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The mass shift and the anomalous magnetic moment of the electron
in an intense plane wave field:

The value of the anomalous magnetic moment of the electron is the most accu-
rately verified prediction of Quantum Electrodynamics (QED). Upcoming QED
experiments on the interaction of electrons with intense laser fields open up the
way of checking whether this high degree of agreement for the value of the elec-
tron anomalous magnetic moment persists in intense background fields. The
possibility of experimentally verifying the expression for the anomalous magnetic
moment of the electron in intense laser fields calls for computing radiative correc-
tions beyond the leading-order result, that already includes the background field
exactly. While in vacuum QED the anomalous magnetic moment is extracted
from the vertex diagram for which the external photon provides the magnetic
field interacting with the electron, in the strong field case the mass operator is
used, where the magnetic field of the plane wave is exploited instead. Hence,
in the thesis, the renormalized momentum space mass operator for an off-shell
electron in the presence of an arbitrary plane-wave background is computed in
light-cone coordinates, which have the advantage of making transparent the con-
served quantities. Sandwiching between on-shell electron states, a new represen-
tation, more compact than the one known from the literature [VS75], is obtained.
Solving the Schwinger-Dyson equation for the electron, in which the determined
mass operator is inserted, the electron mass shift in an arbitrary plane wave is ob-
tained. The expression for the electron mass shift generalizes the already known
expressions from the literature [VS71; Rit70] for the constant crossed field case.
The spin-dependent part of the electron mass shift is related to the anomalous
magnetic moment of the electron in the plane wave. In the locally constant field
approximation, the anomalous magnetic moment of the electron is extracted and
reduces to Schwinger’s famous result when the background is removed. However,
due to the non-local dependence of the electron mass shift on the field, it is not
generally possible to define a local expression of the electron anomalous magnetic
moment in an arbitrary plane.
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Units, notation and considerations

Units

Except in the introduction, Heaviside and natural units are used, ¢ = h=c=1.

Spacetime coordinates

The thesis assumes we are working on a Minkowski flat spacetime, where

« Einstein summation convention is always implicitly assumed for all types of
repeated indices which appear only on one side of an equation;
« in Minkowski (canonical) coordinates

— the four-dimensional space-time indices are denoted by lowercase Greek
letters (u, v, ---), taking the values 0,1, 2,3 and three-dimensional space
indices by lowercase Latin letters (i, 7, - - - ), taking the values 1,2,3

— the three-dimensional vectors are denoted by bold symbols, i.e.

a = (a',a? a*)

— the metric 1, = 9" = diag(+, —, —, —) is used to raise and lower indices
— the indefinite bilinear form evaluated on 4-vectors can be expressed as

(wy) = 2oy =nuay” = (@°)") — (@ y) = 2" = (") —(z7)

— the Levi-Civita symbol e#“?? is conveniently chosen with €"!?3 = 1

— the Feynman slashed notation is used in the introduction and the first
chapter, with the hat denoting operators. Starting from Chapter 3, the
hat is used to denote

A= A,

while operators no longer have a hat (the operator character is stated
explicitly in the text instead).
e in light-cone coordinates (LCC)
— the four-dimensional space-time indices are denoted by (¢ = +, —, 1= {1,2})

— the vector components are denoted by xflcc ={zt 27, zt = (211 21?)}
with the subscript LCC ommited when clear



— the basis of the four-dimensional four-vector space is taken as
{nu - (17n)77~7’u = (17 _n)/27 a}f = (07 a’%)v CLg = (O’ a’é_)} )
n2 = ]_, a;,a; = 6ij7 n=a; X as.

2

where n? = n? = 0 are timelike vectors, chosen such that (nn) = 1.

— the basis vectors a; are transversal (na;) = —n - a; = 0 and similarly,
(na;) =0 (j =1,2), to the spatial propagation direction n

— the transversal basis vectors af and a} are orthonormal with respect to
the 3-vector inner product

(ajay) = —a;-ay = =6 (j,7'=1,2) (0.1)

— the completeness relation for the basis is

n = ntn’ + ntn” — afa] — abal (0.2)
— the vector components are related to Minkowski vector components by
Lo T 0_
§(x +2l), 2t = (nz) = (2" — 2V,
' Lo = wL| = —((zay),(zaz)) = (- a1, - as)

canonical

where the transversal vectors are denoted by z+ = (x!,2?) and where

zl = m - x is the 3-vector projection along the propagation direction,
with n = k/w the unit 3-vector in the direction of propagation, and
1t = xai + xay with 2+ - n = 0 the perpendicular projection, where

ai and aj are unit vectors that span the perpendicular plane. It follows
that k- = 0 and k! = wn.

— the metric is off-diagonal in the (4, —) subspace
Ne—=N—+=1, Ny =1-—-=0
and also does not couple the (+, —) subspace to the L= (I, II) subspace
nyr=n-1=0, L1=LI

— the indefinite bilinear product can be expressed as

a-b=ab +a b —atbt = *=2ata — (aL)2

— the Levi-Civita symbol e 712 = —1



Dirac spinor conventions

The Dirac conjugated spinor is denoted by 1 = 40.

The Dirac conjugated matrix is denoted by I' = ~°T'T~0.

Dirac spinor indices are denoted by lowercase Latin letters (a,b,---), taking the
values 1,2,3,4 and are suppressed (uy v u, = (uy )iy v (up)e)-

The Lorentz transformations generator in the spinor representation is o** = [y*, "] /2

Field conventions

» The four-vector potential of the plane wave is A*(¢).

« The field strength tensor for a plane wave is F'*(¢) = 0" A" (¢p) — 0" A*(¢) =
n* A" (¢)—n¥ A*(¢), while the dual field strength tensor is F*(¢) = E“;Ap Fy, ().

o The charged multiplied quantities A*(¢) = eA*(¢), F*(¢) = eF*(¢) and
Fr(¢) = eF*(¢) come in handy.

o The Lorentz gauge, fully fixed by A° = 0 is employed throughout the thesis.

Momentum operators

The eigenstate basis of the position operator X* (and the momentum P* = 0"
respectively) is |z) (|p)) such that

Xtx) = a¥|z),
Pp) = p"lp),
normalized according to (z | y) = 6@ (z —y) [(p | ¢) = (2m)*0W(p — ¢)].

(0.3)

In light cone-coordinates, the momentum operators read
PJ_ = —i(a1 : V,ag : V),
P, = —i&r = —Z(TLP) = —i(at + 6$\|), P¢ = —i6¢ = —(TNLP) = — (Z(?t — i8x|\) /2,

and satisfy Py|p) = —p4|p), P-lp) = —p—|p) and P |p) = p, |p).

The following commutation relations, consistent with [X*#, P¥] = —in*’ hold
(@, Py] =[T,P;| =1, [X1j, PLgl =10 (7,k=1,2), (0.4)

where T' is the operator corresponding to the light-cone time 7.

Integral measures

When the integral is in configuration space or in momentum space, the following
shorthand for the integral measure is used to compactify the formulas

[= ] [= e

When the integral is over some other variable, with integration limits, it is stated
explicitly when a similar shorthand is used.

(0.5)

il



Introduction

The development of the quantum field theoretic framework, initiated by Dirac’s
1927 seminal paper “The Quantum Theory of the Emission and Absorption of Ra-
diation” and reaching a firm ground with the 1932 review article by Fermi [Fer32]
that taught generations of physicists [Sch02], has proven to be a stepping stone in
the formulation of fundamental modern-day theories.

Of particular physical importance, the Standard Model (SM) provides an incred-
ibly accurate description of the microscopic phenomena, albeit neglecting gravita-
tional effects, of justifiably less importance at energies currently accesible in colliders.
The physical consistency of the model, without which the model wouldn’t be able to
account for the particle masses, was confirmed by the discovery of the Higgs boson
at the LHC [ATL12; CMS12]. However, in what concerns its mathematical consis-
tency, the SM still lacks a solid mathematical foundation, which relies on solving
the Yang-Mills problem [JW00].

Despite the long line of success in terms of experimental agreement, there are
still issues, other than including gravity, that aren’t accounted for by the Standard
Model, like explaining neutrino mass or, equivalently, their oscillations, or finding an
explanation for the finely-tuned cancellation occurring in the so-called electroweak
hierarchy problem. All this points to the necessity of an extension or a high-energy
(UV) completion, which renders the SM a low-energy (“effective”) theory embedded
in a more complete “grand unified theory” at scales of ~ 10'6 GeV, where the strong
and electroweak force become comparable, in turn embedded into the hypothetical
“theory of everything” that should comprise a description of gravity up to the Planck
scale (~ 101 GeV).

1.1 Precision tests of the SM and QED

Quantum Electrodynamics, the unbroken part of the spontaneously broken elec-
troweak theory developed by Glashow, Salam and Weinberg in the 1970s, embedded
in the Standard Model, provides at the perturbative level predictions experimentally
confirmed within an incredibly high degree of precision.

Particularly, there is a 10 significant digits agreement between the theoretical
QED prediction and the experimentally determined value for the electromagnetic



fine structure constant

azl = 137.035999037(91) [Bou+11],

exp

1.1
ajl. = 137.035999084(51) [HFGOg]. (1.1)

The most stringent experimental tests on QED come from the measurement of the
anomalous magnetic moment of either a free [HFG08; HHG11] or a bound [Stu+11]
electron. For the free electron, there is a remarkable agreement of 12 significant
digits for the gyromagnetic factor of the electron

Jexp/2 = 1.00115965218073(28) [HFGOS],

1.2
Jtheo/2 = 1.00115965218178(77) [Aoy+12]. (1.2)

Including the hadronic and weak contributions, the value of the magnetic moment
p+ is also the most precise prediction of the SM, expressed as [Gab+19; HFGOS]

B « )\ 2 a3 a\4
—'u— = /L_+ = 1+C2 (—> +C4 (—) +Cﬁ (-) +Cg <_) +.. ‘+ahadronic +aweak7
HB KB @ Q m T
(1.3)

where the positron magnetic moment p, is the same with opposite sign as that
of the electron p_, the 1 is the leading contribution of the tree level Dirac theory
[Dir28], and the C,, terms represent the QED series expansion in powers of /7.

The 1-loop coefficient Co = 0.5 is Schwinger’s famouos leading order (LO) ra-
diative correction from 1948 [Sch48], representing the first successful application of
covariant renormalization theory.

The coefficients up to Cy have also been calculated analytically [Lap17]. The two
remaining terms apadgronic aNd Gyweax are the hadronic and weak interaction contribu-
tions, and have been estimated [Jegl9; Gab+19] to be subdominant to the QED
corrections up to 5-loops for the electron.

It is useful to define

_ ge—2

ay 5 (0=e,u,T), (1.4)

in which case, Schwinger’s QED prediction! becomes

«
4QFPO) _ @

¢ o (1.5)

Motivated by the high degree of agreement between theory and experiment in the
vacuum case, where QED carries the dominant contribution [Gab+19], the present
thesis calculates the electron mass shift and magnetic moment correction in the
strong field of a plane wave, at one-loop. But first, we need to see what considera-
tions are implied by the strong field approximation.

! calculated by Schwinger for the electron, which has the same QED value by QED lepton univer-
sality



1.2 QED in strong fields

An active area of research is the study of phenomena in the presence of strong
background fields, where perturbative techniques become intractable, as the interac-
tion with a large number of background photons needs to be considered. However,
there are profiles for the background fields, like that of a plane wave (as in this
thesis), or of a homogeneous field in space and time, or that of the Coulomb field
[BGJ75] [BG14], where the interaction with the field can be solved for exactly. This
holds when the background field is treated classically, as it is the case for quantum
fields of high numbers of particles, i.e. approaching coherent states [Gla63], that are
not significantly altered (depleted or enhanched) during an interaction. Mathemati-
cally, the vacuum expectation value (VEV) of the background photon field operator
will now be nonzero, as opposed to vacuum QED where the VEV vanishes, while
the expectation value of the background field operator between coherent states will
satisfy classical Maxwell dynamics. The remaining quantized radiation field, de-
scribing the interaction, is treated perturbatively?. This semiperturbative approach
that includes the contribution of the background field exactly is called the Furry
picture [Furb1; Moo09].

SFQED typical scales

An important scale that arises in QED in the presence of a strong field is set
by the electric and magnetic field strengths at which the QED vacuum state [Q2) is
significantly altered [Sau31; Sch51]. Since the classical picture can be applied for the
background field, this can be qualitatively described by considering an electric field
Ey applied to the virtual particles that arise for short periods 7o ~ hA/mc? ~ 1072 s
as quantum fluctuations of the vacuum. These are always present, even in the ab-
sence of the external field. However, the effect of the field is to polarize the vacuum
by separating the particle-antiparticle pairs and when it gets strong enough such
that the separation between an electron and the corresponding positron is over a
distance of a Compton wavelength Ao = he/mc? = 3.86 x 1071% m, the virtual par-
ticles are produced on-shell (in the so-called Schwinger mechanism) and the vacuum
becomes unstable. The value at which this happens is called the (Sauter-Schwinger)
critical field E.. = m2c®/hle] ~ 1.32 x 10'® V/cm and, hence, corresponds to a
field that accelerates the electron to an energy comparable to its rest energy mc?
over a distance of the (reduced) Compton wavelength Ac of the electron, the in-
herent QED length scale. One may also define the critical magnetic field strength
B, = m?c?/|elh ~ 4.41x10° T as the value at which the interaction energy of a Bohr
magneton pup = |e|h/2m with the external magnetic field By is of the order of the
electron rest energy mc?. Notice that, informally, as magnetic fields cannot do work
on the virtual particles, critical magnetic fields cannot induce spontaneous pair cre-
ation. Such critical electric field strengths can be seen ocurring naturally in electrons

2Unless we are in the strongly coupled regime of QED, where perturbation theory breaks down
[Rit85]



bound to highly charged ions [Stu+11], while critical magnetic fields are found in
magnetars [TZW15]. The associated critical field intensity I, = 2.32 x 10* W /cm?
is, however, at the present time, still far from being attained in the laboratory.

1.3 Current experimental status

With the advent of new laser technologies such as chirped pulse amplification
[SM85] and parametric chirped pulse amplification [PSY86], new experiments ded-
icated to addressing the high-intensity frontier [Di +12] pave the way to test novel
features of nonlinear QED effects in the strong-field regime, where the interaction
with the laser field needs to be treated non-perturbatively. For example, facilities
like ELI-NP [Ur+15] or Vulcan [Dan+04] undergo experiments that can deliver laser
pulses in the petawatt (PW) range, reaching intensities of 10?3 — 10?* W/cm? and
10*! W /em? respectively. While terrestrial facilities are still a long way from reach-
ing the critical intensity of I, = ceg E% ~ 2.32x 10%° W/cm? in the laboratory frame
where the vacuum itself becomes unstable with respect to electron positron pair pro-
duction, planned experiments at DESY [Abr+21] and SLAC [Meu+20] probe the
critical electric field E,, in the rest frame of the electron, where an enhanched value
of the field E* = ~F is seen, boosted by the Lorentz ~ factor with respect to the
laboratory frame.

Although most of the current SFQED experiments rely on lasers, there are also
mentionable laserless experiments, like the proposed E332 experiment at the FACET-
IT facility at SLAC [Cor+20], which employs a collimated and high-current electron
beam directed onto a series of aluminum foils, spaced 10 pum apart. The incident
electron beam undergoes a focusing effect in the near-field coherent transition radi-
ation and exits together with a generated dense y—ray pulse.

The extremely high-energy regime (y > 1) of SFQED is still entirely untested
and poorly understood theoretically.

1.4 Outline of the thesis

Chapter 2 briefly introduces the necessary notions to understand the area of
strong-field QED (and particularly the thesis) in the adopted conventions. Specifi-
cally, covariant quantization of the photon field is presented and the background field
method is introduced by defining coherent states and explaining the Furry picture.
Since light-cone coordinates make the computation of the mass operator transpar-
ent, they are also defined. Afterwards, the solution of the classical Lorentz equation
for a electron in a plane wave is presented, after which the quantum (Volkov) so-
lution is discussed. The chapter concludes with the Feynman rules for strong field
QED.

Chapter 3 provides a detailed calculation of the mass operator for an off-shell



electron in a plane wave background field, starting from the Feynman rules stated
in the previous chapter. The calculation is general as it does not assume either state
(incoming or outgoing) to be on-shell. However, in order to extract the mass shift
of the electron in the plane-wave background, the external electron states are put
on-shell.

In Chapter 4, the mass shift in a linearly-polarized plane-wave background, with
an electron having the spin quantization axis align with the magnetic field of the
plane wave in its rest frame, is calculated, after which, the anomalous magnetic
moment correction for the electron is extracted, in the locally constant field approx-
imation (LCFA).

In Chapter 5 the concluding remarks are outlined.



Strong field QED (SFQED)

This chapter briefly introduces the notation and the necessary notions in under-
standing the area of strong field QED, by reviewing the basic concepts of classi-
cal electrodynamics [Lan75; Jac98] and quantum electrodynamics [BPL12; Cla06;
Ryd08], discussed in most textbooks.

The limits of validity of the strong field approximation, as mentioned in the in-
troduction, are explained here by introducing coherent states for the background
photon field, such that its expectation value over those states can be treated clas-
sically. The field on top of the background is quantized and treated perturbatively.
Afterwards, Dirac equation in a classical plane-wave field is solved exactly, leading
to the so-called Volkov solutions [BPL12]. Light-cone coordinates are introduced,
as they make the calculations simpler and transparent, which can be seen from the
fact that the electromagnetic 4-potential depends nontrivially only on the phase ¢
[BPL12; Bral9], the light cone time.

2.1 Quantization of the electromagnetic field
The free electromagnetic field is described by [Jac98; Lan75]
1 w
»Cem = _@fw/? ) (21)

where F,, = 0, A, — 0, A, is the field strength tensor and e is the electron charge.
This leads to the equation of motion [Jac98§]

OA* — 09, A" = 0. (2.2)
In the Lorentz gauge 9, A" = 0', such that the equation of motion

OA" =0 (2.3)

I Note that the Lorentz condition doesn’t completely fix the gauge but still allows for a residual
(longitudinal /scalar) gauge freedom.



The canonical momentum 7° from

= aﬁ.em = _%%]_—pg = —%]—””” 8 (0,A,) = —F% = 0
0A, 2e* 0A, e 0A,
—_———

=€5p07lg (2 4)

_ 07 wo= Oa
Tl —A A =F o= i=1,2,3,

shows that A is a non-propagating mode [Mic19]. Therefore, the canonical quanti-
zation procedure given by

[Au(t, ), (1, :1:')} = inwd(x — '), (2.5)

cannot be imposed [Cla06] (the hats are used here to denote operators and not the
Feynman slashed notation), which can be easily seen from the 00-component.

One way to solve this problem is to add a gauge fixing term as a Lagrange mul-
tiplier and obtain a modified gauge-fixed Lagrangian density [Ryd0§|

1 y 19
LR ==z FwF" = 55 (0", (2.6)

under the Lorentz gauge-fixing Lagrange constraint d, A" = 0 and with the gauge-
fixing parameter £2.

eZa,céiZ
oM gp gAY VAR gl P
o) oA 4+ 0" A" — 0, A7,
2L

0A,

(2.7)
= 0.

