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Eine phänomenologische Analyse der ∆EFT: Type-2 Seesaw Effective Field The-
ory:

In dieser Arbeit wird eine phänomenologische Analyse der Erweiterung der type-2
seesaw mechanism effective field theory durchgeführt. Hierzu wird eine vollständige
nicht-redundante Basis erzeugt und mit der Warschauer Basis verglichen. An-
schließend werden drei unterschiedliche Ansätze genutzt, um die die verschiedenen
Operatoren der effective field theory zu untersuchen und einzuschränken.

Erstens wird das Modell unter der Annahme untersucht, dass die Energien viel
niedriger sind als die Skala der type-2 seesaw Masse sind, indem man ihren Beitrag zu
den Wilson-Koeffizienten der Warschau-Basis betrachtet. Diese Analyse wird um die
dimension-5 Operatoren der type-2 effective field theory erweitert. Der zweite Ansatz
besteht darin, den Einfluss dieser Operatoren auf die Standardmodell-Kopplungen zu
untersuchen. Zudem wurde die Möglichkeit untersucht, diese Operatoren zusammen
mit der Warschauer Basis zu beschränken. Der letzte Ansatz beleuchtet den Einfluss
einiger Operatoren auf die LHC-Suche nach neuen Teilchen. Durch diese Analysen
werden einige neue, interessante Wechselwirkungen dieses Modells aufgezeigt und
eine Analyse anhand von CMS-Daten durchgeführt.

Zum Abschluss dieser Arbeit wird ein kurzer Überblick über mögliche ultraviolette
Ergänzungen dieses Modells diskutiert.

A Phenomenological Analysis of the ∆EFT: Type-2 Seesaw Effective Field The-
ory:

In this thesis a phenomenological analysis of the type-2 seesaw mechanism effective
field theory expansion is performed. A complete non-redundant basis is obtained and
compared to the Warsaw basis. Then, three different approaches are used to study and
constrain the different operators of the effective field theory.

Firstly, the model is studied assuming much lower energies than the scale of the
type-2 seesaw mass by looking at its contribution to the Wilson coefficients of the
Warsaw basis. This analysis is extended to include dimension-5 operators of the
type-2 effective field theory. The second approach consists in probing the contribution
of these operators to standard model couplings. We also study the possibility of
constraining these operators along with the Warsaw basis. The last approach consists
of studying the impact of some operators to LHC searches for new particles. Some
new interesting interactions of this model are pointed out, and an analysis is carried
out by using CMS data.

Finally, a brief overlook into possible ultraviolet completions of this model is discussed
at the end of this thesis.
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1 Introduction

Even though, we are in the era where more data is available for particle physics, and
in where larger energies in colliders are achieved, we have little clue of what the new
physics actually is. Only few a deviations here and there are popping up [1, 2], although
not with enough significance yet to claim anything. In this landscape of great data and
small deviations physicists have developed a set of tools that allow for indirect searches
and a big independence of the possible new physics, that is Effective Field Theories
(EFT).

On the other side, it is widespread to assume new physics must exist. This is due to
different open questions of the Standard model. One of them being: why are neutrino
masses so tiny compared to the rest of standard model particles? Since the discovery
of neutrino oscillations, first pointed out by the Homestake experiment [3], and finally
unambiguously observed by the SNO experiment [4], we know that neutrinos must have
a mass, but it has always been an issue why these particles have a smaller mass with
respect to the rest of SM particles. This has led to several standard model extensions
that introduce new particles which suppress the mass of the neutrinos, a very famous
one the seesaw mechanisms.

It is then an interesting idea to study these models in the framework of effective field
theories. The difference between a "normal" quantum field theory and an effective one,
is that we allow for terms in the Lagrangian that exceed the typical requirement of hav-
ing dimension 4 (or d in a d-dimensional space-time). This is why they are called non-
renormalizable theories, a bad name since they are at least "approximately renormal-
izable". These larger dimensional terms, called operators O, found in the Lagrangian
of equation 1.1 can be used for parameterizing new physics through its coefficients C,
called Wilson coefficients.

LEFT = LD=4+
∑
i≥4

Li = LD=4+
∑
i

C
(D=5)
i

Λ
O(D=5)
i +

C
(D=6)
i

Λ2
O(D=6)
i +O(Λ−3) (1.1)

A typical way of understanding how new physics is parameterized by these higher-
dimensional coefficients is by thinking of Fermi theory, which we will talk more in
the following sections. In this theory of the weak interaction there was no gauge boson
and science could still be performed, and measurements and predictions were made with
these theories. This is because one does not need a heavy gauge boson at low momentum
since, these particle would never be produced on-shell in for example the decay of the
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muon. So, processes such as this were thought as a 4-point fermion interaction, that is a
dimension-6 operator. So, in that same way new physics could be creating sets of higher
dimensional operators with the standard model particles, and, if we are able to constrain
them, we could point to where to look. One classic example of dimension-5 operator is
the Weinberg operator, eq. (1.2), which would produce neutrino masses.

L5 =
C5

Λ
O5 =

C5

Λ
(ϕ̃†lcp)

T (ϕ̃†lr) (1.2)

This operator is related to the mass of the neutrinos and could be produced, for ex-
ample by a triplet SU(2)L scalar particle, which is known as type-2 seesaw mechanism.
This is the model we will work with in this thesis, but we will also allow for higher-
dimensional operators in our Lagrangian. In this case part of the usefulness of the EFTs
will be lost, since as we will see, it is a very complex model, and simplifications are
required if one wants to study its operators. On the other hand, we will also see that new
couplings and phenomenology, potentially useful in collider searches also appears. That
is why we will make a phenomenological study of the effective field theory extension
of the type-2 seesaw mechanism.

This thesis is structured as follows: in section 1 we will review the standard model,
as well as the neutrino current landscape. We will then briefly talk about the seesaw
mechanisms and, in particular, about the type-2 seesaw mechanism, the model we will
work with. We will then change topics to the discussion of effective field theories, sec.
1.3.1. Next we will start by writing down all the possible terms of this extension, 2
and move to make a phenomenological analysis of this basis 3, using three different
approaches. Then in the final section 4 we will briefly discuss different models that
could generate the operators of the type-2 effective field theory extension of this work.

1.1 The Standard Model

The Standard Model (SM) of particle physics is so far the best theory that describes
nature in its most fundamental blocks. It is difficult to say when was the starting point,
since several classical developments such as Maxwell’s electromagnetic theory in 1865
[5] or the quantum mechanical theory of the electron by Dirac in 1928 [6] were crucial
for the creation of quantum field theory. But certainly, we can point towards 1947-
1949 as the breakthrough of the SM, when Feynman, Tomonaga, Schwinger and Dyson
solved in a clear way the problem of divergences introducing renormalization. This
led to many other theories that completed the standard model as we know nowadays,
such as: the theory of Quantum Chromodynamics (QCD) [7, 8], the theory of the Elec-
troweak (EW) interaction [9–11] and the most recent discovery the Higgs boson [12].

The SM is based on the Lagrangian formalism. Thus, we describe our theory in
terms of the symmetry group respected in the Lagrangian and the matter content, that
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Figure 1.1: The matter content of the Standard Model. Source: Wikipedia.

is, what fields or particles are seen in nature. In the case of the SM the symmetry group
is SU(3)c × SU(2)L × U(1)Y

broken−→ SU(3)c × U(1)EM. The first group represents
the colour symmetry of QCD, the second one the SU(2) group applied to left-handed
particles and the global phase invariance U(1) represented by the hypercharge Y . This
symmetry group is broken, by the Spontaneous Symmetry Breaking (SSB) produced by
the Higgs potential (we will see this later), giving mass to the SM fermions and gauge
bosons of SU(2)L, leaving invariant only one gauge boson: the photon.

The matter content, seen in fig (1.1) is organized in 2 blocks, bosons and fermions.
Bosons are particles with an integer spin, following the Bose-Einstein distribution, and
are the interaction carriers. Fermions have a half-integer spin, following the Fermi-
Dirac, distribution. In the fermionic sector we find leptons and quarks, quarks have a
colour charge and they interact with the strong force as well as with the electroweak
force, however leptons only interact with the electroweak gauge bosons. Both families
of fermions come in 3 generations, of increasing mass but equal in the other lepton
numbers (except neutrinos, which have no mass in the traditional SM).

There are 8 gluons, due to the representation of the SU(3)c group and 4 EW gauge
bosons: 3 massive bosons and a massless one, the photon. The last boson is the Higgs
which by SSB gives mass to the SM.

