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In this paper, we numerically investigate local properties of dynamical systems close to a Hopf
bifurcation instability. We focus on chemical systems and present an approach based on the theory
of normal forms for determining numerical estimates of the limit cycle that branches off at the Hopf
bifurcation point. For several numerically ill-conditioned examples taken from chemical kinetics,
we compare our results with those obtained by using traditional approaches where an approximation
of the limit cycle is restricted to the center subspace spanned by critical eigenvectors, and show that
inclusion of higher-order terms in the normal form expansion of the limit cycle provides a
significant improvement of the limit cycle estimates. This result also provides an accurate initial
estimate for subsequent numerical continuation of the limit cycle. ©2000 American Institute of
Physics.@S1054-1500~00!00404-3#

The oscillatory behavior of chemical systems near the on-
set of a Hopf bifurcation instability is of considerable
importance since the discovery by Belousov of homoge-
neous oscillations in a cerium catalyzed oxidation of citric
acid by bromate,1 the following work of Zhabotinsky,2

early observations of chemical waves,3 and oscillations in
a broad range of chemical systems.4 Here the dynamics
can be described efficiently by virtue of a center manifold
theorem in a low-dimensional space by using so-called
normal forms. In this paper, we show how the inclusion
of higher-order terms from the normal form description
leads to a significant improvement of the description of
the chemical oscillatory kinetics near the Hopf bifurca-
tion point. This approach gives a much more accurate
description of the geometry of the limit cycle and, in ad-
dition, provides an accurate starting point suitable for
further investigation of the dynamical properties of the
limit cycle by numerical continuation.

I. INTRODUCTION

Oscillatory chemical reactions often exhibit a broad
range of time scales. This is due to the fact that the rate
constants governing the time scale of each elementary reac-
tion may differ by several orders of magnitude. For this rea-
son, analysis and simulation of chemical kinetics needs spe-
cial care since the underlying ordinary differential equations
~ODE’s! typically are highly stiff and, therefore, numerically
ill-conditioned. Examples of this dynamical behavior include
the Belousov–Zhabotinsky reaction,5 the horseradish
peroxidase-oxidase reaction,6,7 oscillatory behavior found in
the metabolic decomposition of glucose,8 and intracellular
calcium oscillations.9 In this paper, we focus attention on

chemical systems where the oscillations originate from an
instability of the Hopf bifurcation type and discuss the nu-
merical problems encountered when locating and analyzing
properties of oscillatory behavior close to the Hopf bifurca-
tion point.

Assume that two complex eigenvalues associated with
the linearization of the flow around a stationary solution be-
come purely imaginary when certain model parameters are
varied. Then the dynamical system undergoes a Hopf
bifurcation10–13 causing a small-amplitude limit cycle to
branch off at the Hopf bifurcation point. The limit cycle
close to the bifurcation point lies in a two-dimensional un-
folding of the center manifold tangent to a linear subspace
spanned by the real and imaginary parts of the complex ei-
genvector associated with the bifurcating complex
eigenvalue.14

As a consequence of the center manifold theorem,14–16

the behavior of the original system can be represented by a
much simpler two-dimensional ordinary differential equation
called a normal form which, sufficiently close to the bifurca-
tion point, describes the oscillations on a quantitative level.
From this point of view, the normal form becomes a univer-
sal dynamical system whose characteristics are valid for any
dynamical system which undergoes a Hopf bifurcation.

In a vast majority of systems, the presence of the Hopf
bifurcation is a necessary prerequisite for the onset of more
complex dynamical phenomena in the system. Indeed, dy-
namic events such as quasi-periodic oscillations, sequences
of period doublings, and chaos can very often be traced back
as originating from a Hopf bifurcation. Limit cycles, how-
ever, may arise in other ways as well, for example, via a
saddle node or a homoclinic bifurcation.

In model studies of such phenomena, one typically ap-
plies continuation techniques to observe how dynamical
characteristics of limit sets vary as a function of some rel-
evant parameter~for further details regarding the theory and
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numerical aspects of continuation, we refer to the detailed
reviews presented in Refs. 16 and 17!. For continuation of
limit cycles, the Hopf bifurcation provides a natural starting
point, since the normal form equation may be used to gener-
ate precise initial estimates of the limit cycle originating at
the bifurcation point. This estimate may then serve as initial
input data for the actual continuation algorithm used. Nu-
merical codes for solving this particular task, such as
BIFOR2,12 have been available for many years. Even though
we focus on examples taken from nonlinear chemical kinet-
ics, we emphasize that the results presented are generally
applicable for any dynamical system represented by a set of
autonomous ordinary differential equations.

In Sec. II, we briefly review how the center manifold can
be used to derive higher-order terms of the expansion of the
limit cycle that branches off at the Hopf bifurcation point.
Section III briefly outlines how to numerically find a Hopf
bifurcation point and calculate quantities needed to evaluate
the bifurcation formulas.

In Sec. IV, we demonstrate by several examples, that the
higher-order terms provide a significant improvement in the
accuracy of the calculated limit cycle compared to other ap-
proaches even quite far from the bifurcation point. This in
turn enables one to safely start numerical continuation even
in cases when highly unstable modes occur due to the pres-
ence of unstable eigendirections.

The Hopf and other bifurcation curves for these ex-
amples were calculated by the continuation packageCONT

@Ref. 18~Appendix B!#.

II. REVIEW OF THEORY

The normal form approach utilizes the fact that the cen-
ter manifold can be parameterized by a linear tangent space
called the center subspace which is spanned by the eigenvec-
tors associated with the bifurcating eigenvalues. In particu-
lar, we may choose these eigenvectors as a basis for the
center subspace implying that the parametrization can be ex-
pressed in terms of an expansion in coordinates of the ei-
genspace. These coordinates are called amplitudes. The dy-
namical evolution of the system can then be expressed by the
time dependence of these amplitudes determined by a differ-
ential equation referred to as a normal form or amplitude
equation. In this section, we present a summary of the deri-
vation of the amplitude equation for the Hopf bifurcation.