From the Euler-Lagrange equations, the following equations of motion follow
OA" — (1 —¢£)0*9,A” = 0. (2.8)

For example, in the Feynman gauge (£ = 1) we get the canonical momenta®

oLre=n
= aj; = —0°A" + 9" A° — 109, AN
SO (2.9)
_f A A 09 A = —9, A, =0,
AT, p=i=1,2,3

Although this might seem the same as what we had before, with 7° = 0, we know
that the gauge fixing condition 9yA* = 0 holds at the classical level and need not

2The choice £ = 1 is called the Feynman gauge.
3 Hats denoting operators are not written when the equations hold at the classical level.



hold at the quantum level as well. In fact, it cannot hold at the quantum level, as
an operator condition, i.e. 9,A* = 0, since

[fl“(a:),fl” (x')} — D" (z —2') = [9,4%(x), A ()] = i0,D" (z — 2'), (2.10)

where D" (z — z') is the photon propagator. Notice that the RHS of 2.10 is al-
ways different from 0. Furthermore, the equal-time commutation relation (ECTR),
evaluated at 00

[A“(t,:c),ﬁ”(t,w’)] = it (z—a) = Ao(t,w),fro(t,w’)] — i (z—a'), (2.11)

cannot be imposed either, again, because if #° = —8“121“ = 0, the LHS is zero
whereas the RHS is non-zero. Hence, at the quantum (operator) level

A s A

S 2.12
70— 70 = —0,A* # 0. (2.12)

One might still try to get around this by integrating by parts .cé’;?” and dropping

the boundary term to obtain the Fermi Lagrangian

: 1
Fermi __ v
Eem - _@ (a“A ) (a}LAl/) ) (213)
in which case 7 = —AF(z), such that in the 4-divergence of the commutation
relation, i.e.
[@fl“(t, ), A" (¢, m')} n [fw(t, ), A" (t, :13’)] — 5 (x— ), (2.14)

the first term again clearly vanishes, while the second term, by using the equations
of motions, is equal to [/l“(t, x), \viEy (t, ' )], which vanishes.

However, we can relax the gauge-fixing condition [Gup50; Ble50] to hold only on
the physical states

(964" ) [nye) = 12) (215)

since the expectation values between physical states lead to measurable quantities,
and not the operators themselves. The Lorentz condition imposed on the states,
together with the equal-time commutation relations (ECTR) [Ryd0§]

[A“(t, x), 7 (t, } =i & (x — );

0: (2.16)

)
[fl“(t, x), A" (t, :ﬂ)}

[ﬁ“(t, .’13), ﬁy(tv wl)} = 07



are called Gupta-Bleuer covariant quantization. The mode expansion is similar to
that of four real Klein-Gordon scalar fields [Meul5|

. . . dq e :
Ara) = A+ Aw), Al = Y [ S g ), (27)
r=0,1,2,3 (27r)3 2wq

where A" (z) = A (z), A" (z) are the negative (positive) frequency modes, w, =
v/ @* is the energy of mode q and €}, are the polarization vector [Sch08]:

e, € transversal polarization ,

¢4 longitudinal polarization ,
€, scalar or timelike polarization .

For each mode q they satisfy the orthogonality and completeness relations [Sch08;
Meul5]

e (q)es(q) = €,(q)ek(q) = —(0ps,  7,5=0,1,2,3
> Gela)er(a) = =, (2.18)

where (. = —n™" = (—=1,+1,+1,+1).
It is sometimes useful to align the polarization vectors [Sch08] as

b(q) = n* = (1,0,0,0

eb(q) =n" = ( ) (2.19)

6'lr’l(q) = (0767‘((1)) r= 172737
where €,-12(q) are orthonormal vectors, also orthogonal to g, while

es(q) = q/lql, (2.20)
such that

cCr - O, = 1, 2
e ) (2.21)
€ (q)es(q) = 0rs, 7,5=1,2,3.

Alternatively, from the mode expansion we see that

0 AL (@) [pnys) = 19) = L(@) [pys) = (a3(a) — d@0(@)) [pnys) = 19) , (2.22)

suffices for 2.15 to be valid. This also shows that the longitudinal and timelike
components come "in pairs" and consequently, they can always be gauge-shifted away
to remain only with purely transversal states (e.g. in 2.17, we can take r = 1,2).
One-photon states are created using the operator

lgr) = al(q) 1), (2.23)



where the photon creation and annihilation operators satisfy the ECTR?

lar(q), al (@')] = ¢.6,5(27)*6P(q — q),

A (2.24)
la-(a), as (¢)] = [al(q),al ()] = 0.
We see that the vacuum state |(2) is physical, i.e.
L(q) |€) = (as(q) — ao(q)) [2) = [2) , (2.25)
whereas from the relation
(grlar) = (Q a(g)al(q) 1) = ¢ (QQ) = ¢, (2.26)
we see that r = 0 states have a negative value (§, = —1) of the nondgenerate

sesquilinear form (.|.), but they do not belong however to the physical Hilbert space
of states

L(q)|q0) = L(@)al(a) |2) = (ao(q) — as(q)) aj(q) [2) = —(2m)*6(0) |©2) # |2) .

(2.27)
Although the two transversal polarizations are physical,
L(q)lgr) = Lg)al(q) |2) = @),  r=1.2, (2.28)
the combination |g0 — ¢2) = (dg(q) — d;(q)> |©2) also satisfies
L(q)|q0 — q2) = |2), (2.29)
and furthermore, it has zero norm
(g0 — q2|q0 — g2) = 0. (2.30)

This might seem as a third polarization, but it is actually the residual gauge
freedom of the Lorentz gauge, and hence, unphysical. Therefore the truly physical
space state mods out the 0-norm states, i.e. is the quotient space Hpnys/Ho [Sch19].

In summary, we have quantized the electromagnetic field A* — A" by contructing
the physical Hilbert space for a photon, i.e. for the 1-particle states, which can be
generalized to multiparticle states to obtain the photon Fock space.

2.2 Background field method and coherent states

Following [Gla63; MKP13; Meul5; Seil2], the photon coherent state is defined as

|A) = DIQ), (2.31)

4 compatible with the field ECTR 2.16

coherent
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where Q) is the photon Fock space vacuum ((Q|Q2) = 1 and (A|A) = 1) and D is
the unitary displacement operator, defined by [Seil2]

= exp

3 / 10l (q) — a2(@)ar(a)) | (2.32)

r=0,1,2,3

The state |A) produced by the displacement operator is the eigenstate of the
quantum operator [Seil2], i.e

Al (z) |A) = Al (2)|A), (2.33)
such that the expectation value
A = (Al A" 1A), (2.34)

satisfies the classical equations of motion, which justifies calling coherent states
“classical-like” states.

Equivalently, a single-mode coherent state |A; g, ) with momentum q and polar-
ization r is defined as the eigenstate of the annihilation operator a,.(q) [Seil2], i.e

ar(q)|4; qr) = ax(q) |A; qr) (2.35)

with a,(q) and al(q) satisfying the usual commutation relations 2.24. Under the
Lorentz condition (9,.A* = 0), this leads to a similar mode decomposition (a solution
to OA* =0)

A(z) = A () + AP (@), -y [ e, 230)

r=0,1,2,3

where a,(q) can be also thought of as Fourier expansion coefficients. Similar to the
quantum case, the longitudinal and scalar modes are purely gauge, and in 2.36 we
can also restrict the sum over just the transversal components r = 1,2 amounting
to a complete gauge fixing, but this would break Lorentz invariance [Sch19]. The
remaining quantized radiation .Aradlamon describes the quantum fluctuations around
the classical value from 2.34 [Meul5].

We can see that coherent states are, loosely speaking, highly-occupied states
[Kail8]. From 2.31, by representing the single-mode coherent state |A; g, r) in 2.35
in terms of multiparticle states |n,.q)

Aiq,r) = e Z 9). (2.37)

and calculate the probability of a coherent state to be found in a particular n-particle
number Fock-state

2n
(n|A; q,r)° = o=@ pelar (@™ _ e_<nr(q)>_<nr(q)>’ (2.38)
n! n!
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we discover that it follows a Poisson distribution with expected value

(A;q,7|7,(q) |Aiq, 1) = |ar(@)] = (n.(q)), (2.39)
where 7,.(q) = al(q)a,(q) is the single-mode number operator, and dispersion
|ar(q)| = /(n:(q)), (2.40)

such that it provides an intuitive understanding of the high-occupation number limit,
where states look approximately coherent.

Using the shift properties of the displacement operator, it can be shown that
[MKP13; Meulb]

D7'a,(q)D = a,(q) + a,(q)
D~'al(q)D = af(q) + a:(q)

Under the assumption that the plane-wave background looks classical®, then it can
be described by a coherent state |A). When incoming |i; A) and outgoing plane waves
|f; A) are not significantly altered in the process of interaction with the quantum
system (such that the same coherent state |A) is valid for both), the matrix elements
describing the process have the form [Seil2]

(f; ALS[A][i; A) = (A STA] [4) = (Q] DT'S[AID Q) = (Qf SIA+A][9), (2.42)

} — DIAMD = A* + A*. (2.41)

WhgreAS' [A] is the S-matrix operator. This shows that the vacuum expectation value
of S[A + AJ gives the same result as computing between the same coherent states
the S-matrix evaluated on the photon field S[A].
Therefore, the strong field approximation assumes the conditions are satisfied such
that one can work with vacuum expectation values using the shifted field
Aﬁ’litial — Aghifted = Afadiative + Aﬁackground’ (243)
instead of the initial photon field At sandwiched between coherent states |A).
Unlike QED where (Q A”... Q) = 0, we now have
(Qf Afpigiea €2) = A

(O A 00 1) = 0, (2.40)

background’ radiative

while the radiative part A" represents quantum fluctuations around this VEV.

radiation

2.3 Classical plane-wave background fields

A plane wave background field, described by the charge-multiplied electromagnetic
4-potential A* = eA* (where A* is the 4-vector potential), can only depend on the
wave phase ¢ = (nz) [BPL12], i.e. A* = A#(¢), where n? = 0 is the timelike vector
that determines the wave direction of propagation n* = (1,n).

5in the sense mentioned in 2.34
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2.3.1 Light-cone coordinates

Considering the background plane-wave phase ¢ = (nx) dependence, the timelike
vector n* is a natural choice as a basis vector. However, in order to uniquely
describe any 4-vector in this four-dimensional vector space, three more basis vectors
are required, n* and af (i = 1,2), where n* is another timelike vector (n? = 0)
chosen such that n -7 = 1 and o orthogonal to n (n-a; = 0) and n (7 - a; = 0)
and orthonormal to one another (a;-a; = —¢;;, for i, j = 1,2). Hence, the following
conditions define the light-cone basis {n* n*, a4, ab} of the Minkowski vector space
[IMKP13; Meul5; Bral9]

n?* =n? = (na;) = (ha;) =0, (nit) =1, (wa;)= 0y, i,j=12 (2.45)

with an orientation given by Q = €, ,,n n"afaj = 1, where Q* = 1 [MKP13;
Meul5]. Since for an on-shell photon n? = 0 and also n? = 0, these coordinates
are justifiably called light-cone coordinates. In what follows, the following choice is
adopted

{n"=(1n),0" =(1,-n)/2,a) = (0,a7),d5 = (0,a3)},

; (2.46)
n = 1, a;a; = 51']" n=a; X as.

In this light-cone basis 2.45, under the choice 2.46, the light-cone vector components
oo ={zt, 27,2t} (W =+, —, L= {1,2}) are related to Minkowski (canonical)

vector components ot . = {20 2! 2? 23}, (u=0,1,2,3) by
Lo
:Eizﬁx:—x—i—x”, :L’+: nx:xo_xH’
(i) = 5 ( ) (nx) = ( ) (2.47)
wL |LCC - wL‘canonical - ((xal) ’ (l‘(lg)) - (Q’J 1@, T a'2) !
where the transversal vectors are denoted by z* = (2!, 2?) and where 2l = n -z
is the 3-vector projection along the propagation direction, with n = k/w the unit
3-vector in the direction of propagation, and xt = ma; + xzay with 2t - n =
0 the perpendicular projection, where a; and a; are unit vectors that span the
perpendicular plane. It follows that kX = 0 and k! = wn. The relation between
vector and covector components takes the form
T =1, 2T =x,, x,=-a, (2.48)
which can be easily seen by computing the metric in the new coordinates
01 0 O
oz®  02° 10 0 O
LCC n
Nw = o Naf = = co (2.49)
00 0 -1

which shows that the metric is off-diagonal in the (4, —) subspace

Np—=n-—4=1, Ny =n-—=0,
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and also does not couple the (4, —) subspace to the L= (1,2) subspace
Nyr=n-1=0, L1=12
The light-cone metric has the following decomposition [MKP13; Meul5|
n" =ntn’ + atn” — dfa] — abas, (2.50)
The indefinite bilinear product can be expressed as

zoy=aty +ayt —xtyt = 2?=22"2 — (ml)2 :

2.3.2 Plane-wave solutions of Maxwell’s equations

For a plane-wave, the field strength tensor F* = FM(¢) = eF*(¢) [BPL12]
expressed uniquely via the 4-potential A*(¢) by

FI(8) = 0" A (9) — 0 AM(9) = n A(6) — n A(9), (2:51)
satisfies the homogeneous Maxwell’s equations [Lan75]
OuF* (¢) = n, F* () =0, 0" F,, () = n'F,(¢) = 0. (2.52)

Because F*(¢) is antisymmetric, it can have at most 6 linearly independent com-
ponents. Neglecting any constant (¢-independent) parts, from the first of Maxwell’s
equations it follows that all the coefficients proportional to n* must vanish (since
n-n = 1), whereas the second Maxwell’s equations it follows that also the coefficient
for the combination afa¥ — abay must vanish (as n'€,,,,(afad —aba]) # 0) [Bral9).
The general solution has then two independent coefficients [MKP13; Meul5; Bral9]

Frg) = 7 fu(o) (2:53)
i=1,2
where [MKP13; Meul5]
fZHV = n“af - nyaf7 Z'L;fjpy = _5ijazznunya n,U«fiuV =0, (254)

and al', i = 1,2 define the field amplitudes in the two polarizarion directions (n-a; =
0, a1-ay = 0) [Bral9]. The functions 1;(¢) describe just the shape of the field and not
the amplitude (|¢;(¢)], |¥i(¢)| ~ 1), a shape of finite extent, i.e. vanishing towards
infinity (¢;(£o0) = ¢i(£oo) = 0) [Meulb]. The Lorentz gauge fixing condition is

D-Alp)=0 = n-A(¢)=0o0r A (¢) =0, (2.55)

and choosing the wave-packets such that the fields vanish at oo, there can be no
constant component, i.e.

n-A(¢) =0or A_(¢) = 0. (2.56)
The solution of 2.51 in the Lorentz-gauge 2.55 for the four-potential is [Meul5]
A(g) = ) alitu(9). (2.57)
i=1,2
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2.3.3 Motion of an electron in a plane-wave background

The Lorentz invariant action for a free charged particle in an electromagnetic field
is [Lan75]

b
S:/ (—mds — eA - dx)
¢
2 m odxo dx;
= —— —eA'— —eA’ dt
[ (5 ) 25

2 dx,, dat daxt
= —m\| ———— —eA,— | dr.
/T1 ( " ar ar T dr) !

That is, using u* = da*/dr, the Lagrangian can be written in a manifestly co-
variant form, when integrated over the proper time to obtain the action

T2
Slx(r)] = / Leovariant (T, w, T)dT,  Leovariant (T, u, 7) = —my/u - u—eA-u. (2.59)
T1
This approach makes transparent obtaining the covariant Lorentz force equation.
By using the Euler-Lagrange equations we get for the equations of motion [Jac98]

oL +eA +eA d

=_— =mu, +eA, = e

T Qum a w= Pu e = e (mu, + eA,) = eu*d, Ay (2.60)
0, L = q0, (u*A)) = eu?9, A, T

Noticing that % = uyA*, we get the covariant Lorentz force equation [Lan75; Di
+12] (for a plane-wave background F* = FH(¢))
dp*

= =P (@u,. (2.61)

Alternatively, we can work noncovariantly with the ordinary Lagrangian, inte-
grated over the time coordinate [Jac98; Lan75]

L
L:—@—eAO—l—eAﬂv — P:g—:p—l—eA
76L . Y — P'=plreAr. (2.62)
H=v-—— —L=—+eA°
ov v

pr=m? — (H—cA') = m2+(P —cA)Y — H=\/m?+ (P —cA)*+cA”
(2.63)

The Hamilton-Jacobi equation (HJE) can be easily obtained from the on-shell
relation, by using the canonical 4-momentum obtained either from the relativistic
or from the non-relativistic Lagrangian, and is [Lan75]

P, =-0,5=p, +AM}

2 My =m?|. 2.64
KR (0uS + A) (9"S + AY) = m (2.64)
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For solving the HJE for a plane wave background, the ansatz is taken [BPL12]

S =—po-x+ F(p) (2.65)
where pj, is a constant 4-vector satisfying p2 = m? and S = —py - z is the solution
for the HJE for a free particle with a momentum pjj = —3,,5, i.e. (@LS)2 =m?

Plugging in the ansatz
[—po+ 1 F'(¢) + A(@)] = m* —> A(¢)—2(po-n) F'(¢) —2(po-A) = 0. (2.66)

Using (po)- = (pon) = po® — po!l, we have

F(6) = 3o A(0) = (o - A(9)). (2.67)
Integrating 2.67, we get
) ¢
F(¢) = ﬁ / () - ﬁ / 0+ A i, (2.68)

such that the action is [Lan75]

1
(Po)-

¢ ¢
szﬂwx+Z%:/;A%MMh- /wmyA¢DMV (2.69)

Having computed the action S under the Lorentz condition, we can retrieve

pu(¢) = —(()#S(gb) - Au(Qb)
— (ol = 4u(0) +

(po- A())  A*(9) > (2.70)
(po)— 2(290)— '

Writing the same relation for a reference phase ¢y and subtracting, we get the
value of the momentum at phase ¢ in terms of the value at reference phase ¢,

[po - (A(¢) — A(¢0))]  (A*(4) — A*(¢0))
(Po)— 2(po) - '

Pu(@) = pu(¢0) = (Au() — Auleo))+ny ( -
(2.71)

Assuming that the wave packets are such that A*(¢y) = 0 (for example for ¢y =
—o0) and also denoting p,,(¢o) =: p,, the final solution becomes [Lan75], by denoting

™(¢) = p'(9)

(2.72)

R e e

D 2p_

which is known as the dressed momentum. Notice that in deriving the HJE equation,

we started from the on-shell condition 7(¢) - 7(¢) = m?.
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Choosing the direction of propagation along m, with n® = 1, and completely
fixing the Lorentz gauge (A_(¢) = 0) by choosmg At(p) = (O, (¢)), with A(¢)
transversal (A(¢) - n = 0), the dressed momentum p"(¢) = (e(¢),p(¢)) at the
arbitrary phase ¢ from 2.72, given the initial condition p* (¢9) = ph = (20, Dp)s
becomes [Lan75] [Di +12]

=

P (9) = pi — e (A*(6) - A% (60))

0)=p = 5 (A50) - AT (00) + 50— (A0 - A), (273)
(6) = <ld0) — [o-po* (A19) — A (90) + 5 (4%(8) — A%(00)

Using that p_ is conserved, as it is the conjugate to the cyclic variable t+x/l, we have that
pll(¢) = (#) —p—. Inserting this in the on-shell condition e(¢)+pl(¢) = [p? (#) +m?] /p—
we have that

P’ (¢) +m’]

o)==l

2.74
5 T (2.74)

which shows that e(¢) > m (or e(¢) < m) for p— > 0 (p— < 0, respectively), and hence,
classicaly there are no bound states [Di +12].