1.1.1 Symmetries in the Standard Model

In order to set the notation that we will use throughout this thesis and define many of
the useful operators, we will get into some of the details of the SM. First following [13].
The symmetries of the SM are given by the Lie Groups, represented in a general way as
SU(N). Apart from being a group, Lie groups must also be differentiable manifolds,
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and all the elements of this group are continuously connected to the identity, so they can
be written as:

U = exp(iθaT a)1 (1.3)

T a are the generators of the group and θa are parameters that set the position of the
element of the group in the space of the generators. The generators are operators, nor-
mally matrices, that given U, one can find by expanding U close to 1. These generators
form a Lie algebra, defined by the commutator:[

T a, T b
]
= ifabcT c (1.4)

Where fabc is called the antisymmetric structure constant, and defines the algebra of
the group. In U(1), this constant is 0, and the gorup is Abelian, that is, it commutes.
In SU(2) this constant is the levi-civita symbol εabc and T a = σa/2 where σa are
the Pauli matrices. For SU(3) the generators are the so-called Gell-Mann matrices
T a = λa/2 and the structure constant can be also obtained following eq. (1.4). One
can choose different representations for T a, the lower dimensional representations are
called fundamental, such as the ones mentioned before, however, one can choose a
different one, for example the adjoint representation (T a)bc = ifabc (one can check, this
representation fulfills the Lie algebra as well).

Fields in the SM transform following different representations, for example quarks
transform under the fundamental representation of SU(3)c and the doublets of SU(2)L
under the fundamental representation of this group. However, gauge fields transform
under the adjoint representation of their respective symmetry. Furthermore, the laws of
nature, for example Maxwell’s theory of electromagnetism, are not globally invariant
but locally invariant, which takes θa → θa(x), and makes it space-dependent. This is
an important fact, since terms that contain derivatives will break the symmetry, so one
introduces the covariant derivative:

Dµ = ∂µ − igGa
µT

a (1.5)

Where g is just a constant and Ga
µ fields that will ensure that when Dµ is applied to a

field ψ, if ψ transforms as ψ → Uψ, then Dµψ → UDµψ by transforming:

Ga → Ga
µ +

1

g
∂µθ

a(x)− fabcθb(x)Gc
µ (1.6)

So this is the important point that we want to emphasize after this interlude into group
theory: if we want to have local symmetries of some Lie group in our Lagrangian, we
are forced to have some bosonic fields that transform as eq. (1.6). Thus, it is fair to say
that symmetries impose the bosons that we need in our Lagrangian.

Just one more remark: there exists another important object called the strength field
defined as:
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Fµν ≡
i

g
[Dµ, Dν ] = ∂µGν − ∂νGµ + gfabcGb

µG
c
νT

a (1.7)

With Gµ = Ga
µT

a. This is not SU(N) invariant, it transforms in the adjoint rep-
resentation as F a

µν → F a
µν − θbfabcF c

µν . So, if one wants to write an invariant kinetic
term for the gauge bosons in the Lagrangian, one can use the following invariant object
F a
µνF

a,µν .

1.1.2 The Standard Model Lagrangian

After the previous section we have all the tools to write a Lagrangian under the symme-
try group of the SM. First we will start by introducing the fermion sector.

Fermion Sector

One symmetry that we have not talked about is Lorentz invariance. It is a requirement
of all relativistic Lagrangians to be Lorentz invariant, in this way Dirac proposed [6] an
equation that fulfilled this requirement and that managed to describe fermions (electrons
in the original paper). This Lagrangian reads as follows:

LDirac = ψ̄ (iγµ∂µ −m1)ψ (1.8)

ψ is the spinor field, a 4-dimensional vector that lives in the spinor space, and ψ̄ =
ψ†γ0. γµ are the Dirac matrices, which are 4-dimensional objects defined by the anti-
commuting property of {γµ, γν} = 2ηµν where ηµν1 = diag{1,−1,−1,−1}. And m is
the mass of the Fermion. All these objects and definitions are imposed by the require-
ment of having Lorentz invariance and also reproducing the Klein-Gordon equation.

The spinor field ψ and γµ have different representations: Dirac representation, Weyl
representation or Majorana representation. For the first one we have:

γ0 =

(
12 0
0 12

)
, γ1 =

(
0 σ1

−σ1 0

)
, γ2 =

(
0 σ2

−σ2 0

)
, γ3 =

(
0 σ3

−σ3

)
(1.9)

One can define a fifth matrix, which anticommutes with the other four γ5 = iγ0γ1γ2γ3

{γ5, γµ} = 0 and this allows us to define the projector:

PL =
1

2

(
1− γ5

)
PR =

1

2

(
1+ γ5

)
(1.10)

These projectors satisfy the properties: P 2
L/R = PP/R, PLPR = 0 and PR + PL = 1

and the important thing about these operators is that they allow us to write the spinor
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field ψ into two different chirality fields: ψL/R = PL/R with γ5ψL/R = ∓ψL/R. So if
we apply 1ψ = (PL + PR)ψ = ψL + ψR we can rewrite the Lagrangian (1.8) into:

LDirac = iψ̄Lγ
µ∂µψL + iψ̄Rγ

µ∂µψR −m
(
ψ̄LψR + ψ̄RψL

)
(1.11)

Experiments, such as Wu’s experiment [14], tell us that nature does not treat in the
same way left-handed and right-handed particles particles, this is seen in the symmetry
group only applied to the left-handed particles: SU(2)L.

Now we want to focus on making the Lagrangian invariant under SU(3)c×SU(2)L×
U(1)Y , under which fermions would transform in the fundamental representation:

ψ −→ Uψ = eiY α(x)eiβ
a(x)σa/2eiθ

a(x)Ta

ψ (1.12)

In order to do this we replace the derivative with:

∂µ −→ Dµ = ∂µ − ig′Y Bµ − igW i
µ

σi

2
PL − igsG

a
µT

a (1.13)

Where Y is the hypercharge operator, since different fields may have different hy-
percharge. After making this replacement kinetic terms will preserve the symmetry,
left-handed quarks will interact with the three fields, left-handed leptons only with Bµ

and W i
µ, and so forth and so on.

So the Lagrangian can be written as:

L = iψ̄aLγ
µ∂µψ

a
L + iψ̄aRγ

µ∂µψ
a
R −ma

(
ψ̄aLψ

a
R + ψ̄aRψ

a
L

)
(1.14)

Where we include an index a to ψa to account for all the particles in the SM, that we
can find described by their quantum numbers in Table 1.1.

Before finishing this section, the mass term of eq. (1.14) is not invariant. One can
see this very cearly, since ψL transforms under SU(2)L while ψR does not. So, this
term is not invariant and one could think that under this symmetry group fermions could
not have mass. We will later see that this is solved by introducing a scalar doublet, the
Higgs boson. So, right now we will define the fermionic Lagrangian as:

LFermionic = iψ̄aLγ
µ∂µψ

a
L + iψ̄aRγ

µ∂µψ
a
R (1.15)

Gauge Sector

With the tools of the previous section about symmetries, we can formulate an invariant
Lagrangian for the gauge bosons:

LGauge = −1

4

(
W i
µν

)2 − 1

4

(
Ga
µν

)2 − 1

4
(Bµν)

2 (1.16)
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Fields SU(3)c SU(2)L U(1)Y
Isospin Hypercharge

q =

(
uL
dL

)
Triplet q =

qrqg
qb

 (
1/2
−1/2

)
1/6

Quarks u = uR Triplet u =

urug
ub

 Singlet 2/3

d = dR Triplet d =

drdg
db

 Singlet -1/3

Leptons l =

(
νL
eL

)
Singlet

(
1/2
−1/2

)
-1/2

e = eR Singlet Singlet -1

Table 1.1: Fields of the SM and their representation under the different symmetry
groups. One can also find in this table the values of the eigenvalues of the
isospin I3 and hypercharge Y operators. The subindices L and R describe the
chirality state of the fermion ψL/R = PL/RΨ.

Where the Bµν , W i
µν and Ga

µν are the respective field strength tensors for the elec-
troweak and gluon fields, which can be written more concretely like:

B2
µν = (∂µBν − ∂νBµ)

2 (1.17)

(
W i
µν

)2
=
(
∂µW

i
ν − ∂νW

i + gεijkW j
µW

k
ν

)2
(1.18)

(
Ga
µν

)2
=
(
∂µG

a
ν − ∂νG

a + gfabcGb
µG

c
ν

)2
(1.19)

Two important remarks: the difference between an Abelian group such as U(1)Y and
non-Abelian such SU(2) or SU(3) in terms of physics is that these two last groups, will
have bosons interacting among themselves. This is due to the noncommutation of the
fields, which produces the last terms of the previous two expressions resulting in 3- and
4-particle bosonic vertices.