We start by considering a set of autonomous ordinary
differential equations described by

ẋ5F~x,m!5J•x1f~x,m!, ~1!

where the right-hand-side explicitly has been split into linear
and nonlinear partsJ•x and f(x,m) respectively. In Eq.~1!,
the vectorxPRn describes a set ofn ~chemical or physical!
quantities, whose derivative with respect to time is described
by the vector fieldF:Rn°Rn. The variablemPR denotes a
scalar quantity, which here will serve as a bifurcation param-
eter.

We now consider stationary solutionsxs of Eq. ~1!. As-
sume that a parameter value ofm exists such that the linear-
ization J of the right-hand-side of Eq.~1! has two complex

conjugate, pure imaginary eigenvaluesl5 iv0 and l̄
52 iv0 ~all other eigenvalues are assumed to have nonzero
real parts!. In the following, we shall for simplicity assume
that this situation occurs forxs50 and m50 ~this situation
can always be achieved by a simple linear translation of the
stationary point and the parameter value!. We denote the
right and left eigenvectors ofJ corresponding tol by u and
u* , and those ofl̄ by ū andū* , and choose these eigenvec-
tors normalized according to

u•u* 51, u•ū* 50, ū•u* 50, ū•ū* 51. ~2!

As a consequence of the center manifold theorem,14,15 the
branching which takes place at a Hopf bifurcation point, is
restricted to a two-dimensional center manifoldWc tangent
to the linear center subspaceEc spanned by the real and
imaginary parts of the right eigenvectoru. To describe the
branching we may, therefore, restrict ourselves to studying
the dynamics of the system~1! on the center manifold. This
can be achieved in the following way:

For pointsxPWc, we may construct a transformationx
5z1h(z,m), which maps points (z,m) from Ec3R to
points z1h(z,m) on the center manifold. If we write the
vector z as z5zu1zu, we obtain a complex differential
equation for the motion inEc3R of the form

ż5 iv0z1u* •g~z,m!. ~3!

The functionsF(z1h(z,m),m), h(z,m), andg(z,m) are now
Taylor expanded as

h~z,m!5(
pqr

hpqrz
pz̄qm r , g~z,m!5(

pqr
gpqrz

pz̄qm r ,

~4!

F~z1h~z,m!,m!5J•z1(
pqr

fpqrz
pz̄qm r .

The coefficientsgpqr andhpqr can then be obtained order by
order by the following iterative procedure. At any order
~p,q,r!, any nonvanishing componentu* •gpqr in the ampli-
tude equation is given explicitly by

u* •gpqr5u* •fpqr , ~5!

which only appears if the resonance condition,

p2q51, ~6!

is satisfied for the terms indicated at order~p,q,r!. The am-
plitude equation includes all resonant terms and no others.
To obtain the coefficienthpqr , one has to solve the system of
linear equations

~J2~p2q!lI !•hpqr52Q•Fpqr , ~7!

determining the nonresonant components ofhpqr . HereQ is
the projection onto the nonresonant part ofEc defined by
Q•x5x2(u* •x)u. The auxiliary condition,

u* •hpqr50, ~8!

ensures that all resonant components ofhpqr vanish. Equa-
tion ~7! together with Eq.~8! determineshpqr completely.

To cubic order, the amplitude transformation for the
Hopf bifurcation is
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x5uz1uz̄1h200z
21h110uzu21h020z̄

21h300z
3

1h210uzu2z1h120uzu2z̄1h030z̄
31h001m

1~h101z1h011z̄!m, ~9!

with the corresponding amplitude equation

ż5~ iv01l1m!z1gzuzu2, ~10!

wherel1 andg are given by

l15u* •Fxm•u1u* •Fxx~u,h001!, ~11a!

g5u* •Fxx~u,h110!1u* •Fxx~ ū,h200!

1 1
2u* •Fxxx~u,u,ū!. ~11b!

The derivation of the explicit expressions that define these
coefficients is standard and is summarized in a compact form
in Table I. For details regarding the derivation, see the dis-
cussions in Refs. 16 and 19.

In particular, if we represent the complex variablez in
polar form z5R exp(iu) and require the amplitudeR to be
stationary in time, we find the following simple solution to
the normal form~10!

Rs5A2s1m/gr, u~ t !5v0t1S v12s1

gi

gr Dmt, ~12!

corresponding to a solution with a constant amplitude and
phase varying linearly in time. Observe that we have intro-
duced the notationg5gr1 igi andl15s11 iv1 in Eq. ~12!.

Inserting this solution into the corresponding transformation
h(z,m) given by Eq. ~9! yields the following expansion
which corresponds to a~periodic! limit cycle solution for the
differential equation~1! on the center manifold associated
with the Hopf bifurcation

x5xs1h001m1x1~ t !1x2~ t !1x3~ t !, ~13!

where

x1~ t !5Rs~ueiu1c.c.!, ~14!

x2~ t !5Rs
2~h200e

2iu1c.c.1h110!, ~15!

x3~ t !5Rs
3~h300e

3iu1h210e
iu1c.c.!1Rs~h101e

iu1c.c.!m,
~16!

where c.c. denotes the complex conjugate of the preceding
terms within a given bracket.

The stability of the limit cycle is determined by the real
partgr of the nonlinear coefficientg in Eq. ~10!. If gr,0 the
limit cycle is stable~within the center manifold! and it is
unstable forgr.0. In each of the two cases, the Hopf bifur-
cation is referred to as being either supercritical or subcritical
respectively. For a given distancem from the bifurcation
point, the periodT of the limit cycle can be determined from
Eq. ~12! as

T~m!5
2p

v01~v12s1gi/gr!m
. ~17!

TABLE I. Formulas for calculating the coefficients of the normal form transformation and the normal form for
the Hopf bifurcation. At the bifurcation, the JacobianJ has two complex conjugate eigenvectorsu and ū and

left eigenvectorsu* and ū* corresponding to critical eigenvaluesl5 iv0 and l̄52 iv0 . The normal form
transformationx5z1h(z,m), z5uz1uz, transforms a solutionz(t) of the normal form to the motionx(t) on
the unfolded center manifold for the dynamical system. The vector coefficientshpqr are determined as solutions
to the linear equations indicated, in terms of the derivatives of the vector fieldF. The coefficients of the normal
form can then be found through the explicit expressions indicated, in terms ofF andhpqr .

