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In this paper, we numerically investigate local properties of dynamical systems close to a Hopf
bifurcation instability. We focus on chemical systems and present an approach based on the theory
of normal forms for determining numerical estimates of the limit cycle that branches off at the Hopf
bifurcation point. For several numerically ill-conditioned examples taken from chemical kinetics,
we compare our results with those obtained by using traditional approaches where an approximation
of the limit cycle is restricted to the center subspace spanned by critical eigenvectors, and show that
inclusion of higher-order terms in the normal form expansion of the limit cycle provides a
significant improvement of the limit cycle estimates. This result also provides an accurate initial
estimate for subsequent numerical continuation of the limit cycle.2G®0 American Institute of

Physics[S1054-150(00)00404-3

The oscillatory behavior of chemical systems near the on-
set of a Hopf bifurcation instability is of considerable
importance since the discovery by Belousov of homoge-
neous oscillations in a cerium catalyzed oxidation of citric
acid by bromate! the following work of Zhabotinsky,?
early observations of chemical wave3,and oscillations in
a broad range of chemical system$.Here the dynamics
can be described efficiently by virtue of a center manifold
theorem in a low-dimensional space by using so-called
normal forms. In this paper, we show how the inclusion
of higher-order terms from the normal form description
leads to a significant improvement of the description of
the chemical oscillatory kinetics near the Hopf bifurca-
tion point. This approach gives a much more accurate
description of the geometry of the limit cycle and, in ad-
dition, provides an accurate starting point suitable for
further investigation of the dynamical properties of the
limit cycle by numerical continuation.

I. INTRODUCTION

chemical systems where the oscillations originate from an
instability of the Hopf bifurcation type and discuss the nu-
merical problems encountered when locating and analyzing
properties of oscillatory behavior close to the Hopf bifurca-
tion point.

Assume that two complex eigenvalues associated with
the linearization of the flow around a stationary solution be-
come purely imaginary when certain model parameters are
varied. Then the dynamical system undergoes a Hopf
bifurcation®-*® causing a small-amplitude limit cycle to
branch off at the Hopf bifurcation point. The limit cycle
close to the bifurcation point lies in a two-dimensional un-
folding of the center manifold tangent to a linear subspace
spanned by the real and imaginary parts of the complex ei-
genvector associated with the bifurcating complex
eigenvalug?

As a consequence of the center manifold theot&nf
the behavior of the original system can be represented by a
much simpler two-dimensional ordinary differential equation
called a normal form which, sufficiently close to the bifurca-
tion point, describes the oscillations on a quantitative level.

Oscillatory chemical reactions often exhibit a broad From this point of view, the normal form becomes a univer-

range of time scales. This is due to the fact that the ratesal dynamical system whose characteristics are valid for any
constants governing the time scale of each elementary readynamical system which undergoes a Hopf bifurcation.

tion may differ by several orders of magnitude. For this rea-  In a vast majority of systems, the presence of the Hopf
son, analysis and simulation of chemical kinetics needs spéifurcation is a necessary prerequisite for the onset of more
cial care since the underlying ordinary differential equationscomplex dynamical phenomena in the system. Indeed, dy-
(ODE’s) typically are highly stiff and, therefore, numerically namic events such as quasi-periodic oscillations, sequences
ill-conditioned. Examples of this dynamical behavior include of period doublings, and chaos can very often be traced back
the Belousov—Zhabotinsky reaction,the horseradish as originating from a Hopf bifurcation. Limit cycles, how-
peroxidase-oxidase reactifn oscillatory behavior found in  ever, may arise in other ways as well, for example, via a
the metabolic decomposition of glucdSand intracellular saddle node or a homoclinic bifurcation.

calcium oscillations. In this paper, we focus attention on In model studies of such phenomena, one typically ap-
plies continuation techniques to observe how dynamical
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characteristics of limit sets vary as a function of some rel-
evant paramete(for further details regarding the theory and
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numerical aspects of continuation, we refer to the detaile@onjugate, pure imaginary eigenvalues=iw, and N
reviews presented in Refs. 16 and).1For continuation of = —ju, (all other eigenvalues are assumed to have nonzero
limit cycles, the Hopf bifurcation provides a natural starting real partg. In the following, we shall for simplicity assume
point, since the normal form equation may be used to genetthat this situation occurs fot,=0 and x=0 (this situation

ate precise initial estimates of the limit cycle originating atcan always be achieved by a simple linear translation of the
the bifurcation point. This estimate may then serve as initiaktationary point and the parameter valu&/e denote the
input data for the actual continuation algorithm used. Nu-—ight and left eigenvectors af corresponding to. by u and

merical codes for solving this particular task, such as;* gnd those ofbyUandU" and choose these eigenvec-
BiFOR2,'” have been available for many years. Even thoughy s normalized according to

we focus on examples taken from nonlinear chemical kinet- o o
ics, we emphasize that the results presented are generally u-u*=1, u-u*=0, u-u*=0, u-u*=1. 2

applicable for any dynamical system represented by a set %s a consequence of the center manifold theotét the

autonomous ordinary differential equations. branching which takes place at a Hopf bifurcation point, is

In Sec. I, we bnlefly review how the center mamfold €an restricted to a two-dimensional center manifaidf tangent
be used to derive higher-order terms of the expansion of thf\0 the linear center subspa& spanned by the real and

limit cycle that branches off at the Hopf bifurcation point. imaginary parts of the right eigenvectar To describe the