2.3.4 SFQED parameters

In classical electrodynamics, Maxwell’s equations are linear and do not allow for self
interactions [Lan75]. However, in QED photons do manifest self-interactions at loop level
such that when the vacuum is subjected to an external field, it becomes birefringent
[HE36].

High intensities and energies require taking these nonlinear effects into account. In order
to do this, Lorentz and gauge invariant parameters that characterize the non-linearities in
the strong-field regime need to be constructed.

Classical non-linearity parameter

At the classical level, the non-linear dynamics of an electron in the field A#(¢) is char-
acterized by the classical non-linearity parameter £, [Di +12]

|e|\/ i E; AE;
6' _ [eAB: (2.75)

2mm

E=1/E8+€, &=¢&/¢, &=

where & (and E;) represents the classical non-linearity parameter (electric field, respec-
tively) for polarization af , m is the mass of the charged particle being accelerated, A (and
w) is the wavelength (angular frequency, respectively) of the plane-wave. It can be under-
stood as the work performed by the laser field on the electron in one laser wavelength in
units of the electron rest mass, which shows that & > 1 determines the relativistic regime
[Di +12]. Notice however that although work is performed on the charge, according to the
Lawson-Woodward theorem [ESLO09] a plane wave field can’t provide a net acceleration to

an ultrarelativistic charged particle in vacuum.
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The classical non-linearity parameter can also be interpreted quantum mechanically as
the number of photons absorbed over a Compton wavelength A\c = 1/m in the interaction
with the quantum system, as it can be seen from

¢ = lereE (2.76)

w

Alternatively, this shows that for £ > 1 the interaction involves multiple photons and
enters the nonlinear regime. Therefore, this regime describes multiphoton effects.

In the weakly relativistic regime £ < 1, the probability for an electron to interact with n
laser photons scales as £2", meaning that the leading-order corrections are supressed and
the interaction with the laser field can be treated perturbatively [Bral9].

Quantum non-linearity parameter

One can characterize the quantum effects like photon recoil or pair production by defin-
ing the quantum non-linearity parameter [Rit72; Di +12; Meul5]

X=\xXi+x3 Xi=xi/x, xi= g = né, 1= T(nQ) (2.77)

Since &; and fz-2 are gauge and Lorentz invariant, y; is as well.

Field strength invariants

Other parameters that characterize the strength of the electromagnetic field can be
introduced, like the scalar and pseudoscalar field strength invariants [Seil2; Di +12],
defined for an electromagnetic field strength F*(x) = (E(z), B(z)) by

F (@) = T Fu(@) (@) = 5 (BA() — B(2),
! (2.78)
G() = {Fp (@) P (2) = ~B(2)B(x),

where F;,(2) = €uvapl’ @B (x)/2 is the dual field strength tensor. However, for the plane-
wave case or the crossed field case, both vanish identically, i.e. % = ¢ = 0, which
means that the vacuum remains stable in the presence of a plane-wave background [Sch51;
Meul5).

2.4 Quantization in the presence of a background
plane-wave

Starting from the QED Lagrangian density [Mic19; Sch19]

. 1 . _ .
Lqep = Y(id —m)p — @(J": + Finitial — VY AL (2.79)
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where F* = OF A” — 0¥ A* the field strength tensor and 1 is the electron spinor®, we can
obtain the (SFQED) Lagrangian density in an external plane-wave field by the shift 2.43
of the photon field, i.e. AY = Ashifted = A* + A* (not writing the subscripts any more

initia
not to clutter the equations).
Letting j# be an external current coupling to the full field, the SFQED Lagrangian
becomes

1

w2 (Fr7) 4 (At 4,), 80)

LsrqED = [W“ (i@u — A, - Au) - m} -

The background field and four-current are given functions fulfilling Maxwells equations
Oy FH = ej¥ and this is why we can drop the pure background terms to get

LsrQEp = ¢ [’Y” (z'a# — A, - Au) - m] ) — " A, — 4%2;%?“” - ;?ﬁ,wfﬂ”. (2.81)
By integrating by parts the term
P T = (04— A0 7,
= O (A Fy) = A (0" Fru) = 0 (A F o) + A (0 F) (2.82)
=0 (A F) = 0 (44 F) - 26 A7),

we obtain the Lagrangian density in strong-field QED as

1 . . _ .
Lsrqep = Y(iy-0 —m)p — @]:W}"W — Yyt (Au + Au) = LqED + Lint,p (2.83)

The effect of the external field is to give rise to an additional vertex corresponding to
the interaction term [Meulb; Seil2]

Lint.p = =y P A, (2.84)

which, in the case where we can solve for the interaction of the electron with the plane-wave
field exactly”, can be included as

Lvolkoy = V(Y (10, — Au) — m)p = LsrqeD = Lvolkov + LQED int + Lem  (2.85)

where
LQED,int = — Py AY,
P (2.86)
Eem = _4762‘/—"#1/]: )

By using the Volkov Lagrangian to find the equations of motion and solve for the spinor
in the presence of the background field, the effect of the plane-wave background is then

6 Although % are still operator-valued distributions, the hat over 1 is not written for notational
convenience, not to interfere with the bar.
" For more such cases see [BGJ75; BG14].
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already included nonperturbatively [Seil2]. Therefore, if we want to add a gauge fixing
term ﬁgs, we can do so only for the radiative part, i.e.

_ &
)

Then, when computing matrix elements, we can use the following S-matrix operator
[VN 74; Mit75; Seil2] in the Furry picture [Fur51]

S[A] = T exp {—i/d4x7-[int(x)} =T exp {—i/d4x : J(V) ()" A () (z) :} ,
(2.88)

where 1,2(‘/) is the Volkov solution of the Dirac equation in the plane wave background
field, while T is the time ordering operator and : denotes normal ordering.

The Volkov spinor similarly admits a mode decomposition into positive and negative
energy parts [MKP13; Seil2]

PV () =Y ¢l (@)en + {7 dl, (2.89)

2.4.1 Volkov solution

The Volkov Lagrangian density leads to the Dirac equation in the presence of an external
background field [BPL12]

(i — Al¢) —m)y{) (x) =0, (2.90)

where a denotes the set of quantum numbers identifying the state of the particle, and
¢ = (nx) is the phase of the plane-wave background.

The solution was first derived by [Vol35] and was introduced in the context of SFQED
in the review by [Mit75]. A clear exposition of the derivation can be found in [BPL12].
First, by applying the (i@ — A(¢) + m) to 2.90, we get [BPL12]

[—02 —2(A-9) + A2 —m? — Wl’} balz) = 0. (2.91)
We seek a solution [BPL12] to 2.91 of the form

"Z}p,a(m) = e_ime(QZ))a (2'92)

for on-shell electron of momentum p (p? = m?) and spin o”.

Inserting the ansatz 2.92 and using
MF(p) =nMF'(¢), O°F(¢) =n’F"(¢) =0, (2.93)
we get the equation for F'(¢)

2%i(np)F' + [—2(1) A+ A il F =0, (2.94)

8¢ here doesn’t represent the classical non-linearity parameter, but the gauge-fixing parameter.
9 Notice that if p? # 0 initially, we can add dp, i.e. p+ dp = p/, such that (p')? = m? and absorb
the remaining phase exp(idpz) into F(¢). Then, the form 2.92 continues to be valid.
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which is solved by [BPL12]
F(¢) :exp{—i/0¢ [(p'A> _ A ]d(;S—F%'A}ug(p), (2.95)

(np)  2(np) 2(np)
where u,(p) (and v,(p)) are the free momentum space Dirac spinor solutions, i.e.
(p —m)ugs(p) =0, (p+m)vs(p) =0, (2.96)

satisfying the normalization conditions (for p* = (ep,p)) [Sch19; Mic19]

ao(p)ucr’ (p) = 2m50’a/7 'L_)cr(p)va/ (p) = _2m50'0'/7 (2 97)
uj,(p)uo/ (p) = 2eplsor, fui.(p)vg/ (p) = 2epdoo-

Taylor expanding 2.95 and noticing that the terms in (#.A)? vanish, we get for the
positive energy Volkov states (for the particles)

Us(p,z) = V) (p,2) = Ep, 2)us(p), (2.98)

where E(p, x) are the Ritus matrices, and E,(z) = 'yOE;,(x)yo the Dirac-conjugate matrix

E(p,z) = [1 + MW] @) B(p,x) = [1 + A(d))ﬂ e @) (2.99)

2(np) 2(np)
and the phase (which is also the classical phase from 2.69 [Lan75]) is
¢ A(g) A% ()
Sx:—x—/ d’[p - ] 2.100

which shows that, the Volkov states are in a sense semi-classical.
Noticing that in the limit of a vanishing external field at ¢ = Fo0, i.e. A, (do00) =0,
the Ritus matrices E(p,x) — e~ P such that

U (p, ) = o (p,x) = e P uy(p), (2.101)

the free spinor solutions are recovered [Meul5].
The negative energy solutions (corresponding to the antiparticles), are obtained from
the replacements p — —p and ¢ — —o [Di +12; BPL12]. Inserting v,(p) = u_q(—p)

Vo (p,a) = U (=p,2) = B(—p, 2)vs (p). (2.102)

By imposing the canonical fermionic anticommutation relations [Sch19; Mic19], we get
the quantized Volkov solution (as in 2.88)

pV)(z) = 7d3p ¢ x I x
HV( )—U:;_/(%)g\/%[p,o%(p, )+d), ,Va(p,2)| . (2.103)

The Volkov state from 2.98 is an eigenfunction of the momentum operators!? [BPL12;
Pial§]

P, =—i(a;-V,a3 V), P, = —i0; = —i(nP) = —i(d; + 0,), (y11)? (2.104)

10Check Section 2.3.1 for a definition of light-cone coordinates.
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with eigenvalues p,,—p_ = —(pg — p3) and p? (not necessarily on-shell), which comes
from the same property shared by the Ritus matrices [Rit72]. Since the operators in 2.104
commute with the Volkov Hamiltonian (the Legendre transform of the Volkov Lagrangian),
the corresponding eigenvalues are conserved [BPL12].

It is easy to check that the Ritus matrices satisfy

E(p,z)E(p,x) = E(p,z)E(p,z) = 1 (2.105)

and that they convert momentum operators into momentum variables [Rit72; Meulb;
Pial8] (even when analytically continued off-shell p? # m?)!L,

id. — A(¢)] E(p,z) = E(p,x)p, —i0LE(p,x)vu — E(p,2)A(¢) = pE(p,x), (2.106)

where the derivative acts only on the Ritus matrix and its Dirac-conjugate.
The Ritus matrices also form a complete set [Pial8; Meulb5]

4
/ (gﬂ];4E(p,m)E(p, 1) = 5 (x — a:’) ’ /d4a;E(p’,:c)E(p, ) = (277)454 (p/ _p) (2.107)

2.4.2 Volkov propagator
The electron Green’s function in an external plane-wave background field is [Pial8]
(7" 10, — Au(8)] — m} G (z,2") = 6W (z —2'). (2.108)
In order to get the dressed Feynman propagator of the Volkov field V) ()
Grlz,2) = —i (QT [\if(V) (z)TV) (m')] ), (2.109)

[T is the time ordering operator] we specify boundary conditions that are equivalent to
shifting the mass m — m — 0.

Plugging in 2.109 the anticommutation relations and the mode expansion of the Volkov
field operator from 2.103 [Pial§]

G(xx):—zﬁac—x Z/ 27r32&? x)UU(p7$’)

(2.110)
W /
e z/ e Ve ) (p.).
can be put in the Volkov form [Vol35; Rit72]
. d*p ptm
N = E ————F . 2.111
G(IE,QE) / (27’()4 (pvm)pQ_mQ_i_ZO (p,ZE) ( )

Within the operator technique, the operator Gm? corresponding to the Green’s function
G(z,2') = (z|G|2') is defined as

1 1 1
W —m24+i0 W —m? 40

L+ m), (2.112)

" For a proof of see Appendix A.1.
12dropping the F subscript indicating the Feynman propagator.
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where [1#* = P* — e A*(D).
Employing the Schwinger parametrization expansion for the exponential (Ap-
pendix C.2)

[e'e) ) 5
L [T )
e : (2.113)
= (=) / * Jse (2P Pom[PL—cA L (@) —m?—iend'(®)
0
where in the second line was used that
2 2 2 2 e v
= [P — e A@) —m? — o (@
B e (2.114)

= 2P, Py — [P — A (D))* —m? —iep A’ (D)

where o = [y*,7"] /2, F,(®) = 0,A,(®) — 0,A,(P) = n, A, (P) — nl,AL(q)), with
the prime indicating the derivative with respect to the operator ® corresponding to

the variable ¢, and the light-cone momentum operators P, = —i0, = —i(nP) and
Py = —idy = —(nP)".
Following [Pial8], we can write the exponential from the integral 2.113

eis{zPTPW[PLfeAL(é)]Q*mQ*ifiM @} _ L(s)e¥sPFs (2.115)

and noticing that L(s) satisfies the differential equation [Pial§]

dL

s —iLe* s {[PL — A, (®)) 4+ m® + ier/LA/(CI))} e 2isPr Py
s

(2.116)
— —iL{[P1 ~ cA (@ +25P)] + m? +ieph' (@ + 25P;) |

where in the second line the shift formula exp (2isP,P;) f(®) exp (—2isPyP;) =
f(® + 2sP;) for an arbitrary function f(®) was used. The solution of this differen-
tial equation with initial condition L(0) = 1 is [Pial§]

L(S) _ efi I ds’{[PJ_feAJ_('1>+25’P7—)]2+m2+ie¢44l(<1>+23’P7—)}‘ 9 117)

(
Then, plugging in 2.113, Taylor expanding and using that nA(® A (®) =0,

/ dse” "™ {1+ [A(<I>+2sPT)—A(<I>)}}

W—m2+i0 2Py (2.118)
w el I ds'[PL—eA | (D+2s' Pr))? estPTP¢,7
such that G can be written in the form [Pial8; PL20]
G’Z—i/ dselms{l—i- A(® +25P;) — A(® }
- [ o A )~ A@®) ot

w et Jo ds'[PL—eA | (D425 P)J? eZisPTP¢ (]7[ + m)7

13Gee the list of notations and conventions
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or, equivalently [Pial8],

G :(_Z)(M + m) « /OO dsefim2seZiqu—P(z,efifd9 ds' [P, —eA | (®—25'P;))?
0

(2.120)

x {1 - 2;% [A(® —2sP)) —A(q>)]}.

2.4.3 Effective (dressed) momentum space vertex

N

d

Figure 2.1: Effective strong field QED vertex in momentum space, corresponding
to an incoming electron with momentum p, an exchanged photon with
momentum ¢, and an outgoing electron with momentum p'.

=17 (q;p,p)

In momentum space, the free QED vertex —iey* gets modified to the effective ver-
tex function I'”? (¢; p’, p) (see Figure 2.1), becoming “dressed” by the Ritus matrices
E(p,z) and acquiring the following form [Rit72; Mit75; Pial8; Meul5]

?(qg;p',p) = —ie/d4xeiqu(p’,x)fypE(p, ). (2.121)

2.4.4 Photon propagator
The photon propagator in the Feynman gauge —iD,,, (v — y) is given by

d4q iq( ) nul/
—iDy(x —y) = —z/—(27r)4e ey AN (2.122)

where \? is the square of a fictitious photon mass, introduced to avoid infrared
divergences.
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One-loop electron mass operator in a
plane-wave background field

In vacuum QED the magnetic moment of the electron is extracted from the vertex
diagram, as in Figure 3.1, by constraining the form of the vertex function using Ward
identities [Mic19]. However, in strong field QED, the magnetic field of the intense
plane wave background field can be used instead, leading to the mass operator
diagram as the one relevant for extracting the magnetic moment. This can be seen
from the Pauli interaction term in 2.114, coming from the Volkov propagator.

2
N
q !
d

Figure 3.1: Vertex function in vacuum QED for an electron with incoming momen-
tum p and outgoing momentum p’, with the magnetic field provided by
the external virtual photon of momentum ¢g. The tree-level and 1-loop
radiative corrections are shown.

+-- =g 0, p)

A\

3.1 The mass operator for the off-shell electron

Using the configuration space Feynman rules for strong field QED (i.e. in this case
replacing the external Dirac spinors with Volkov states and the propagator with the
Volkov propagator), the matrix amplitude for the one-loop diagram 3.2 contributing
to the mass operator for an incoming electron with momentum p and spin ¢, which
exits with momentum p’ and spin ¢, is given by

—iMeoro(p',p) = / d*zd'y (—=iD,(z — y))Ux (', y) (—ier”) (iG(y, x)) (—ier") Uy (p, )

=—¢ / d*zd'y D, (x — y)Us (0, y)y" Gy, 2)v"U, (p, x),
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p 1 p
_ — _
€ =00 ¢

Figure 3.2: One-loop mass operator for an electron in an external field. The elec-
tron has incoming momentum p, outgoing momentum p’ (it can ex-
change momentum with the background field), the electron Volkov
propagator corresponds to the momentum [ and the exchanged photon
has loop momentum gq.

(3.1)

where D, is the photon propagator, and U, (p, z) (see Equation 2.98) and U, (p, x)

is the Volkov spinor and its Dirac conjugate, respectively.
Equivalently, the matrix element can be obtained from the Feynman rules for
strong field QED in momentum space [MMF]

“iMarol0'0) = 100 | [ ot e 050 GG T (50 9) (3D 0| ), (32

=—iM(p’,p)

where I'” (¢;p/, p) is the effective vertex function (see Equation 2.121). The advan-
tage of obtaining the mass operator —iM (p/, p) in momentum space, as in Equation
3.2, comes from the fact that it can be readily evaluated by sandwiching between
free-electron spinors and putting the spinors on-shell. However, although using the
momentum space SFQED Feynman rules leads to the same result, the configuration
space computation is provided next.

Writing out the Volkov state U, (p,z) = (z|ps)! and the explicit expression for
the photon propagator and the electron propagator, we get in configuration space,
in operatorial form

—iq(z—y)
SiMan(p) =~ [ dtaaty [ S o )2 GlGl) o o)

- ‘62/ [/ m<p'a'|v°w|y><y|einGwe—qu|x><:c|pa>
xJYJq
1 Xy
= ¢ | T e G )
q
(3.3)

where in the last line the integral over x and y was carried out by using the complete-
ness relation, and the shorthand notation for the integral measure was used (which
will be used throughout the rest of the computation to simplify the typesetting).