The second point is that mass terms like mWW
i
µνW

i,µν are forbidden by the SU(2)L
symmetry. However, in nature we observe 3 massive gauge bosons. So, this problem
along with the problem with the masses of the fermions bring us to the next point, the
Higgs boson.
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Higgs sector

The two problems mentioned above can be solved by introducing a scalar field which is
a doublet under SU(2)L, singlet under colour and hypercharge 1/2. The Lagrangian of
this field would be written as:

LHiggs = (Dµϕ)
†Dµϕ− V (ϕ) (1.20)

ϕ is the Higgs doublet and V (ϕ) is the Higgs potential:

V (ϕ) = −m2
ϕ|ϕ|2 + λ|ϕ|4 (1.21)

This potential has the famous Mexican hat shape. This potential has a degeneracy
around the minimum, but the field configuration of the minimum is different at each
point. Furthermore, the minimum does not respect the symmetry of SU(2)L. We call
vacuum expectation value vd =

√
m2
ϕ/λ ≈ 246 GeV to the value of the field at the

minimum and we choose it to be along the direction of the neutral component of the
field (this is not arbitrary, it will ensure that the photon field remains massless).

ϕ =

(
0

1√
2
(vd + h)

)
(1.22)

LHiggs =
1

2

(vd + h)2

4

(
g2(W 1

µ)
2 + g2(W 2

µ)
2 + (−gW 3

µ + g′Bµ)
2
)
+ (∂µh)

2

−
m2
ϕ

2
h2 − λvdh

3 − λ

4
h4 (1.23)

Two remarkable things have happened, first, the quadratic term on h now has the
proper sign to be a mass term mϕ ≈ 125 GeV (before, it was the opposite) and now the
gauge fields have also acquired a mass, but we must make the following redefinitions:

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
(1.24)

(
Z0
µ

Aµ

)
=

(
cos θw − sin θw
− sin θw cos θw

)(
W 3
µ

Bµ

)
(1.25)

Where cos θw = g/(g2 + g′2) and we also define e = g sin θw. Now we see that
the terms in equation eq. (1.23) are masses of the gauge bosons mW = vd g/2 and
mZ = vd

√
g2 + g′2/2. Thus, we have obtained a mass term for the gauge bosons in a

SU(2)L invariant way through the SSB mechanism. We also observe that all except one
generators of SU(2)L × U(1)Y have been broken:
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T 1 〈ϕ〉 6= 0, T 2 〈ϕ〉 6= 0, (T 3 − Y ) 〈ϕ〉 6= 0, (T 3 + Y ) 〈ϕ〉 = 0 (1.26)

So we define a new operator, associated to the gauge boson Aµ called charge: Q ≡
T 3 + Y that is a conserved quantity, since the vacuum expectation value of the Higgs
doublet field 〈ϕ〉 conserves this quantity. We can now make the identification of the field
Aµ with the photon field. One last remark, the ratio of the mass of the gauge bosons is
a well measured parameter in the standard model [15]:

ρ =
M2

w

M2
Z sin θw

= 1.00038± 0.00020 (1.27)

This ratio is modified if other particles contribute to the masses of the gauge bosons
in a different way, being a really helpful parameter to constrain possible new physics.
The Higgs field also solves the problem of the fermionic masses, by introducing what is
called a Yukawa coupling:

LYukawa = −Yuq̄ ϕ̃uR − Ydq̄ ϕd− YLl̄ ϕeR + h.c
SSB−→ −vd

2
ūLYuuR − vd

2
d̄LYddR − vd

2
ēLYEeR + h.c. (1.28)

Here we have defined ϕ̃ = iσ2ϕ∗. These terms would be normal mass terms if Yu
were diagonal in flavour space, but actually that is not generally the case. If we think
of u, for instance, as u = (u, c, t) we have to diagonalize the matrix Yu by the unitary
transformation uL/R → VuL/R

uL/R and similarly for the other terms. This diagonaliza-
tion has a physical consequence: the vertices of the weak interaction mix u and d-type
quarks of different generations through the terms:

LWeak ⊃
g√
2
ūLV

†
uL
VdLW

+
µ γ

µdL +
g√
2
d̄LV

†
dL
VuLW

−
µ γ

µuL (1.29)

Where we define the CKM matrix (named after Cabbibo, Kobayashi and Maskawa
[16, 17]) VCKM ≡ V †uLVdL . This matrix is not diagonal, so it implies that the weak
interaction mixes the different quark families. Since the Z-boson does not couple up-
type quarks and down-type quarks, the rotations are canceled due to unitarity. We also
observe that if we do not have massive neutrinos, we could make the necessary rotation
to diagonalize the electron Yukawa matrix, without any impact in the weak sector, since
the neutrinos could be rotated freely as they would not have a Yukawa term. However,
this is not the case, neutrinos do have a mass, so the same phenomenon happens in the
lepton sector, where there is also mixing between generations. This is the topic of the
following section.
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1.2 Neutrino Physics

1.2.1 Neutrino Oscillations

The observation of neutrino oscillations makes it clear, neutrinos have masses and they
must be different. There is a simple, but ’wrong’, derivation that we will follow. Using
quantum mechanics it is simple to describe how an oscillating state evolves in time.
Let us call |να〉, with α = e, µ, τ the neutrino flavour state and |νi〉, with i = 1, 2, 3
the neutrino mass state. Assuming, the neutrino starts in a definite flavour state, the
evolution is given by:

|να〉 (t) = U∗α,ke
−iEkt |νk〉 (1.30)

Where we have projected the flavour state onto the mass basis, through the Pon-
tecorvo, Maki, Nakagawa, Sakata (PMNS) matrix UPMNS (Which we will write U ). To
calculate the probability of finding a flavour β we use Born’s rule:

Pα→β(t) = | 〈νβ|να(t)〉 |2 = |UβkU∗αke−iEkt|2 = U∗βjUαjUβkU
∗
αke
−i(Ek−Ej)t (1.31)

The energy of a relativistic particle is given by Ej =
√
p2j +m2

j , and by using that

m2
j � p2j and pj ≈ pk ≡ pwe can simplify the result of the argument of the exponential:

− (Ek − Ej) ≈ −(p2 +
m2
k

2p2
− p2 −

m2
j

2p2
) ≈

m2
k −m2

j

2E
≡

∆m2
kj

2E
(1.32)

We make now two last replacements: the trivial t ∼ LwhereL is the distance traveled
by the neutrino and the second replacement Losc

kj = 4πE
m2

kj
, which is called oscillation

length. This finishes our derivation of the formula for the probability of oscillation of a
neutrino α into β:

Pα→β(L) = U∗βjUαjUβkU
∗
αke
−i2πL/Losc

kj (1.33)

If the traveled length is small compared to the oscillation length of the neutrino, then
we do not observe any oscillation, since the state did not have time to oscillate. However,
if it is large we may not be able to resolve the frequency of oscillation and we will only
observe an average decrease (or increase) on the number of neutrinos. But, since there
are different oscillation lengths it may happen that one of them is larger than the other
two. In this case we could neglect the oscillation to one of the other neutrino species.
Let us write in the 2-neutrino case:

U =

(
cos θ sin θ
− sin θ cos θ

)
(1.34)
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And then simplify eq. (1.33):

Pα→β(L) = sin2 2θ sin2

(
π
L

Losc

)
= sin2 2θ sin2

(
1.27

∆m2[eV2]L[km]

E[GeV]

)
(1.35)

For β 6= α. This formula works in the 2-neutrino case, which is valid when the
oscillation lengths are widely separated. We can see now, that if the masses are the
same we would have no oscillations of this kind. Besides the mass, we need the mixing
angle θ to be different than zero. The second equality is written in the typical scale of
neutrino experiments.

These type of oscillations were first pointed out by the Homestake experiment [3]
which measured a decrease in the electron neutrino flux coming from the sun with re-
spect to the predictions, initiating what was called the solar neutrino problem. This
experiment could not tell whether the neutrinos measured came from the sun or not, so
other experiments were designed for that, e.g. Super-Kamiokande [18], DayaBay [19],
Sudbury Neutrino Observatory [4], being this last experiment the one to measure not
only a decrease in the flux of electron neutrinos, but also to measure all three flavours.
This showed that the total number of neutrinos was conserved, but the number of elec-
tron neutrinos was lower than expected. This experiment established the three-neutrino
oscillation theory and other neutrino experiments took enough data to determine the
values of the parameters of the PMNS matrix. For, the three-neutrinos oscillation we
can parametrize the PMNS matrix as:1 0 0

0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13eiδ 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 (1.36)

In Table 1.2 we can find the values of the fit done with a large collection of data
performed in Ref. [20]. ∆m21 is measured from solar neutrinos, that is why it is also
called ∆msol. On the other hand, ∆m32 ≈ ∆m31 is also called ∆matm since it is
measured from atmospheric neutrinos, which have the appropriate energies and length
to be measured. The last parameter δ is the CP -hase, similar to the CP phase in the
complex CKM matrix.