Section Il briefly outlines how to numerically find a Hopf branching we may, therefore, restrict ourselves to studying
bifurcation point and calculate quantities needed to evaluatﬁ1e dynamics of the systefil) on the center manifold. This

the lblfgrcaul?/n forrgulas. b | | h hcan be achieved in the following way:
n Sec. IV, we demonstrate by several examples, that the ¢ pointsx e W¢, we may construct a transformation

higher-order terms provide a §ignificant improvement in the_ z+h(z,1), which maps points x) from EXR to
accur:;‘lcy of the ca!::ulfatecf:i Ilml'ttr::yc!)(?f comtpared ?Ototlr_]ﬁ,r a,pboints z+h(z,u) on the center manifold. If we write the
T e Sy o T 2 85 2241 0, We 0 & comple ifrents
) i equation for the motion iE*<R of the form
in cases when highly unstable modes occur due to the pres-
ence of unstable eigendirections. Z=iwgz+Uu*-g(z,u). 3

The Hopf and other bifurcation curves for these ex- .
amples were calculated by the continuation packagar 1€ functions=(z+n(z,u), ), h(z u), andg(z,») are now

[Ref. 18(Appendix B]. Taylor expanded as

h(Z,,u,)ZE hpqrzpzq,ura Q(Z,M)ZE gpqrzpfq’ur,
par par
4

Il. REVIEW OF THEORY

The.normal form approach. utilizes thg fact that the cen- F(z+ h(ZyM):M):J'Z"‘E foqri 220"

ter manifold can be parameterized by a linear tangent space par

called the center subspace which is spanned by the eigenveF

tors associated with the bifurcating eigenvalues. In particu- S .
: . order by the following iterative procedure. At any order

lar, we may choose these eigenvectors as a basis for the 9, any nonvanishing component - in the amoli-

center subspace implying that the parametrization can be e P.q.p, any nonvar g comp Gpar P

: T : tude equation is given explicitly by

pressed in terms of an expansion in coordinates of the ei-

genspace. These coordinates are called amplitudes. The dy- u*-g,q=u*-f,q, (5)

namical evolution of the system can then be expressed by theh_ h onl it th diti

time dependence of these amplitudes determined by a diffe!Y""IC Only appears If the resonance condition,

ential equation referred to as a normal form or amplitude p—q=1, (6)

equation. In this section, we present a summary of the deri- o o

vation of the amplitude equation for the Hopf bifurcation. IS Satisfied for the terms indicated at ordpyq,n. The am-

We start by considering a set of autonomous ordinar)P”t”de equation includes all resonant terms and no others.
differential equations described by To obtain the coefficiertt, ., one has to solve the system of

linear equations

where the right-hand-side explicitly has been split into linear (3= (P AN -Rpqr Q Ppar. @)

and nonlinear partd-x andf(x,u) respectively. In Eq(1),  determining the nonresonant componentsof;. HereQ is

the vectorxe R" describes a set af (chemical or physical the projection onto the nonresonant partEf defined by
quantities, whose derivative with respect to time is described®-x=x—(u* -x)u. The auxiliary condition,

by the vector field=:R"—R". The variableu € R denotes a . _

) . . . X u* -hyq, =0, (8
scalar quantity, which here will serve as a bifurcation param- Pa
eter. ensures that all resonant componentshgf, vanish. Equa-

We now consider stationary solutiorgof Eq. (1). As-  tion (7) together with Eq(8) determinedh,,,, completely.
sume that a parameter value @fexists such that the linear- To cubic order, the amplitude transformation for the
ization J of the right-hand-side of Eql) has two complex Hopf bifurcation is

he coefficientgy,q, andh,q, can then be obtained order by

X=F(X,u)=J-x+f(x,u),
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TABLE |. Formulas for calculating the coefficients of the normal form transformation and the normal form for
the Hopf bifurcation. At the bifurcation, the Jacobidrmas two complex conjugate eigenvectarandu and

left eigenvectoras* andu* corresponding to critical eigenvaluas=iwg and = —iwg. The normal form
transformatiorx=z+h(z,u), z= uz+ uz, transforms a solutior(t) of the normal form to the motior(t) on

the unfolded center manifold for the dynamical system. The vector coeffidiggtare determined as solutions

to the linear equations indicated, in terms of the derivatives of the vectoiHiéltie coefficients of the normal
form can then be found through the explicit expressions indicated, in terfasantih,, .

Formulas for Hopf Bifurcation

Transformation X=UZ+UZ+ hooZ?+ hy1d 2|2+ NopZ®+ a3+ hord 222
x=z+h(z,1) +hy2d |%Z+ hgaz® + hogaee + (hyoiz+ No1i2) 1

. 1
(3= 2iwgl) -hapo= — 5 Fxx(u,U)
ho20=hy
|Z|2: J- h:lc.):lz.[()): - o U, U)
. 1 1
(I=3iwol) -hgpo= = 5 FrdU,h200 — § Froux(U,U,1),
3.

z hoszaoo
Linear equations 7|2)%
for Npgr (3= wol) - Naso= = Q- (FoU, 110 + FroT N0 + 3 Fi(U,U, 1))
u* - hy6=0
e o haaa= Pk,
(J—iwgl)-hyg1=— Q- (Fy,u+ Fy(u,hgo))
u*-hy,=0
Wz _
ho11= 101
Q-x=x—(u*-x)u
Resonant coefficients g=U* - F(Uhy10 + U* - Froe(U 00 + 3 U¥ - F(U,U0)
N =U*-Fy,-utu*-Fy(u,hggy)
Amplitude equation 7=(iwo+\u)z+g27z|?
X=UZ+ UZ+ hooZ2+ N11d 2%+ N2+ hagZ® Inserting .'[hIS solution into t.he correspondlr)g transformatlon
h(z,u) given by Eq.(9) yields the following expansion
+h21d 2|2+ h12d 2| ?Z+ hoaz® + oo which corresponds to @eriodig limit cycle solution for the
differential equation(1) on the center manifold associated
+ (h10Z2+ ho12) 1, ) d

