenvector of Snm with an eigenvalue
that is proportional to L. However, the decomposition
in (59) is not justified because the limit µ → 0 and the
limit L → ∞ cannot be taken independently, because
µ ∝ 1/L2. Figure 8 shows that at the critical point the
rescaled components of ∣ψ0⟩ collapse on the same curve.
The structure of the eigenvector is not flat. On the other
hand, in the ordered phase, where µ ∝ 1/L4 (see Fig. 2)
upon increasing L the eigenvector becomes flat. This
suggests that the decomposition (59) holds if µ decays
sufficiently fast for large L.

B. An interesting logarithmic correction

In this section we investigate the scaling of the entan-
glement gap assuming that the eigenvector ∣ψ0⟩ is flat
also at the critical point, and that the decomposition in
Eq. (57) holds. A similar analysis for the massive har-
monic chain was presented in Ref. [73]. Here we assume
that Snm can be decomposed as

Snm = s0L∣1⟩⟨1∣ + S′nm (60)

and we assume that S′nm is negligible. The product P ⋅S
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FIG. 9. Expectation value ⟨1∣S∣1⟩ of the correlation matrix
S (cf. (12)) over the flat vector ∣1⟩. Symbols are numerically
exact data for the bipartition with several values of ωx and
ωy (see Fig. 1). The dashed dotted line is the analytic result
s0L. Note that s0 is obtained by summing (67) and (68).
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axis. The dashed-dotted line is the analytical result.

is thus decomposed as

P ⋅ S = s0LP∣1⟩⟨1∣ + P ⋅ S′, (61)

where we suppress the indices n,m to lighten the nota-
tion. Consistently with (60), we are going to neglect the
second term in (61). The matrix P ⋅ S is not hermitian,
whereas P and S are hermitian. This means that one has
to introduce right and left eigenvectors. We define two
vectors uR and uL as

uR = P∣1⟩ (62)

uL = ∣1⟩. (63)

It is now straightforward to check that uR and uL are
the right and left eigenvectors of P ⋅ S, respectively. The
eigenvalue is given as

e1 = ⟨1∣S∣1⟩⟨1∣P∣1⟩. (64)
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Eq. (64) implies that the problem of calculating the eigen-
value e1 of CA (cf. (21)) is reduced to the simpler problem
of calculating the flat-vector expectation values in (64).
In the following we are going to calculate

⟨1∣S∣1⟩ =
1

∣A∣
∑

n,m∈A

Snm, (65)

⟨1∣P∣1⟩ =
1

∣A∣
∑

n,m∈A

Pnm. (66)

Note that (65) has the same form as the spin susceptibil-
ity. To obtain (65) and (66), we use the expansion of the
spin and momentum correlators discussed in section IV B
and section IV C. Importantly, both the thermodynamic
and the finite-size contributions in (36) and (40) have to
be taken into account.

We start discussing the expectation value ⟨1∣S∣1⟩ and
first consider the contribution of the thermodynamic part
of the correlator in (37). From (37) we can perform the
sums over n and m, and after using the explicit form of
the spherical parameter (34), taking the limit L→∞, we
obtain for a bipartition with generic ωx and ωy

⟨1∣S(th)∣1⟩ =

2
√
gcL

π2ωxωy
∬

∞

−∞
dkxdky

sin2
(kx

2
ωx) sin2

(
ky
2
ωy)

k2xk
2
y(γ

2
2 + k

2
x + k

2
y)

1
2

.
(67)

Note that this expectation value grows linearly with L.
The constant γ2 is defined in (35). The integral in (67)
depends on the universal low-energy behaviour of the
QSM, i.e., at kx, ky → 0, although it is not fully universal.
We now show that the finite-size term (38) yields a linear
contribution in L in (65). Indeed, it is straightforward to
take the limit L→∞ in (38) to obtain

⟨1∣S(L)∣1⟩ =
√
gcL

4πωxωy

∞

∑
′

l,l′=−∞
∬

ωx

0
dxdx′

∬

ωy

0
dydy′

e−γ2

√
(l+x−x′)2+(l′+y−y′)2

√
(l + x − x′)2 + (l′ + y − y′)2

.