Lthe Volkov state |po) should not be confused with the momentum operator eigenstate.
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Shifting the propagator e“XG(P)e~ X = G(P + q) from expression 2.119

X GeX = —i/ dse_zms{l—l—;ﬁ[fl ® 4+ 25(P+q), —A(I)}}
<>0 P A@+ 2P+ - A®)
—i [ ds' [(P+q) | —eA L (8425 (P+q)-)]” 2is(P+q) (P+q)¢(ﬁ +q+m),

(3.4)

where ¢, = —q_ is the eigenvalue of the P, operator acting on a state |¢) (Pr|q) =
—q-|¢)), and similarly g5 = —q;. Noting that for an off-shell incoming particle, the
operator acting on |po), (using v#§ = 2¢" — ¢y*) can be written as

(ﬂ—f—(j—l—m)’y“: (2(H+q)”—7“ (f[—i—d—m)) - (2H“—7ﬂ (ﬂ—m)—kév“), (3.5)

the matrix element, writing the II(®)-dependence explicitly, becomes

—i1m- s 0
/
—iMgio(p',p) = 26//(]_)\2+0 o'V

x {1 n ﬁfz [A (@ +25(P + q),) — /1(@)} }

« et s ds' [(P+a)  —eA. (@+23'(P+q),)]2€2is(P+q)7.(P+q)¢

X [QH“(CD) — At (f[(@) - m) + 4’7”] Ipo)

e ///q 7;;0 ()l

X {1 + ﬁﬁ [A (® +25(P +q);) — A(@)] }

« =t 5 ds'[(P+q) L —eAL (942" (P+q)-)]* j2is(P+q)- (P+q)s

X [ZH“(QJ) — (ﬁ(é) - m) + éw“} lpo),

(3.6)

where in the second step a resolution of the identity over & was inserted to the left
to reconstruct the Volkov states.
Writing the state (x| = (¢, 7, x| and replacing ¢, = —¢_ and g, = —q+

iMoo (p',p) = ie //s/zq 20V Ut (', )7 {0, T, 2 1|

e . ~
{1t s [+ 2s(p, -0 - o] .
« =t J5 ds' [(P+a) L —eAL (p+25'(Pr—q-))]? ,2is(Pr—q-)(Ps—q+)
% [211(@) =y (T1(@) = 1) + 7] [po),
Acting with ® on it (to the left), i.e. (¢, 7,2, |P = (¢, T, 2, |p, while at the same

time acting on the |po) Volkov state with the projectors, i.e. by using P;|po) =
—p_|po), Pi|po) = p,|po) (notice however that the Volkov ket state [po) is not an
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eigenstate of P, from 2.104), the matrix element is

_'Lm S

x{1_2(p_+q) [ (9= 250 +4.) — 4(0)] }

o= Jo ds'[(P+a) | —eA 1 ($=25'(p—+q-))]”
< (0.7 [e o0t 0 (o1 (@) — o (T1(®) — m) + i7" |po),
(3.8)

where the bra state (x| = (¢, 7, x| was also passed through the numbers.
Inserting the identity (1 = e?*(P-+a-)Pse=2is(p-+a-)Fs) {0 the left of |ps) in order
to use the shift formula, the matrix element is

— iMoo (p',p)

[t

x{l s [+ 2o +ar) - 400

w e~ 5 ds' [(P+a) L —eAL (¢—25" (p—+4-))]”

X, 7, 2 1 |25 +a-)ar o=2is(p—+a-) P [ﬁ(¢) Yi+ m} (2i5(p—+9-)Ps o=2is(p—+0-)Ps yit| i)

use shift formula

(3.9)

where in the last line we can use exp (isPy) f(¢) exp (—isPy) = f(¢ + s) for
e~ 2s(p-Fa-)Fy [ﬂ(gzﬁ) +4q+ m] e2isp-+a0Fs — T (¢ — 25(p_ + q_)) +G+m, (3.10)

Pulling the bra (¢, 7, x| through to form the Volkov state U, (p, ), adding an
exponential e=2#(-P-=4-)(=%)1 = 1 acting on the Volkov state from the right and
again using the ¢-shift formula, the matrix element becomes

iy , , _ 2 —zms
iMoo (p',p) = ie /q/s/xq v L Us (1, )V

<1 o [ - 2 + o) - dco)]}

% o=iJs ds'[(p+a) | —eA 1 (6=25'(p—+q-))]" o 2is(p—+a-)a+
< |20 (6 = 25(p- +-)) =7 (116 = 25(p- +4-) = m) + 7"

Us (P, —25(p— +q-),7,21).
(3.11)
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Denoting ¢s = ¢ — 2s(p_ + ¢—) and writing in terms of A(¢) = eA(¢p), using
Corrolary A.1 and the ¢-evolved state from Theorem A.2 to get

AA’(@)

(¢s) (pa ¢sa7- wJ_) 2}77

Ty (¢s) +

] M (s, 9)U,(p, ¢, 7,21 ), (3.12)

where () is the dressed momentum from 2.72 with limg 1. 74 (¢) = p#, the
matrix element can be expressed as

_ZMUO'p p =€ //S/mq —)\2+20 (p $)’7

9 {1 - oy [ —A<¢>}}

« et Io dS/[(p+q)l_Al(¢5/)]2 % eZis(p,—s-q,)qu (313)
A’(¢ ) - .
" pl _n _ m
x |2 (77 (¢s) + o " g (H(fbs) m) +av

X Uo' (pv QSS, T, xL)

Temporarily writing the matrix element as in 3.2, i.e.

iMoo (p',p) = U (p') (=M (P, p))uo (p), (3.14)

after which the sandwich between free Dirac spinors will be taken, we get that

=it [ [ [ e
iM(p',p) = ie N Ay ey E(@', z)v,

X {1 - 2(pl_|_q)” [«‘i(ﬁbs) - «‘i(éf))} }

w e~ Js d5' [(p+a) .~ AL(6,)]7 o Ris(r—+a-)as (3.15)
A’(é) A .
i M) AM _ H
x 2<w (6s) 75 Pt | =¥ (Ti(g0) — m) +dy

x E (p7 ¢S7T7CCJ_)

Using Theorem A.1 and the Schwinger parametrization (see Appendix C.2) for
the photon propagator, i.e.

1 _ /  duetu(a?2?) (3.16)
F—N+io ' Jy ’ ‘

the matrix element becomes
oo . 2 2 . _
—iM(p/,p)=i62//// due™ (7 )e_Zmst(p’,fr)%
qJsJx JO

«{i- o A @) - i)}

w e—iJg ds'[(p+a) L — AL (¢, BIERY: e2is(P—+a-)a4

(3.17)

X<H fo) im0, >+w} M(cbs,qs)E(p,x)+wM<¢s,¢>E(p,m><mﬁ>>
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Inserting ¢* = 2q,q_ — (q L)2 to separate the ¢, exponentials in order to integrate
and expanding the M(¢s, ¢) from Equation A.8

—iM(p’,p)=62////e—imZSe—w[(qL)zﬂﬂezi[sp7+(u+s)q7]q+
qJsJxJu

+2AD) A<¢> _A%$)

—3 bs 37
x B(p,x) x e~ i 45’ [(p+a) L — AL (2] & d¢< - )

X Yy {1 — mﬁ {fl (¢s) — /l(<z>)} } (3.18)

X <[2 (%’f (¢s) + z‘ﬁ“;‘;(gb‘“)n“) + 7"

o {1+1n(A(¢s)_A(¢)>} E(p,x)(m—ﬁ)>.

2p_

1+ 5 (A0 - 4@)| Blp.a)

Expanding the brackets using the identities v,7* = 41, v,gv* = —2¢, and
Y AY* = 4(n - A) = 0, where n - A = 0 is the Lorentz gauge condition

1 S ~ 1 u
= 20p(09) = 20— -~ (0:) (A(65) ~ A®)) = 5w (A60) ~ A9)) 0
= 2(5,(6.) ~ ) = =0 (A(6) - A9)) + ~——i (A(0) - A(@) 1
= 2(fy(n) = D) = - (p(0) + ) (A (62) — A(@).

(3.19)

and changing variables ¢ = ¢ — 25'(p_ + ¢_) — s’ into the integral, with ' going
from O to s, the exponential becomes

bs A 2(5 s . , 2(ho
_Z./ 00 <p++p Ad) A <<z>>> :quf)/ o (p++p Algs) A <¢s>> (3.20)
¢ 0

jo 2p_ p_ 2p_
the matrix element acquires the following form

—szp

—e //// —im?s —zu (g.) +A] 2i[sp_+(u+s)q_]q+

. 6{ (- +a-) Ji as' (pa+ ZA0L 2D ) 2 [k, AL (00)] )

<{[260060 - 0 - —— (0 + A0 [1+ 5 -18A6)] B pr2)

(3.21)

+41+ LKA B ) m - )

% €2i[8p—+(u+8)q7]q+’

where it was denoted | AA(¢s) = A(ps) — A(o)|.

30



Decomposing 3.21 on the bispinor basis, i.e ¢ =y ¢4 + v ¢- +v1q,

—iM(p',p):62////efim"’se—m[(qﬁu,@]
qJsJxJu
x E(p', )

PAG)  AX(9)
p_

e ) i gy s (o)~ AL (6.0 )

X X

{Qi(pf-i-qf) Jo ds’ (P++
2

{

(7p(ds) = 7T ar =7 ¢ —v"qy) (3.22)
1 _
Tt (Fp(ds) + v ar +7 a— + v q, ) AAA (qﬁs)}

[1 + 2;_7%5\,4(@)} E(p,z)+4 [1 + 2;_7%@(%)] E(p,x) (m — ﬁ)>

« e2ilsp—+(uts)a-lat

We can bring down ¢, by taking the 0, derivative, i.e.

q+e2i[sp7+(u4r8)q7]q+ — %aueﬁ[sp+(U+S)Q]q+7
T (3.23)
— _—25 2ilsp—+(uts)g-Jayt
2(u+s) - ’
or alternatively, by taking the J, derivative, as in the second line.
Taking the J, derivative, we obtain
—iM(p',p) = 62/// / o—im?s g—iu(g1)?+2%]
qJsJxrJu
x E(p/,x)
oz gy (s RO R0 ) i (), - AL 007
R i _
X <[2 <7Tp(¢s) + u+t s)v+8q_ -7 q- — 7qu_) (3.24)
— 1 - _ d + - 1 SN A
P (ﬂp(%) ats)) g +7 -+~ qL) nAA(cés)]
1 . — 1 —
<1 BRG] B+ 4|14 50| £0.0) 00 -5)

« e2ilsp—+(uts)a-la+

Since the ¢_ derivative will act on the phase, it is useful to put the phase in a
more transparent form.
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The phase can be written as

zi(p,+q,>/osds'(p++”";f¢s A2¢3) i[las e+, - a6

:2i8<p_+q_>p++zi%/0 (p Ay - 2 ))—i/:ds’ (0 +a), — AL (60)]

pP—

— s A s/ [* /
:2is(p,+q,)p++2i<1+;—_)/0 ds’ <—pL.AL(¢51)+J‘§¢W> —z/o ds [(p—{—q)J_—AL(qSS/)]Q
s 2
=2is(p- +q-)py —2i (1+Zf)/0 ds’ <PJ_'AL (¢s/)—AL§¢g ) / ds' [p, — AL (6s)]° —is(qL)’

~2iq, /O ds' [p, — AL (6)]

=2is(p— +q-)py — i (1+ q;)

L) [ 2py - AL @0) = AL @)~ [ s o1 — AL (00 s (a.)?

0

~2iq, /O Tds' [p, — AL (6)]

= 2is(p_ +q_)py —i (1 + Z—:) /0 Tds' (2p1 AL (b)) — A2 (b)) —is(pL)? — i /0 Tds' AL (6

1 2ip, /0 T (AL (69)] — is (a1)? - 2iq, /0 Tds' [p, — AL (6]

(3.25)

Continuing the manipulation of the phase exponential

s ’ - A s’ A? s’ o[ /
2i(p_+q_)/(; ds (p++p p(_d) ) _ 2;% )>fz/(; ds [(p+q)lfAJ_(¢>S/)]2

= 2is (p— +q-)pt+ — iff /OS ds' (2p, - AL (¢5) — AT (8s)) —is(p,)? —is(q,)?
~iq, [ o - AL (0]

ey _ﬂ;sl . T gy PP 2
=2is(p— +q-) pt s ds' (2p) - AL (¢y) — AT (¢yr)) — 2isp— o is(qy)

~2iq, / ds' [p, — AL (b))

o 4 -y . _ 42 9 (pJ_)2 99— . 9— 2
=2is(p— +q-)p+ — i ds' (2p, - AL (¢s) — AT ($s)) — 2isp— —2is = (p,)? + 2is (L)
r—Jo 2p—

2p_ Qp,

~isqu)? ~2ias [ ds oL~ AL (.)
s 2
=2is (p- +4-)pr — i = / ds' (2P, - AL (65) = (P1)* — AL (6,1)) — 2is(p- + qJ% —is(q.1)”

~2iq, / ds' [p, — AL (6.0)]

2 s s
= 2is(p- +a-) (p+ -y ) il [T oy - AL @) s (@0 - 2ia, [0 . - AL (60

s (1 + q—*) it [ oy - AL @) ~2ig, [ ds b — AL (00)] — is(a,)?,
p— p-Jo 0
(3.26)

where in the last line p? = 2p p_ — (p,)* = p?/2p_ = ps — (p,)* /2p_ was used.
Integrating the exponential 2P~ +(@+=)a-la+ gyer %+ 1o give § (2 [sp_ + (u + s)g_])
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and inserting the phase from 3.26

—’LMp p / /// —im?2s —1u [(g1)*+2?]
alar Js Jo Ju

x E(p', x)
o Ais (L7 )PP 5= i e [ps — AL (6,1 ~2ia. [ ds'lpL — AL (6,0)]—is(a1)’}

X <[2 (ffp(qbs) + 2(u: S)’W@q, —77q - 'YLQJ_) (3.27)
1

P+
X [1 + 2;71&\4(@55)} E(p,x)+4 [1 + 2;71&\4(@)} E(p,x) (m — 13)>

X 0(sp— + (u + s)g-),

(ﬁp(szﬁs) - mf% +77q- + 'YLQJ_) ﬁﬂ(%)]

where 6 (2 [sp_ + (u+ s)q_]) = 36 (sp_ + (u + s)q_) was used to give an overall fac-

tor of 1/2 (and [ aJas denotes the 4-momentum integral without the integral f dq+

When ¢ has a real root at 2o, we can use 8(g(z)) = 2= such that in our case

g’ (o)
5 (sp_ + (u+s) )15( (ﬁ—)> L 5( (ﬁL)> w5 >0
- - Ju+ s = (u+s)))  (u+ts) = (u+ s) e
(3.28)
and inserting this into the matrix element
—iM(p',p) / /// e~tmsg—tul(qL)’+37]
war Js Jo Juut s
x E(p',z)
o i (52 )PP 4= [ ds' Iy AL (6.))~21a [§ ds'[pL A (6] —is(a.)? }
o i + A oL
X <[2 (Wp(%) 3wt O =7 q-— qL) (3.29)
1 R ; - .
Tt <7Tp(¢s) - mﬁaq_ +77 4~ +7qu_> nAA(tbs)]
< (Ut 5 iBA@n)| E(p.0)+ 4|14 - iBA)| B () (m - 5))
—sp_
(- (a¥5))
Using that for an arbitrary function f(z) and for a real constant a,
o0 d o¢] ,
d—5(x —a)| f(x)de = — dz —a)f'(z)dz, (3.30)
oo LdT o
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the matrix element reduces to

_sz p / /// —zms —zu[(qL) +2?]
Q/‘H sJz ourS
D, .'L'

x E(p/

{is(1+ 2= )p2+i2= [5 ds' [P~ AL (6. ~2ia, [5 ds'[pL—AL(6.)]—is(a,)? }

X e

X <{2 (ﬁp(sbs) - 2(u2—|— S)W 9a. 10— —’ﬁh) (3.31)
1 R ) — B -

-+ (ﬂp(‘b‘“) * 2(u:— s) 7" 9 77 e+ A/J_QL) nAA(cﬁs)}

<[14 5 BAG) | B ) + 41+ 0B A0 B ) 0

<o(e-- (1))

where the arrow over the derivative indicates that the derivative acts on the left.
Taking into account that ¢, = ¢ — 2s(p_ + ¢_) and that

_ Z(ZSS 8¢5 = —288¢5 s
4 — 9, =—— 9, (3.32)
1 “p_+yg
O, = ——— 0 - T4

T 2(pm+qo)

Oy =

Denoting A'(¢s) = 04, A(¢s) the derivative with respect to the argument, the
phase derivative can be written as

By exp {is (1+ ) p? +i2= [5 ds' [pL — AL(6)) —2ia, [5ds' [Py — AL (6u)] —is(@)?}

Pl )
2 . s s
:[fj—fpf /O ds'[p, — A, (Mhm% /O ds' [p, — AL (6] (—AL) (d) (—25)
+aig, [ a5 A (60) (—2s')]
0
[ 2 1 s — s ! ! s / ! !
:i_sz%+—/ ds'[pL—AL(%/)FHq—/ ds' [py — AL (60)] Al (63)s —4ql/0 ds' A, (6y1) s
r 2
:i_s}f——i——/ ds'[p, — AL ()2 + / ds' [p; — AL (dy)]s'0s AL (dsr)
—47 ds' 9.
_2(p7+q )qL/ S SAL(QSS) :|
[ p?2 1 2 _
—ils 2 L / ds' [p, — Ay (6] — S s b, — AL (b)) 500 AL (60)
L p— p-Jo p—+4q-p-Jo
2 S
ds’0.s N s
+p—+Q—ql/0 S SAL(¢S)Sj|
N p2 1 s / 2 1 q— s /7 2
= —_— —_— d el ’ —_— d 8/ — ’
oot = [y - AL @ e [ ey AL 00
2 S
_— ds’9.s s
+p—+Q—qlA S sAL(¢s)sj|
T p? 1 Sy 2, 1 q— 1 a- [° ., 2
=i|lsZ+— [ 4 - , = - s = [ 4 - o
ol [ oy = AL @+ s lpy — AL @) - [ad o - AL ()
2s 2
g ) ——q, - d D
b g A0 - g [asAL )]
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(3.33)

where the dots in the denominator of the first line indicate the argument of the same
exponential as in the numerator, and where the quantity ¢ was defined.