with the Hopf bifurcation
with the corresponding amplitude equation

X=X+ hggye + X1 (1) + Xo(t) +X5(t), (13
2=(iwo+ \1u)z+ 972, (10 TR
where\; andg are given by where
N1=U* - Fy, - U+ U* - Fyo(U,go9), (119 x1(t)=Ryue'’+c.c), (14)
g=U* - Fy(U,h110) + U* - Fo (U, hogo) Xo(t) = Ra(hpoe™ *+ c.c+hyg9), (15
+3U* - Fre(U,U,U). (11b X3(t) =R3(h3o¥?+ hy1 %+ c.c) + Ry hip€'?+c.c) u,
The derivation of the explicit expressions that define these (16)

coefficients is standard and is summarized in a compact forfyhere c.c. denotes the complex conjugate of the preceding
in Table I. For details regarding the derivation, see the disterms within a given bracket.
cussions in Refs. 16 and 19. o The stability of the limit cycle is determined by the real
In particular, if we represent the complex varialalén  partg" of the nonlinear coefficierg in Eq. (10). If g'<0 the
polar formz=Rexp(if) and require the amplitud® to be  |imit cycle is stable(within the center manifoldand it is
stationary in time, we find the following simple solution to nstaple forg™ 0. In each of the two cases, the Hopf bifur-
the normal form(10) cation is referred to as being either supercritical or subcritical
g respectively. For a given distange from the bifurcation
Re=V—ou/g’, 0(t)=wet+| w,— 01&) ut, (120 point, the periodr of the limit cycle can be determined from
corresponding to a solution with a constant amplitude and

Eq. (12) as
phase varying linearly in time. Observe that we have intro- T(w)= 27
duced the notatiog=g'+ig' and\;=0;+iw; in Eq. (12). # wot(w1— 0079w’

17
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The third-order expansiofil3) of the limit cycle illus-  straightforward, we do not discuss it here, but rather use
trates the well-known fact that the limit cycle which bifur- continuation to determine the location of the fold bifurcation.
cates from the Hopf bifurcation is analytic in the square root  First however, we describe shortly the numerical algo-
of the distancéu/| from the bifurcation point. The terhy,,  rithm used in the results presented here for locating Hopf
is not directly related to the geometry of the limit cycle itself bifurcation solutiongx, «) to Eq. (1).
but corresponds to the first-order derivative of the stationary

point X with respect tow. This term therefore provides a Ill. LOCATION OF HOPE BIEURCATION POINTS AND

first-order description of the translation of the stationary-a cyLATION OF NORMAL FORM COEFEICIENTS
point as the distance from the bifurcation pointis varied.

The time dependent term (t) corresponds to the linear de- Several approaches for location of Hopf bifurcation

scription of the limit cycle which is obtained by projecting points exist as described in the reviews given in Refs. 12, 16,
Eq. (13) onto the center subspaB&. By means of perturba- 17, and 21. In the work presented in this paper, we have
tion theory?® one can show that the part of(t) which  chosen a slightly modified variant of the algorithm described
involves h;o; can be identified as describing the rotation ofin Ref. 22. Here the equations that define the Hopf bifurca-
the eigenvectou per unit change ofe. Similarly, we may tion point are

identify the coefficient ; in the normal form Eq(10) as the F(Xe, 1) =0 (199
derivative of the bifurcating eigenvalue with respectuto S '
By inspection of Table I, we also observe that explicit J-vi+ wgV,=0, (19b

calculations of the coefficient vectolgg;, hygg, andhqqg

are needed in order to determine the complex resonant coef- J-v2—wov1 =0, (199
ficients\4 andg in Eq. (10). For this reason, the ternxs(t) v}vﬁv}vzz 1, (19d)
andx,(t) in the expansiori13) of the limit cycle are imme- .

diately available once the resonant coefficients in the normal  Vo-V1=0, (19¢

form have been determined. However, to find the coefficien;,vhere Eq.(19) constitutes a system ofn3 2 nonlinear

vectorshsgo, haio, @ndhyg, that determine the third-order oqations in 8+2 unknowns: the stationary point, the

termxs(t), observe that an additional set of linear equations,frcation parameter, the imaginary part, of the bifur-
must be solved. o o cating eigenvalue, and the real and imaginary par@ndv,
‘One crude approach for estimating the limit cycle ema-u¢ the complex eigenvectar associated with the bifurcating
nating from a Hopf bifurcation is to use only a simplification gjgenvalue. The solution of this system is readily obtained by
of the t(_armxl(t) in ord_er to e§timate a point on the limit applying a standard Newton iteration scheme to @§).
cycle with corresponding period, namely Even though the set of defining equations has a large
dimension compared to other approaches which typically in-

x=e(utu, volve numerical evaluation of determinants, we find it nu-
merically more stable than low-dimensional schemes since

_ 2_77 (19) determinant evaluations easily become numerically very ill-
wp ' behaved. Furthermore, in situations where the purpose of

solving Eq.(19) is to provide an initial estimate of the limit
for some realsmall value of e. This expansion is then ap- cycle solution of Eq(1), one typically analyzes only a few
plied for fixed u= e, which will hold sufficiently close to the Hopf bifurcation points. Even for larger system siZege
bifurcation point since the derivativéRs/dw is infinite at  have made tests fon=256) such computations proceed
n=0. However, for systems where the limit cycle is unstablesmoothly on modern workstations or high-end PC’s.
due to either a subcritical Hopf bifurcation or a stationary  Notice that setting up a Newton algorithm for the system
point associated with some very unstable nonbifurcating19) requires the evaluation of second-order derivatives of
eigendirections, the estimate provided by E®) will rarely Eq. (1) with respect tax and u—the so-called Hessian. This
suffice as initial input data for a continuation algorithm. Thiscan either be supplied in symbolic form or be obtained by
in particular applies to methods using a shooting method imumerical differentiation. In the implementation presented in
solving the associated boundary value problem. Here eithehis paper, we have used a symmetric five-point differentia-
one or(if multiple shooting is requiredseveral precise esti- tion formula Ref. 23(p. 914 to evaluate the Hessian using
mates of points on the limit cycle are needed as initial inputanalytic expressions for the elements of the Jacobian. The
data for the continuation problem. In Sec. IV, we shall ad-structure of the Jacobian matrix associated with (#§) and
dress this problem by discussing several examples which ilexplicit expressions for all its elements are shown in Fig. 1
lustrate the importance and advantages obtained when tland Table II, respectively. The matrix is relatively sparse and
full expansion(13) is used instead of the traditional approachthe linear equations arising from Newton iteration of Eg.
represented by Eq(18). Also, the Hopf bifurcation fre- (19) can be solved efficiently using a block decomposition
quently turns out to be subcritical, and the bifurcating un-described in Ref. 24.
stable cycle typically merges with a stable cycle in a fold  Once the Newton iteration has converged, the formulas
bifurcation at a nearby parameter value. A normal form capin Table | must be evaluated in order to find the terms in the
turing this feature requires the inclusion of terms of quinticexpansion(13) as well as other properties of the limit cycle.
order in the expansion. Even though this extension isSolutions of the linear equations that determine the vectors
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this vector is readily obtained. However, the linear systems

