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Finite Wavelength Instabilities in a Slow Mode Coupled Complex Ginzburg-Landau Equation
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In this Letter, we discuss the effect of slow real modes in reaction-diffusion systems close to a super-
critical Hopf bifurcation. The spatiotemporal effects of the slow mode cannot be captured by traditional
descriptions in terms of a single complex Ginzburg-Landau equation (CGLE). We show that the slow
mode coupling to the CGLE introduces a novel set of finite wavelength instabilities not present in the
CGLE. For spiral waves, these instabilities highly affect the location of regions for convective and abso-
lute instability. These new instability boundaries are consistent with transitions to spatiotemporal chaos
found by simulation of the corresponding coupled amplitude equations.

PACS numbers: 47.20.Ky, 52.35.Mw
Amplitude equations have been used in a variety of sci-
entific contexts to describe spatiotemporal modulations of
reference states close to the onset of criticality. In dynami-
cal systems close to a supercritical Hopf bifurcation [1], the
spatiotemporal modulation of the homogeneous stationary
state can be described by the complex Ginzburg-Landau
equation (CGLE). This applies to chemical and biochemi-
cal reaction-diffusion systems, among which the Belousov-
Zhabotinsky (BZ) reaction is the most well known [2].

For chemical systems [3], one of the most striking fea-
tures of the CGLE is its ability to exhibit spiral wave
solutions (point defects) similar to experimental obser-
vations in a large number of chemical reaction-diffusion
systems. Recently, it was shown [4] that the CGLE fails
to model even qualitatively the dynamics of a realistic
4-species Oregonator model [5] of the BZ reaction. This
discrepancy is caused by the presence of a slow real mode
in the homogeneous part of the Oregonator model. By con-
sidering a slow-field coupling to the CGLE, we show how
the inclusion of an amplitude equation for the slow mode
gives rise to a finite wavelength instability for plane waves
which is not present in the CGLE. For spiral waves, we
have calculated new boundaries for convective and abso-
lute instability.

Here we consider reaction-diffusion systems whose spa-
tiotemporal dynamics is governed by

≠c�≠t � F�c; m� 1 D ? =2c , (1)

where c � c�x, t� depends on the spatial position vector
x and time t, and D is a diffusion matrix. Close to the
onset of a supercritical Hopf bifurcation of a homogeneous
solution of Eq. (1), the spatiotemporal modulation of this
state can be described by the CGLE. In dimensionless
form, the CGLE can be written compactly as

�w � w 2 �1 1 ia�wjwj2 1 �1 1 ib�=2w . (2)

As shown in [3], the two real coefficients, a and b, and
the transformation from w to chemical concentration c can
be derived rigorously from the original reaction-diffusion
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system (1). The CGLE admits plane wave solutions of
the form w�t, x� � A exp�i�Q ? x 2 vt��, with amplitude
A �

p
1 2 Q2 and frequency v determined by the disper-

sion relation v � bQ2 1 �1 2 Q2�a (where Q � jQj).
The stability of a given plane wave is determined by the
growth rate l�k� of perturbations with k k Q

l�k� � 2�k2 1 2ibkQ 1 A2�
1

p
�1 1 a2�A4 2 �bk2 2 2ikQ 1 aA2�2 .

(3)

In particular, at the Eckhaus border defined by

Dk � 1 1 ab 2 2�1 1 a2�Q2��1 2 Q2� � 0 , (4)

a plane wave with given Q will be unstable to long-
wavelength perturbations if Dk�Q� , 0; finally, all plane
waves are rendered unstable at the Benjamin-Feir-Newell
(BFN) instability [6] where 1 1 ab , 0.