Combininig the second and fourth term from expression 3.33

—ils? / _ L0, - 2
0=ifsto b o [T - AL P+ o sl - AL )

2
p— +4q-

qa, - Al (¢s)
(3.34)

ar- [ asa (M} ,

where the 0y derivative was changed into a dy using Equation 3.32 and was in-
tegrated by parts. Taking the ¢_ derivative, and applying the product rule to the
1 (p— +g-) term

*ZMp p / /// 7'Lms 7zu[(qi) +)\}
q/q+ sJx uu+s

x E(p', )

{is(145=)p2+is= [5 ds'lp. —AL(9,)]~2iq, [ ds'[p, —AL(6.)]—is(a,)?}

X e

x <[2 (frp(cbs) - 2(ui+ S)7+<> -7 — quL)
- iq, (ﬁpws) i 7 (<> - iq) +77q- +7qu) ﬁﬂ(qbs)}

« [1 + %nAA((ﬁ )] (p,a) + 4 [1 + Q;_aaﬂ(oés)] E (p,z) (m — ﬁ)>

oo ()

+

(3.35)

The (g_) - integration over the delta function (the additional 1/27 from the inte-
gration measure remains) fixes ¢_, i

_ 1 _
=—P _uts e_ S (3.36)
u-—+s 2 up— p— u-+s
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such that the derivative term ¢ from the factor, from Equation 3.34, becomes

O
q—=—sp_/(u+ts)
[ p2 wuts [° 52 2(u + s)s
=i S T, — Ay 00 - oy AL + q.- AL (6s)
U p—  up— Jo up_
—2(Z+Sih_ / dSAL ¢.5 )}
[ p? u+s)s 52 u+s)s
= 3L+u/ dylp, — AL (Gy)? — —— [py — AL (@) + 20T A (p)
L P— up— 0 up_
u S)S 1
_2( u:, ) q, '/0 dyA | (¢y9)i|
[ p2 u+s)s [1 52
=ifs 2 B0 Ry (9,2 — 2py A (84 + (AL (8420°] = = [00)2 — 261 AL (6 + (AL (60))7]
L P— up— 0 up—
u S)S 1
$2ED s ) - [ anas o)
[ - 2 2 u+s)s [1
_ | 2 (p1) +S(m) +( +s) / dy [(AL(¢ys))2_2pLAL (¢y5)]
I P P up—  Jo
52 u S)S 1
[ @0 — 2 0] + g a0 - [ v 0]

[ u+s)s 1 52
=i fospe + Dy (AL (6000 — 290 AL (80)] = S [(AL (620 — 20, AL (6]
] up—  Jo up_

u S)s 1
P2 a0 - [ anas 6,0]).
(3.37)
where the ¢_ subscript indicates that the ¢_ variable is fixed.
Then, the phase becomes, after a change of variables s’ = sy — vy
(1+ )p —|—z—/ ds' [p, — AL (602 —QZqL/ ds' [p, — AL (65)] — is (q,)?
(3.38)
e /d[ C AL (6ye) 2sq/d C AL (by)] — 5 (q,)?
? U+8p u+s 0 Y|Py J_ ys 1 Y|P J_ ys 1 5

such that the matrix element is

2
1 . .
—z‘M(p’,p):i/ /// J-im?s —iul(g,) ]
AT Jastaray Js Jo Juuts

x E(p', )

o oUilEe o S dulp L — AL (60 25a, [ dylpL — AL (@) -s(a.)°] }
i s
21 7 _ + “p_ — 1
><<[ (ﬂp(d)s) Suts) O+ -7 QL)
q—
uts | . { 4

x {1 + 2;&@(@)} E(p,z) +4 {1 - Z;ﬁ@(%)} E (p,z) (m — ﬁ)> :

U+ s S _ L N
_ _ B A s
up) sl -t qL)n A(s)

q—

(3.39)
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where the subscript ¢/{q;,¢_} in the measure stands for an integral over just q .
Writing the Gaussmn part at the end, combining the rest of the exponentials and
using that y7n = 72 = n? = 0 to get rid of the term (u+s)/up_, we get

MEp) = 4”/q/{q+q }/s/x/ours
><e><p{ LH 2 uis/oldy[m—fu (%J]ﬂ}

x E(p,x)

X < [2 (ﬁp(‘ﬁs) - 2(ul—i— s)7+<>
u+s | .
" ( p(@s) +

(
x [1 + —nAA (s ] )+4 [1 + 2pnAA(¢s)] (p,z) (m —ﬁ)>

+ Y p-—vtaq,
g Ut ) (3.40)

Y p- + ’YLQL) AAA(¢s)

u+s

X exp {—z(u +5)(q.)° —2isq, /0 dylp, — AL (‘bw”} .

Denoting

a=2i(u+s), b= —2is [ p.— [ dyA, (%S)} — —2isP . (p), (3.41)

the Gaussian exponential becomes
. 2 . ! a 2
exp § —i(u+5)(q,)? —2isq, [Py~ | dyAs(6,)| (= exp{~F(aL)? +ba, }
0
a _ b’
= exp {_Q(QJ_ —a"'b)’ + Za} ;

which needs to be integrated over all values of g, but first g, must be expressed
as Op applied to the Gaussian exponential, leading to

e? 1
M) =+ [/
ar Jastaya_yJsJaJuuts

2 1
X exp {1 {USJ:S 2 2 — uis/o dylp, — AL (¢ys)]2:|}
x E(p',x)

X < |:2 (frp(ﬁi’s) - mWJFQ N
u+s [ . 7

" (7””(%) P (Q

< [1 4 2{%&@(@)} E (p,z) +4 {1 + zp%ﬁﬂ(m)] E (p,) (m — 15)>

a _ b?
Xexp{fg(ql —a 1b)2+%}.

(3.42)

u-+s

S
(@, =8p)+ ——7 p— —~v 0%
(3.43)

(g, = 8b)) -2 o+ ’7L8b> AAA(¢s)
. u+ s
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Pulling the g, integral through and shifting the integral over all real values g —
qd| = q, —a 'b and dropping the prime

—iM(p',p) = e2//./ ! X ex {z{ 5 2 _m2s—ur? — s? /1d[ —A, (¢ )]2}}
b,p An WUt s p u+sp uts o Y|P 1 ys

x E(p,x)

g < {2 (ﬁp(d)s) - 2<ui+ 570
q

o uEs ( »(#2) + 3 v+ o‘ (g1 = Bp) ) - yp +7iab> AAA(ps)
u+s)

S _
(@1 =0p) + ——7 " p- 'Ylab)
U+ s

(3.44)

up— u+s

. [ + B A B o)+ 4 [+ k0] B0, m- )

(2 {—5 QJ_)2+b7}

Carrying out the 2-dimensional Gaussian integral

Xexp{ [ s+sp -m s—qu—i/ dylpL — AL((bUS)]}}

e? 1
—sM (v =
iM(p', p) 47r/s/z/uu+s

x E(p',z)

X < |:2 (ﬁp((bS) - 2(ul+ s)’Y+<>
q

_ure (ﬁpws) +

up_

S _
(@ =8p)+ ——7 p- _’Ylab)
u—+s

7 + _ _uts) s _ 1 e
3t (0‘(1 (g1 =) up) g s Pty 3b> AAA(¢s)

x [+ B A0 | U )+ 4|14 S 0B A B ) (=)

* <271r>2 [21""{;)*” ‘

(3.45)

Taking the 8 derivatives, rearranging the 27 /a factor and combining the phases

M ( < /// x {{ 2 m? s /1d[ AL (¢ )}Q]erz}
—1 ex - - s —
#'p) 47r27r sdeJuau+s P + s u+s Jo yipL L% 2a

x E(p,x)

s < [2 (ﬁp(%) e
B u—+s # i +
up_ ( p(¢s) + 2(u+s)7 (O

x 14 g nBA@n)| B )+ 414 5 —BAG)] B o) m-5).

q_

(3.46)
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Reinserting a, b from 3.41 and simplifying the factor of 2

—iM(p',p)

47r27r/s/z/uz(u+s
2 R —
coni[ 2

52
= it - AP+ ]}
x E(p,x)
x < [(frpws) g0 (=P e ujswlmua))
q_

u+s [ . 7 + _ s s _ s n L
Sup_ (7‘1’;0(¢s)+ 2(u+8)'y (O‘q_ (qJ_ = u+S’PL(p))> u+s’7 p— ’LL-‘rSAl ’Pl(p)) nNAA(ps)

x {1 + Eﬁﬂ(qﬁs)} E(p,x)+2 [1 + %%ﬁﬁ(ass)} E(p,z) (m 13)>

(3.47)

where now, in addition to q_ being fixed by the delta function integration to ¢_

—sp_/(u+ s), the perpendicular component q, is set to q, = —sP 1 (p)/(u + s)
which will shortly be denoted by ¢|, 4 | » remembering the values

Denoting

A=

/1 dy(p, — AL (¢ys))2 - (pj_ - /1 dy A, (¢y8)>2]
(3.48)
[ / dy (ALY (6y0) — < / dy A, ( %))2] ,

the phase becomes

2 1 2

2 2. y2 S S 2

St — = [y - AL 0P+ T (PL) »
su 2 2 5> 2 2 (349

7u+s(p B )_u—l—s[m +A}_U)\
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and the factor can be written as

sio) = [rome o+ (D0 My (AL (6,007 - 21 AL 600)] = - [(AL (07 291 AL (6)
q9—,91
+ (Z;S)Sql [Ai (¢5) / dy A (%)H

a, =—75PL)

[ u+s)s [T 52
= [2ome+ 52 [y (AL (600 — 20 AL (600)] — - [(AL (622 — 20, AL (60)]
L up— 0 up

252

up_

[y LA, )] - [As @0~ [ LA, (@)]]

[ u+s)s [1 52
= [2ome+ 5D [y [(AL (6007 — 20 AL (600)] — - [(AL (62— 20, AL (60)]
L up— 0 up

—ji [m - /OldyAL (ys)} . {AL (¢s) —/Oldy.AL (¢ys)”
= :25p+ + Wu‘;%)s /01 dy (AL (¢ys))? — 2(u + s) 5y / dyAL (B0s)

2
- S— [(AL (6))* = 2p, AL (5)]

1 1 1 2
—j% |:p1_ Ay (¢s) — AL (¢S)/O dyA, (¢ys) — Py / dyA, (¢y5) + (/0 dy A, (¢ys)) :|:|

= [ (p+—;pl~/oldym (0)) + (222 / dy (AL (6y5))?

2
- = [(AL (62 — 2p, AL (6]

2

- [m AL 0= AL 60 [ s o)+ ([ dus <¢ys>)2” .

(3.50)

Observation 3.1.1 Introducing AA* (¢s) = A* (¢5) — A*(¢), 3.48 becomes

A= [ / (A2 (9ys) — ( / g (%)ﬂ - [ / iy (AAL (6y0)° ( / " ayaa, (%)ﬂ (3.51)

Defining the integrated momentum

P = - [ Ly A (o) + - <p |/ 1 dyA(qsys)) - ( / 1 dyA<¢ys>)2, (3.52)

and using the relations nt =n_,n, =0,nt =n?=0n"=nan=1, AT =A_=

n-A e 0, A°=A3=0 = A, = A~ =0, the decomposition on the bispinor
basis of 3.52 is

P(p) =7"P+(p) +7 P-(p) + 7 PL(p)

p++7( / dy A qsys)——(/ dyA ¢ys))
=7 [p+ - pi (m /0 dy A, (¢ys)) + 21-% (/0 dy A, (dm))z] +7 -+t (m - /01 dy A, (¢ys)) ;

1
+y7p— + At (m —/ dyAL(‘f)yS))
0
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(3.53)

which shows that the projection P (p) obtained in 3.53 is consistent with the pre-
vious definition from 3.41.

—i0

= oo (e - tou [ AL 60) + 0 [y AL 607
q,

2

1 1 2
{(AL (@) =24, (00) [ anas (¢ys>+2( | avas (%)) H

- {25 <p+ ~ Lo [ o) + o (/ LA, <¢ys>)2> - LA, <¢ys>)2

u S)Ss 1
Llutss [ A @7
up— 0

s2 1 1 2
- {(AL @2 =24 @) [ avds @) +2 ([ ands @,0)) H

= {23 <P+ - p%m '/01 dy A, (dys) + 2})% (/01 dy AL (¢>ys))2>
</01 dyA, (¢ys)>2 3 /01 iy (AL (¢ys))2}

1 1 2
{(AL (6:)2 — 24,1 (5) /0 dyA, (¢ys)+( /0 dy A, <¢ys)) H
(u+s)s

up— (/01 dyA, (¢ys))2 - /01 dy (AL (¢ys))2:|

_ (Al (65) — /0 CaA, (%))Q] ,

(3.54)

(u+s)s
up_

52
up_

= {287’+ (p) -

up_

where P, from expression 3.53 was inserted.
Inserting A from the definition 3.48 and noticing that

AL (6) — / Ay (6) = AAL (6) — / QyAA,L (D). (3.55)

we get

(u+s)s 52 1 2
e DT s <AA¢ (¢s) — /0 dyAA| (cbys)) ] (3.56)

o], -

—q

2sP1(p) —

Therefore, we can write

505700 = s P + (0], (3.57)

where temporarily the quantity .o/ (¢s) is introduced by

U+ S S

A (§s)

[AAL(qbs) -/ CayaA, (%)] ; (3.58)

2up_ B 2up_
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Simplifying the i, and plugging in the matrix element the expression from 3.57

47r27r/s/w/ (urts Xex"{ { s (»* - 2)*usjs[m2+A]fu)\2}}

x E(p',x)

A S S _ S
- { Kﬂp(d}s) e A Ol et A COR vt B S e prl(p)) (3.59)
B ;Lu—;f (ﬁp(%) S —S&— 87+P+(p) t j— 87+%(¢S) T u+ 57 p== FVL'PL(M) nA.A(cf)S)}

x [+ B A | B +2 14 - a8AG0 | B m -

and using the bispinor expansion of 75(p) from equation 3.53, inserting o = e* /47

i [ e onlis -

x E(p', x)
x { [(frp(ass) + FP( p)+ —wws ) ( _ 7%)) ARA( %)} (3.60)
x [1 + iﬁﬂws)} (p,z) +2 {1 + —nA(zzbs)] E (p,z) (m )}.
Factoring 7,(¢,) and 75(p)
= s xoe 25— 1]
x E(p',x)
(3.61)

A [ron (1- 22208260 ) + = P0) (14 52— ABA @) + (67
X [1 + iﬁﬂ(%)} E(p,x) +2 {1 + %%ﬁﬂ(qss)] E(p,z) (m —13)} .

Expanding the brackets

{1 _ut Sﬁﬂ(qbs)} [1 + Lﬁ&\at@zas)} 1+ L (1 - u+s) ADA(ps) =1 — Lﬁﬂ(%)
2up_ 2p_ 2p_ u 2up_ (3.62)
s L — 1 . — . L ERAY e . 2u+ s | '
{1 + A4 (¢>S)} [1 + %—_nA.A(dxg)} =145 - (1+ 2u) AAA(B) =145 - AAA(s),
and inserting in the matrix element
/ _ o 1 .| su 2 2y 5 2 o2
M(p,p)—Qﬂ_/s/z/ui(quS)ZXexp{z|:u+s(p m) 7u+s(m +A) u)\:|}
x E(p',x)
_ R _ 3.63
<A roto0) (1= omiBA @0 ) + =P (14 5o BA @) + (6] (369
2up_ u+s 2up_ u+ s

X E(p,x) +2 [1—&-21)%71574(:;55)} E(p,x)(m—p)}.

3.2 Sandwiching between the Ritus matrices

The sandwich between the Ritus matrices of a matrix I' can be taken using

E@,2)TE(p,x) = exp{—iAS(x)} E(p,2)[ E(p, x) (3.64)
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where, under the conservation laws p’ = p_ and p’, = p, the phase difference is

AS(z) = Sy(x) = Sp(z) (0L =p-)

¢ LY.
=—(p’—p)~w—/ dso(p p;_A(sp)) ('L =pi. 0 =p-)

] / .
e R e I E e (R

=—(p/, —pi)p = |AS(z) = —(p), —p1)o|

(3.65)
Specifically, in our case we have for 7,(¢s) [1 + anAA (gbs)}

E(p,2)ip(6s) 1+ anBA (¢:)] E(p,2)

= B(p,2)p () E(p, @) [1+ anBA(6.)]

n

= |Fp(ds) — (mp(ds) - A(9)) 5

po 2(po)?

[1 + anAA (¢s)]

+ (mp(ds) - ) (A“z” A (‘”)
p_

_ [ i A A(9)
= |70(65) +A) = (mp(65) - Al@) - = T
P Ay . Ao)

p— 2p_

o] [+ oasace)] »
) 66
I 2
i+ A(g) — [(p— A(¢s)) - A(9)] - A2p(i¢>)
p-(Algs) — A@9)) . A2(ds) + A2(8) — 2 (A () - ,4(@)4 [1 4 oS )]
P e .
P AAgs) . (DA (9s)

n
p— 2p_

_ :ﬁ_ Alos) + n:| [1+anBA (6)]

=[5 (A0 - Aw) +

= -;a — AA(s) + [1+anAA (40)]

= Faa(¢s) [1+anBA (g,)]
and similarly for the other quantity P(p) [1 + arAA ((bs)]

E(p,2)P(p) |1+ anAA (qss)] E(p,z) = Palds) [1 +ahAA (@)} 7 (3.67)

where the following two momenta were introduced

n?

3 [AA(@.))