OF OF that definehy,q and hyg; involve the singular matrixJ
ax Em —iwgl. First the singular part of the vectdp,,y and ®,¢;
4 are removed according to E¢7). The resulting system is
2F - OF then solved using a singular value decomposition where the

(v1) = wol M(vl) Vo solution is subject to the additional conditi¢®).

Next assume that we would like to know the parameter
dependence of the limit cycle throughout a broad region by
8°F OF O°F means of a numerical continuation procedure. The formulas
axz(va) | Tl x  |oman"? in Table | provides us readily with an initial estimate for

such a calculation. To choose a proper operating point for the
initial estimate of the limit cycle, a finite parameter distance
from the bifurcation point must be chosen. This value is
finally used in Eq(13) to generate either one or, if a multiple
shooting or a discretization is desired, a set of initial points
on the limit cycle. An estimate for the initial period of the
limit cycle is given by Eq(17).

ox?

equations

IV. EXAMPLES

variables

In this section, we examine four different models in or-
FIG. 1. Structure of the Jacobian matrix needed to solve the defining systerder to discuss and illustrate the use of ELp) to approxi-
(19) for locating a Hopf bifurcation point by Newton iteration. Gray colored mate the geometry of limit cycles emerging from a HOpf
areas contain zero elements only. Explicit expressions needed to evalu . . .
each nonzero mairix element are shown in Table II. afﬁfurcgﬂon. The exampleg are arrangeq accordlng to the size
of their phase space. While the dynamics of the first and the
fourth models are amenable to numerical integration by stan-

haoo, N110, @andhgg; is a straightforward task using standard dfflrd Runge—Kutta solvers,_ the other two models are highly
linear algebra routines from numerical libraries such astff anéj a relevant numerical solver has to be used.,
LAPACK.?® After this step has been accomplished, the resoLSODE™). In order to compare the expansion in Ef@) with
nant coefficients\; andg may be determined by projecting the_exact limit cycle solutions, we have introduced the fol-
the vectors®,,, and @,,, onto the center subspace. Notice /0Wing root-mean-square measure:

that the calculation off in general requires evaluation of the 11
third-order derivatives of Eq1). In the examples considered x| = \/Tf 2 xj(t)2dt. (20)
here, these were calculated numerically from the Jacobian of 0j=1

Eq. (1) using a symmetric four point formula Ref. 2B.  The relative errotx;|,, for a given expansiom;(t) of Eq.
884). (13) of order i=1,...,3, is then calculated al;|,e=|x

~ The vectorshggo, hz10, @ndhye; should now be found.  —x|/|x| wherex(t) is the exact limit cycle solution deter-
Since the linear equation which determirteg, is regular,  mined by numerical continuation.

A. Papain oscillator

TABLE Il. Expressions for the elements of the Jacobian matrix shown in

Fig. 1 needed to solve the defining systétn) for locating a Hopf bifurca- The first model example is the papain oscillator—a bio-

tion point by Newton iteration. chemical model involving the enzyme papain. This system
describes the enzyme catalyzed hydrolysis of a subgtxate
Block Size Element expression a-benzoyl-L-arginin ethylestgin a compartment connected
F (nxn) o to a reservoif”?® The model can be cast in terms of two
(5)__ K-I independent variables (dimensionless substrate concentra-
Y (nx1) : tion) and h (dimensionless concentration of hydrogen jons
(f) il whose temporal dynamics are described by the following
wl ‘ differential equations:
PF (nxn) " PR .
(W(Vl))i_ Eax — Uy $=0s(So—S) ~Ins:
ij =1 %% ) 21)
(&(v)) e > 75 =7z | gn(h —h)—(i_l +r
) & o 1+h? | o ho h/ " FS)
( #F v )) (nx1) "\ #F where the reaction kinetics term is
axap Uik
© =2 s
#F (nx1) n : rhs=Da——F——, 22
) o w A (222
M i =1 M

f1=(1+10 2" h+10 4h 1), (22b)
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FIG. 2. Bifurcation diagram showing the locations of Hopf bifurcations for
the papain oscillator defined in E@1) in the plane of the two parameters
hy andDa.

f,=3.2121+10 30%),
f3=5.45x10 °f,,

(229
(22d)

and the values of fixed parameters agg=0.375q
=1.7665,=1150. The two remaining parameters, the
Damkdler numberDa, and the inflow concentration of hy-
drogen ionsh, are used as bifurcation parameters.

The papain oscillator Eq21) exhibits a curve of Hopf
bifurcations in thehy—Da parameter space shown in the
bifurcation diagram in Fig. @). Both super- and subcritical
bifurcations occur as shown in the figure with solid and

dashed lines respectively. Both endpoints of the bifurcation
curve terminate at codimension-two Bogdanov—Takens bi-

furcation pointd® where the Hopf bifurcation curve coa-
lesces with a foldor saddle-nodebifurcation curve(indi-
cated with white circles A blow-up of the region

corresponding to supercritical bifurcations is shown in Fig.