(68)

Note that the integral in (68) is finite, although the de-
nominator in (68) is singular for l = 0 and l′ = ±1 (see
section IV B). It is straightforward to integrate the contri-
butions (67) and (68) numerically. We conclude that the
expectation value (65) grows linearly with L in the limit
L → ∞. The accuracy of (67) and (68) is numerically
verified in Fig. 9. The symbols are exact numerical data
for (65), whereas the dashed-dotted lines are the theoret-
ical predictions obtained by summing (67) and (68).

We now show that, surprisingly, the expectation
value (66) decays as ln(L)/L, i.e., it exhibits a multi-
plicative logarithmic correction. The derivation is quite
cumbersome, although it requires standard methods such
as Poisson’s summation formula and the Euler-Maclaurin
formula. The details are reported in Appendix B. Here
we solely discuss the final result. Similar to (65) one can

treat separately the thermodynamic contribution of (66)
(cf. (41)) and the finite-size one (cf. (42)). For simplicity
we consider the bipartition with ωx = 1/p and ωy = 1/q,
with p, q ∈ N. Clearly, for ωy < 1 the boundary between
the two subsystems is not straight, i.e., it has a corner
(see Fig. 1 b). One obtains

⟨1∣P(th)∣1⟩ =
p−1

∑
p′=0

q−1

∑
q′=0
∫

1/p

0
dkx ∫

1/q

0
dky

sin2
(π(kx + p

′
/p)) sin2

(π(ky + q
′
/q))ηp′,q′(kx, ky). (69)

The function ηp′,q′(kx, ky) reads as

ηp′,q′(kx, ky) =
4

π3√gc
[

q

(kx + p′/p)2
+

p

(ky + q′/q)2

+ pψ′(1 + ky + q
′
/q) +

q

1 + kx + p′/p
+

q

2(1 + kx + p′/p)2

q

6(1 + kx + p′/p)3
+ . . . ]

ln(L)

L
. (70)

The dots in the square brackets denote terms of higher
powers of 1/(kx+p

′/p) that can be derived systematically
by using the Euler-Maclaurin formula (see Appendix B).
The function ψ′(x) is the first derivative of the digamma
function ψ(x) with respect to its argument [74]. As antic-
ipated above, the behaviour as ln(L)/L is clearly visible
in (70). As for (67) and (68), it is clear that ηp′,q′ is de-
termined by the low-energy part of the dispersion of the
QSM.

Let us now consider the finite-size contribution (42).
Interestingly, as it is clear from (42), the finite-size corre-
lator is smooth for ωy < 1 and ωx < 1, whereas it exhibits
a singularity if either ωy = 1 or ωx = 1, i.e., if the bound-
ary between A and its complement is straight. Similar
to (69), the singular contribution is

⟨1∣P(L)∣1⟩ = −
1

√
gcπ

ln(L)

L
. (71)

Interestingly, the minus sign in (71) suggests that the
presence of corners increases the prefactor of the logarith-
mic correction. Finally, after combining Eqs. (67), (68)
and (69), (71) with (64), one obtains that e1 ∝ ln(L).
The prefactor of the logarithmic growth depends on the
low-energy properties of the QSM. As anticipated, by
approximating the zero-mode eigenvector with the flat
vector one obtains that δξ decays logarithmically upon
increasing L. However, from (22) one obtains that δξ ∝

1/
√

ln(L), instead of the correct behaviour as 1/ ln(L)
established in section V A.