For simple oscillatory chemical systems, the CGLE
shows an almost quantitative agreement with the spa-
tiotemporal dynamics of the actual chemical system [7].
However, for more complicated models of the BZ reaction,
we have previously described [4] how the CGLE fails even
qualitatively to model characteristic time and length scales
of the models. This disagreement is caused by the pres-
ence of a slow (near-critical) real mode. To incorporate
the dynamics of the slow real mode into a description valid
close to criticality, one may derive an amplitude equation
similar to the normal form associated with a fold-Hopf
bifurcation for homogeneous systems [8]. In dimension-
less representation, the amplitude equations become

�w � w 1 �1 1 ig�wz 2 �1 1 ias�wjwj2

1 �1 1 ib�=2w , (5a)

e �z � l0z 1 kjwj2 1 ed=2z , (5b)

where w and z describe the complex and real amplitudes
of the oscillatory and slow real mode, respectively. The
parameter l0 is the reciprocal time scale of the slow real
© 2000 The American Physical Society 2389
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mode and e describes the distance to the Hopf bifurcation
point. Expressions relating the resonant nonlinear coef-
ficients as, g, and k to Eq. (1) can be derived by ap-
plication of classical normal form theory [8]. We shall
refer to the system (5) as the distributed slow-Hopf equa-
tion (DSHE). A similar system of amplitude equations was
derived by Riecke for description of traveling wave trains
in binary-mixture convection [9]. Observe that resonant
terms of the order wz2 in Eq. (5a) as well as jwj2z and z2

in Eq. (5b) have been left out in the DSHE since these do
not affect the dynamics in the part of parameter space dis-
cussed here. The DSHE may be considered as a “normal
form” or prototype model for oscillatory reaction-diffusion
systems with a slow real mode. It describes, for example,
a realistic 4-species model for the BZ reaction very well
[4]. In the following, we shall use l0 � 23.07 3 1024,
g � 21.56, k � 23.10 3 1024, and d � 0.67 as calcu-
lated for this model, whereas as, b, and e are regarded as
free parameters. The value of e in a realistic experiment
is of the order 1023.

Observe that the DSHE (5) cannot be rescaled to be fully
independent of the distance e from the Hopf bifurcation
point: Except for a rescaling of the amplitude of w, the
DSHE converges to the CGLE when e ! 0 or l0 ! 2`.
In either of these limits, the coefficient as is related to the
nonlinear coefficient a in the CGLE by

a � �as 1 gk�l0���1 1 k�l0� . (6)

In the adiabatic approximation where either the operating
point is sufficiently close to the Hopf point (e small) or
when the real mode l0 becomes large and negative, we
expect the dynamics of the DSHE to be fully described
within the framework of the CGLE. However, the dis-
tance from the bifurcation point where the adiabatic ap-
2390
proximation holds may very well be extremely small and
very likely experimentally unrealizable.

The DSHE admits a family of plane wave solutions of
the form

w�t, x� � A exp�i�Q ? x 2 vt��, z�t, x� � Z , (7)

where A �
p

�1 2 Q2���1 1 k�l0�, Z � 2A2k�l0,
and the frequency v given by the dispersion relation
v � bQ2 1 aA2 with a given by Eq. (6). To investigate
the stability of the plane waves (7), we consider the growth
rate s�k� of longitudinal perturbations with k k Q. For
the DSHE, an analytic equation of the spectrum of eigen-
values requires the solution of a cubic polynomial with
complex coefficients, and is therefore not suitable for ana-
lytic evaluation. Instead, we may apply second-order
linear perturbation theory [10] to obtain a series expansion
for the growth rates: For the first-order correction to the
Eckhaus criterion (4), we obtain for the DSHE

Ek � Dk 1
4�a 2 b� �a 2 g�kQ2

l0�l0 1 k�
e � 0 , (8)

where Dk is the Eckhaus criterion (3) for the CGLE. For
Q � 0, we observe that the BFN criterion also holds for
the DSHE. For the CGLE, all plane waves are long-
wavelength unstable when 1 1 ab , 0. For the DSHE,
this no longer holds, since a band of plane waves of finite
wave number still remains stable at the BFN point when
e . 2l0�l0 1 k���2k�1 1 bg��. This band of plane
waves, however, can become unstable to finite wavelength
perturbations determined by the condition

Fk � Res0�k� � 0, jkj . 0 . (9)

For example, for a homogeneous plane wave �Q � 0�, ex-
pansion of s�k� to lowest nontrivial order in e and fourth
order in k yields
s�k� � 2�1 1 ab�k2 2
1
2