2(b).

To investigate the effect of the nonlinear terms of the
expansion (13), we have chosen the sample point
(ho,INDa)=(2.410914< 10 ,15.439 57) within the super-
critical region as indicated on Fig. 2 with a solid circle, see
also Table Ill. To study the limit cycle bifurcating from this

point, we need to operate at a finite distance from the bifur-

cating point which is done by fixindpa and choosinghg
=2.410778 10" 3. The comparison of the numerically ac-
curate limit cycle solution obtained by the shooting metfiod

M. Ipsen and I. Schreiber

TABLE Ill. Characteristic coefficients for the normal forth0) associated
with the Hopf bifurcation point in the papain mod@1) indicated on the
bifurcation diagram in Fig. 2 with a solid circle.

Re Im
ho 2410914103
D, 1.543 95 10"
wo 2.537 017
N —1.778 058 10° 6.838 568 10*
g 1.95511K 10! 7.35198% 10 2

time plots and phase portraits in Fig. 3. The first-order ex-
pansion of Eq.(13) shows large deviations from the exact
solution, whereas the second- and third-order expansions
agree increasingly better with the accurate solution. This is
in correspondence with the relative deviations from the exact
limit cycle solution given by Eq.(20), where we find
0.2254%, 0.0234%, and 0.0171% for the first-, second-, and
third-order expansions respectively.

Numerical values for all the coefficient vectors used in
the expansion Eq13) are shown in Table IV.

B. Inorganic pH oscillator

The next model by Luo and Epstéfrhas been used as a
general system to describe pH oscillations in inorganic
chemical reaction systems. This four variable model de-
scribes a flow-through stirred chemical system with inflow of

s

47.4

47.0

0.25 0.75 1.25 1.75 225
time/s

T T T T T T T T
0.60 - —
0.55 = -
0.50 - -

h

0.45 ~ -
0.40 - -
0.35 ) .

1 L ] 1 1 ! i }

47.0 47.2 474 476 47.8

S

48.0 482 48.4

FIG. 3. Comparisons of the actual periodic solutisalid line) to the papain
model (21) and its approximation by the first-, second-, and third-order
expansions of the limit cycle formuld3) (long-dashed, short-dashed, and

and the estimates provided by Hd.3) are shown as both dotted lines, respectively
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TABLE IV. Numerical values for all characteristic vectors describing the Hopf bifurcation in the papain model
(21) indicated on Fig. 2 with a solid circle. The coefficient vectosg have been calculated using the formulas

of Table |. Observe that these are dependent on the chosen normalization of the complex right eiganvector
All shown numbers are needed to evaluate the terms in(Ej}.describing the expansion of the limit cycle
associated with the Hopf bifurcation point.

Eigenvalues
Stationary pointxg Vector field F(xg) Re Im
4.760 27X 10 8.729 991 10715 8.88154% 10 1 2.537 017
45760651071 —1.644 46X 10715 8.88154% 10°1° —2.537017
Re Im Re Im
u 1.000 000 0.0 00 2.117 95% 10 2 —1.63970% 10!
—1.53899x 10! —4.311 294102 3.10332% 1072 5.179 43% 102
u* 5.000 0010 * 1.784 837 hpo  —2.82061% 101! 1.626 10 101
0.0 1.159 74% 10 3.63984% 10 2 —3.718 616102
hi10 3.184915%10°* —2.13906K10°1°  hy,  —4.455946¢10 2 1.038 566< 102
6.324 3710 2 3.28253x 10° 1t 9.965 68010 ° —2.28000% 102
hoo1 0.0 hipr  —1.03134&10° 2.952 168 10°
—2.72347X10° 3.144 69 10° —4.988 006< 10*

reactants and outflow of reaction products whose dynamics As illustrated in the bifurcation diagram in Fig(a}, the
are described by the following coupled set of ordinary dif-inorganic pH oscillator Eq(23) exhibits oscillatory behavior

ferential equations:

H=k_,;Z—kXH—k,AHZ+3ksY Z—ksBH

+Kko(Hp—H),

X=K_1Z— Kk XH+Kq(Xo—X),

Y=k,AHZ—k3Y Z— kY — KoY,

(23

Z=kXH—k_;Z—k,AHZ—k3Y Z—K,Z.

Despite its low dimension this system is markedly stiff. The \ SN

four dynamical variablesl, Y, X, Z and the constanta, B

correspond to the concentrations of the chemical species H

HOBr, SG~, HSQ;, BrO;, and FECN)z , respectively.

The two constant$d, and X, are inflow concentrations of

H* and SG~ whereas the parametkp describes the flow
rate through the open system. The constakts and

kq,... ks are kinetic rate constants associated with the set of
chemical reactions on which the inorganic pH oscillator is

based. Here we shall use the paramekgrand X, as bifur-

cation parameters. Numerical values used for the constant (b)

are summarized in Table V.

TABLE V. Rate constants and external constraints used for numerical simu-

lations of the inorganic pH oscillator model in E&3). All values are taken

from Ref. 30.
Constant Value
ky/M~1s71 5.0x 10
k_, /st 3.0x10°
k,/M 2571 3.077x10°
ky/M~1s7t 108
kyls™t 11.0
kg /M~ 1s71 2.5
AIM 6.5x10 2
B/M 2.0x10°?
Ho/M 2.0x10°?

emerging from Hopf bifurcation for a wide range of the pa-
rametersk, and X,. Observe also that almost the entire
curve in parameter space corresponds to subcritical Hopf bi-
furcations, except for a narrow region located at low flow

10

Xo/M

01 N / R

le-06 0.0001 0.01 1

I(()/S_1

0.01 + s

wofs™!