Tl)‘
T aa (6s) =0 — AL (65) + o (e AA(0) -

2

1 A 1 A 1
PA o (p) =" / dy A <¢ys>+;(p- / dyAAwys))—z’;( / dyAA(qsys))

(3.68)

Carrying out the integrals over the variables «; and 7, which provide delta func-
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tions enforcing the conservation laws p, = p/, and p_ =p’,
/ _ ﬂ:} ro_ ’_ fﬁ ex i(p, — 1
M(p',p) = (2m)*5 ('L —p1) 8 (b —p-) 27r/¢ p{i (p} p+)¢}/s/u(u+s)2
Su 82
Xexp{i [u+5 (p2 _m2) v (m2+A) —u)\2:|}
X {ﬁp,AA(¢S) (1 - 2

(3.69)

® AARA (¢S))
up_—
2u+ s

2up_

. L . 1 = .
b Paaen ) (14 5o ABA (00 ) + @i+ 2 |14+ -aBA 00| m -}

Inserting the full form for A from Observation 3.1.1 and 7 (¢;), given by

_ U+ s
_Zup_

/ Ly (AAL (6y))7 (f LA, (%))T - s - [ LA, (%)]2 ,

A (9s) 2up_

(3.70)

the matrix element becomes

M’ p)
= Cra (el —p) o6l —p) 5 [ewliGh—p) o} [ [ o

2
.| _Su 2 2 S 2 2
_ _ A) —
Xexp{z{u+s(p m) u+s(m + ) u)\}}
s

X Q7 s) [1—

{ﬂ’p,AA(d))[ o
n s <u+s
u+s \ 2up—

+2 [1 + 21)%7}574 (%)} (m —ﬁ)} :

— S 2u
2YAN s _ 1
nAA (¢ )} + u+SPAA(¢S)(p) { +3

L v (%)}
up_

[AAA%) -/ CayaA, (asys)] 2> A

/ Ly (DAL (60)° ( / A, (¢ys>ﬂ

B 2up_

(3.71)

3.3 Mass operator renormalization

The mass operator we have found diverges in the same way as the mass operator
of a spinor particle when there is no external field. By subtracting and adding the
vacuum contribution, the plane wave mass operator can be written as

M = (M — M(A=0))+ M(A=0), (3.72)

such that we have the regular part and the vacuum contribution, which is divergent.
Renormalizing only the vacuum part, i.e. M(A =0) - Mgr(A = 0), we get the
renormalized plane wave mass operator, now regular

Mr=(M—- M(A=0))+ Mgr(A=0). (3.73)
Evaluating the matrix element in vacuum

M(A=0) = 0% (o ~p1) s (- —p) oo [ en (i —p0) o} [ [ s

x {{ U (2 m2) = 2 A2H (3.74)
exp< ¢ —m~) — m° —u .
P u-+s P u-+s

(o)
- m .
u—i—sp
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The mass operator renormalization of vacuum QED is standard, and is carried
out by employing the condition [VS75; VS71; Kail8; Mic19]

OM (A, = 0)

My (4, = 0) = M (A, = 0)=M (4, = )| —(p—m) === (375
p=m P p=m
at the on-shell renormalization point p = m, p* = m?2.
The vacuum matrix element 3.74, evaluated on-shell is then
/ / & .y 1
M(A=0) ‘ﬁ:m =(@m* (L —pL) o (Pl —p-) o /(#exp {i (P} —p+) <1>}/S/u e
X exp {z [_u n sm2 - u)\2:| } (3.76)

u+ 2s
X{u+sm}
For calculating the derivative in the vacuum case
OM (A=0 ,
P =m0 -p) a6l —p) - [ewliGh -~ e [ [ s

2
X su 5 2 S Py 2 u . 2su u
X — — — uA X -2
eXp{l{u—s—s(p m) u+sm “ }} {u+s+zu+sp[u+sp m}}

Evaluating the derivative 3.77 on-shell

(3.77)

=ena el —p) o6 —p) 5 [ewliGh—p) o} [ [ oo
xep {i[--m? - 7] | (3.78)
i B I O el e

The renormalized vacuum mass operator becomes

Mg (A=0)=—(2m)% (p'. —pL) 5 (- —p7)2 /%p{Z -+ ¢}// OEwE

52
X exp {z [— m? — u)\2:| }
u+ s

isu , o 2 u o u+ 2s u u+ 2s 2} . }
- 2 - 1-2 - .
X{exp[u+s(p m)}x(u_’_sp m)+u+sm u+s{ zu+sms (p—m)

(3.79)
Then, the difference My (A =0) — M (A=0) is
Mr(4=0) =M (4=0) = ~Crs () —p1)o (0 ~p-) 5 [ e {iGh—pi) o} | [ oo
NS
X exp {z [_u m Sm2 - u>\2:| } (3.80)
u+ 2s _u _ iu+28m2s 65— m
X{u-l—sm u+s|:1 2u+s :|(p )}
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The renormalized plane wave mass operator becomes, from condition 3.73

M@, p)
=@ ~p) 86 —p) 5= [ liGh —p)a) [ [ g e [ ]}
SIS
[Fpaaen) [1-

b <1;:_S [ arsac @ ([ asae.n)

1 . — R u+ 2s u u+2s o .
21+ —nA s - - 1-2 - .
w21 o aBA )| n )| = L2y 2 (12t ) o))

2u+s

X
x AAA (m)}
2up

2up_

S

up_

AA| (¢s) — 1dyAAL (bys) :
{ /

(3.81)

which is a more compact form, but equivalent, to the one in [VS75], having the
advantage that it can be easily put on-shell and that in light-cone coordinates the
conserved quantities are manifest through the delta functions appearing in the mass
operator.

Decomposing the product v*y?~° on the gamma matrices basis {1,7°, iv*®, ic""}

B .« ad B af 0

Yy = gP% — g% + 4P + &P iy, (3.82)

the triple product can be decomposed as
abé = a(b-c) — bla - ¢) + é(a - b) + ic s’y a b5, (3.83)
Particulary, 7 (¢s)7.A and II(p)nA as
A =w(n- A) —ia(r - A) + AT - n) + iy’ papsy monP A
= —i(r- A) + Ar_ + i75’y“%aua557ro‘ (nA° +nPA%)
= —i(m- A) + Ar_ + iy ngﬁé (nPA° — n‘sAB)} T

~ 1 ~
= —i(m- A) + Ar_ +iy°yH {26“(155956} 7% =—-n(r-A)+ An_ + i’y‘r”y“ﬂ:aﬂ'a (3.84)

=|—n(r- A) + Ar_ + ir® (7.7 ")
= (P Ag — Aangm?) +ir® (1 FT) = =177 (na s — Aang) +in® (15 7)

= O Fugn® +iv° (v.F ) = \ i (7. F*r) — (v Fn) \

where was introduced

1

Fap(9) = naAs(9) = Aanp(9),  Fap(d) = Seasw T (9) (3.85)

Then, using the three product decomposition from 3.84, we have

FADA(s) = i (VAT (¢s)7) — (VAF ()7) , (3.86)
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where

AT (ps) = T (9s) — T (¢) = n"(A(¢s) — A(9))” —n"(A(ds) — A(¢)",
AFL5(0s) = apu DT (65) /2,

(3.87)

were defined. Inserting this into the matrix element

MR(plyp)

= (2m)%5 (0. —pL) S (0. —p- ) 5- /exp{z(p+ Pt ¢}//(u+ 57 X e p{ [ ujsmz_um”
X{expi[ U (2 2y - 5 A}

u+ s u+s

2 ~ _
vt SPM<¢5><p>) ARA (65)

X {(ﬁp,AAWs) + i75A«4<¢>s)(p)> - ﬁ (ﬁp’AA((z)s) C u+s
_ s {A.AL(%) - /0 CayaA, (asys)} 2>

T
+2(usibs)<1;+s /dy(AAL(QSyS) _(/ dyAAL(QSys))Q -

1 . . u—+ 2s u u+2s o .
21+ —nA s — — 1-2 —
w21 o aBA )| n )| = L2y it 2] o)

(3.88)

2u—+ s
U+ s

DenOting ‘@(pv AA(¢S)7 S, u) = Wp,AA(gbs) - AA(¢5)(p)

Mgr(p',p)

=(@m% (PL-pL)o (Pl —p-) o /exp{Z (' —p+ ¢}/§ ; (u+ Wiz XeXp{i [— + mQ—u/\QH
X{expi[ (2 2y S A}

u—+s u—+s

><{(ﬁ'p,AA(Gf’s)JFLﬁAA(%)(P))* 77 (YAZ™ (69) (0, AA(3), 5,)) — (VAP (63) P (. AA(S5), 5,1)]

"
*2(;13)@:8 / dy (DAL (6ys))? ( / dyAA, (%a))j—u;[AAL(%)— /O yaA, (¢ys)r>

1 . u—+ 2s u u—+ 2s m2 R
+2|:1+2p—7nA.A(¢5)] (mfp)]f u+sm+u+s|:172lu+ :|(pfm)}

s
2up_

(3.89)

Expression 3.89 reduces in the constant crossed field case (where A(¢) = —E¢)
to the corresponding expression from [Rit70; Rit85].

3.4 On-shell renormalized mass operator

Sandwiching between the free Dirac spinors of the same momenta (the incoming
momentum equals the outgoing momentum, i.e. p = p), using the normalization
relation 2.97 and the relations

i Uy (p)Nuy (p) = 2(n - P)ogroc = 2D _00rs
Ug' \P 'uua p)= 2]9“50’0 - _ ~
v v {UU'(p)Aua<p) =2(p- A)dss

47



and denoting

Lie = —lior(p)7° 7 o (p) (3.90)
the matrix element becomes
Mg 016 (', D)
=(2m)3% (p'. —pL) s (b —p-) o= o /exp{ - p+ ¢}// s XeXP{ [fusjst—uAZH
ol
{ : (Wp aa(os) + —PAA(% (p )) 8ol

2 [/Lm (éo‘ o'A @*(QSS) Q’Z(pr A-A(d)s) S, u)) + 50'0'/ (pAg((bS)@(pv AA(¢S)7 S,’LL))]

+ j_ p <;Lu—; u / dy (AAL ($ys))* (/ dyAA | (¢ys)) :| 21;, [AAL(%) - /01 dyAA | ((bys)} 2> 2p_ 00

+24,/ (p) {1 + —ﬁﬂ (qbs)} (m —p) us (p)}

u+2s U+ 2s
s —2om25,1, + ? {1 — 27 wts mQS} (2p2 - 2m2) 5010}
(3.91)

Evaluating the matrix element on shell (pu, = mu, with p* = m?) leads to

Mp oo (P',P)
:(2ﬂ)35(pgfm)a(p’_fp_)2 /exp{ . ¢}// o Xexp{i [,uimz,mz”

Ao )
{ : (Wp aa(ds) + +SPAA(¢S y (@ )) Sgor

— [im (Eo1o AT ($3) P (0, AA(6s), 5,u)) + 8500 (PAF (63) P (p; AA($5), 5, )]

Yoy <(u+s> [ v s @07 - ([ awsa6.m) ]—S[Amws)— [ v <¢ys>r>aa,a]

u+ 2s
—m2m250/0}

(3.92)

Changing m?s = s’ and m?u = «' — u, then dropping the primes s’ — s and
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uw' — u and dropping the fictitious photon mass \?

Moo p) = (2m)%6 (' —pL) 6 (b —p-) - /exp{l(m P+ ¢}// (u+ @i < P{ [ usjs]}
AR SEREIN
X {Qp- (ﬂp,AA <¢>S/m2) + %Jrspﬁf‘@ /m2>(P)) 0o/

; |:1m (&;/aAﬁ* (¢S/m2) (Trp aa <¢ /m2> - %PAA@ 2)(1’)))

/7
+04/ o (pA,g(d)s/mQ) (ﬂ'p,A_A <¢ /m2) - Qu:ss,PAA )):|
+ <z /01 dy (AAL (¢ys/m (/ dyAA | (¢y /m2)> :|

u(Tj-) {AAL(qﬁ/ 2) — / dyAA,; (¢y oz )r>5(,,a]

u 4+ 2s
i 2m250/0}.

(3.93)

Changing notation ¢g/,2 = ¢ —2-52= 1 ¢, = ¢ — 25528

m?2 uts m?2 uts

MR,o/o(plyp)
=@M (PL—pL)o (Pl —p-) o /exp{Z(m P+ ¢}// wts)? < P{ [ usjs”

X{exp |:—z"12u+8 / dy (AAL (dys) (/ dyAA | (dys ))2

2p - s _ [ .
x { P (ﬂp,AA(¢ )+ T PAA(an)(p))

s [zm (sg/gAff*ws) (mm)— “fs%ws)(p)))

+3,1, (pAﬁ((bs) (Tfp,AA(¢ ) — 2u+SPAA(¢ ) (P )))]

u—+s
S
u

/ Ly (AAL (82" - ( /0 dyAA, (asys)ﬂ - u(u—i) [2au0- [ LA, <¢ys>r> 6]

u+2s_ o
————2m0,/y ¢ -
u+s m UU}

(3.94)

Defining now the dimensionless quantities corresponding to 3.85

§.(0) =AL(9)/m, A& (ds) =& (¢s) —E1()
Cg,o, = —Uy (p)’y5'y“ug(p)/2m = féf,g/Qm (3.95)
§(¢) = T (¢) fm, AL (¢s) = AL (6s) — £ (9)
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where (!, is the covariant spin-density matrix [Sei+18], the matrix element is

Mg, 1@, p)
« 32
=(2m)® (P, —pL)o (. —p-) EAEXp{i (P, *p+)¢}// ﬁ XeXP{i {7u+s}}

x {exp {*H [ av e, @0 - ([ avae. (%))QH

S
2p - s — 5
x [ p (Wp,AA(¢ )+ s SPAA(e»s)(P)) olo

(3.96)

1 . 2
i2 o [ (o ad@0) (mraa(00) = 2P0, 0)))
up_ u+s

2u +

~isrs (187 0) (mp2a@0) = 22 Pa s ) )]

m? <f [/01 dy (A&, (6ye) (/01 dyng, (%))2] - % [Asl(m) - /01 dyAE, (¢y5)r> 5}

u + 2s
- 27”250’,:} .
u+

S

The following simplifications can be made

2u+ s
U+ s

PHATFuw (¢s) (Trp,AA (¢s) — PAA(¢S)(P))

2u—+s
U+ s

= DA Ao (65) — v Ap(65)] (frp,AA (6s) — mmsﬂp))

= A o (62) — o Au(6)] [-24 00 = 22 (= [Tayaar 0 )]

2u+ s
U+ s

1
= A [y Au(9s) — v Au(6s)] [—AA” (60) + [ avaar (%)]

3.97
2u+ s ( )

u+s

= Bl A (6] [-AA7 (6 + 2 Cayaa (600

2 1
uts / dyAAY (¢ys)) (Lorentz gauge and A = O)
u+s Jo

2u+s [1
[ anna. (¢ys))
u+s Jo
2u+ s
u+s Jo

o AA(6e) (—AA” () +

=p_AA, (¢s) - (AAL (ps) —

1
— m?p_AE, (6s) (Ag (6s) - dyAE (¢ys>> ,

p- (ﬂp,AA(qﬁs) + %_FSPAA(%)(I’))

= (1+ F) o (a0 + /O1 WAA Gy )+ (Ad () + /01 WA, )

B % <[A.A(¢>s)]2 4 %Jrs (/: dyAA(d’ys))Q)
(ot )

S u S S 1 2
— 2p-(wp,AA<¢s>+—PAA<¢S>(p>) = U2y n? 2 <[A5L (@] + ( [ anse <¢ys>) )

u+s u—+s u-+s
(3.98)

where in the last lines the notation from 3.95 was inserted.
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Using these simplifications, dividing by m?, the matrix element becomes

Mg, 10 (® D)

2 . :(27f)35(13/l*PL)ﬁ(p/,*pf)%/d)exp{z( —pt ¢>}// r )2 xexp{—zu_is}
x {exp it [ avaes 6= ([ avae. 6,0) H

u+ 2s 2 s 1 2
x [u+ 2+ (166 @+ ([T dnse 000) ) b

+z*f <CU/GA5(¢3) <Tfp,AA(¢>s) - 2:_:_:73AA(¢5)(P)>>

+25,0,08 00 (a6s (00 - 252 [Tayae, 6,0))
+ <; [ avses @0 = ([Lavse, 600) ] - s [aei @0 - [anse, (¢ys)r> 50/6}
_LQS%G,G} _
u—+ s
(3.99)

After simple algebraic manipulations, by collecting terms, the matrix element is

W%M:(mm(p;—pi)é( -p-) 5o /exp{Z(m P+ ¢}// (u+ exp{—iusjs}
x {exp —i 52 : {/01 dy (A& (Bys))” — (/0 dyAE | (¢ys)) 2”

<Z++2;2+ N A (%))2) -

+z;f (CU o AE(ps) (Wp,AA(¢s) T uts PAA(¢S)(17)))

(2] wise @?] - 2222 a0 [ audes 0,0)] Yoo | - 2200, )

U u+s

Collecting the (u + 2s)/(u + s) terms

MR,U’U(P/J))

) oy (6~ p1) 8 (6~ 1) /exp{ N e

2t fon [0 [ [T i@ 000 - ([Tavae 60) ]| -ew =255 ]
[ +/0 dy (A€, (6,)) — (/Oldyag (¢ys>>2H
x [(““s [Ag, (8] - 22— (/0 dyAE, (%))2) 50t

2 3
il (%Asw ) (wp,AA(m) -2t me.g)(p)))

s N s 2u—s 1
+<Z L/O dy (A€ (dys)) ] T uuts |:A£L(¢s)-/o dyAg, (¢ys)}>5g/a}}~

+exp|:

(3.101)

Therefore, the matrix element can Mg (p/, p) can be cast in the form

Mg (p,p) = 2m)*0 (p', —p)d (. —p-) / dpe’ PP M (0 p, ¢) (3.102)
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and defining Mg . (p',p, @) as

MR,O’/U (p/>p7 ¢) = ao‘ ( )MR (p b, ) ( )/Qm (3103)

where the spin orientations along the spin quantization axis can take the values
o' = #£1 and o0 = £1, we see that

AARGUTPM 471'// u+s)2

X { 1;12 o |:exp|: u+s dy(Aei (dys))” = (/0 dyAg, (%5))2]] fexp{fiui}
[1+/01dy (ae, 6,0 = ([ avae, ma)ﬂ
x [(“*28[ €L @ -2t (/ dyAsums))z) 510

+zfpf (Ca/aAf(qb ) (%,AA(%) - 25+ Paa(ss >(P)>>

+ <§ [/o dy (A€ (¢ys))2:| _ 525+ SS {AEL(%)/O dyAg | (¢ys):| > 50/0} } ’

+ exp

(3.104)

which will be used next in obtaining the mass shift using the Schwinger-Dyson
equation. In spin space, writing the components

e 2 ot
x {27;12: |:exp {—iui {1 Jr/u1 dy (A& (bys))® — (/OldyAgL (%S)YH ,exp{,iuis}}
rom [ [0 [ o - (f wse )]
« [(fff ag, (6] - 22— (/OldyAh (¢y‘9))2>

-prf (CiiA£(¢ ) <7rp,A.A(¢s) _2ud TQPAA(%)(P)))

U+ s

S S 2u — 8 1
([ avae o0r] - 2222 [aesw [ aaes @,0])] )

(3.105)

and also for the off-diagonal terms in spin space

Mpax (0 9) //
m 47rsuu+s

x {exp [ 1+ [ Ly (A&, (6,2))° - ( / Layae, <¢ys>>2H (3.106)

X [Zpl— <<i$A£(¢s) (%AA(%) s SPAA(%)(p)))} } 7

U+ S
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Mass shift and anomalous magnetic
moment

4.1 The mass shift of the electron

The Schwinger-Dyson equation in terms of the renormalized quantities is

{Wﬁ@r—AM¢H—m}W@%Z/ﬁ%Nh@WwW@) (4.1)

where W(z) is the spinor of mass m in the plane-wave background A*(¢) = e A ().
In order to identify the mass shift, the ansatz for the self-energy corrected Volkov
state can be taken of the form

U(z) = fo (p.¢) E (p, ) us(p), (4.2)

where f,(p,®) is the correction factor that includes a correction ¢ f,(p, ¢) of the
order of the mass operator, which is O(«), i.e.

fo(p, @) =1+0fs(p,0), 6fo(p,¢) = Ola). (4.3)

Similarly, as it will be shown below, the ansatz in 4.2 can be viewed as a Volkov
state where the Ritus matrix gets mass shifted (of dm,(p, ¢))

U(x) = E (P, ) |(m+5meo (p.6)) o (P) (4.4)

which will help relate f,(p, ®) to the mass shift. To determine the mass shift, notice
that to the first-order in «

(,i’ / ! /
Fo(p, @) = el 403550, (4.5)

where the prime over 0 f, indicates the derivative with respect to the light-cone
time ¢. To see that the shift 0 f.(p, ¢) can be expressed in terms of the mass shift

dmy (p, #), notice (on-shell p, = (m? + p?) /2p_)

\I/(CC) = fo (p7 ¢) E(p, $) ua(p)

~ 2
b st A i —pro—p_Tp, @ —[Pd [(P-A(«?))_A’(v)}}
— e./od) de’'sfl (p.¢") 14+ M el{ P4+ ¢—P pyey — [ de P_ 2p_ Yo (p)
2p_ (4.6)
aA(¢) l{ﬂ J§ do'5 85 (p.#')— [ ds’ (m?+p2 ) /20— —p_T+py @ —[§ de [LP-;\M) _ Ajpm} }
=Pt | - = Hus(p).
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Using the two equivalent forms from 4.2 and 4.4, that is f, (p, ) E (p, z) u,(p) =
E (p, %) |mtomy (p,6)Us(p) and that the interaction with the plane wave (from the
self-energy diagram) conserves the momenta p_ and p |, such that the change can
be only in the p, component, i.e.