However, we find that in Table 1.2, there are things that these measurements cannot
tell us. One of them is the order of the mass state, this is known as the neutrino hierarchy
problem. Experiments can tell the value of the mass difference but not the sign, so it
is still an open question whether m3 is larger than m1, Normal Hierarchy (NH), or
whether m1 is larger m3, Inverted Hierarchy (IH). The second one is the mass of the
states themselves, we just measure their differences, so the actual value of the mass is
yet unknown and other experiments that do not rely on oscillations must determine their
value, e.g. the Karlsruhe Tritium Neutrino Experiment (KATRIN) [25].
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(a) (b)

Figure 1.2: In (a), we have a summary of neutrino oscillation experiments comparing the
ratio of observed events and predicted events. Here Neutral Current (NC)
processes are in good agreement whereas Charged Current (CC) processes
are fewer than expected. In (b) we observe typical oscillation pattern, in this
case from KamLand experiment [22], where antineutrinos are detected 180
km away from nuclear reactors.

The mass of the neutrino has not been measured yet, but some upper bounds have
been stablished. For some time the best upper bound on the sum of the mass of the three
neutrinos has come from cosmology [21], on

∑
imi < 0.2 eV at 95% CL, but now

KATRIN [26] experiment has been able to set a sub-eV upper bound of
∑

imi < 0.8
eV by direct measurement and aims to set it lower in the future.

Parameter best fit ±1σ
∆m21[10

−5 eV 2] 7.50+0.22
−0.20

|∆m31|[10−3 eV 2] 2.55+0.02
−0.03

|∆m31|[10−3 eV 2] 2.45+0.02
−0.03

sin2 θ12/10
−1 3.18± 0.16

sin2 θ23/10
−1 (NH) 5.74± 0.14

sin2 θ23/10
−1 (IH) 5.78+0.10

−0.17
sin2 θ13/10

−2 (NH) 2.200+0.069
−0.062

sin2 θ13/10
−2 (IH) 2.225+0.064

−0.070
δ/π (NH) 1.08+0.13

−0.12
δ/π (IH) 1.58+0.15

−0.16

Table 1.2: Best fit values and 1σ deviations of the experimental measurements of neu-
trino oscillations of Ref. [20].
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In Figure 1.2a we find a summary of the measured number of events divided by
the expected number of neutrinos performed by different experiments, Gallex, Super-
Kamiokande or SNO. We observe that measurements performed on only one flavour
(through CC) are fewer than expected but, when we observe processes that are sensitive
to all flavours of neutrinos, such as NC processes, we find the expected amount of them,
as shown in the plot by the SNO experiment. The second one, Fig. 1.2b is a typical
oscillation pattern in the flux of electron antineutrinos. In this case the Kamioka Liquid
Scintillator Argon Antineutrino Detector (KamLAND), detected antineutrinos produced
in nuclear power plants at 180 Km, being sensitive to the θ13 angle.

As a final remark, we want to point out that even if the equation (1.33) is ’correct’,
the derivation is not. There are several issues on this derivation, all of them coming
from the approximations. This rises several problems as the conservation of energy,
momentum and other apparent paradoxes (well explained in Ref. [23]). However, this
is just a problem of the simple ’proof’ we have used, more fine derivations use wave
packets and allow neutrinos to travel with different momenta and take into account the
uncertainty in the production. These considerations modify the previous eq. (1.33),
by adding some suppression consisting in what is called coherence. This coherence is
represented by the coherence length: neutrinos with different masses travel at different
velocities, thus, different mass states will propagate a different distance. When the
distance the neutrinos have traveled is larger than the coherence length, the neutrinos do
not overlap anymore and detectors cannot resolve these oscillations.

Pα→β(L) = U∗βjUαjUβkU
∗
αk exp

−i2π L

Losc
kj

−

(
L

Lcohkj

)2

− c

(
σx
Losc
kj

)2
 (1.37)

Equation (1.37) contains all the corrections due to the correct wave-packet treatment.
In this equation σx is the spatial uncertainty of the neutrino production and c is an
unimportant constant for us. The second term is called localization term, and suppresses
the oscillations in which the spatial uncertainty is larger than the oscillation lengths,
which never happens in real experiments.

1.2.2 Type-I Seesaw Mechanism

Although we will work with the type-2 seesaw mechanism, it is interesting for pedagog-
ical reasons to cover the key points of the type-1 seesaw mechanism. These mechanisms
try to explain why the neutrino masses are much smaller than the rest of the particles
of the SM. Both of this models attempt to do it by introducing a new kind of particle,
a right-handed neutrino for the type-1 mechanism and a complex scalar particle, triplet
under SU(2)L, for the type-2 mechanism.
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As we have pointed out, neutrinos have only been observed to be left-handed, but
since we observe all fermions to have left and right components, we could try to extend
the SM by adding a right-handed neutrino and a coupling with the SM Higgs particle.
For one neutrino we could introduce a term such as:

LSM+RHν = −Y L̄LϕlR − Y L̄Lϕ̃NR + h.c. (1.38)

This is a perfect valid extension and would lead to a neutrino mass term −mDν̄LνR,
albeit it does not explain why neutrino masses are so tiny, since the value Y would need
to be much smaller than the rest of the yukawa couplings in the SM so that mD =
vdY/

√
2 < 0.2 eV, Y < 1.2 · 10−12 � ytop ∼ 1. However, if neutrinos were Majorana

particles there would be an extra term in the Lagrangian that could explain this fact. We
define the charge conjugate operator as: ψc = ξcCψ̄

T , and then we place Dirac equation
in terms of the chiral components of the spinors:

iγµ∂µψR = mψL (1.39)

We can now take this expression and try to leave it as the definition of the charge
conjugated spinor given above. Then we apply the charge conjugate and obtain:

iγµ∂µCψ̄
T
R = mCψ̄TL (1.40)

It is important to note that Cψ̄TL transforms as a right-handed component, so this
whole expression can be thought as iγµ∂µψL = mψR which motivates the Majorana
condition ψR = ξcCψ̄L

T . This condition also implies that ψ = ψL+ψR = ψL+ξcCψ̄L
T

and by using the definitions of the charge conjugate operator ψ = ψc, where ξc is a
complex phase |ξc|2 = 1. A Majorana neutrino is then its own charge conjugate, and it
can only be true if the fermion is neutral, so neutrinos are the only particles that can be
Majorana particles. As pointed out before, in this case we can add an extra term in the
lagangian

Ltype-1 = −Y L̄LϕlR − Y L̄Lϕ̃NR − mR

2
N̄RC

†NR + h.c.

SSB
⊃ mDν̄LNR +

mR

2
NT
RC

†NR + h.c. (1.41)

And by assuming the neutrino is a majorana particle we can use the property: ν̄LNR =

NC
R ν

C
L to write the previous equation as:

Ltype-1
ν = −1

2

(
ν̄L NC

R

)( 0 mD

mD mR

)(
νCL
NR

)
(1.42)
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We could have added a diagonal term corresponding to a Majorana left-handed mass
term, however this would be only possible by introducing a complex triplet scalar parti-
cle (see the next section). Now, by introducing a unitary matrix to make the mass matrix
diagonal:

Ltype-1
ν = −1

2

(
ν̄L NC

R

)
U †U

(
0 mD

mD mR

)
UU †

(
νCL
NR

)
= −1

2

(
ν̄1 νC2

)
diag{mν ,MR}

(
νC1
ν2

)
with U =

(
cos θν sin θν
− sin θν cos θν

)
(1.43)

With the eigenvalues: 1
2
(mR∓

√
m2
R + 4m2

D) and tan θµ = 2mD/mR. Now, if we use
the following assumption mR � mD we could write the masses as mν ≈ m2

D/mR and
MR ≈ mR. Furthermore, since mD = vdY/

√
2 we could rewrite the eigenvalue of the

mass mν = vd√
2
Y mD

mR
and Y mD

mR
would act as an effective Yukawa coupling suppressed

by mR. The states νC1 = cos θνν
C
L − sin θνNR ≈ νCL and similarly ν2 ≈ NR, so the

eigenstates would be composed mainly by a left-handed and a right-handed neutrino
respectively. This kind of mechanism can be extended to 3-neutrino models, see for
example [24].

This extension of the standard model offers a way of creating light neutrino masses
through a very massive right-handed neutrino that suppresses the mass of the neutrinos,
this effect is described by the typical image of the seesaw, Fig. 1.3, where the heavy
neutrino sits on one side rising the lighter neutrino on the other side.