0.0001 4

T
N

le-06 - /7

-
-
O

1
0.01 1

ko/571

le-06 0.0001

=
(=1
=)

FIG. 4. Loci of Hopf bifurcations for the inorganic pH oscillator in the
parameter planekg,X,). At two parameter points, the Hopf bifurcation
changes stability from super- to subcriti¢ablid and dashed curves, respec-
tively). The curve shown irfb) illustrates how the imaginary padgt, of the
bifurcating eigenvalue varies along the bifurcation curvéan
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TABLE VI. Characteristic coefficients for the normal forfh0) associated
with the Hopf bifurcation point in the inorganic pH oscillat@3) indicated
on Fig. 4 with a solid circle.

Re Im
Ko 4.111 12510
X 6.540 69% 10 *
wo 7.993 656¢ 10"
N 1.01358% 10° —5.406056< 107
g —9.61111x 10° 2.05208% 10°

rates where the bifurcations are supercritical. Both endpoints
on the bifurcation curve terminate at Bogdanov—Takens
points indicated with white circles on Fig. 4. This feature is
shown in Fig. 4b) where the variation of the imaginary part
wq of the bifurcating eigenvalue along the bifurcation curve
is shown as a function of the flow rakg; clearly, wqy van-
ishes at the two endpoints as required at a Bogdanov—Taken
point.

To investigate the application of the higher-order expan-
sions of Eq.(13) as the distance from the Hopf bifurcation
point is varied, we have selected the sample polgt Xo)
=(41.1112,0.654 069) marked on the bifurcation curve in
Fig. 4 with a solid circle. The characteristics of the corre-
sponding normal form are presented in Table VI.

Next, we keepX, fixed, and choose four increasing val-
ues ofk, whose numerical values are shown in Table VII.
Phase portraits showing the numerically accurate limit cycle

X

M. Ipsen and I. Schreiber

1st order 3rd order

a)

)]

d)

solution and the first- and the third-order estimates of EqFIG. 5. Periodic solutions to the inorganic pH oscillat@8) (dashed lines

(13) projected onto th¢H, X)-plane are shown in Fig. 5. For

and approximations by the first- and third-order expansions of the limit
cycle formula(13) (solid lines. The plots(a)—(d) represent projections of

each of the four parameter values, the corresponding amplipe closed orbit onto théH,X)-plane and compare the limit cycle solutions

tudes of the oscillations for the two componeHtsind X are
shown in Table VII. Close to the bifurcation poifa), both
the first- and third-order estimate are numerically identical to
the exact solution. However, as the distance is increésad
and(5c¢), deviations from the exact solution, become increas-
ingly pronounced for the first-order estimate, whereas the
third-order estimate still agrees well. Notice in Table VII that
the size of the limit cycle increases by two orders of magni-
tude from casesa)—(d). For a sufficiently large parameter
value (5d) the third-order solution also fails to capture the
dynamics and geometry of the exact solution.

C. Peroxidase-oxidase oscillator

The purpose of the following example is to show the
performance of the bifurcation formulas in Table I in a larger
system whose dynamics are extremely stiff due to vastly dif-
ferent time scales involved. In addition, we illustrate the evo-
lution of the periodic branches as they extend far from their
emergence at the Hopf bifurcation. The system is a model for
aerobic oxidation of nicotinamide adenine dinucleotide
(NADH) catalyzed by the enzyme horseradish peroxidase.
Apart from periodic oscillations emerging via a Hopf bifur-
cation the model exhibits a complex sequence of bifurcations
leading to chaos. The model was proposed by Aguda and
Larte to account for earlier experimental observations of

at four increasingly larger values of the inflow paraméigwhose numeri-

cal values are shown in Table VII. The relative errors of the first- and
third-order expansions compared to the exact limit cycle solutions are also
displayed.

A= —k;WA+Kk;CN,

B=k,XN+ksNY—k,BZ—ksBF+k;CN—2kgB?
—kBW,

C=—ksCW+kgBF—k,CN,

F=—keBF — ki V+k([OzleqF),

N=—k,XN—ksNY—k,CN+NADH,

W= —k; AW+ k3N Y—ksCW—k;,BW, 29

X=k;AW—k,XN+k,BZ,

Y=k, XN—k3NY,

Z=—ksBZ+ksCW+kyaFV,

V=k;,BW—k;sFV,

chaos®! The system is open to oxygen from air and is gov-where the variables are assigned to concentrations of respec-

erned by ten evolution equations

tive species as followsA=[H,0,], B=[NAD-], C=[05],
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TABLE VII. Four parameter values of inflow concentrations of hydroggnfor the inorganic pH oscillator
associated with the Hopf bifurcation point indicated on Fig. 4 with a solid circle. At each parameter value, the
numerically accurate limit cycle solution and the first and third estimates provided by the expdr8ibave

been calculated as shown in Fig. 5. The table also exhibits the amplitude of oscillations for bbilarioeX

component at each corresponding parameter point.

Figure ko— kP! Amplitude ofH Amplitude of X [X1]re1/ %0 [X3l el /%
5(a) 0.013 89 1.365210°¢ 3.4583x107° 0.0230 0.0230
5(b) 0.013 96 2.155%10°° 5.5226< 108 3.6064 0.3628
5(c) 0.014 04 3.395210°° 8.8395¢x 1078 7.7942 1.3956
5(d) 0.01413 4.675%10°° 1.2472x 1077 13.2738 3.87005

F=[0,], N=[NADH], W=[Pef"], X=[col], Y=[coll],
Z=[colll], andV=[PeF*]. The various oxidation states of
the enzyme are bound by the constraig}EV+W+X+Y

+Z, which permits a reduction of the number of equations by

two parameters, the concentration of oxygen when equili-
brated with the gagO,], and the total concentration of the
enzyme, k, are free.