L + ﬁ;j?(ﬁb)] ei{ﬂ' IS d¢'5 1, (p.d") = [ d¢' (m*+p7) /2p— —p-_T4+p, @i~ [ do [W*%} }ug ()
= |1+ ﬁ;;((b)] ei{*-ff 46! ((met6mo (0:9))*+91 ) /20— —p-T+pr 21— d“"[wf%”ug(p)
(4.7)
it can be identified that
¢ ¢
i [ 4085, (0.6) + 2o/ = [ o' (et Sma (0,6 02
0 0 . (4.8)
= mo/2- + [ do'zmdm, .o/ 2p-
0
such that if 5 f (p, ) ~ —imdm, (p, ) /p—, then
—i [P 4 Sme (p,d!
R (4.9)
which is valid under the assumption (m/p_) ‘fod) d¢'om, (p,¢')| < 1.
Equivalently, the change in p, can be written as
—i0p. o (p, ¢') = —imdm,(p, ¢') /p- (4.10)

where pi = (m? +pl) /[2p— = py + 0ps0(p,0) = ((m+ Mo (p, 9))* +p7) /20—,
while the other momentum components are unchanged.
4.2 The Schwinger-Dyson equation

Summing over the two spin components to get the unpolarized state, the substi-
tution of the ansatz for the mass shifted Volkov state 4.2, of the form

_im D g1 me (p,¢’
U(a) = B(p,a)e# 0 @oma ey ) (4.11)
into the Schwinger-Dyson equation 4.1, leads to

(7 [i0 — Au()] — m} E(p, x)e” 7= 10 9/ ome @2y )

m / , 4.12
N / d'y Mg (e, y)B(p.y)e 715 00m 0y (). )
Knowing that
di dw .
Mae) = [ i e P02 Ma 01 E (1), (4.13)
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and dropping the 6 f, = O(«) as Mg(l,l') is already of order «, the equation is

(10, — Au(®)] — m} B(p, z)e” 7= I 4 0me 0y, )

/// (1, &) Me(LU)E(', y) E(p, y)us (p), (4.14)

where the shorthand notation for the integral (not writing explicitly the measure)
has been used.

Using the completeness relation 2.107 of the Ritus matrices to get a momentum
space (2m)%04(I' — p) and integrating over I, the Schwinger-Dyson equation becomes

_im LY m /
(07 10, = Ay 0) = m} B(p.a)e” 550D ) = [ B0 Mall,phun ). (315
Inserting on the RHS the form from 3.102, while on the LHS using that
Y [i0, — Au(9)] E(p,x) = E(p,x) [p + 7"10,] (see Appendix A.1 for the derivation)
and that 0,9(¢) = n,059(¢)

(B(p,2) [(p — m) + indy]} e 7= I 200y ()

, (4.16)
/E (1, z)(2m)302 (p, —11) 6 (p_ —l,)/d¢e_z(p+_l+)¢MR(l,p7q§)ug(p).
Using the on-shell relation (p — m)u,(p) = 0" on the LHS
[E(p,x)indy) e w2 I d0'0ma (p0') g (p)
(4.17)

/E (1, z)(2m)30% (p, —11) 6 (p_ —l,)/d¢e_i(p+_l+)¢MR(l,p7q§)ug(p).

Applying the ¢-derivative to the exponential on the LHS and keeping only the
O(0m4(p, ¢)) terms, the equation becomes

[E(z», D5 (.6)] w0
(4.18)

= /l E(l,z)(2m)%6* (p) —11)6 (p— —1_) / dpe ™" P+~ Mp (1, p, §) uo (p).

Projecting by E(p,r) from the left (using E(p,z)E(p,r) = 1) and also that
5 (p, — 1) 0 (p- — L) B(l,x) = 0 (p, —11)6 (p — L) E(p,2)e® )%=, the
Schwinger-Dyson equation is

2 (5,6)] s )

(4.19)
= [0 0 208 (b~ 1) (p 1) [ doe O M (19, 0) 1o ().

l

Integrating over I, and [_, only the [, integral remains

|:ﬁm5m0 (p7 ¢):| U’U(p) = /l ei(p+—l+)¢>w /d¢e_i(p+_l+)¢MR (lvpv (b) |lL:pL7l—:p—uU(p)' (420)
+

L'See 2.96
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Since Mg (I, p, ¢) does not depend on [ as found previously, we can pull it outside
the [, integral and change the order

7 5m (9,0) e () = / d6M (p,p, 6) / PGy (). (4.21)

— l+

Using that [ %6_“*(%_@ =0(¢z — ¢)

ﬁ}%%m@%@=/memwmmwwwm=@%@. (4.22)

Integrating over the ¢ and dropping the x from ¢,

ﬁ}%um@w@:wmmgw%@. (4.23)

Projecting by multiplying by @, (p) on the LHS

}M%m@m@wmmzm@mmmn@%@. (4.24)

Using @y (p)nuy(p) = 2p—_040
pﬁ_(sma (pa Qb) 2p750’0 — U (p)MR (P7P7 (b) Us (p) =0. (425)

Diving by 2m and plugging in the expression from 3.103

6mo (p ¢) do'c — MR oro (P, p,$) = 0. (4.26)

Therefore, the mass shift comes from the diagonal part of the matrix element

‘57”0 (p7 d)) - MR,o'a' (papa ¢) =0. ‘ (427)

Plugging in Mg ,o (p, p, ¢) from 3.105, the electron mass shift is

5mm@,g// 1
m Cdw JoJu (u+s)?
« {2u+2s
u+s

+ exp

—1

52
u4+s

exp

v+ [Layes @07 - ([ anse (¢ys>)2H —ep { i
52

= +/Oldy (A&, (6ys))? - (/Oldyag (¢ys>)2H

X [ B2 (ag, (p))? 22" (/Oldyagwys)f

U+ s uu-+ s

—1

2u+ s
U+ s

+z5pi_ {g}mAé(qﬁs) (np,AA(¢>s) - PAA(%)(p))}
s 2u — s

+5 [/Oldy (Ag, (¢ys))2} o e [AEL(¢5)/OIdyA£l (%S)H }

(4.28)
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4.3 Electron mass shift in a linearly polarizated
plane-wave

Expression 4.28 simplifies if a linearly polarized plane-wave background is used,

A (¢) = Apa"y(9), (4.29)

with the amplitude Ay < 0 and profile shape ¥ (¢), under the gauge fixing condition
a® = 0, which completely fixes the Lorentz gauge, and where a (normalizated to
a® = 1) defines the direction of oscillation.

For example, for a monochromatic plane wave of angular frequency w, and peark
electric field Fy, the amplitude is Ay = —Fy/wy and a choice ¥(¢) = cos(wp¢), while
for a constant crossed field case Ag = —FEy/wy and ¥(¢) = woo.

The field strength tensor F*(¢) and its dual F*(¢) (see 2.53) are

Fi(¢) = Ag"'(9)  F™(¢) = AF"'(9), (4.30)
with the corresponding amplitudes given by
AR = Ag (nta” —n"a"), AR = (1/2)"™ Ag - (4.31)
Using 3.85 similar but dimensionless quantities are defined as
& (g) = T (o) /m,  E(9) =T (¢)/m, (4.32)

having the corresponding differences

A (6,) = [6(6,) — € (6)] fm, AG(6,) = [€7(0,) — €”(9)] /m. (4.33)
Defining the spin 4-pseudovector (see Appendix A) [PP21]

(" = =0t (p)V° 7y ue(p) /2m = o, (4.34)

where 0 = +1 is the quantum number describing the spin degree of freedom of the
spinor u,(p) along the chosen spin quantization axis. Choosing the spin quantization
axis parallel to the magnetic field axis in the electron rest frame, it can be written
as (Appendix B.2)

("= —Abp,/ (p-Ao) . (4.35)

Defining the 4-vector

V() = P (@)pe/mBe = F(0)po/meEe = (£(0)p) /eFer (4:36)

the local quantum nonlinearity parameter can be written as

Bex=m?/e|

X(¢) = —p-An)'(¢)/mEe; = —(CX(¢)) —p-eA(¢)/m*.  (4.37)
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Then, the spin-dependent factor from 4.28 can be manipulated as

1 ~ 2
2 o800 (mpaa(0) - 22 Pane )]

1., - 2 '
:wipi CA&(s:) (—uisp—m (¢5) + ﬁj /O dyAAwys))]
= ZO_'Zpl_ — N(QSS) :|
s 1 ®s

=i - |- a5 ¢ (3)] p] (4.38)

sebe U $a o o

. selg U oo - 7
= o e {_u+s/¢ Px ¢>}

Ecr " 7

— o i - epi dox(9),

where in the third line A&(¢,) - AA(¢,) = 0 and A&(¢,) - n = 0 were used.
Changing ¢ = ¢ys = ¢ — 2uysp—/m(u + 5) = y(¢) = (¢ — §) 5=

2usp—
*7_ |:CGUA£~(¢S) (WP,A.A(QsS) - 2u + 8 ¢a >:|

. s eBEy 2usp_
_ d = 4.39
ZO—u-l-sp m2(u+ s) / yx(9ys) (Eer = m?[e) (4.39)

2
= QZUﬁ /(; yX((bys)v

such that the matrix element becomes

omes (p:¢) _ o 1
m e /;A (u+ )2
2

) {21;1235 exp {z ° 1+/Oldy(A@ (¢ys))” = (/OldyA@ (%))QH feXp{fiuis}
2

u—+s
. 1+/Oldy<A@ (asys)f—(/oldyag (¢ys>)2H

2

rewp
“u*fs @, 62 —22 = ([ aune. %))2

+air 2 [l

Y [/0 (& 007 - S22 [aeson [ avses 6,0]]}-

(4.40)

Due to the fact that the expression in 4.40 is non-local, a local expression for the
anomalous magnetic moment of the electron can’t be generally obtained. However,
employing the locally constant field approximation allows the extraction of such a
local expression.
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4.3.1 Locally constant field approximation (LCFA)

In the locally constant field approximation the factor is expanded to order O ((¢s — ¢)?)

and the phase to O ((¢s — ¢)3) and assume that the external field oscillates slowly
(such that space-time variations of the field can be neglected) compared to the
timescale of the process considered (emission and absorbtion of a photon), that is

wp_
b (4.41)

The phase difference is given by

2sup_

s (4.42)

¢s = ¢ —2usp_/m*(u+5) = ¢ — ¢ =—

From 4.37, x*(¢) is calculated as

X(9) = —p_ At (9)/m® = x2(9) = (p-)? (Aot (9))* /m® = (p_)? (€'.(¢))” /m", (4.43)
and the Taylor expansion of x(¢,s) gives
X(¢ys) = X(0) + (dys — &) X' (6)

N 2syup_
~x(¢) - (u+ 5)ym2 < (¢) (4.44)
! 2sup_ ! N L 2sup— ., .
= /0 dyx(qbys) = X(¢) - WX (¢)/0 dyy ~ X(¢) - §WX (05) = X(¢)7

where in the last step (of the integral) the LCFA relation from 4.41 was employed.
The following Taylor expansions follow

ASJ_ (¢S) = EJ_ ((155) - £J_ (¢)

d y d2

=&, (¢) +(¢s — 9) dTSfi (¢s) . + (¢s — &) 0 €1 (0s) . + O ((¢s — ¢)3) -£&, ()
d 5 d?
= (¢5 - ¢) @gl ((bs) P + (¢5 - ¢) d¢§ EL (¢5) " + @ ((¢s - ¢)3)
= (s — 0) € (85) G 0)2 € (¢s) Lo ((¢s — 0)*)
2sup_ , 2sup_ ? "
€ )+ (s ) €L+ 0 (6. 0F).
(4.45)
[AE, (0)]° =€, (¢5) — €L ()
2
_. [ws _6)EL (6) J 1O (6. - )
(4.46)

- (—(“) € (O] +0 (60— 6)°)

u+ s)m?2

(22 el - (22) v

29



N 2sup
86,00 [ A€, o) =~ ) [ ay |-
2 1
~ Uius %El (¢>)} /O dyy
2
= % (UQius> X (9),

where in the last steps of 4.45 - 4.49, 4.43 was inserted.
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Introducing

A¢ =

[ avses o - ([ s, 0,0)

2

(4.47)
, (4.48)
=3 (2%) 2o
2syup /
o] e
(4.49)
= A/m?, (4.50)




leads to the expansion

2

Ag ~ /01 dy (A& (dys))” — (/01 dyA€,| (%))

= [ (60 - 0€L 000 )2(/01dy<¢ys¢>e;<¢ys> )
(€100 ¢) [ oo~ (€000 ) ([ avtone—o )

o) [ (gt) - (enl,) (st [ )
o () Lol () ([ )
o) () -

sup_ ) ¢, (9)°

(55
(

2

12

2

1R

€ (

12

(¢
&) (dys)
by.

(e;
1
3
1
3
1
3

12

12

Hs)Q(mQa @)

(uiLS)QXZ(@-

Inserting these expansions, the mass shift in the LCFA becomes

R

Sm (LCFA)

m 4#// (u+ )2
» {2u+25
u-+ s

+exp |—

$2

2 2

exp | — +%(usj:s) x2(¢>)H *exp{fiuis}
1 su \? 2

u+ s +§(u+ ) X(9)

u+ 2s 2su 2 s 1 2su 5 2
“uts (u+s) (¢)_2uu+s4(u+s) (¢)+2w( )2X(¢)

s1( 2su \? 2 s2u—s1 [ 2su \2 2
+u3(u+s) X(¢)_;u+82(u+s) X*(9) '

Factoring (2su/(u + s))?, the mass shift becomes

)
u+s

2

} (4.52)

sl (p, ) (LCFA)

m 471'//(u+s
2 2
x{2”+ 5 |:exp {z T i+
U+ s U+ s

2 1 su \? 2
u+s +§(u+s) xX(¢)

—1

+ exp

|

X(gsu >2|:u+28X2(¢)_2i s 1 2(¢)+ (¢)_i2u sl 2(¢)+wlx(¢)”

u—+s U+ s uu-+s 4 uu+52
(4.53)
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Introducing s = uwv = [ds=u [dv

smETD) (p, g) g/u/ 1
m ar J, Sy (u+ uv)?

2 2 2
WIT N T TEYE ) I
uv 2 uvu 2
+exp {_iu(-&-iw {1+3< +M> x2(¢>)”
2uvu \? [u + 2uv 2 uv uv 2u —uv 1 4 1
() [AE ) -2 R+ e - R ) o x| |
(4.54)
Simplifying
om& ™ (p,¢) _ / / 1
m 4w uw u(l+v)2
1+ 2v Cuv? 1 wo \2 9 Cuv?
X{21+v exp[11+v +§(1+v> X(qb)]}exp{zl_’_v}
4.55
T oxp | i 1+3( = )2 *() "
P Z 14w 3\1+4+v X

2uv 14+ 2v v2 vl 1
8 (l—i-v) {14_” x*(9) - ﬁ5X2(¢)+U X (¢)—v1+ (@ )+wx(¢)”~

Changing variables u — v’ = (v*u)/(1 +v) = (1 +v)du'/v* =

6m((7LCFA) (p, ¢) _ g/ 1 +u/ v2
m an J, wv2? w U (1+0v)3

I\ 2
X{Qll—:_iv exp [—iu/ 1+§(%) X2(¢):|:| —exp {—iv'} | +
- 1 u’ 2 2
—i |13 (2) @)
3\ v
2

AN v v2 v
x(%) [%x%ﬁ) e O L OB EL RS wx(@]}-
(4.56)

+ exp

Dropping the primes and simplifying

w - %/u/v u(l-lmﬂ
x {21112: [exp {fw [1 +% (%)2x2(¢)H - exp{*iu}} +

+exp {fm {1+3( ) 2(¢>)H

2u 1420 5 v 1, 1, 2—vl , ) v?
X( ) { X7 () — ——x (¢)+U§X (¢) —v 22X (¢)+102(1+U)ux(¢)]}-

v 1+v 14+v2 1+

Factoring in u/v? and simplifying
MLT:W - % /u/v u(lj—v)Q x {1112; {exp [ﬂu {1 T % (%>2X2(¢)H _ exp{fiu}}
+ wexp {fiu [1 + % (%)2X2(¢)H
w2—v .

1+2002(0) 0 x2(9) L ul, 1 ]
) {21—#1} NER PUpre u+25§X (¢)7;mx (¢)+wl+vX(¢) }

(4.58)
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Factoring x?(¢)u/v?

Miﬁw 2 i {2 e [ [+ (2 20| - e ]
+uexp [—m (1 + % (%)2 x2(¢))] (4.59)

x [(21+2” o? +2”—(2_”)”) Xi(f)uﬂalivx(@}}.

1+v 14+v @ 3 1+v

Using the identity?

/“x’ dudv 14 2v *W[lJréXﬁU(ﬂ 2] —iu X2 (¢) [ dudv 7lu[1+§xﬁ(ﬂ l14+v—-302 u
e —e _——,

o u(l4+wv)2 1+w 3 Jo (140v)2 1+v 02
(4.60)

and factoring out 1/(1 + v)

smLCFA)

e AR
x {exp {—iu (1 + % (%)2 x2(¢)>] (4.61)

x [(—# £ 2(1 4 20) — 0%+ w - (2 —v)v> @Hiox(d’)} }

which after simple algebraic manipulations becomes

omS ™ (p,¢) _ / / 1
m 2 Ju Jo (1+0)3

(3 0)] < [(E5) 0]}

The mass shift can be split into a spin dependent and a spin independent part

(4.62)

o (p,6) = omg 1y (p, 6) + 0me ™ (p,6), (4.63)
with the identification
Imote (P 9) _ / du / R
m 0 (1 + v)
1 50 + Tv+5Y x*
{exp { iu (1 + § — ))] X [( Y +3U + ) Xv(j))u} } ) (4.64)
S (LCFA) (p, 6 - o ) )
# g . Ll u 2
- =iox(o 271_ ; du ; dv xexp{ zu(l+3(v) X (gb))}

2For a proof, see Appendix C.1.
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Observation 4.3.1 Substituting u — 7 = u/z = du = zdr ° with z =

v/x(9),
6mgLCFA) (p, ¢) _a /oo o P
m 2w Jo (1+v)3 ] (4.65)
x /OOO dr {exp {—iz’r (1 + 572)] x {(75”2 +37” + 5) g + iax(‘ﬁ)} }
5 (LCFA) - -
e WP ) =2 dv ! (5'02 R 5) X / drt {eXp |:—i h (7’+ 173)]}
m 27 Jo (1+wv)3 3 0 x(¢) 3
(4.66)
(LCFA)

S o [t fy e s ()])

This result for the electron mass shift in a plane wave background, within the
LCFA, generalizes the constant crossed field result from [VS71], with the quantum
nonlinearity parameter depending now on the phase, i.e. x = x(¢).