VII. CONCLUSIONS

We investigated the entanglement gap δξ in the two-
dimensional critical QSM. Our main result is that in the
QSM there is a relationship between critical behaviour
and vanishing of the entanglement gap.
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There are several intriguing directions for future re-
search. First, it would be interesting to study the be-
haviour of the entanglement gap below the transition,
i.e., in the ordered phase. Furthermore, an interesting
question is how the scenario outlined in this work survives
beyond the large N limit. This, however, is a very de-
manding task because entanglement-related observables
cannot be calculated efficiently at finite N . Still, the flat-
vector approximation discussed in section VI could be
generalized, at least perturbatively in 1/N . It would be
interesting to check whether the logarithmic correction
that is responsible of the vanishing of the entanglement
gap persists at finite N . Another natural direction is
to understand if the vanishing of the entanglement gap
at the critical point is an artifact of the large N limit.
The question is whether at finite N a spurious transition
appears, as observed in Ref. [23].

It would be also interesting to study the negativity
spectrum [86–89] at the quantum phase transition, and
in particular the effect of the zero mode. A very in-
teresting direction is to understand how the fluctua-
tions of the number of particles between the two sub-
systems is reflected in the entanglement spectrum and
the entanglement gap. Very recently, the symmetry re-
solved entanglement entropies emerged as ideal tools to
do that [30, 41, 81, 90–106]. However, an important re-
mark is that in the QSM the number of bosons is not
conserved, and the symmetry-resolved entanglement en-
tropies are not well defined. The particle number con-
servation is only enforced on average via the gap equa-
tion (2). Still, it should be possible to generalize the QSM
to investigate this issue, e.g. by studying spin-anisotropy
in the QSM [54]. It would be also important to under-
stand how our results can be generalized to long-range
spherical models. Finally, it would be interesting to con-
sider higher-dimensional fermionic models. An interest-
ing question is whether the area-law violation [107–113]
affects the scaling of the entanglement gap.
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Appendix A: Critical behaviour of the spin
correlator

In this appendix we derive the large L behaviour of the
correlation function Snm in the QSM. Specifically, we
provide exact expressions for the leading and the first
subleading terms in powers of 1/L. The correlator to

evaluate is defined as (cf. Eq. (12))

Snm =

√
g

2
√

2V
∑
k

eik(n−m)
√
µ + ωk

. (A1)

The correlation depends only on the distance d = n −

m, reflecting translation invariance. Eq. (A1) can be
rewritten as

Snm =

√
g

2π
∫

∞

0
dte−(µ+2)t

2

∏
j=x,y

1

L
∑
kj

e− cos(kj)t
2
+ikjdj

(A2)
We now apply Poisson’s summation formula which, for a
periodic function G(q) = G(q + 2π), is stated as

1

L

(L−1)/2

∑
n=−(L−1)/2

G(
2πn

L
) =

∞

∑
l=−∞

∫

π

−π

dq

2π
G(q)eiqlL. (A3)

The application of (A3) to (A2) yields

Snm =

√
g

√
2π
∫

∞

0
dte−(µ+2)t

2

∏
j=x,y

(
∞

∑
lj=−∞

IljL+dj(t
2
)).

(A4)
Here In(t) is the modified Bessel function of the first
kind [74]. It is convenient to isolate the terms with lx =
ly = 0 in (A4), viz.

∏
j=x,y

∞

∑
lj=−∞

IljL+dj(t
2
) =

∏
j=x,y

(Idj(t
2
) +

∞

∑
′

lj=−∞

IljL+dj(t
2
)). (A5)

The first term on the right-hand side gives the thermo-
dynamic contribution to the correlator Snm, i.e., in the
limit L→∞, whereas the other terms are finite-size cor-
rections. The prime in the sum is to stress that the terms
with lx = ly = 0 is removed. We now derive the large L
behaviour of (A5). Upon expanding (A5), it is clear that
we have to derive the asymptotic behaviour of integrals
of the type

Kl,l′(x,x
′
) =

√
g

√
2π
∫

∞

0
e−(µ+2)t

2

IlL+x(t
2
)Il′L+x′(t

2
).

(A6)
Without loss of generality we can restrict ourselves to
the case with l, l′ > 0. The generalization to arbitrary l, l′

is straightforward by using the symmetry of the Bessel
function I−n = In. It is convenient to change variables
in (A6) to z2 = t2/(lL + x), viz.