∑
�1 1 a2�b2 1 2

b�1 1 ab 2 d� �a 2 g�k
l0�l0 1 k�

e

∏
k4. (10)
For the CGLE, the long-wavelength instability will always
be the first plane wave instability to occur for the plane
wave with Q � 0. However for the DSHE this result no
longer holds, since the coefficient of order k4 in Eq. (10)
changes sign when

e � 2
�1 1 a2�bl0�l0 1 k�

2�1 1 ab 2 d� �a 2 g�k
, (11)

causing a finite wavelength instability to take place. A
similar result can be derived for general Q. A typical band
of unstable wave numbers is shown in Fig. 1. We also ob-
serve that Eqs. (8) and (10) converge to the corresponding
results for the stability of the CGLE in either of the adia-
batic limits e ! 0 or l0 ! 2`. The described scenario is
illustrated in Fig. 2. In 2(a), e � 1024, we obtain qualita-
tively the same behavior as in the CGLE, where the band of
Eckhaus stable plane waves vanishes at the BFN point. In
2(b), e � 2.0 3 1024, a finite wavelength band now per-
sists above the BFN point. In addition, a finite wavelength
instability emerges at two points from the Eckhaus curve
(open circles on figure). As a increases, the corresponding
instability curve exhibits a limit point (black circle); above
this point, all plane waves are unstable. The variation
along the finite instability curve of the marginally unstable
wave number of the finite perturbation is shown in 2(c).

Similar to the CGLE, the DSHE admits spiral wave so-
lutions (phase defects) in both one and two spatial dimen-
sions. In two spatial dimensions, these may be expressed in
polar coordinates �r , u� as w�r , u� � A�r� exp�i�c�r� 2

u 2 vt�� and z�r� � Z�r�, where A�r� and c�r� are the
amplitude and phase of the spiral wave, respectively, in the
complex w component, whereas Z�r� is the amplitude of
the slow z component. These three quantities must satisfy
the boundary value problem

A�0� � c�0� � Z�0� � 0 , (12a)

lim
r!`

A�r� �
p

�1 2 Q2
s ���1 1 k�l0� , (12b)

lim
r!`

Z�r� � 2 lim
r!`

A�r�2k�l0 , (12c)
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FIG. 1. Behavior of the real part of the most unstable eigen-
value s�k� for a plane wave solution of the DSHE for three
different parameter values of the parameter e close to criticality
(a � 1.85 and b � 21�2). The slow field coupling in Eq. (5)
causes a finite wavelength instability to occur before the onset
of long-wavelength instabilities.

where Qs � limr!`c 0�r� is the unique wave number se-
lected by the spiral wave. We now discuss the stability
properties of the spiral wave solutions of Eq. (12). In order
to compare the results with the properties of the CGLE, we
shall use the parameter a determined implicitly by Eq. (6)
as the free parameter, whereas all other parameters in the
DSHE (5) are kept fixed.

For large r , spiral waves resemble plane wave solutions
of the form Eq. (7), and we may therefore expect that
the spiral wave stability is governed by the correspond-
ing stability for a plane wave with Q � Qs. The transi-
tions where spiral waves become either Eckhaus unstable
or unstable to finite wavelength perturbations are there-
fore Dk�Qs� � 0 or Fk�Qs� � 0, respectively. However,
as described in [11], spiral waves emit plane waves with
a nonzero group velocity Im≠s�≠k. The conditions (8)

FIG. 2. (a) and (b) show curves in the �jQj, a� plane describing
Eckhaus (EH) and finite-wavelength (FN) instabilities of plane
wave solutions of the DSHE (5) for two different values of e and
b � 21. (c) describes the variation along the FN curve in (b) of
the marginally unstable wave number of the finite perturbation.
and (9) guarantee convective instability only; perturbations
may still drift and do not necessarily amplify at a fixed po-
sition. To determine exponential growth of a perturbation
u�x, t� even in a steady coordinate frame, we must evaluate
the Fourier integral

u�x, t� �
1

2p

Z `

2`
uk�0�eikx1s�k�t dk (13)

for large t in the saddle-point approximation [12] [uk�0�
denotes the Fourier transform of u�x, 0�]. The crossing to
absolute instability is then determined by the two condi-
tions s0�k0� � 0 and Res�k0� � 0.