Formulas for Hopf Bifurcation

Transformation
x5z1h(z,m)

x5uz1uz1h200z
21h110uzu21h020z̄

21h300z
31h210uzu2z

1h120uzu2z̄1h03z̄
31h001m1(h101z1h011z̄)m

z2:

(J22iv0I )•h20052
1
2 Fxx(u,u)

h0205h̄200
uzu2: J•h11052Fxx(u,ū)

z3:

(J23iv0I )•h30052
1
2 Fxx(u,h200)2

1
6 Fxxx(u,u,u),

h035h̄300
Linear equations
for hpqr

zuzu2:

(J2 iv0I )•h21052Q•(Fxx(u,h110)1Fxx(ū,h200)1
1
2 Fxxx(u,u,ū))

u* •h21050

h1205h̄210m: J•h00152Fm

mz:

(J2 iv0I )•h10152Q•(Fxmu1Fxx(u,h001))

u* •h10150

h0115h̄101

Q•x5x2(u* •x)u

Resonant coefficients g5u* •Fxx(u,h110)1u* •Fxx(ū,h200)1
1
2 u* •Fxxx(u,u,ū)

l15u* •Fxm•u1u* •Fxx(u,h001)

Amplitude equation ż5( iv01l1m)z1gzuzu2
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The third-order expansion~13! of the limit cycle illus-
trates the well-known fact that the limit cycle which bifur-
cates from the Hopf bifurcation is analytic in the square root
of the distanceumu from the bifurcation point. The termh001

is not directly related to the geometry of the limit cycle itself
but corresponds to the first-order derivative of the stationary
point xs with respect tom. This term therefore provides a
first-order description of the translation of the stationary
point as the distance from the bifurcation pointm is varied.
The time dependent termx1(t) corresponds to the linear de-
scription of the limit cycle which is obtained by projecting
Eq. ~13! onto the center subspaceEc. By means of perturba-
tion theory,20 one can show that the part ofx3(t) which
involves h101 can be identified as describing the rotation of
the eigenvectoru per unit change ofm. Similarly, we may
identify the coefficientl1 in the normal form Eq.~10! as the
derivative of the bifurcating eigenvalue with respect tom.

By inspection of Table I, we also observe that explicit
calculations of the coefficient vectorsh001, h200, and h110

are needed in order to determine the complex resonant coef-
ficientsl1 andg in Eq. ~10!. For this reason, the termsx1(t)
andx2(t) in the expansion~13! of the limit cycle are imme-
diately available once the resonant coefficients in the normal
form have been determined. However, to find the coefficient
vectorsh300, h210, and h101 that determine the third-order
termx3(t), observe that an additional set of linear equations
must be solved.

One crude approach for estimating the limit cycle ema-
nating from a Hopf bifurcation is to use only a simplification
of the termx1(t) in order to estimate a pointx on the limit
cycle with corresponding periodT, namely

x5e~u1ū!,

T5
2p

v0
, ~18!

for some real~small! value ofe. This expansion is then ap-
plied for fixedm5e, which will hold sufficiently close to the
bifurcation point since the derivativedRs/dm is infinite at
m50. However, for systems where the limit cycle is unstable
due to either a subcritical Hopf bifurcation or a stationary
point associated with some very unstable nonbifurcating
eigendirections, the estimate provided by Eq.~18! will rarely
suffice as initial input data for a continuation algorithm. This
in particular applies to methods using a shooting method in
solving the associated boundary value problem. Here either
one or~if multiple shooting is required! several precise esti-
mates of points on the limit cycle are needed as initial input
data for the continuation problem. In Sec. IV, we shall ad-
dress this problem by discussing several examples which il-
lustrate the importance and advantages obtained when the
full expansion~13! is used instead of the traditional approach
represented by Eq.~18!. Also, the Hopf bifurcation fre-
quently turns out to be subcritical, and the bifurcating un-
stable cycle typically merges with a stable cycle in a fold
bifurcation at a nearby parameter value. A normal form cap-
turing this feature requires the inclusion of terms of quintic
order in the expansion. Even though this extension is

straightforward, we do not discuss it here, but rather use
continuation to determine the location of the fold bifurcation.

First however, we describe shortly the numerical algo-
rithm used in the results presented here for locating Hopf
bifurcation solutions~x, m! to Eq. ~1!.

III. LOCATION OF HOPF BIFURCATION POINTS AND
CALCULATION OF NORMAL FORM COEFFICIENTS

Several approaches for location of Hopf bifurcation
points exist as described in the reviews given in Refs. 12, 16,
17, and 21. In the work presented in this paper, we have
chosen a slightly modified variant of the algorithm described
in Ref. 22. Here the equations that define the Hopf bifurca-
tion point are

F~xs,m!50, ~19a!

J•v11v0v250, ~19b!

J•v22v0v150, ~19c!

v1
T
•v11v2

T
•v251, ~19d!

v2
T
•v150, ~19e!

where Eq. ~19! constitutes a system of 3n12 nonlinear
equations in 3n12 unknowns: the stationary pointxs, the
bifurcation parameterm, the imaginary partv0 of the bifur-
cating eigenvalue, and the real and imaginary partsv1 andv2

of the complex eigenvectoru associated with the bifurcating
eigenvalue. The solution of this system is readily obtained by
applying a standard Newton iteration scheme to Eq.~19!.

Even though the set of defining equations has a large
dimension compared to other approaches which typically in-
volve numerical evaluation of determinants, we find it nu-
merically more stable than low-dimensional schemes since
determinant evaluations easily become numerically very ill-
behaved. Furthermore, in situations where the purpose of
solving Eq.~19! is to provide an initial estimate of the limit
cycle solution of Eq.~1!, one typically analyzes only a few
Hopf bifurcation points. Even for larger system sizes~we
have made tests forn5256) such computations proceed
smoothly on modern workstations or high-end PC’s.