The curve of the Hopf bifurcations in this parameter

one (we chooseV to be calculated from the constraint and plane is shown in Fig. @. It encloses a bounded region

leave out the corresponding differential equatiofhe rate
coefficients are fixed atky,...ks;=Kg,....Kg=Kio=Kk;3
=1uM s ks=60uM 1s ™t Two external parameters,
the mass transfer coefficiert,=0.1s %, and the inflow of
NADH, NADH;,=0.1uMs™ %, are also fixed. The remaining

15

1.4

13

1.2

[Oz)eq/ 1M

11

1.0

09

30 40
Etot / 4“M

10

[NADH] /M

where oscillations are expected. Observe that the curve con-
sists of both super- and subcritical parts as indicated by solid
and dashed lines respectively.

The branches that emanate from the two bifurcation
points selected by setting the paramé®p .= 1.3uM are
undergoing various bifurcations when further away from the
Hopf bifurcation as shown in Fig.(B). The characteristics of
the normal form are shown in Table VIII. The bifurcation
formulas were used to find an estimate of a periodic orbit
close to its emergence and this estimate was subsequently
used to track the entire branch of periodic orbits by continu-
ation. The figure shows that both Hopf points are joined by a
single three times folded branch. The solutions become un-
stable due to repeated fold and period-doubling bifurcations,
the latter being consistent with the observations of chaos
discussed in Ref. 6.

D. Reaction-diffusion systems

As a final example, we wish to consider how the calcu-
lations of the characteristics of a Hopf bifurcation considered
in the previous examples can be extended to reaction-
diffusion systems described by a partial differential equation
(PDE) of the form

TABLE VIII. Characteristic coefficients for the normal for(h0) associated
with the two Hopf bifurcation point in the peroxidase-oxidase model indi-
cated on Fig. 6 with a solid circle.

Etot/MM

FIG. 6. (a) Loci of Hopf bifurcations for the peroxidase-oxidase oscillator in
the parameter pland ©,]qq,Eqy- Super- and subcritical regions are shown

with solid and dashed curves, respectively. The curve shown in the solution "1

diagram(b) illustrates a continuation of the limit cycles that branch off from
the two Hopf bifurcation points marked ifa) with solid circles. Initial

estimates of the limit cycle for a 20-point multiple shooting continuation

were evaluated by using the full third expansion of Etf). During the

course of continuation the limit cycle exhibits a series of period-doubling
and limit point bifurcations indicated on the continuation curve with white

and gray circles, respectively.

Re Im
Eot 2.662 88X 10"
[Oyleq 1.3
wg 1.052 59 10 2

—2.151 06K 10°°
1.848 198 10°°

—2.77768410°°
7.366 951078

Ecor 2.514 597
[Ozleq 13

wg 4.775 3651072

A 8.27412K 10 —1.228 465102
g —8.655570<10°° 1.786 90X 10°°
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X
E=J-x—l—f(x,,u)+D-V2x. (25)
Here x(r,t) is a vector ofn chemical componentg;(r,t)
defined on a functional spatedependent on both timeand

a one-dimensional spatial variabileThe spatial dependence

corresponds to the inclusion of diffusion driven transport of

matter described by the diagonal diffusion mattixwhose
individual componentd; are diffusion coefficients of the
respective chemical species.

M. Ipsen and I. Schreiber

(Y. Y)=6y, (34)

which implies that the right and left eigenvectafsand vy
satisfy
* g
Vi -V = - 5k| . (35)
At the parameter valud=2, the homogeneous steady

state undergoes a Hopf bifurcation for the wave number
=1, implying that a spatially nonhomogeneous periodic so-

The extension and application of the center manifoldiution branches off from the homogeneous reference state
theorem and bifurcation analysis in terms of normal form(g b/a). The corresponding right and left eigenfunctions are
calculations for infinite dimensional systems of the type Eg.

(25) is today well-established in the literature and we refer to

Y(r)=cogr)yv, T (r)=cogr)v*, (36

Refs. 12, 15, 16 and 32 for a detailed treatment of this SUb\Nhere

ject.

In this context, we wish to consider the Brusselator

modef® with an additional diffusion term, namely

Xi=a—(b+1)x;+x3%,+dV?x,,

. 26
Xo=bx;—Xx2x,+dqV2x,, 26

where we shall use the diffusion coefficiehas the bifurca-

tion parameter. The spatial variahias defined on the do-

mainr [ 0;7] whereas each variablg is subject to no-flux

(or von Neumanhboundary conditions

Ix;
at

x;

r=0 at

=0,

r=m

for i=1,2. (27

The Brusselatof26) has a nontrivial spatially homogeneous
solution (x5 ,x3) = (a,b/a) and we wish to consider the sta-
bility of this state here.

The linear part of Eq(26) at the homogeneous state
(x3,x3) defines an operator

(92
M=J+D—o (28
with eigenfunctionsY(r)
Y (r)=cogkr)v,, (29

where the wave numbdgris defined fork=0,1,.... The vec-

tor vy is the eigenvector associated with the eigenvalue prob-

lem
(J_kZD)'Vk:)\ka. (30)

If we define an inner produgt,-) on the functional space
as

2
<W’V>=i21 Oﬁv_vividr, (31)
the adjoint operatoM™* of Eq. (28) becomes
(92
M*=JT+D£Z, (32
with correspondindgadjoint eigenfunctions
r(ry=cogkr)vi, for k=1,2,.... (33

v=(1,—2+i)T, v*=%(1—2i,—i). (37

By application of the inner product defined in E§1), we
may use the left eigenvectdf} to decompose any smooth
function in H into its center subspace component and asso-
ciated complement.