Kl,l′(x,x
′
) =

√
g
√
Ll + x

√
2π

∫

∞

0
dze−(µ+2)(lL+x)z

2

IlL+x(z
2
(lL + x))Il′L+x′(r(l

′L + x′)z2), (A7)

where we introduced the ratio r as

r =
lL + x

l′L + x′
. (A8)



14

We can now perform a saddle point analysis for large
Ll + x. For large L, the integral Kl,l′ is determined by
the saddle point

t∗ = (
(µ + 2)(1 + r2) + 2

√
r4 + (µ(µ + 4) + 2)r2 + 1

µ(µ + 2)(µ + 4)r2
)

1
4

.

(A9)
Finally, a standard calculation yields

Kl,l′ =

√
g
√
lL + x

(2(l′L + x′))3/2
√
rπ

× e−(l
′L+x′)(r(2+µ)t2−rη(t2)−η(t2r)) g

′(t)
√
f(t)

RRRRRRRRRRRt→t∗
. (A10)

Here we defined

g′(t) =
1

(t4 + 1)1/4(r2t4 + 1)1/4
(A11)

f(t) = −
r2t4 − 1

t2
√
r2t4 + 1

+ (µ + 2)r −
r (t4 − 1)

t2
√
t4 + 1

, (A12)

and the function η(t) as

η(t) = (1 + t2)
1
2 + ln (

t

1 + (1 + t2)
1
2

). (A13)

The main ingredient to derive (A10) is the asymptotic
behaviour of the Bessel function Iz(z) for z → ∞ [74]
together with the standard saddle point analysis [114].

Since we are interested in the critical behaviour of the
correlators, it is useful to consider the limit µ → 0, be-
cause µ vanishes at criticality. Specifically, we consider
the limit L →∞ with µ ∝ 1/L2. In this limit we obtain
the expression

Kl,l′(x,x
′
) =

√
gc

4π

e−
√
2µ
√
(lL+x)2+(l′L+x′)2

√
(lL + x)2 + (l′L + x′)2

, (A14)

where we fixed g = gc. Finally, we now obtain that in the
large L limit and for µ → 0 the correlator Snm is given

as

Snm =

√
gc

√
2π
∫

∞

0
dte−(µ+2)t

2

Inx−mx(t
2
)Iny−my(t

2
)

+

∞

∑
′

l,l′=−∞

Kl,l′(nx −mx, ny −my), (A15)

where Kl,l′ is defined in (A14) and the prime in the sum
is to stress that the term with l = l′ = 0 has been removed.
In (A15) one can recognize the two contributions in (37)
and (38). Note that the finite-size term (second term
in (A15)) is O(1/L), whereas the thermodynamic one
(first term in (A15)) is O(1). In (A15) we neglect higher
order corrections in powers of 1/L. The large L expan-
sion for the momentum correlator Pnm can be obtained
from (A15) by using (15).

Appendix B: Derivation of the flat-vector
expectation value ⟨1∣P∣1⟩

In this appendix we derive the large L behaviour of the
expectation value of the momentum correlator with the
flat vector ⟨1∣P∣1⟩. We consider the leading, i.e, the ther-
modynamic, as well as the first subleading contribution.
The main goal is to show that the expectation value ex-
hibits multiplicative logarithmic corrections. Two types
of contributions are present. One originating from the
thermodynamic limit of the correlator, whereas the sec-
ond one is due to the first subleading term. The latter
is present only for a straight boundary between the two
subsystems, and it vanishes if the bipartition has corners.