Notice that setting up a Newton algorithm for the system
~19! requires the evaluation of second-order derivatives of
Eq. ~1! with respect tox andm—the so-called Hessian. This
can either be supplied in symbolic form or be obtained by
numerical differentiation. In the implementation presented in
this paper, we have used a symmetric five-point differentia-
tion formula Ref. 23~p. 914! to evaluate the Hessian using
analytic expressions for the elements of the Jacobian. The
structure of the Jacobian matrix associated with Eq.~19! and
explicit expressions for all its elements are shown in Fig. 1
and Table II, respectively. The matrix is relatively sparse and
the linear equations arising from Newton iteration of Eq.
~19! can be solved efficiently using a block decomposition
described in Ref. 24.

Once the Newton iteration has converged, the formulas
in Table I must be evaluated in order to find the terms in the
expansion~13! as well as other properties of the limit cycle.
Solutions of the linear equations that determine the vectors
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h200, h110, andh001 is a straightforward task using standard
linear algebra routines from numerical libraries such as
LAPACK.25 After this step has been accomplished, the reso-
nant coefficientsl1 andg may be determined by projecting
the vectorsF210 and F101 onto the center subspace. Notice
that the calculation ofg in general requires evaluation of the
third-order derivatives of Eq.~1!. In the examples considered
here, these were calculated numerically from the Jacobian of
Eq. ~1! using a symmetric four point formula Ref. 23~p.
884!.

The vectorsh300, h210, andh101 should now be found.
Since the linear equation which determinesh300 is regular,

this vector is readily obtained. However, the linear systems
that define h210 and h101 involve the singular matrixJ
2 iv0I . First the singular part of the vectorF210 and F101

are removed according to Eq.~7!. The resulting system is
then solved using a singular value decomposition where the
solution is subject to the additional condition~8!.

Next assume that we would like to know the parameter
dependence of the limit cycle throughout a broad region by
means of a numerical continuation procedure. The formulas
in Table I provides us readily with an initial estimate for
such a calculation. To choose a proper operating point for the
initial estimate of the limit cycle, a finite parameter distance
from the bifurcation point must be chosen. This value is
finally used in Eq.~13! to generate either one or, if a multiple
shooting or a discretization is desired, a set of initial points
on the limit cycle. An estimate for the initial period of the
limit cycle is given by Eq.~17!.

IV. EXAMPLES

In this section, we examine four different models in or-
der to discuss and illustrate the use of Eq.~13! to approxi-
mate the geometry of limit cycles emerging from a Hopf
bifurcation. The examples are arranged according to the size
of their phase space. While the dynamics of the first and the
fourth models are amenable to numerical integration by stan-
dard Runge–Kutta solvers, the other two models are highly
stiff and a relevant numerical solver has to be used~e.g.,
LSODE26!. In order to compare the expansion in Eq.~13! with
the exact limit cycle solutions, we have introduced the fol-
lowing root-mean-square measure:

uxu5A1

T E
0

T

(
j 51

n

xj~ t !2dt. ~20!

The relative erroruxi urel , for a given expansionxi(t) of Eq.
~13! of order i 51,...,3, is then calculated asuxi urel5ux
2xi u/uxu wherex(t) is the exact limit cycle solution deter-
mined by numerical continuation.

A. Papain oscillator

The first model example is the papain oscillator—a bio-
chemical model involving the enzyme papain. This system
describes the enzyme catalyzed hydrolysis of a substrate~N-
a-benzoyl-L-arginin ethylester! in a compartment connected
to a reservoir.27,28 The model can be cast in terms of two
independent variabless ~dimensionless substrate concentra-
tion! and h ~dimensionless concentration of hydrogen ions!
whose temporal dynamics are described by the following
differential equations:

ṡ5qS~s02s!2r HS,
~21!

ḣ5
h2

11h2 S qH~h02h!2S 1

h0
2

1

hD1r HSD ,

where the reaction kinetics term is

r HS5Da
s

~ f 11 f 2!s1 f 3
, ~22a!

f 15~111022.71h11021.49h21!, ~22b!

FIG. 1. Structure of the Jacobian matrix needed to solve the defining system
~19! for locating a Hopf bifurcation point by Newton iteration. Gray colored
areas contain zero elements only. Explicit expressions needed to evaluate
each nonzero matrix element are shown in Table II.

TABLE II. Expressions for the elements of the Jacobian matrix shown in
Fig. 1 needed to solve the defining system~19! for locating a Hopf bifurca-
tion point by Newton iteration.

Block Size Element expression

S]F

]xD
i j

(n3n) ]Fi

]xj

S ]F

]m D
i

(n31) ]Fi

]m

S]2F

]x2 ~v1! D
i j

(n3n)

(
k51

n
]2Fi

]xj]xk
v1k

S]2F

]x2 ~v2! D
i j

(n3n)

(
k51

n
]2Fi

]xj]xk
v2k

S ]2F

]x]m
~v1! D

i

(n31)

(
k51

n
]2Fi

]xk]m
v1k

S ]2F

]x]m
~v2! D

i

(n31)

(
k51

n
]2Fi

]xk]m
v2k
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f 253.212~111023.08h!, ~22c!

f 355.4531025f 1 , ~22d!

and the values of fixed parameters areqS50.375,qH

51.766,s051150. The two remaining parameters, the
Damköhler numberDa, and the inflow concentration of hy-
drogen ionsh0 are used as bifurcation parameters.

The papain oscillator Eq.~21! exhibits a curve of Hopf
bifurcations in theh02Da parameter space shown in the
bifurcation diagram in Fig. 2~a!. Both super- and subcritical
bifurcations occur as shown in the figure with solid and
dashed lines respectively. Both endpoints of the bifurcation
curve terminate at codimension-two Bogdanov–Takens bi-
furcation points29 where the Hopf bifurcation curve coa-
lesces with a fold~or saddle-node! bifurcation curve~indi-
cated with white circles!. A blow-up of the region
corresponding to supercritical bifurcations is shown in Fig.
2~b!.