Figure 1.3: Typical image representing the seesaw mechanism, where the heavy right-
handed neutrino lifts the lighter left-handed neutrino. Source: Symmetry
Magazine.
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1.2.3 Type-II Seesaw Mechanism

Even though the type-1 seesaw mechanism gives a reasonable explanation to the small-
ness of the neutrino masses, it is not the only model available. There are many, but one
that only requires adding one more extra particle is the so-called type-2 seesaw mecha-
nism. In this case we add a complex triplet scalar, with hypercharge Y = 1. This allows
us to write a Majorana mass term of the type ∼ ν̄LC

†νL in a SU(2)L invariant way,
which is not possible with the SM matter content since it would not respect the U(1)Y
symmetry.

This new field could be written as ∆i for i = 1, 2, 3, transforming under the adjoint
representation of SU(2)L. However, this is not the most useful form of the triplet, since
it is not diagonal to the weak isospin operators. The triplet could be written in a matrix
form by summing its components with the generators of the symmetry, in this case the
Pauli matrices.

∆(1, 3,+1) =
σi√
2
∆i =

(
∆+/

√
2 ∆++

∆0 ∆+/
√
2

)
(1.44)

With the redefinition of the fields ∆+ = ∆3, ∆++ = 1√
2
(∆1 − i∆2) and ∆0 =

1√
2
(∆1 + i∆2).

In this matrix form we can check that the triplet transforms as ∆
SU(2)L→ UL∆U

†
L

where UL corresponds to the doublet transformation of the gauge group SU(2)L. In this
way it is simple to find the possible terms that respect the gauge group of the standard
model SU(2)L × U(1)Y (note that this field has no colour charge).

To be able to make singlet combinations with this field, one will need to either mul-
tiply it with two doublet fields or to use the trace. For example the kinetic term can be
written like this:

Lkin ⊃ Tr
[
(Dµ∆)†(Dµ∆)

]
(1.45)

With the covariant derivative given as:

Dµ∆ = ∂µ∆− i
g

2

[
W a
µσ

a,∆
]
− i

g′

2
Bµ∆ (1.46)

It will be important for the following section to check some properties of the this
derivative. As a derivative this should follow the Leibniz rule ∂µ(∆†∆) = (Dµ∆)†∆+
∆†Dµ∆. However this is not true. This property is not true, since by inserting eq. (1.46)
we obtain:

(Dµ∆)†∆+∆†Dµ∆ = ∂µ(∆
†∆)− i

g

2

[
W a
µσ

a,∆†∆
]

(1.47)
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Only combinations of fields that form a singlet fulfill the Leibniz rule, so the correct
statement of the Leibniz rule for the triplet would be ∂µTr

(
∆†∆

)
= Tr

(
(Dµ∆)†∆

)
+

Tr
(
∆†Dµ∆

)
. This is true as well in for example combinations with the Higgs field:

∂µ(ϕ̃
†∆†ϕ) = (Dµϕ̃)

†∆†ϕ+ ϕ̃†(Dµ∆)†ϕ+ ϕ̃†∆†Dµϕ (1.48)

As said, this property will be needed in the following sections. By now let us con-
tinue by writing the potential of the Lagrangian, combination of triplet ad doublet scalar
fields:

V (ϕ,∆) = −m2
ϕϕ
†ϕ+ M2Tr∆†∆+ (µϕT iσ2∆†ϕ+ h.c.) +

λ

4
(ϕ†ϕ)2

+λ1ϕ
†ϕTr∆†∆+ λ2(Tr∆†∆)2 + λ3Tr(∆†∆)2 + λ4ϕ

†∆∆†ϕ (1.49)

All these couplings are in principle free parameters of the theory, however one can
require different constraints in order to reduce the possible parameter space. Usually we
demand these couplings to respect perturbative unitarity and to be bounded from below
[27, 28], this last requirement is called vacuum stability [28]. A review of the model
and a list of this constraints can be found in Ref. [29]. Notice that the µ parameter can
be complex, however, its phase can be absorbed in ∆.

This potential, eq. (1.49), modifies some parameters of the SM, since it introduces a
new vacuum expectation value (vev): 〈∆0〉 = vt√

2
different from the Higgs vev 〈ϕ0〉 =

vd√
2
. For instance, the first modified value would be the Higgs mass, since after SSB we

would obtain the following masses:

m2
ϕ =

λ

4
v2d +

λ1 + λ4
2

v2t −
√
2µvt (1.50)

M2 = −λ1 + λ4
2

v2d − (λ2 + λ3)v
2
t +

µv2d√
2vt

(1.51)

As we will see later, the vacuum expectation value of the triplet will be required
to be smaller than vd so the modification to the Higgs mass is not necessarily large.
On the other hand, we see that the smaller vt is, the larger its mass could be. The
next modifications with respect to the SM come from the kinetic term in eq. (1.45),
introducing a contribution to the mass of the weak bosons: m2

W = g2(v2d + 2v2t )/4 and
m2
Z = (g2 + g′2)(v2d + 4v2t )/4, this modification sets the upper bound for the vev of the

triplet through the measurement of the ρ parameter, eq. (1.27):

ρ =
m2
W

m2
Z cos

2 θw
= 1− 2v2t

v2d + 4vt
(1.52)

Which sets the upper bound on vt ≤ 4.8 GeV [29], this makes the vacuum expec-
tation value v2 ≡ v2d + 2v2t ∼ (246)2 GeV2 to come mainly from the Higgs doublet.
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Another important modification is the mixing of the scalar particles. There are 10 de-
grees of freedom, 3 of which go to the W±- and Z-bosons, the other 7 are real particles.
To make this explicitly we write ϕ and ∆ after SSB:

ϕ =

(
ϕ+

vd+h+izd√
2

)
and ∆ =

(
∆+
√
2

∆++

vt+H+izt√
2

∆+
√
2

)
(1.53)

Since there is no doubly-charged scalar in the Higgs doublet, the H±± ≡ ∆±± does
not mix with SM particles and they are purely coming from the triplet, with the follow-
ing mass:

m2
H++ =

µv2d√
2vt

− λ4
2
v2d − λ3v

2
t (1.54)

The other scalar particles mix among each other and due to the diagonalization of
their respective mass matrices, one obtains the following combinations(

H+

G+

)
=

(
cos β − sin β
sin β cos β

)(
∆+

ϕ+

)
(1.55)

(
A
G0

)
=

(
cos β′ − sin β′

sin β′ cos β′

)(
zt
zd

)
(1.56)

(
H
h

)
=

(
cosα − sinα
sinα cosα

)(
ht
hd

)
(1.57)

We have denoted by G the Goldstone bosons, H+ the singly-charged scalar particle,
A is a CP-odd neutral scalar, H is a new CP-even neutral Higgs particle and finally h
is the Higgs particle that we know at ∼ 125GeV. Since the triplet vev is so small in
comparison tan β =

√
2vt
vd

≈ 0 and tan β′ = 2vt
vd

≈ 0 the mixing between the charged
and CP-odd Higgs is negligible. This is something we should have expected: the triplet
vev is constrained by the ρ parameter, thus the mass of the EW bosons comes mainly
from the doublet. This is obviously given by the Goldstone bosons, which give the
longitudinal component to these bosons. Hence it is expected that if the triplet vev is
small, the Goldstone bosons should be mainly coming from the doublet, as it is the most
SM-like configuration, and thus closer to the experimental results.

The masses of these particles are:

m2
H+ =

2
√
2µ− λ4vt
4vt

(v2d + 2v2t ) (1.58)

m2
A =

µ√
2vt

(v2d + 4v2t ) (1.59)
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The case of the CP-even Higgs is different since its mixing angle depends on the
interplay of many parameters:

tan 2α =
−2

√
2µ vd + 2(λ1 + λ4) vt vd

λ
2
v2d −

µv2d√
2vt

− 2(λ2 + λ3)v2t
(1.60)

It can be the case that both masses sit close to each other, this is known as maximal
mixing. This can occur if the denominator cancels, and then the masses are degenerate.
This scenario is highly disfavored, see [29] where they set an upper bound of | sinα| <
0.3 at 95% C.L. A final remark about this sector, is that under the approximation vt � vd
we can find some interesting relations:

m2
H+ −m2

H++ ' m2
H+ −m2

H++ ' λ4v
2/4 (1.61)

m2
H ' (2m2

H+ −m2
H++)(1 + t2α)−m2

ht
2
α (1.62)

Where tα ≡ tanα. And for example in [29] one can find the results given in terms of
the mass difference ∆m ≡ mH+ −mH++

The importance for neutrino physics is that this model can create a Majorana mass
term without introducing a right-handed neutrino, which has not been observed, and
gives also an explanation to the smallness of the neutrino masses. As we mentioned,
with SM particles one cannot write a term producing mLνcLνL. However, the triplet
does this job, and allows one to introduce a gauge invariant term that after SSB produces
this kind of mass:

Ltype-2
Y = fablcaiσ

2∆lb + h.c. (1.63)

Where a, b = e, µ, τ and σ2 is the second Pauli matrix. Multiplying each term we
obtain:

LY = −fabl̄calb∆++ −
√
2fabνcalb∆

+ + fabνcaνb∆
0 + h.c. (1.64)

After SSB this term gives fab vt√2ν
c
aνb which except by the necessary diagonalization

it is a proper mass term. There is nothing new to the mass matrix diagonalization with
respect to the other sections so we will skip it, however, it is important to remark that for
Majorana neutrinos 2 extra complex phases appear, and even though they do not mod-
ify neutrino oscillations measurements (not even in matter, see [24]) they can modify
experiments relying on the neutrinoless double β decay (0νββ) [30].