1. Thermodynamic contribution

Here derive the thermodynamic contribution, which is
given as ⟨1∣P(th)∣1⟩, cf. (40). Here ∣1⟩ is the flat vector
restricted to region A, i.e,

∣1⟩ =
1

√
∣A∣

(1,1, . . . ,1), ∣A∣ = `x`y. (B1)

The thermodynamic part of the momentum correlator
reads

P(th)nm =
1

4
√

2gπ2 ∫

π

−π
dkeik(n−m)

√
µ + ωk. (B2)

After performing the sum over n and m in (B2), and
after changing variables to k′x = Lωxkx/π and k′y =

Lωyky/π, we obtain

⟨1∣P(th)∣1⟩ =
2
√

2
√
gL4ω2

xω
2
y
∫

Lωx/2

0
dkx ∫

Lωy/2

0
dky

sin2
(πkx) sin2

(πky)

sin2 ( π
Lωx

kx) sin2 ( π
Lωy

ky)
× [µ + 2 − cos (

2π

Lωx
kx) − cos (

2π

Lωy
ky)]

1
2

.

(B3)

In order to extract the large L behaviour of (B3) it is useful to split the integration domains [0, Lωx/2] and
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[0, Lωy/2] and to write

⟨1∣P(th)∣1⟩ =

2
√

2
√
gL4ω2

xω
2
y

L/2−1

∑
lx,ly=0

∫

(lx+1)ωx

lxωx
dkx ∫

(ly+1)ωy

lyωy
dky

sin2
(πkx) sin2

(πky)

sin2 ( π
Lωx

kx) sin2 ( π
Lωy

ky)
[µ + 2 − cos (

2π

Lωx
kx) − cos (

2π

Lωy
ky)]

1
2

.

(B4)

We now restrict ourselves to the case with ωx = 1/p and
ωy = 1/q, with p, q positive integers. After a simple shift

of the integration variables as kx → kx − lxωx and ky →
ky − lyωy, one obtains

⟨1∣P(th)∣1⟩ =
2
√

2p2q2
√
gL4

p−1

∑
p′=0

q−1

∑
q′=0

L/(2p)−1

∑
lx=0

L/(2q)−1

∑
ly=0

∫

1/p

0
dkx ∫

1/q

0
dky

sin2
(π(kx + lx + p

′/p)) sin2
(π(ky + ly + q

′/q))

sin2 (
pπ
L
(kx + lx + p′/p)) sin2 (

qπ
L
(ky + ly + q′/q))

× [µ + 2 − cos (
2pπ

L
(kx + lx + p

′
/p)) − cos (

2qπ

L
(ky + ly + q

′
/q))]

1
2

. (B5)

We now focus on the behaviour at the quantum phase
transition. We set g = gc, µ = γ22/(2L

2), and we ex-
pand (B5) in the limit L → ∞, using the periodicity of
the sine function. This yields

⟨1∣P(th)∣1⟩ =
4

√
gcπ3L

p−1

∑
p′=0

q−1

∑
q′=0

L/(2p)−1

∑
lx=0

L/(2q)−1

∑
ly=0

∫

1/p

0
dkx ∫

1/q

0
dky

sin2
(π(kx + p

′/p)) sin2
(π(ky + q

′/q))

(kx + lx + p′/p)2(ky + ly + q′/q)2

×[
γ22
4π2

+ p2(kx + lx + p
′
/p)2 + q2(ky + ly + q

′
/q)2]

1
2

.

(B6)

Importantly, as a result of the large L limit, Eq. (B6)
depends only on the low-energy part of the dispersion of
the QSM, although it contains non-universal information.

To proceed we determine the large L behaviour of the
sum over lx, ly in (B6), i.e., of the function ηp′,q′(kx, ky)
defined as

ηp′,q′(kx, ky) =
4

√
gcπ3L

L/(2p)−1

∑
lx=0

L/(2q)−1

∑
ly=0

√
γ2

2

4π2 + p2(kx + lx + p′/p)2 + q2(ky + ly + q′/q)2

(kx + lx + p′/p)2(ky + ly + q′/q)2
. (B7)

The asymptotic behaviour of ηp,q in the limit L→∞ can
be obtained by using the Euler-Mclaurin formula. Given
a function f(x) this is stated as

x2

∑
x=x1

f(x) = ∫
x2

x1

f(x)dx

+
f(x1) + f(x2)