To investigate the effect of the nonlinear terms of the
expansion ~13!, we have chosen the sample point
(h0 ,ln Da)5(2.410 91431023,15.439 57) within the super-
critical region as indicated on Fig. 2 with a solid circle, see
also Table III. To study the limit cycle bifurcating from this
point, we need to operate at a finite distance from the bifur-
cating point which is done by fixingDa and choosingh0

52.410 77831023. The comparison of the numerically ac-
curate limit cycle solution obtained by the shooting method17

and the estimates provided by Eq.~13! are shown as both

time plots and phase portraits in Fig. 3. The first-order ex-
pansion of Eq.~13! shows large deviations from the exact
solution, whereas the second- and third-order expansions
agree increasingly better with the accurate solution. This is
in correspondence with the relative deviations from the exact
limit cycle solution given by Eq.~20!, where we find
0.2254%, 0.0234%, and 0.0171% for the first-, second-, and
third-order expansions respectively.

Numerical values for all the coefficient vectors used in
the expansion Eq.~13! are shown in Table IV.

B. Inorganic pH oscillator

The next model by Luo and Epstein30 has been used as a
general system to describe pH oscillations in inorganic
chemical reaction systems. This four variable model de-
scribes a flow-through stirred chemical system with inflow ofFIG. 2. Bifurcation diagram showing the locations of Hopf bifurcations for

the papain oscillator defined in Eq.~21! in the plane of the two parameters
h0 andDa.

TABLE III. Characteristic coefficients for the normal form~10! associated
with the Hopf bifurcation point in the papain model~21! indicated on the
bifurcation diagram in Fig. 2 with a solid circle.

Re Im

h0 2.410 91431023

Da 1.543 9573101

v0 2.537 017
l1 21.778 0583105 6.838 5683104

g 1.955 11731021 7.351 98331022

FIG. 3. Comparisons of the actual periodic solution~solid line! to the papain
model ~21! and its approximation by the first-, second-, and third-order
expansions of the limit cycle formula~13! ~long-dashed, short-dashed, and
dotted lines, respectively!.
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reactants and outflow of reaction products whose dynamics
are described by the following coupled set of ordinary dif-
ferential equations:

Ḣ5k21Z2k1XH2k2AHZ13k3YZ2k5BH

1k0~H02H !,

Ẋ5k21Z2k1XH1k0~X02X!,
~23!

Ẏ5k2AHZ2k3YZ2k4Y2k0Y,

Ż5k1XH2k21Z2k2AHZ2k3YZ2k0Z.

Despite its low dimension this system is markedly stiff. The
four dynamical variablesH, Y, X, Z, and the constantsA, B
correspond to the concentrations of the chemical species H1,
HOBr, SO3

22, HSO3
2, BrO3

2, and Fe~CN!6
42, respectively.

The two constantsH0 and X0 are inflow concentrations of
H1 and SO3

22 whereas the parameterk0 describes the flow
rate through the open system. The constantsk21 and
k1 ,...,k5 are kinetic rate constants associated with the set of
chemical reactions on which the inorganic pH oscillator is
based. Here we shall use the parametersk0 andX0 as bifur-
cation parameters. Numerical values used for the constants
are summarized in Table V.

As illustrated in the bifurcation diagram in Fig. 4~a!, the
inorganic pH oscillator Eq.~23! exhibits oscillatory behavior
emerging from Hopf bifurcation for a wide range of the pa-
rametersk0 and X0 . Observe also that almost the entire
curve in parameter space corresponds to subcritical Hopf bi-
furcations, except for a narrow region located at low flow

TABLE IV. Numerical values for all characteristic vectors describing the Hopf bifurcation in the papain model
~21! indicated on Fig. 2 with a solid circle. The coefficient vectorshi jk have been calculated using the formulas
of Table I. Observe that these are dependent on the chosen normalization of the complex right eigenvectoru.
All shown numbers are needed to evaluate the terms in Eq.~13! describing the expansion of the limit cycle
associated with the Hopf bifurcation point.

Stationary pointxs Vector fieldF(xs)

Eigenvalues

Re Im

4.760 2713101 8.729 991310215 8.881 547310215 2.537 017
4.576 06531021 21.644 461310215 8.881 547310215 22.537 017

Re Im Re Im
u 1.000 000 0.0 h200 2.117 95731022 21.639 70331021

21.538 99231021 24.311 29431022 3.103 32931022 5.179 43831022

u* 5.000 00031021 1.784 837 h210 22.820 61731021 1.626 10731021

0.0 1.159 7453101 3.639 84331022 23.718 61631022

h110 3.184 91531021 22.139 060310210 h300 24.455 94631022 1.038 56631022

6.324 37131022 3.282 530310211 9.965 68031023 22.280 00331022

h001 0.0 h101 21.031 3483105 2.952 1683105

22.723 4733105 3.144 6903103 24.988 0063104

TABLE V. Rate constants and external constraints used for numerical simu-
lations of the inorganic pH oscillator model in Eq.~23!. All values are taken
from Ref. 30.

Constant Value

k1 /M 21s21 5.031010

k21 /s21 3.03103

k2 /M 22s21 3.0773106

k3 /M 21s21 106

k4 /s21 11.0
k5 /M 21s21 2.5
A/M 6.531022

B/M 2.031022

H0 /M 2.031022

FIG. 4. Loci of Hopf bifurcations for the inorganic pH oscillator in the
parameter plane (k0 ,X0). At two parameter points, the Hopf bifurcation
changes stability from super- to subcritical~solid and dashed curves, respec-
tively!. The curve shown in~b! illustrates how the imaginary partv0 of the
bifurcating eigenvalue varies along the bifurcation curve in~a!.
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rates where the bifurcations are supercritical. Both endpoints
on the bifurcation curve terminate at Bogdanov–Takens
points indicated with white circles on Fig. 4. This feature is
shown in Fig. 4~b! where the variation of the imaginary part
v0 of the bifurcating eigenvalue along the bifurcation curve
is shown as a function of the flow ratek0 ; clearly, v0 van-
ishes at the two endpoints as required at a Bogdanov–Takens
point.