For the example presented here, we only wish to discuss
the calculation of the coefficients; andg of Eq. (10) and
need therefore only to determine the coefficient vediggs,
hi10, andhgg. The notational modifications of the formulas
in Table | needed to determine these quantitawd thereby
the normal form equatiofil0) associated with the Hopf bi-
furcation] are almost trivial. For example, for the second-

order componeniyo(r), we find
(\]+DV2_2|(1)0|)h200:_ (38)

whereas the equation that determines the third-order coeffi-
cientg becomes

g= <V* anx(Vahllo) + Fxx(vahZOO) + %FXXX(V,V,T/». (39)

Equation(38) is a linear boundary value problem which must
be solved subject to the no-flux conditi@,gg/dr =0. In-
sertion ofM and the eigenfunctiol';(r) into Eq.(38) gives

(40

Fa(v.v),

Expanding the right-hand side as

(J+D- V%= 2iwgl) - hyge=2(1+2i,—1-2i)(1+cos &),
(41)

and solving Eq.(41) for each separate harmonid@ and
cos 2) gives

haod 1) =(1+20)[ — #5(2+i, )"

+—&(4—i,—&+4i) " cos 2]. (42)

The derivations and solutions of the linear equations that
determine the remaining quantities from Tablé&He trans-
formation coefficientd;19,h210,h300, as well as the unfold-

ing coefficient \;) follow precisely the same procedure
sketched forh,o, above and we shall therefore omit these
details here. Using the same procedure as demonstrated for

As in Eq.(2), we normalize the eigenfunctions according to h,oy, we find for the additional coefficient functions
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TABLE IX. Numerically calculated values of the nonlinear coefficigndf the normal form Eq(10) for the
Brusselator PDE26) using second- and fourth-order finite difference schemes for discretization of the Laplac-
ian. For an increasing number of grid points, each row displays the numerically obtained values as well as the
relative error with respect to the exact solution shown in @¢).

Normal form coefficieng

Grid points 2. order 4. order Relative error/%
16 3.432284513.090 980 7 3.435 8754i3.091 076 3 0.080  0.002
32 3.4351219-i3.091 061 1 3.4359745i3.091 078 3 0.019 1:210*
64 3.4357729i3.091 074 2 3.435980-0i3.091 078 4 0.005 7x410°°
128 3.435929313.091 077 4 3.435980-3i3.091 078 4 0.001 46107
hyifr)==(4cos2,—25-9cos )", provide information regarding the stability of the limit cycle
(43) close to the bifurcation point by determining whether the
hooy(r) =0. Hopf bifurcation is super- or subcritical.
Using the definition of the inner produ¢d1), the third-order In this paper, we have shown how these two criteria can
coefficientg is calculated from Eq(39) as be met efficiently by a straightforward application of the nor-

mal form theorem. We provide explicit expressions for de-
(44)  riving the nonlinear contributions from the normal form
transformation for the expansion of the limit cycle emerging

35047 31529
9=~ 70200" ' 10200

whereas a similar calculation far, gives at a Hopf bifurcation. All the examples considered here
- clearly illustrate that the addition of the nonlinear terms to
A=—atiz (45 the limit cycle expansion provides a significant improvement

A similar calculation for the Brusselator PDE system Eq.2nd accuracy in the numerical estimate of the limit cycle.
(26) has also been discussed in Ref. 34 using, however, diffhis can be crucial for the convergence. We stress that the
ferent Settings for the boundaries of the physica| domain. calculation of the additional nonlinear terms requires very
To test the accuracy of the numerical code that was useliftle extra numerical work since these terms are required for
in the previous three examples for location of the Hopf bi-the determination of the resonant coefficients in the corre-
furcation and evaluation of the terms in the limit cycle ex-sponding normal forng10) for the Hopf bifurcation. In fact,
pansion(13), we have compared the numerical calculationsonly the third-order terms in the expansion requires addi-
of the nonlinear coefficieng with the analytic values Eqgs. tional numerical work. We believe these results will prove
(44) and (45). To transform the Brusselator POE6) into a  useful for future developments of robust numerical codes for
set of ODE’s, we have used a standard second- and fourttbifurcation analysis of Hopf bifurcations superseding cur-
order finite difference scheme for discretizing the Laplaciarrently used ones.
operator. Note that no special care was taken to make use of In addition, we have also shown that inclusion of higher-
the special sparse banded structure of the Jacobian matrixder terms in the normal form approximation provides a
which occur in this context. significant improvement in the representation of the exact
The results are exhibited in Table IX where the numeri-limit cycle. This, for example, is clearly illustrated in Fig. 5,
cal values ofg and the corresponding relative error of the where both the translation and the nonlinear bending of the
absolute value are shown for an increasing number of gritimit cycle is captured well by the higher-order expansion.
points for the two finite difference schemes. As expected, thghis holds even at parameter distances quite far from the
error decreases with the number of grid points used in botlctual Hopf bifurcation point and makes it much easier for
the second- and fourth-order apprOXimaﬁonS. However, thg']e numerical procedure of f|nd|ng the limit Cyc|e to con-
numbers also clearly show that the fourth-order approximayerge. In addition, we believe that this may have experimen-
tion is highly superior compared to the second-order discretita| importance when the geometry of the limit cycle is recon-
zation: Even for relatively small spatial resolutiot® grid  structed from experimental data using either quenching
pointg, the fourth approximation is correct within 1.2 technique¥® or control theory’’
X 10" % of the analytic v_alue. A similar concllu.sion .for the The ideas presented here for the Hopf bifurcation have
Brusselator modgl regardlqg the accuracy qf finite d|fferenc%een implemented numerically into a software tool
schemes was pointed out in a somewhat different context igg anciH3® which supports bifurcation analysis of dynamical

a paper by Wittenberg and Holm&s. systems described by autonomous ordinary differential equa-
tions and discrete iterated maps. For such systems, all
“simple” codimension-one bifurcations are handled:
The numerical analysis of Hopf bifurcation points Saddle-node, transcritical, pitchfork, and Hopf—Neimark-
should meet at least two criteria: First, the method shouldsacker bifurcations of stationary, periodic, and fixed point
provide a sufficiently precise initial estimate for a one-solutions, as well as period doubling bifurcations of periodic
parameter continuation of the periodic orbit which emerge®rbits. In addition, a range of codimension-two bifurcations
at the Hopf bifurcation point. Second, the method shouldcommonly encountered in ODE’s with special symmetry

V. DISCUSSION
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