2
+

1

6

f ′(x2) − f
′(x1)

2!
+ . . . (B8)

Here the dots denote terms with higher derivatives of
f(x) calculated at the integration boundaries x1 and x2,

that can be derived to arbitrary order. To proceed, we
first isolate the term with either lx = 0 or ly = 0 in (B7).
The remaining sum after fixing lx = 0 or ly = 0 can be
treated with (B8). We define this contribution to the
large L behaviour of ηp′,q′ as η0, which is given as

η0 =
4

√
gcπ3

[
q

(kx + p′/p)2
+

p

(ky + q′/q)2
]
ln(L)

L
. (B9)

In the derivation of (B9) we neglected the boundary
terms in (B8) because they are subleading. We are
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now left with the sums over lx ∈ [1, L/(2p)] and ly ∈

[1, L/(2q)] in (B7). These can be evaluated again by us-
ing (B8). We first apply (B8) to the sum over lx and
obtain two contributions. The first one is obtained after
evaluating the integral in (B8) at x2 = L/(2p). After ex-
panding the result for L → ∞, we find the contribution
η1 given as

η1 =
L/(2q)

∑
ly=1

4p
√
gcπ3(ky + ly + q′/q)2

ln(L)

L
. (B10)

Note the term ln(L)/L in (B10). The sum over ly
in (B10) can be performed exactly to obtain in the large
L limit

η1 =
4

√
gcπ3

pψ′(1 + ky + q
′
/q)

ln(L)

L
. (B11)

Here ψ′(z) is the first derivative of the digamma function
ψ(z) with respect to its argument [74]. The second con-
tribution is obtained by evaluating the integral in (B8) at
x1 = 1. The remaining sum over ly cannot be evaluated
analytically. However, one can again treat the sum over
ly with the Euler-Mclaurin formula (B8). After neglect-
ing the boundary terms in (B8), which are subleading
for large L, and after evaluating the integral in (B8) at
x2 = L/(2q), we obtain the contribution η2 as

η2 =
4

√
gcπ3

q

1 + kx + p′/p

ln(L)

L
. (B12)

To obtain the full contribution of the sum over lx in (B7)
we now have to consider the effect of the boundary terms
in (B8). Before doing that we check the accuracy of (B11)
and (B12) by defining

J =
4

√
gcπ3L

∫

L/(2p)

1
dlx

L/(2q)−1

∑
ly=1

√
γ2

2

4π2 + p2(kx + lx + p′/p)2 + q2(ky + ly + q′/q)2

(kx + lx + p′/p)2(ky + ly + q′/q)2
.

(B13)

J is obtained by neglecting the terms with either lx = 0
or ly = 0 in (B7), which were treated in (B9), and by
approximating the sum over lx in (B8) with an integral
(see first term in (B8)), treating the sum over ly exactly.
In Fig. 11 we show (J −η1−η2)L versus 1/L. For large L
the data show a linear behaviour attaining a finite value
in the limit L → ∞. This shows that the leading order
term ∝ ln(L)/L of J is fully captured by η1 + η2, the
remaining contribution being ∝ 1/L, which we neglect.

Having discussed the contribution which derives from
approximating the sum over lx in (B7) with the integral
in (B8), we finally focus on the effect of the boundary
terms in (B8). Let us consider the first boundary term
(first term in the second row in (B8)). The contribution

0 5e-05 0.0001

1/L

0.09667

0.09668

0.09669

0.0967

0.09671

0.09672

(J
-η

1
-η

2
)L

p=q=1 p’=q’=0

linear fit

FIG. 11. Check of the asymptotic behaviour in the large
L limit of J (cf. (B13)). The circles are numerical data for
(J − η1 − η2)L, with η1 and η2 as defined in (B11) and (B12).
The dashed-dotted line is a linear fit. Data are for p = q = 1
and p′ = q′ = 0 (cf. (B7)). Note that J − η1 − η2 ∝ 1/L for
L→∞.