To investigate the application of the higher-order expan-
sions of Eq.~13! as the distance from the Hopf bifurcation
point is varied, we have selected the sample point (k0 ,X0)
5(41.1112,0.654 069) marked on the bifurcation curve in
Fig. 4 with a solid circle. The characteristics of the corre-
sponding normal form are presented in Table VI.

Next, we keepX0 fixed, and choose four increasing val-
ues ofk0 whose numerical values are shown in Table VII.
Phase portraits showing the numerically accurate limit cycle
solution and the first- and the third-order estimates of Eq.
~13! projected onto the~H, X!-plane are shown in Fig. 5. For
each of the four parameter values, the corresponding ampli-
tudes of the oscillations for the two componentsH andX are
shown in Table VII. Close to the bifurcation point~5a!, both
the first- and third-order estimate are numerically identical to
the exact solution. However, as the distance is increased~5b!
and~5c!, deviations from the exact solution, become increas-
ingly pronounced for the first-order estimate, whereas the
third-order estimate still agrees well. Notice in Table VII that
the size of the limit cycle increases by two orders of magni-
tude from cases~a!–~d!. For a sufficiently large parameter
value ~5d! the third-order solution also fails to capture the
dynamics and geometry of the exact solution.

C. Peroxidase-oxidase oscillator

The purpose of the following example is to show the
performance of the bifurcation formulas in Table I in a larger
system whose dynamics are extremely stiff due to vastly dif-
ferent time scales involved. In addition, we illustrate the evo-
lution of the periodic branches as they extend far from their
emergence at the Hopf bifurcation. The system is a model for
aerobic oxidation of nicotinamide adenine dinucleotide
~NADH! catalyzed by the enzyme horseradish peroxidase.
Apart from periodic oscillations emerging via a Hopf bifur-
cation the model exhibits a complex sequence of bifurcations
leading to chaos. The model was proposed by Aguda and
Larter6 to account for earlier experimental observations of
chaos.31 The system is open to oxygen from air and is gov-
erned by ten evolution equations

Ȧ52k1WA1k7CN,

Ḃ5k2XN1k3NY2k4BZ2k6BF1k7CN22k8B2

2k12BW,

Ċ52k5CW1k6BF2k7CN,

Ḟ52k6BF2k13FV1kt~@O2#eq2F !,

Ṅ52k2XN2k3NY2k7CN1NADHin,
~24!

Ẇ52k1AW1k3NY2k5CW2k12BW,

Ẋ5k1AW2k2XN1k4BZ,

Ẏ5k2XN2k3NY,

Ż52k4BZ1k5CW1k13FV,

V̇5k12BW2k13FV,

where the variables are assigned to concentrations of respec-
tive species as follows:A5@H2O2#, B5@NAD•#, C5@O2

2#,

TABLE VI. Characteristic coefficients for the normal form~10! associated
with the Hopf bifurcation point in the inorganic pH oscillator~23! indicated
on Fig. 4 with a solid circle.

Re Im

k0 4.111 1253101

X0 6.540 69931021

v0 7.993 6563101

l1 1.013 5873103 25.4060563102

g 29.611 1123108 2.0520873109

FIG. 5. Periodic solutions to the inorganic pH oscillator~23! ~dashed lines!
and approximations by the first- and third-order expansions of the limit
cycle formula~13! ~solid lines!. The plots~a!–~d! represent projections of
the closed orbit onto the~H,X!-plane and compare the limit cycle solutions
at four increasingly larger values of the inflow parameterk0 whose numeri-
cal values are shown in Table VII. The relative errors of the first- and
third-order expansions compared to the exact limit cycle solutions are also
displayed.
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F5@O2#, N5@NADH#, W5@Per31#, X5@coI#, Y5@coII#,
Z5@coIII#, andV5@Per21#. The various oxidation states of
the enzyme are bound by the constraint Etot5V1W1X1Y
1Z, which permits a reduction of the number of equations by
one ~we chooseV to be calculated from the constraint and
leave out the corresponding differential equation!. The rate
coefficients are fixed atk1 ,...,k45k6 ,...,k85k125k13

51 mM21 s21,k5560mM21 s21. Two external parameters,
the mass transfer coefficient,kt50.1 s21, and the inflow of
NADH, NADHin50.1mMs21, are also fixed. The remaining

two parameters, the concentration of oxygen when equili-
brated with the gas,@O2#eq, and the total concentration of the
enzyme, Etot , are free.

The curve of the Hopf bifurcations in this parameter
plane is shown in Fig. 6~a!. It encloses a bounded region
where oscillations are expected. Observe that the curve con-
sists of both super- and subcritical parts as indicated by solid
and dashed lines respectively.

The branches that emanate from the two bifurcation
points selected by setting the parameter@O2#eq51.3mM are
undergoing various bifurcations when further away from the
Hopf bifurcation as shown in Fig. 6~b!. The characteristics of
the normal form are shown in Table VIII. The bifurcation
formulas were used to find an estimate of a periodic orbit
close to its emergence and this estimate was subsequently
used to track the entire branch of periodic orbits by continu-
ation. The figure shows that both Hopf points are joined by a
single three times folded branch. The solutions become un-
stable due to repeated fold and period-doubling bifurcations,
the latter being consistent with the observations of chaos
discussed in Ref. 6.

D. Reaction-diffusion systems

As a final example, we wish to consider how the calcu-
lations of the characteristics of a Hopf bifurcation considered
in the previous examples can be extended to reaction-
diffusion systems described by a partial differential equation
~PDE! of the form

FIG. 6. ~a! Loci of Hopf bifurcations for the peroxidase-oxidase oscillator in
the parameter plane (@O2#eq,Etot). Super- and subcritical regions are shown
with solid and dashed curves, respectively. The curve shown in the solution
diagram~b! illustrates a continuation of the limit cycles that branch off from
the two Hopf bifurcation points marked in~a! with solid circles. Initial
estimates of the limit cycle for a 20-point multiple shooting continuation
were evaluated by using the full third expansion of Eq.~13!. During the
course of continuation the limit cycle exhibits a series of period-doubling
and limit point bifurcations indicated on the continuation curve with white
and gray circles, respectively.