For four selected values of e, we have determined
the variation in the �a, b� plane of the DSHE instability
thresholds for Eckhaus, finite wavelength, and absolute
instability as shown in Fig. 3. To solve the associated
highly unstable boundary value problem, we have used
a continuation tool with support for multiple shooting
[13]. The corresponding Eckhaus and absolute instability
borders for the CGLE are also shown as indicated by the
gray-shaded area. Even for e small 3(a), the Eckhaus
threshold deviates significantly from the corresponding
CGLE curve whereas the absolute instability curve almost
coincides with the CGLE result. Note that the finite
wavelength instability does not exist for this value of e.
However, as e is increased [Figs. 3(b)–3(d)], the finite
wavelength curve completely determines the onset of
convective instability, and the Eckhaus curve has been
omitted from these panels. We observe that both of the

FIG. 3. Parameter diagrams showing the variation of the insta-
bility boundaries for spiral wave solutions of the DSHE (5) for
four different values of the parameter e. The figure shows the
dominant boundaries for convective instabilities (dashed line),
Eckhaus (EH) in (a), and finite wavelength (FN) in (b)– (d),
together with the boundary for absolute instabilities (AI, solid
line). The left and right boundaries of the gray-shaded area in-
dicate the EH and AI curves for the CGLE, respectively. The
Benjamin-Feir-Newell line (BFN) is also shown. For (b) and
(d), small circles indicate points where the behavior has been
confirmed by direct simulation of the DSHE.
2391



VOLUME 84, NUMBER 11 P H Y S I C A L R E V I E W L E T T E R S 13 MARCH 2000
FIG. 4. Snapshots showing the behavior of the DSHE near the
onset of absolute instability corresponding to the two parame-
ter points indicated by filled circles in the bifurcation diagram
in Fig. 3 for fixed b � 24. For a � 20.10, a convectively
unstable transient ends in a frozen spiral state while a � 0.09
gives rise to persistent spatiotemporal chaos.

DSHE instability limits gradually are shifted to the left
of the CGLE boundary. Finally, for e � 1023 3(d),
the instability limits lie completely outside of the limits
predicted by the CGLE.

As observed for the CGLE [11,14], the absolute insta-
bility (AI) line is indicative for the onset of persistent tur-
bulence. Numerical simulations of the DSHE indicated by
dots in Figs. 3(b) and 3(d) confirm a similar observation:
spiral waves are convectively unstable below the AI line
and absolutely unstable above the AI line, where a transi-
tion to sustained turbulence is observed. A representative
scenario for the DSHE close to the AI line in Fig. 3(d) is
shown in Fig. 4.

The results derived in the stability analysis presented
for the DSHE (5) show that the presence of a slow mode
in oscillatory chemical reaction-diffusion systems can give
rise to a finite wavelength instability of plane waves and
spiral waves, which does not occur in the CGLE. In a
real chemical system, this instability occurs at a value of
e where the amplitude of the oscillations is just below the
limit of detection. So even close to the Hopf bifurcation
point, this instability completely determines the stability
of plane waves [which for the CGLE is given solely by the
Eckhaus criterion, Eq. (4)]. As shown in both Figs. 2 and
3, the finite wavelength instability has profound effects on
the location of boundaries for convective and absolute sta-
bility for spiral waves, and completely alters the classical
bifurcation diagram known for the CGLE as e is increased.

For simple model systems of oscillatory chemical re-
action-diffusion systems, such as the Brusselator [15] and
the Gray-Scott model [16], the CGLE provides an almost
quantitative description of spatiotemporal structures even
at quite large distances from the bifurcation point; how-
ever, models of realistic chemical and biochemical sys-
tems, such as the BZ reaction, the horseradish peroxidase
system [17], and glycolytic oscillations [18,19] all possess
one or more slow modes, and it is therefore unlikely that
the CGLE will be applicable for modeling experimental
observations on such systems.
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