The important fact is that vt can be small, by inverting eq. (1.51) and using vt � vd
we find that vt '

µv2d√
2M2 , giving a neutrino mass:

mν
ab = 2fab

vt√
2
= fab

√
2µvd
M2

vd = Y eff
ab vd (1.65)
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With Y eff
ab ≡

√
2fab

µvd
M2 � 1 (notice that µ has energy dimensions) if M � vd which

would be the case assuming and vt � vd. This is again similar to the idea of a seesaw
mechanism, a large mass of the triplet would suppress the mass of the neutrinos making
them tiny. Besides, fαβ would be related to the PMNS matrix by the diagonalization by
the equation (1.66):

f =
vt√
2
U∗PMNS

m1 0 0
0 m2 0
0 0 m3

U †PMNS (1.66)

Thus, once the mass of the neutrinos is known, by multiplying the PMNS matrix the
values of the Yukawa-like couplings are known.

We will finish up this section by summarizing some bounds of this model set by
different experiments. Among all the possible decays there are two regimes that are
particularly interesting, and that play an important rôle in the phenomenology of this
model. The coupling fab which gives mass to the neutrinos, also gives the decay strenght
of H+ and H++ into l+νl and l+l+ respectively. Furthermore, if we fix the product√
2fabvt

!
= mν

ab we see that if vt is really small the coupling fab will have to be larger in
order to give the neutrino mass. In this regime the decay of these two particles will be
dominated by this coupling fab.

On the other hand vt could still be larger so that fab would have to compensate to
reproduce the neutrino mass. In this scenario the important processes for the decays
(and also interesting production channels for collider searches) are H+ → W+Z and
H++ → W+W+. This scenario is particularly interesting for production in colliders
since through Vector Boson Fusion (VBF) charged bosons could be created. Other
channels independent of vt are possible, e.g. W+W− → H++H−−.

Firstly, the EW S and T parameters bound the mass difference to be −40GeV <
∆m < 50GeV. In the case of vt = 10−9 the mass limit is mH++ & 750 GeV and comes
from lepton flavour violation processes and NH for the neutrino masses (we will see this
in more detail in section 3.1.1). Both ATLAS [31, 32] and CMS [33] have looked for
different channels of this kind of model, looking for doubly and singly-charged Higgs
particles. In [31] the ATLAS collaboration sets a bound ofmH++ & 667 GeV by looking
at the µ+µ+ channel for vt = 10−9 GeV and vt = 10−7 GeV, or mH++ & 450 GeV for
vt = 10−4. By using ATLAS data in Ref. [29] were able to set a larger lower bound of
mH++ & 740 GeV looking at H++H− and leptonic decay. In the regime where vt is
large, the ATLAS collaboration [32] sets a mass bound of mH++ & 220 GeV.

As one can see from this section, it is difficult to establish a bound that is independent
of vt. This is because different values of vt make different processes dominant, both for
production and decay channels. It is then only possible to study and set bounds of the
particle’s mass by assuming the most important decay channel and setting vt accordingly
to this assumption. Hence, regions where vt is neither large nor tiny are not properly
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covered, since many decays or production channels could be relevant.

1.3 Effective Field Theories

1.3.1 General Aspects of the Effective Field Theories
There are many reasons why Effective Field Theories (EFTs) have become really pop-
ular during the last few decades. First, EFTs describe theories up to a certain energy-
scale Λ, at this point we do not know what happens, new particles or effects may arise.
However, even if our knowledge of this new physics is unknown we can still formulate
theories, test them and make predictions. This is the heart of EFTs. One can put it
in a more mathematical framework called the decoupling theorem [34]. This theorem
states [35]: when considering a one particle irreducible (1PI) Feynman diagram, if the
momenta of the external particles p2 is smaller than M2 (the mass of an internal heavier
state), then apart from coupling constants and renormalization field strengths the graph
will be suppressed by some power of M relative to a graph with the same number of
external particles but no internal particle. In the original paper they apply it to a simple
case, but one can write it for a n-point Green function as:

n∏
i

ZiG
n
full(p1, p2, ..., pn;µ) =

m∏
i

ZiG
n
EFT (p1, p2, ..., pn;µ)

+
1

M2

k∏
i

ZiG
′n
EFT (p1, p2, ..., pn;µ) + ... (1.67)

The first term contains operators (we call operator to each term composed by fields
in a Lagrangian) with dimension d ≤ 4 and the field strength Zi so that the theory is
finite, the second one contains d = 6 and needs of new field strengths to make finite
the new operators of dimension 6 of the theory. Removing a field whose mass is larger
than the energy scale of the experiment is sometimes referred to as "integrating out" a
particle. And it is part of the utility of EFTs: we do not need to know the UV (high
energy) physics in order to build a IR (low energy) Lagrangian.

An equivalent way to think about this theorem is as a momentum expansion of a
propagator in a Feynman diagram: if the external momentum is smaller than the mass
of the mediating particle the propagator term can be expanded as 1

p2−M2 ≈ − 1
M2 (1 −

p2

M2 ) and to leading order we recover the result of the decoupling theorem, a Feynman
diagram with no internal particle, suppressed by some power of M .

Arguably, the most famous effective quantum theory is Fermi’s theory (1933) of the
β-decay [36]. Nowadays, we know that the β-decay is mediated via a W boson, d →
u e ν̄e, but back then we did not know about this boson, but this knowledge was not
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needed to make experiments and predictions. The process only involves a tiny portion
of energy compared to the mass MW of the mediator. So, we can describe this theory as
a 4-fermion interaction rather than a interaction mediated via a W-boson:

W−

d

u

νe

e−

d

u

νe

e−

Figure 1.4: (left) The Feynman diagram for a β-decay mediated through a W-boson,
(right) the external momentum is much smaller than the mass of the W -
boson, so we can describe the theory as an effective 4-fermion interaction.

Both theories are different since they have different matter content, but we can set
them so that we obtain the same result, this is achieved by the matching condition. The
couplings of the IR theory, called Wilson coefficients, will be fixed by the condition of
obtaining the same S matrix element in both theories, when taking the limit p2 � M2

[35]:

〈k1, k2, ..., ka|S1...n |p1, p2, ..., pn〉 |UVp2�M2 = 〈k1, k2, ..., kn′ |S1...n |p1, p2, ..., pb〉EFT
(1.68)

This is again very similar to the idea of the decoupling theorem, eq. (1.67) but it gives
a way of obtaining the Wilson coefficient in terms of the UV theory parameters, e.g. for
the case of Figure 1.4, eq. (1.68) gives:

−
(
g√
2

)2
1

p2 −M2
≈ g2

2M2
+O(

p2

M4
) =

4Gf√
2

(1.69)

The matching condition becomes a bit more involved when we introduce quantum
corrections, but EFTs have a very elegant way of solving it. Since heavy states decouple
from the IR theory, UV divergences of these states will not appear in the EFT. On the
other hand, both theories will have the same IR divergences, since the lower energy
states are present in both theories. So, when we want to calculate the matching condition
at the quantum level, there exists a recipe one may follow (from Ref. [37]):

Calculate the graphs of the full theory, and expand in all IR scales. Then, from the
possible UV and IR divergences terms with 1/ε will appear. These contributions will
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be canceled by the counter-terms of the Lagrangian, so they will not play a rôle in the
matching. This process will give a mismatch between these theories, this mismatch is a
finite part which will be the matching contribution at a scale µ ∼ M , with M the UV
scale. If we want then to go to a lower scale we then apply the renormalization group
equations (RGE) to obtain the matching contribution at another scale.