TABLE VII. Four parameter values of inflow concentrations of hydrogenH0 for the inorganic pH oscillator
associated with the Hopf bifurcation point indicated on Fig. 4 with a solid circle. At each parameter value, the
numerically accurate limit cycle solution and the first and third estimates provided by the expansion~13! have
been calculated as shown in Fig. 5. The table also exhibits the amplitude of oscillations for both theH andX
component at each corresponding parameter point.

Figure k02k0
Hopf Amplitude of H Amplitude of X ux1u rel /% ux3u rel /%

5~a! 0.013 89 1.365231026 3.458331029 0.0230 0.0230
5~b! 0.013 96 2.155731025 5.522631028 3.6064 0.3628
5~c! 0.014 04 3.395231025 8.839531028 7.7942 1.3956
5~d! 0.014 13 4.675431025 1.247231027 13.2738 3.87005

TABLE VIII. Characteristic coefficients for the normal form~10! associated
with the two Hopf bifurcation point in the peroxidase-oxidase model indi-
cated on Fig. 6 with a solid circle.

Re Im

Etot 2.662 8833101

@O2#eq 1.3
v0 1.052 59331022

l1 22.777 68431025 22.151 06731025

g 7.366 95131026 1.848 19831025

Etot 2.514 597
@O2#eq 1.3
v0 4.775 36531022

l1 8.274 12731024 21.228 46531023

g 28.655 57031025 1.786 90231026
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]x

]t
5J•x1f~x,m!1D•¹2x. ~25!

Here x(r ,t) is a vector ofn chemical componentsxi(r ,t)
defined on a functional spaceH dependent on both timet and
a one-dimensional spatial variabler. The spatial dependence
corresponds to the inclusion of diffusion driven transport of
matter described by the diagonal diffusion matrixD whose
individual componentsDi are diffusion coefficients of the
respective chemical species.

The extension and application of the center manifold
theorem and bifurcation analysis in terms of normal form
calculations for infinite dimensional systems of the type Eq.
~25! is today well-established in the literature and we refer to
Refs. 12, 15, 16 and 32 for a detailed treatment of this sub-
ject.

In this context, we wish to consider the Brusselator
model33 with an additional diffusion term, namely

ẋ15a2~b11!x11x1
2x21d¹2x1 ,

~26!
ẋ25bx12x1

2x21dq¹2x2 ,

where we shall use the diffusion coefficientd as the bifurca-
tion parameter. The spatial variabler is defined on the do-
main r P@0;p# whereas each variablexi is subject to no-flux
~or von Neumann! boundary conditions

]xi

]t U
r 50

5
]xi

]t U
r 5p

50, for i 51,2. ~27!

The Brusselator~26! has a nontrivial spatially homogeneous
solution (x1

s ,x2
s)5(a,b/a) and we wish to consider the sta-

bility of this state here.
The linear part of Eq.~26! at the homogeneous state

(x1
s ,x2

s) defines an operator

M5J1D
]2

]r 2 ~28!

with eigenfunctionsYk(r )

Yk~r !5cos~kr !vk , ~29!

where the wave numberk is defined fork50,1,... . The vec-
tor vk is the eigenvector associated with the eigenvalue prob-
lem

~J2k2D!•vk5lkvk . ~30!

If we define an inner product^•,•& on the functional spaceH
as

^w,v&5(
i 51

2 E
0

p

w̄iv idr, ~31!

the adjoint operatorM* of Eq. ~28! becomes

M* 5JT1D
]2

]s2 , ~32!

with corresponding~adjoint! eigenfunctions

Yk* ~r !5cos~kr !vk* , for k51,2,... . ~33!

As in Eq. ~2!, we normalize the eigenfunctions according to

^Yk* ,Yl&5dkl , ~34!

which implies that the right and left eigenvectorsvk andvl*
satisfy

vk* •vl5
2

p
dkl . ~35!

At the parameter valued52, the homogeneous steady
state undergoes a Hopf bifurcation for the wave numberk
51, implying that a spatially nonhomogeneous periodic so-
lution branches off from the homogeneous reference state
(a,b/a). The corresponding right and left eigenfunctions are

Y~r !5cos~r !v, Y1* ~r !5cos~r !v* , ~36!

where

v5~1,221 i!T, v* 5
1

p
~122i,2i!. ~37!

By application of the inner product defined in Eq.~31!, we
may use the left eigenvectorY1* to decompose any smooth
function in H into its center subspace component and asso-
ciated complement.

For the example presented here, we only wish to discuss
the calculation of the coefficientsl1 and g of Eq. ~10! and
need therefore only to determine the coefficient vectorsh200,
h110, andh001. The notational modifications of the formulas
in Table I needed to determine these quantities@and thereby
the normal form equation~10! associated with the Hopf bi-
furcation# are almost trivial. For example, for the second-
order componenth200(r ), we find

~J1D•¹222iv0I !•h20052 1
2Fxx~v,v!, ~38!

whereas the equation that determines the third-order coeffi-
cient g becomes

g5^v* ,Fxx~v,h110!1Fxx~ v̄,h200!1 1
2Fxxx~v,v,v̄!&. ~39!

Equation~38! is a linear boundary value problem which must
be solved subject to the no-flux condition]h200/]r 50. In-
sertion ofM and the eigenfunctionY1(r ) into Eq.~38! gives

~J1D•¹222iv0I !•h20052~112i,2122i!T cos2 r .
~40!

Expanding the right-hand side as

~J1D•¹222iv0I !•h2005
1
2~112i,2122i!T~11cos 2r !,

~41!

and solving Eq.~41! for each separate harmonic~1 and
cos 2r) gives

h200~r !5~112i!@2 1
15~21 i, 15

6 !T

12 1
51~42 i,2 255

31 14i!T cos 2r #. ~42!