as ln(L)/L is obtained by fixing lx = 1, other contribu-
tions are subleading. After performing the sum over ly,
one obtains the first boundary contribution ηb1 as

ηb1 =
2

√
gcπ3

q

(1 + kx + p′/p)2
ln(L)

L
. (B14)

In a similar way the second boundary term (last term
in (B8)) gives

ηb2 =
2

3
√
gcπ3

q

(1 + kx + p′/p)3
ln(L)

L
. (B15)

Note that boundary terms in (B8) are expected to be
small. Specifically, the k-th term is suppressed as 1/(k +
1)!. The final result for η(kx, ky, p, p

′, q, q′) is obtained by
putting together Eqs. (B9), (B11), (B12), (B14), (B15)
to obtain

ηp′,q′(kx, ky) = η0 + η1 + η2 + ηb1 + ηb2. (B16)

In Fig. 12 we check the accuracy of (B16), showing the
function ηp′,q′ for fixed values of q = 1, which corresponds
to a straight partition between the two subsystems, and
p = 1/2. For all values of p′, q′ and kx, ky that we consider
ηp′,q′ is well described by (B16).

2. Finite-size contribution

In this section we derive the leading behaviour in the
large L limit of ⟨1∣P(L)∣1⟩. Interestingly, we show that
in the presence of a straight boundary between the two
subsystems the expectation value behaves as ⟨1∣P(L)∣1⟩∝
ln(L)/L. On the other hand, in the presence of corners,
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FIG. 12. Large L behaviour of the function ηp′,q′(kx, ky)
defined in (B7). Here we consider a bipartition with ωx = 1/p
and ωy = 1/q (see Fig. 1). We fix q = 1 considering q′ = 0
and p′ = 0,1 (empty and full symbols, respectively). Symbols
are numerical results. Dashed-dotted lines are the asymptotic
behaviours in (B16).

the multiplicative logarithmic correction is absent. The
finite-size correlator to calculate reads as

P(L)nm = −
1

4
√
gcπ

∞

∑
′

l,l′=−∞

e−
√
2µ
√
(lL+nx−mx)2+(l′L+ny−my)2

× [
1

[(lL + nx −mx)
2 + (l′L + ny −my)

2]3/2

+

√
2µ

(lL + nx −mx)
2 + (l′L + ny −my)

2
]. (B17)

Crucially, if ωx < 1 and ωy < 1, the denominators in (B17)
are never singular. This implies that the logarithmic cor-
rection is not present, which can be straightforwardly
checked numerically. Let us now consider the situation
with ωx < 1 and ωy = 1. The other case with ωx = 1 and
ωy < 1 can be treated similarly. A singularity appears in
the limit L → ∞ for l = 0 and l′ = ±1. We numerically
observe that only the first term in (B17) gives rise to a
singular behaviour. Thus, we neglect the second term
and fix l = 0, obtaining

⟨1∣P(L)∣1⟩ ≃ −
1

4
√
gcπL2ωx

∞

∑
′

l′=−∞

Lωx

∑
nx,mx=0

L−1

∑
ny,my=0

e−
√
2µ
√
(nx−mx)2+(l′L+ny−my)2

((nx −mx)
2 + (l′L + ny −my)

2)3/2
. (B18)

Only the differences nx−mx and ny−my appear in (B18). Thus, it is convenient to change variables to x = nx −mx

and y = ny −my, to obtain

⟨1∣P(L)∣1⟩ ≃ −
1

4
√
gcπL2ωx

∞

∑
′

l′=−∞

Lωx

∑
x=−Lωx

L−1

∑
y=−(L−1)

(Lωx + 1 − ∣x∣)(L − ∣y∣)
e−
√
2µ
√
x2+(l′L+y)2

(x2 + (l′L + y)2)3/2
. (B19)

Again, the singular behaviour occurs for x ≈ 0 and y ≈ −lL, with l′ = ±1. In this limit we can neglect the ex-
ponential in (B20) because it is regular. Thus, we obtain