The reason behind this set of rules is the following: The matching contribution is
IM = (Ifull+ I

c.t.
full)− (IEFT + I

c.t.
EFT ). The counter-terms cancel the divergences, and as

we have argued, the EFT and full theory have the same divergences in the IR. Finally, the
reason why expanding in the IR scales in the full theory graphs results in the matching
contribution is because by expanding in this scale we are breaking the non-analytic
IR integral, leaving only the non-analytic UV integral. This will give a divergence
plus a finite contribution of the UV scale, this finite term cannot be produced in the
EFT, so it is the mismatch between the two theories. There is a second requirement, if
one calculates a loop with regularization scheme that is mass dependent there will be
problems, namely, the momentum expansion will break, see for example [37, 38].

After this arguments, we can start building a theory with the quantum states that are
relevant for the energies that we want to study. We organize this Lagrangian in powers
of momentum, since we are making a momentum expansion (remember eq. (1.67)):

L =
∑
D≥0,i

C
(D)
i (µ)

ΛD−d
O(D)
i (1.70)

In this Lagrangian C(D)
i are the so called Wilson coefficients, and O(D)

i the operators
which contain the fields, the D indicates the energy dimension of the operator and d the
space-time dimension. We are used to work with Lagrangians of D ≤ d operators, but
one could continue the expansion, the only problem is that this theory would be non-
renormalizable. To understand what we mean as renormalizable we will use the power
counting formula. Calculate an amplitude produced by an operator O(D)

i . This will be
proportional to A ∼

(
p
Λ

)(D−d). If we insert several operators the formula becomes:

A ∼
( p
Λ

)n
with n =

∑
i

(Di − d) (1.71)

The important fact is that this formula holds as well at the quantum level.
So, we can see what happens if we only introduce terms with D ≥ d. With d = 4 the

amplitude with two D = 5 operators, will be of order O
(
p2

Λ2

)
and we can start seeing

the problem: if we have quantum loops with divergences in this amplitude, we will need
a counter-term of dimension D = 6 to cancel them. If an amplitude with two dimension
6 operators has divergences we will need a counter-term with dimension 8, and so forth
and so on. This is why theories containing operators of dimension D ≥ d are called
non-renormalizable. However, these theories are ’approximately renormalizable’. In
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this momentum expansion the higher the p/Λ ratio the more suppressed it is, so if we
formulate our Lagrangian to a certain order, and we are consistent not including graphs
that go further than the chosen order, EFTs have the same power than the renormalizable
theories.

We briefly mentioned above that in order to go from one energy scale to another one
must use the RGE. This part is really important since if one does not do it with care,
the momentum expansion might break. For instance, if one calculates a loop with the
MS renormalization scheme, one will obtain graphs proportional to log µ2/M2. If we
set µ ∼ M there is no problem, however if we set the energy scale away from M the
logarithm increases, being possible to break the expansion. That is why the correct way
to go from one scale to another is through the RGE (1.72):

µ
dci
dµ

= γijcj (1.72)

Where γ = Z−1µdZ
dµ

is the anomalous dimension matrix and Z are the field strength
renormalization matrix, which is given by the loop calculations. In this case Z is a
matrix because it can happen that a loop transforms an operator into another, for ex-
ample at tree level after integrating out the W-boson, we would have operators like1

(c̄αγµbα)(d̄
βγµPLuβ) but never (c̄αγµbβ)(d̄βγµPLuα), where the colour indices α and β

have been exchanged, since W-bosons do not carry colour. However, when considering
loops a gluon could couple to two of the fermions producing the second operator. So,
the Z field strength would take the first operator to the second in the renormalization,
making Z a matrix. So, the whole correct process can be summarized in Fig. 1.5 (taken
from [38]) where the heavier state Φ is integrated out, the Lagrangians are matched at
the scale of this particle and at to gro from one scale to another the RGE is used.

A last important point that becomes important in the model-building aspect of the
EFTs is the field redefinition. Quantum field theories are in general invariant under
field redefinitions, but in renormalizable lagrangian the only ones allowed are linear
transformations of the fields, for example the redefinition of the W-bosons of eq. (1.24),
however in EFTs other field transformations other field transformations are allowed
[37]. It is not our purpose to study this in detail but there is a set of transformations that
are used to reduce terms with multiple derivatives by using the equations of motion. If
we redefine a field by φ′ = F [φ]E[φ] where E[φ] is the equations of motion operator
and F [φ] a general term containing any combination of φ we can proof that any S-
matrix with an insertion of this transformation will be 0. That’s why this operators can
be dropped, let us see an example of this application (from [37]), take the Lagrangian
of a scalar field φ:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4 +

C1

Λ
φ3∂2φ+

C2

Λ2
φ6 (1.73)

1Example taken from [37].
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Figure 1.5: Scheme of the correct procedure to integrate out a heavy state Φ with a mass
M, and go from an energy scale to a different one. Source: Ref. [38].

We see that, by addin the term C1

Λ2φ
3[m2φ + λ

3!
φ3] to eq. (1.73) we will have the

equations of motion in the term proportional to C1:

C1

Λ2
ϕ3

(
∂2φ+m2φ+

λ

3!
φ3

)
(1.74)

As we have discussed, operators proportional to to the EoM can be dropped, so in
order to obtain this expression we add and subtract these necessary terms to obtain the
previous operator and then redefine the Wilson coefficients. By adding and subtract
these terms we obtain:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 −

[
1

4!
λ+

C1

Λ2
m2

]
φ4 +

C1

Λ2
φ3

[
∂2φ+m2φ+

λ

3!
φ3

]
+

[
C2

Λ2
− C1

Λ2

λ

3!

]
φ6 (1.75)

By dropping the operators proportional to the equations of motion we eliminate the
operator φ3∂2φ and by redefining the other coefficients the Lagrangian is reduced to
just:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λ′φ4 +

C6

Λ2
φ6 (1.76)

Where we redefined: λ′ = 1
4!
λ + C1

Λ2m
2 and C6 = C2 − C1

λ
3!

, reducing the number
of coefficients, thus making it simpler and eliminating what was a redundancy. This
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is the same as making the field redefinition φ → φ + C1

Λ2φ
3, which means that using

EoM is the same as making a particular field redefinition. The use in EFTs of this
property is typically to reduce the number operators with derivatives, since it is a way
of systematically eliminate redundancies and avoid making mistakes.

1.3.2 The Standard Model as an EFT
If we look into the past of particle physics we see that discoveries of new fundamental
particles have been decreasing in time, even though the energy scale, luminosity and
amount of data has never been larger. Furthermore, the scientific community is quite
certain that new states must exist, e.g. due to the proofs for Dark Matter (DM). Then
the question arises: what is the best way to look for these new states without important
deviations from the SM predictions? One possible good answer is EFTs. These theories
allow for a systematic search of these physics within the global picture of whole data set
available. This is the downside, if we want EFTs to be powerful, we need large amounts
of data to be able to determine and constrain the new operators that may be causing
deviations, without breaking the very good predictions of the SM.

To make clearer why large amounts of data are required we will start by writing
down the basis of the Standard Model Effective Field Theory. It is very important that
this basis is non-redundant and complete, in order to make systematic and unbiased
constraints. A basis is complete when we have written down all possible operators (i.e.
combinations of fields of a particular dimension) that respect the symmetries of the
theory, in this case SMEFT. This basis must be non-redundant, which means that the
operators must be independent from each other, in other words they cannot be related
by some property, e.g. Fierz identities.