®The 7 here does not represent the light-cone time.

2 _2
Observation 4.3.2 Denoting t = u (X(¢)> ? = u/z, z = (X(‘b)) P du = 2dt

v

omG (p,¢) o / z
m 2 Jy (1+v)3

[ ] [ & o]

Writing the mass shifts in the form

(4.67)

5m§%§f§ "¢ o / 1
v 2(

m o 1+v)3

X /t{exp [—i (zt+ %t"’)} X KW) t]} (4.68)
e o f s Lo [ (1))

makes transparent the comparison with the constant crossed field result from
[Rit70], and generalizes it by letting the quantum nonlinearity parameter depend
on the phase, i.e. x = x(¢).

Within the LCFA, the spin dependent expression for the mass shift from 4.64 is

now local (unlike the expression from 4.40), such that it can be used to extract a
local expression for the anomalous magnetic moment of the electron.
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4.3.2 Electron anomalous magnetic moment in a plane-wave

In the rest frame of the electron, the real part of the mass shift dm, LCFA) (p, 9)
can be interpreted as the interaction energy —du“C*4) . By(¢) of the Change in
anomalous magnetic moment with the magnetic field By(¢) [Rit72; VS71]. This
provides the condition

Redm ™ (p,¢) = —5pu N . By(9), (4.69)

where 6puMCFA) is the shift of the anomalous magnetic moment of the electron in

the LCFA and By(¢) is the magnetic field of the plane wave in the rest frame of the
electron.

Then, knowing that we can relate the shift in the magnetic moment op
the shift in the gyromagnetic factor of the electron §g(LC*d = ¢(LCFA) _ 9 ip the
LCFA, by the relation

—Sp(LOFA) — 54 (LCFA) (5 /9) ¢, (4.70)

(LCFA) ¢,

where, in the rest frame (o, = (0,¢), up = |e|/2m is the Bohr magneton and
§gCFA) is the change in the electron gyromagnetic factor (in the linearly polarized
plane wave background), we have that

st m sm™ (p, ¢)
2 ous (€ - Bo) m

In order to compute 4.71, first notice that in the rest frame, where p* = (m, 0),

¢H = (07C)’ and FZO(QS) = _Bé(¢))

X(¢) = =2 B (X" (¢)
X*(@) = F*(¢)p,/mEq

A straightforward computation gives then, plugging 4.62 and 4.72 in 4.71, the
value of the electron gyromagnetic factor, as follows

W e [ [ Lo [ (141 (4 @) honeon)

1 |1+ @2] T 9
=@ By Lo 3 ][“BC Bo(o)

o0 dudv *W[lJr%L(f)uQ}
=—— Im Y .

(4.71)

} = Xrest(¢) - 2MBC B0(¢) (472)

(4.73)

where Reiz = —Im 2 for z € C was used in the last line.
Recalling the 10" = lim._,o+ i€ pole prescription from Equation 3.16 to evaluate
the integral [ due™" 0+ — (1 4 4e)™" — —i, the gyromagnetic factor from

Equation 4.73 reproduces Schwinger’s result dgo/2 = a/2m when the background
field is removed, i.e. x(¢) — 0.
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Conclusions

In conclusion, the mass operator in the presence of an arbitrary plane-wave back-
ground field was obtained for an off-shell electron.

Putting the external spinor states from the mass operator on-shell and solving
the Schwinger-Dyson equation, the mass shift of the electron was determined. The
obtained expression for the electron mass shift simplified by specializing to the case
of a linearly polarized plane-wave background and choosing the spin quantization
axis along the direction of the magnetic field (of the plane-wave) in the electron
rest frame. However, the electron mass shift featured a nonlocal dependence on the
plane-wave field, which prevented a convenient description of the spin-dependent
part in terms of an electron anomalous magnetic moment.

To obtain a local expression, the locally constant field approximation was em-
ployed, which allowed the extraction of the anomalous magnetic moment. As a
consistency check, removing the background field led to Schwinger’s famous result.
The electron mass shift in the locally constant field approximation generalized the
expressions for the constant crossed field case previously studied in the literature.
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Appendix

A Volkov states

Theorem A.1 Denoting the Ritus state |E(p,z)) = E(p,x)|?), where E(p,z)
is the Ritus matrix, the following holds [Rit70]

I(¢)| E(p, ©)) = #p(8)|E(p, z)) = | E(p, 2))p (A1)
where TT#(¢) = 10" — A*(¢)®
“the derivative acts only on E(p, z), but it can be generalized to act on the product E(p, x) f(x).
Proof:
P
Sy(0) =)~ [*_ao|

p-Alp) AQ(@)}

prA@) A2(¢)>
p— 2p_

= 0.5, = —pu —
uSp () Py ”u( o 2

14 ﬁA(¢):| eisp(a:) |Q>}
2p_

L1+ ﬁ;;(jﬁ)} e™Sp(@) 4 [1 + ﬁ;;w)] i&ueisf’(z) - /i(d))E(p,m)} 1€2)

= 'yum;iweisp(m) |1+ ﬁ;‘m} i(i0,,Sp())e P (*) — A((z))E(p,m)} @
« : (A.2)
p7

[ = (22D - 2N o)} iy

W(2A8_ 20
p— 2p_

e#Sp(z) Q>}

1 ﬁ;“”] (6055 (2))e" ) — A(9)
D—

)} B0l = (0B,

nA(¢)
2p_

- {W” fmgiweisp(ﬂ + Ayt

($)|E(p,z)) = 7" (0 — Au(®)) { [1 +

1+ ﬁA(¢):| eiSP(z)} 1)
2p

- ﬁAw)} SiSp(®) _ {1 )
2p_ 2p_

eisp(z)/l(qﬁ)} 1€2)

. 2 A n,
= i@ ot [y (A Oy ;‘(‘f’)] A9) + Ap(‘”}m
i@ A (PAG) A9 | pRAS) nA%(¢)
S 3 (B L O L BRE) gy 4 220 ey

p-A@) | (2p- —ip) A(9) } )

= e'Sp(®) {;3 - A(¢) + 7 +

p— 2p_

. 2p- A(¢) — A(¢)p

IO G / p)}IQ>
b— P—
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(A.3)

Theorem A.2 The state U, (p, x) is governed by the ¢-evolution equation

ia¢Ua (p7 (b? T, wl.) = K(¢)U0 (p7 ¢7 T, wJ.) <A4)

where the matrix K(¢) is given by

p-Ag)  AXp)  nA(9)
K(¢)=py + — +1 A5
(¢) = ps . o 2 (A.5)
The solution at some ¢ = ¢, for the initial condition
UO‘ (p7 Cb, T, mJ_) - UO’ (pa qblaTv wj_) (A6)
is given by
UO’ (p> ¢F77—7 ZUJ_) = M(¢F7¢1)Ua (pv ¢I77—a :UJ_) (A7)
with the ¢-evolution matrix
M(¢r, ¢1) = exp {—z‘ /¢ . d¢>K(¢)}
_ [ p-Alg)  A%(e) | AA(e) LA Ay
= exp{—z/(m d |py+ === = = i ]} (nA(¢)nA (¢') = o) (A.8)
. 5 CA(¢)  A%(9) 1 s A
=exp[—w/21 @b (s + 22D - N 1y i (Ar) - o) |

Proof:

pUs (p: &7y 1) = {ﬁi;(_qs) 1+ ﬁ;;(_d’) (=) (p+ + %i(@ - T)}
X eXp{i [— (p+o+p-T—prx1) - /j; dy [%}W - %” }ua(p)
x eXp{i [— (p+d+p-T—prE1)— /j; de (%ﬁp)) - %)] }ua(p) (A.9)
e

x exp{i{—(]?+¢+p77' —-p xy)— /_q; de {w - M} }}UU(P)

p— 2p_
(_i){(pﬁp'w)) ~ A2<¢>) LA @)

Us (p, &, 7,
D 2 2 } o (p ¢ T wL)

=K(¢)
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Theorem A.3 Denoting | A(¢) = eA(¢) | with |¢ = n - x|, it holds that [Rit85]

rw@mmwzkw@+ﬁ§@mtmmm (A10)
Alternatively
HW@M@@ZP%@ 2| Blp,w) — THG)E@.2) = 7,(0)Ep.2)

(A.11)

where 7/(¢) is the classical kinetic four-momentum of an electron in the plane
wave A(¢), with limy 1o 75 (¢) = p*, given by

- A A?
wi(0) = o — ar() + L AD e 2, (A12)
P P 2p_
Proof: Decomposing P* into the light-cone basis, i.e.
Pt =n"P, = (n'n" + n'n” — afa — afal)P,
=n(n-P)+n*(n-P)—adf(a- P)—d5(ay- P)
= (=) (- P) — ab(~PLy) — (L) s

= —n“P¢ — fLMPT + GTPJ_J + agPJ_Q
= —n(—idy) — APy + di Py + Py
=n"(i0g) — " Py + a{ Py 1 + a4 Py 5

Using that the Volkov state is an eigenstate of the momentum operator along 7 and
L ie Pinlpo) = (=)pLnlpo)

PPlpo) = [~n"Py + it'p_ + dfpy + abpLa] [po) (A.14)

Representing the momentum operator on the Volkov states, i.e.

(6,72, |P|po) = [n"(i0s) + 1'p- + aipry + aspu o] (9, 7, @1 [po)

. 3 A15
= [n"(i0s) + n'p_ 4+ a'pr 1 + abpi o) Us(p, x) (A.15)
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#(¢)Us (p, z) = (P* — A*(¢)) Us (p, &, 7, 1)

= [n"(i8y) + aFp— + af'pi 1 +abpr 2 — A(@)] Us(p, ¢, 72 1)

= [n*K(¢) + a¥p_ + al'pL1+abpL 2 — A*(¢)]| Us(p, b, 7,2 1)

o s 2D A k@)
p— 2p_ 2p_

) +atp_ +afpi 1 +abpLo— A (@) | Us(p,é, 721 )

. A2 U
= | (W"ps + Atp— +al'pL 1 +alipy o) —AH(6) + 2 AG) 5 (9) +z‘n“24 @) Us (p, )
~- p- D D
L k()
fLA/(qs) nk Uy, (p7 $)

= | @) +i%

(A.16)

where in the third line A.4 was used and in the second last line it was used that the
momentum p* is written in light-cone coordinates as

_ v _ ~v vV w v w v
" =n"p, = (nFa¥ + nfn” — afa] — ahay)py,

= n"(f - p) + 0 (n-p) —aj (a1 - p) — ay(az - p)
= (it - p) + 2t (n-p) — df (—a1 - p) — db(—az - p) (af =0)

=nfpy +0fp_+alpii+apie (pLr=ak D)

(A.17)

Corollary A.1

ﬁA’(qﬁ +¢)

I¥(¢+c)Us(p, p+c,m1) = T, (¢ +¢) +1i 2p

nt| M(¢+c, $)Us(p, x)

(A.18)

L 6+ Un(p, 6+ e.7.21) = R+ )M(d+ ¢, ))Us(p,z)  (A19)

Proof: The proof follows trivially from

0 0
’ia(ijo (P»¢ + CT, il)J_) = Z (q;;_ C) 8(¢ + C) UJ (p’d)—’_ 6 T,JZJ_) (AQO)

= 104Uy (0 + ;7,21 ) = K(¢p+c)Us (p, ¢+ ¢, 7,21 )

Hence,

28¢Us (p7 ¢ + T, wJ_) = K(¢+C)US (p7 (b + CT, ml_) = K(¢+C)M(¢+C7 (b)Us (pa ¢7T7 wJ_) (A21)
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B Spin 4-pseudovector

Measurable quantities depend on the spinors only through their density matrices
[Meulb; BPL12]

P = us(P)is(p), P& = vo(P)0s(P) (B.22)

where u,(p) (v,(p))! denotes the electron (positron) with spin quantum number
o = %1 denoting the spin orientation along the direction ¢2.

Decomposing the density matrix on the spinor space matrix basis {1, >, y*, iy#~°, ic*}
leads to [Meul)]

o = 2o+ m) (14 07°(p)) = 56+ m) (1 +05(p))

2 ) 2 (B.23)
0 =56 =m) (1+07%(P) = 56— m) (1+S(p))
where (*(p) is the spin 4-pseudovector defined as [BPL12]
o
¢"(p) = =5~ tr (p5"7"")
el . (B.24)
Fp)= —t e "
¢*(p) = 5~ tr (p77°7")

that in the rest frame (p* = (m,0)) ¢(*(0) = (0,¢) is purely spacelike, where ¢
defines the spin quantization axis and is normalized to ¢* = 1 for a pure state
[BPL12], such that

¢Gp)=-1, ¢"(P)p. =0, (B.25)
and S(p) = 7°C(p) is the spin operator satisfying [Sei+18]

S(p)us(p) = ous(p),

(B.26)
S(p)vs(p) = ovs(p).
Alternatively, it is easy to see that B.24 can be written as

g _
¢"(p) = =5~ (D)7 "us (p),

m (B.27)

o

¢*(p) = %@a(pWsV“%(P)-

In the standard Pauli-Dirac representation [Mic19; Sch19]?

wlp) = (LoEmer ) e = (VRN ) (B.23)

! For an on-shell spinor, it is enough to specify the spatial momentum p rather than the full
momentum p.

2 A more correct notation for the electron spinor would be u¢, (p)

3 Similarly, the momentum space spinor should be more correctly denoted by weo, by specifying
the spin quantization axis.
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where p = p/|p|, w, is a two-component spinor normalized as wl,wa = 0,1, the spin

4-pseudovector at momentum p can be computed as [Meulb; Sei+18]

ww:(”9<+“”0)=Mwww» (B.29)

m m(e+m)

where A¥(p) is the Lorentz boost matrix to momentum p and ¢#(0) = (0,¢) is the

rest frame spin vector, ¢ = ow!low, with o = (0%, 02, 03) the Pauli matrices.

B.1 Rest frame spin relations

It is easily seen that in the rest frame, the Dirac spinors reduce to [Mic19]

1y (0) = %( v ) 0(0) = %( u?;, ) (B.30)

such that the density matrices, taking p = 0 and ¢* = (0,¢) in B.23, reduce
accordingly to [BPL12]

P = % (1+7°) (1407 ¢),

B.31)
v m (
pgegt,a - _5 (1 - ’70) (1 + 0—75’7 ' C) )
which can be written in two component form as
i1
wew! = - (1+00-¢),
% (B.32)
wiwl = 5(1—00’-4’)

The spin operator reads now S(0) = —y*y - ¢ =: 7°% - ¢ [Z = 759°], such that
the eigenvalue equations B.26 in the rest frame are

Y- Cup(0) = o0uy(0), X -¢u,(0) = ouy(0), B.33

'S - vy (0) = 0v,(0), X -¢v,(0) = —0v,(0), (B:33)
or in two component form [Sei+18]

(o Q)w, = ow,y, (B.34)

(0 ), = —ou,

The motivation for the definition B.24 comes from noticing that in a pure electron
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state () of spin o, the mean value of the spin is given by the quantity* [BPL12]

s0=(3 ) =3 [ Pevi@Dnw
1
= (0)Bu,(0)
= 110115, (0) (B-35)
1

1 o
1 e ) =56
equivalent to the corresponding expectation value over two-component spinors

o

S(t) = <§> = %wiawa = %C (B.36)

B.2 Canonical spin quantization axis

In the case of a linearly polarized plane wave background F* = Af"4/(¢) (see
2.53, 4.30), the direction of oscillation of the magnetic field does not change and
hence it can be chosen as a quantization axis for the spin 4-pseudovector ¢*(0) of
the electron in its rest frame [Meul5]. Therefore, at an arbitrary momentum p the
spin 4-pseudovector can be defined as [PP21]

¢“(p) = —Afpu/ (p-Ao),  (pC) =0, (n¢) = 0. (B.37)

Inserting AY = (Ag/2)e% (nyas — npa) = —B}, it can be seen that in the rest
frame (where p_ = m, p* = (m,0)), the spin 4-pseudovector becomes [Sei+18]

¢*(0) = (0, £—2|) (B.38)

which shows that the choice B.37 is consistent, i.e. the spin quantization axis ¢
(with ¢* = 1) is really parallel to the magnetic field axis in the electron rest frame.

C Useful identities

Observation C.1

/°° dudv 1+42v | —iu [1+% 7"?(2@ u2:| . x2(¢) /°° dudv —iu [1+% 7’(?)(2"5) w140 —302 u
e = @ S e -
o u(l4+wv)2 14w 3 Jo (1+wv)? 1+v o2

(C.39)

4 A more rigorous proof would use the mode expansion of the spinor and then integrate over a
narrow region Ap centered at 0 in 3-momentum space.
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Proof:

/oo dudv 1+ 2v e—iu {1+%%u2] B e—iu

o u(l+v)2 1+w

L [ )
o (1+ v)2 1+v

2
:/Oo oodu (2 ! ) i(xfu¢>)3“(e—i§_1
o (1 +v)2 u 1+wv

S 1 o0 3 o .
:/ I v 5 ( I )/ du( ity —1>i/ o dze” "M

o (1+w) T/ o ()"

o0 d 1 o0 jud d oo
:/ : v . -1 )/ du( itg _1> Z?/ 2 ie_“‘z

o (1+w) +v/) Jo u (x(v¢))3 —iz

oo oo 3 oo .
P:I/ 1 o ( 1 )/ du (i ﬂT/ g T

o (14v) tv/ o (stm)® =

o0 d 2 1 1 1 o0 jud [ dz _,
= dv— +2+ - - = / du (—iu?) e” "5 / —e WF
L e 2 s sl ) ) (ots)E 2

By VI N TP W U | <>(<>) (L) L

. 0o 1 .2 oo . v 2 ]
= 22 d—v |: v + 1-l-2v—v :|/ duuQe_l(x(qb))S“_lT
o v L(1+w) 2(1 4 v)2 0

2
oo oo S w \3 3
/ |: 2+v ]/ duuz e l(X((P))Sue_Z 3
1+ v) 2(1+v

’> ) (C.40)

)
“oot [Caelis [ - mnel o aree tras e t o))

(v V3., . \
) |:_Z(X(¢)) “_ZT:| ,Ul/d
X duue NOW U = ——————7=U
0 (x(e))*

[T ld [ s o g e G5
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—
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Observation C.2 (Schwinger parametrization) In terms of the Schwinger
proper time s, the following integral identity holds when Im(A) > 0 [Sch19]

% = —i /OOO dse**  (Im(A) > 0) (C.41)
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