The derivations and solutions of the linear equations that
determine the remaining quantities from Table I~the trans-
formation coefficientsh110,h210,h300, as well as the unfold-
ing coefficient l1) follow precisely the same procedure
sketched forh200 above and we shall therefore omit these
details here. Using the same procedure as demonstrated for
h200, we find for the additional coefficient functions
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h110~r !5 1
25~4 cos 2r ,22529 cos 2r !T,

~43!h001~r !50.

Using the definition of the inner product~31!, the third-order
coefficientg is calculated from Eq.~39! as

g52
35 047

10 200
1 i

31 529

10 200
, ~44!

whereas a similar calculation forl1 gives

l152 3
41 i 1

2. ~45!

A similar calculation for the Brusselator PDE system Eq.
~26! has also been discussed in Ref. 34 using, however, dif-
ferent settings for the boundaries of the physical domain.

To test the accuracy of the numerical code that was used
in the previous three examples for location of the Hopf bi-
furcation and evaluation of the terms in the limit cycle ex-
pansion~13!, we have compared the numerical calculations
of the nonlinear coefficientg with the analytic values Eqs.
~44! and ~45!. To transform the Brusselator PDE~26! into a
set of ODE’s, we have used a standard second- and fourth-
order finite difference scheme for discretizing the Laplacian
operator. Note that no special care was taken to make use of
the special sparse banded structure of the Jacobian matrix
which occur in this context.

The results are exhibited in Table IX where the numeri-
cal values ofg and the corresponding relative error of the
absolute value are shown for an increasing number of grid
points for the two finite difference schemes. As expected, the
error decreases with the number of grid points used in both
the second- and fourth-order approximations. However, the
numbers also clearly show that the fourth-order approxima-
tion is highly superior compared to the second-order discreti-
zation: Even for relatively small spatial resolutions~32 grid
points!, the fourth approximation is correct within 1.2
31024% of the analytic value. A similar conclusion for the
Brusselator model regarding the accuracy of finite difference
schemes was pointed out in a somewhat different context in
a paper by Wittenberg and Holmes.35

V. DISCUSSION

The numerical analysis of Hopf bifurcation points
should meet at least two criteria: First, the method should
provide a sufficiently precise initial estimate for a one-
parameter continuation of the periodic orbit which emerges
at the Hopf bifurcation point. Second, the method should

provide information regarding the stability of the limit cycle
close to the bifurcation point by determining whether the
Hopf bifurcation is super- or subcritical.

In this paper, we have shown how these two criteria can
be met efficiently by a straightforward application of the nor-
mal form theorem. We provide explicit expressions for de-
riving the nonlinear contributions from the normal form
transformation for the expansion of the limit cycle emerging
at a Hopf bifurcation. All the examples considered here
clearly illustrate that the addition of the nonlinear terms to
the limit cycle expansion provides a significant improvement
and accuracy in the numerical estimate of the limit cycle.
This can be crucial for the convergence. We stress that the
calculation of the additional nonlinear terms requires very
little extra numerical work since these terms are required for
the determination of the resonant coefficients in the corre-
sponding normal form~10! for the Hopf bifurcation. In fact,
only the third-order terms in the expansion requires addi-
tional numerical work. We believe these results will prove
useful for future developments of robust numerical codes for
bifurcation analysis of Hopf bifurcations superseding cur-
rently used ones.

In addition, we have also shown that inclusion of higher-
order terms in the normal form approximation provides a
significant improvement in the representation of the exact
limit cycle. This, for example, is clearly illustrated in Fig. 5,
where both the translation and the nonlinear bending of the
limit cycle is captured well by the higher-order expansion.
This holds even at parameter distances quite far from the
actual Hopf bifurcation point and makes it much easier for
the numerical procedure of finding the limit cycle to con-
verge. In addition, we believe that this may have experimen-
tal importance when the geometry of the limit cycle is recon-
structed from experimental data using either quenching
techniques36 or control theory.37

The ideas presented here for the Hopf bifurcation have
been implemented numerically into a software tool
BRANCH38 which supports bifurcation analysis of dynamical
systems described by autonomous ordinary differential equa-
tions and discrete iterated maps. For such systems, all
‘‘simple’’ codimension-one bifurcations are handled:
Saddle-node, transcritical, pitchfork, and Hopf–Neimark-
Sacker bifurcations of stationary, periodic, and fixed point
solutions, as well as period doubling bifurcations of periodic
orbits. In addition, a range of codimension-two bifurcations
commonly encountered in ODE’s with special symmetry

TABLE IX. Numerically calculated values of the nonlinear coefficientg of the normal form Eq.~10! for the
Brusselator PDE~26! using second- and fourth-order finite difference schemes for discretization of the Laplac-
ian. For an increasing number of grid points, each row displays the numerically obtained values as well as the
relative error with respect to the exact solution shown in Eq.~44!.

Grid points

Normal form coefficientg

Relative error/%2. order 4. order

16 3.432 284 52 i3.090 980 7 3.435 875 12 i3.091 076 3 0.080 0.002
32 3.435 121 92 i3.091 061 1 3.435 974 52 i3.091 078 3 0.019 1.231024

64 3.435 772 92 i3.091 074 2 3.435 980 02 i3.091 078 4 0.005 7.431026

128 3.435 929 32 i3.091 077 4 3.435 980 32 i3.091 078 4 0.001 4.631027
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properties are also supported. For the analysis of periodic
solutions of Eq.~1!, full support for multiple shooting or
discretization is provided. Estimates of initial points on the
branches are calculated and output is generated in a form
suitable as input data for the continuation softwareCONT

@Ref. 18~Appendix B!#. Both software packages are free and
can be obtained by contacting the authors.

Finally, we emphasize that the results presented in this
paper have general relevance within the field of dynamical
systems and nonlinear dynamics: Even though the examples
and the discussion are focused on nonlinear chemical kinet-
ics, the Hopf bifurcation formulas in Table I can be applied
to any dynamical system represented by a set of autonomous
ordinary differential equations of the form~1!.
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