⟨1∣P(L)∣1⟩ ≃ −
1

4
√
gcπL2ωx

∞

∑
′

l′=−∞

Lωx

∑
x=−Lωx

L−1

∑
y=−(L−1)

(Lωx + 1 − ∣x∣)(L − ∣y∣)

(x2 + (l′L + y)2)3/2
. (B20)

To proceed, we consider the case l = 1 and it is clear that
the contribution from l = −1 is the same. We can restrict
the sum over x in (B20) to x > 0 because of the symmetry
x→ −x. We also restrict to y < 0 because the singularity
in (B20) occurs for y < 0. We now have

⟨1∣P(L)∣1⟩ ≃
1

2
√
gcπL2ωx

Lωx

∑
x=0

L−1

∑
y=0

(Lωx + 1 − x)(y −L)

(x2 + (L − y)2)3/2
.

(B21)

Now the strategy is to treat the sum (B21) by using the
Euler-Mclaurin formula (B8). For instance, one can first
apply (B8) to the sum over x and obtain that the leading
term in the large L limit is obtained by evaluating the
integral in (B8) at ωxL. One can also verify that the
boundary terms in (B8) can be neglected. A straightfor-
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FIG. 13. Large L behaviour of ⟨1∣P(L)∣1⟩ (cf. (B18) for
its definition). The symbols are numerical data obtained by
using (B17). The dashed-dotted line is the analytical re-
sult (B22). All the results are for the bipartition with ωx = 1/2
and ωy = 1.

ward calculation gives the final result

⟨1∣P(L)∣1⟩ ≃ −
1

√
gcπ

ln(L)

L
, (B22)

where the contribution of l = −1 in (B20) has been taken
into account. The validity of (B22) is numerically con-
firmed in Fig. 13.
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[41] A. M. Läuchli, (2013), arXiv:1303.0741 [cond-mat.stat-
mech].

[42] V. Alba, P. Calabrese, and E. Tonni, Journal of Physics
A: Mathematical and Theoretical 51, 024001 (2017).

[43] J. Cardy, “The entanglement gap in cfts, talk at the kitp
conference ”closing the entanglement gap: Quantum
information, quantum matter, and quantum fields”.”
(2015).

[44] A. Bayat, H. Johannesson, S. Bose, and P. Sodano, Na-
ture Communications 5 (2014), 10.1038/ncomms4784.

[45] T. T. Truong and I. Peschel, Zeitschrift für Physik B
Condensed Matter 75, 119 (1989).

[46] G. D. Giulio and E. Tonni, Journal of Statistical Me-
chanics: Theory and Experiment 2020, 033102 (2020).

[47] R. Lundgren, J. Blair, M. Greiter, A. Läuchli, G. A.
Fiete, and R. Thomale, Phys. Rev. Lett. 113, 256404
(2014).

[48] C. Lhuillier and G. Misguich, in High Magnetic Fields
(Springer Berlin Heidelberg, 2002) pp. 161–190.

[49] A. J. Beekman, L. Rademaker, and J. van Wezel, Sci-
Post Phys. Lect. Notes , 11 (2019).

[50] A. Wietek, M. Schuler, and A. M. Luchli, “Studying
continuous symmetry breaking using energy level spec-
troscopy,” (2017), arXiv:1704.08622 [cond-mat.str-el].

[51] G. Obermair, in Dynamical Aspects of critical phenom-
ena (Gordon and Breach, New York, 1972) p. 10.

[52] M. Henkel and C. Hoeger, Zeitschrift für Physik B Con-
densed Matter 55, 67 (1984).

[53] T. Vojta, Physical Review B 53, 710 (1996).
[54] S. Wald and M. Henkel, Journal of Statistical Me-

chanics: Theory and Experiment 07006, 34 (2015),
arXiv:1503.06713.

[55] P. Bienzobaz and S. Salinas, Physica A: Statistical Me-
chanics and its Applications 391, 6399 (2012).
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