Finding a non-redundant complete basis took some years, from one of the first com-
plete basis [42], in fact with redundancies, to the first complete non-redundant basis
[44] took 20 years, known as the Warsaw basis. It is unique and there are other popular
choices of basis, such as the SILH basis (Strongly-Interacting Little Higgs) [43] that
can be found in the literature. To show some of the technicalities of the EFTs and in
particular the SMEFT we will write down the Warsaw basis. First, following the or-
dering given by the momentum expansion of eq. (1.70), we only have one operator, the
so-called Weinberg operator:

L5 =
C5

Λ
O5 =

C5

Λ
(ϕ̃†lcp)

T (ϕ̃†lr) (1.77)

Where r, p = 1, 2, 3 indicate the generation number. This operator became really
famous, since after SSB neutrinos get a Majorana mass term C5

v2d
Λ
νcν. Also producing

lepton number violation processes such as the 0νββ. When we increase the dimension
of the operators the simplicity breaks and we find many more possible combinations,
listed in tables 1.3 and 1.4). In this table capital indices A,B,C = 1, ..., 8 denote
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X3 ϕ6 and ϕ4D2 ψ2ϕ3

OG fABCGAν
µ GBρ

ν GCµ
ρ Oϕ (ϕ†ϕ)3 Oeϕ (ϕ†ϕ)(l̄perϕ)

OG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Oϕ� (ϕ†ϕ)�(ϕ†ϕ) Ouϕ (ϕ†ϕ)(q̄purϕ̃)

OW εIJKW Iν
µ W Jρ

ν WKµ
ρ OϕD (ϕ†Dµϕ)

∗(ϕ†Dµϕ) Odϕ (ϕ†ϕ)(q̄pdrϕ)

OW̃ f IJKW̃ Iν
µ GJρ

ν G
Kµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

OϕG ϕ†ϕ GA
µνG

Aµν OeW (l̄pσ
µνer)τ

IϕW I
µν O(1)

ϕl (ϕ†i
↔
Dµϕ)(l̄pγ

µlr)

OϕG̃ ϕ†ϕ G̃A
µνG

Aµν OeB (l̄pσ
µνer)ϕBµν O(3)

ϕl (ϕ†i
↔
DI
µϕ) (l̄pτ Iγµlr)

OϕW ϕ†ϕ W I
µνW

Iµν OuG (q̄pσ
µνur)T

Aϕ̃GA
µν Oϕe (ϕ†i

↔
Dµϕ) (ēpγµer)

OϕW̃ ϕ†ϕ W̃ I
µνW

Iµν OuW (q̄pσ
µνur)τ

Iϕ̃W I
µν O(1)

ϕq (ϕ†i
↔
Dµϕ) (q̄pγµqr)

OϕB ϕ†ϕ BµνB
µν OuB (q̄pσ

µνur)ϕ̃Bµν O(3)
ϕq (ϕ†i

↔
DI
µϕ) (q̄pτ Iγµqr)

OϕB̃ ϕ†ϕ B̃µνB
µν OdG (q̄pσ

µνdr)T
AϕGA

µν Oϕu (ϕ†i
↔
Dµϕ) (ūpγµur)

OϕWB ϕ†τ Iϕ W I
µνB

µν OdW (q̄pσ
µνdr)τ

IϕW I
µν Oϕd (ϕ†i

↔
Dµϕ) (d̄pγµdr)

OϕW̃B ϕ†τ Iϕ W̃ I
µνB

µν OdB (q̄pσ
µνdr)ϕ Oϕud (ϕ†Dµϕ) (ūpγµdr)

Table 1.3: Dimension six operators containing Higgs fields, strength tensors of the
gauge bosons fermions and their combination, obtained in Ref. [44].

the number of the Gell-Mann matrices, i, j, k = 1, 2, 3 indices of the group SU(2)L ,
r, p, s, t indicate the generation and α, β, γ = 1, ..., 8 colour indices. In the following
sections we will use τ I as the Pauli matrices.

In total there are 2499 operators, taking into account all possible indices, however,
making a global fit to these operators becomes impossible. That is why normally we
pick a subset of operators, and in many cases assume some kind of symmetry, just to
quote two: U(3)5 making all operators flavour conserving (for instance [47]), in total 59
operators (excluding the barion number-violating operators), and the one typically used
in top-quark physics assuming U(2)3 in the quark sector and flavour invariance in the
lepton sector (e.g. [46]), which requires the study of 85 independent parameters (17 of
them complex phases). So, even in the simplified cases scientists tend to do Global fits
with a reduced set of operators.

Different operators can be constrained by different types of measurements. An ex-
ample of this is Figure 1.6 from Ref. [50], where we find a scheme of the different data
sets that constrain different Wilson coefficients, in this case with specific top, di-boson
and Higgs observables. For example, the Electroweak Precision Observable (EWPO)
are typically constrained by LEP measurements since some of these operators modify
EW parameters of the SM, e.g. the masses of the gauge bosons, the Fermi constant GF

or the fermionic couplings to the Z boson.
The SMEFT is not the only effective theory used nowadays, there exists a large list
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(R̄R)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)
Oll (l̄pγµlr)(l̄sγµlt) Oee (ēpγµer)(ēsγµet) Ole (l̄pγµlr)(ēsγµet)

O(1)
qq (q̄pγµqr)(q̄sγµqt) Ouu (ūpγµur)(ūsγµut) Old (l̄pγµlr)(d̄sγµdt)

O(3)
qq (q̄pγµτ

Iqr)(q̄sγµτ
Iqt) Odd (d̄pγµdr)(d̄sγµdt) Olu (l̄pγµlr)(ūsγµut)

O(1)
lq (l̄pγµlr)(q̄sγµqt) Oeu (ēpγµer)(ūsγµut) Oqe (q̄pγµqr)(ēsγµet)

O(3)
lq (l̄pγµτ

I lr)(q̄sγµτ
Iqt) Oed (ēpγµer)(d̄sγµdt) O(1)

qu (q̄pγµqr)(ūsγµut)

O(1)
ud (ūpγµur)(d̄sγµdt) O(8)

qu (q̄pγµT
Aqr)(ūsγµT

Aut)

O(8)
ud (ūpγµT

Aur)(d̄sγµT
Adt) O(1)

qd (q̄pγµqr)(d̄sγµdt)

O(8)
qd (q̄pγµT

Aqr)(d̄sγµT
Adt)

(R̄L)(L̄R) and (L̄R)(L̄R) B-violating
Oledq (l̄jper)(d̄sq

j
t ) Oduq εαβγεjk[(d

α
p )
TCuβr ][(q

γj
s )TClklt]

O(1)
quqd (q̄jpur)εjk(q̄

k
sdt) Oqqu εαβγεjk[(q

α
p )
TCqβr ][(u

γj
s )TClket]

O(8)
quqd (q̄jpT

Aur)εjk(q̄
k
sT

Adt) Oqqq εαβγεjk[(q
α
p )
TCqβr ][(q

γj
s )TClklt]

O(1)
lequ (l̄jper)εjk(q̄

k
sut) Oduu εαβγεjk[(d

α
p )
TCuβr ][(u

γj
s )TClket]

O(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσµνut)

Table 1.4: Operators containing only fermionic fields, obtained in Ref. [44].

of EFTs that are helpful in different energy scale of experiments. An old EFT is the
Chiral. For instance, at low energy-scales the running of the QCD coupling makes
really difficult to study all the interactions, in fact it is impossible to do in a perturbative
way. That is why an EFT of the asymptotic states π and K was developed in the 60s-
70s called Chiral Perturbation Theory (ChPT), which allows the study of these mesons
without the need of knowing all the difficult processes of the QCD interactions at low
energies. A more modern theory is the Low-energy Effective Field Theory (LEFT),
referred to as the EFT that generalizes the Fermi interaction mentioned above. This
kind of theory has been used for a long time to study flavour physics and recently due
to the so-called flavour anomalies increasing in popularity.

In this introduction we pointed out the most important concepts of Effective Field
Theories and we have given a short overview of the current landscape of the SMEFT.
We have talked about the validity of these theories up to a certain scale and discussed
that they are approximately renormalizable. We mentioned as well several technical
aspects that are important for the correct construction of these theories that will be
useful in the next sections. Furthermore,in the absence of large deviations from the SM
model and the large amount of possible extensions, EFTs are the best way to explore the
rich amounts of data and constrain by indirect measurements the space of parameters.
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Figure 1.6: Scheme indicating the different data sets used in Ref. [50] to constraint
Higgs, top and di-boson Wilson coefficients, which exemplifies the use of
different data sets to constrain different directions of the SMEFT-operators
space.
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2 Extension of the Type-II Seesaw
Mechanism

We have mentioned that EFTs are the best method to study the global picture of data,
but there is another interesting use in phenomenology. The extensions in different Be-
yond the Standard Model (BSM) theories can produce new interesting couplings that lift
the constrains of the renormalizable Lagrangians or give new production channels that
would increase the possible ways of observing these models. These extensions could be
justified by arguing that most of these theories do not explain all the questions of the SM
(or at least they would have a difficult time doing so). For instance the type-2 seesaw
mechanism, in which we will focus now, would not make a good DM candidate, since
the neutral particles could decay to neutrinos, and, even though this coupling could be
really suppressed it is certain that in order to explain neutrino masses it would not be
zero. Even if a model could explain all of the open question there still exists a much
higher scale that could generate new operators, that is gravity, which comes into play at
energies of the order of the Planck scale ΛPlanck ∼ 1019 GeV.

The disadvantage of doing this is twofold, first the large amount of operators gener-
ated for every model adds complexity to the already large amount of operators of the
SMEFT. Secondly, these new states have not been observed, therefore many of these
new operators can not be constrained. So in this case these extensions are more interest-
ing in the phenomenological aspect of new production channels and/or modification to
suppressed processes, e.g. Lepton Flavour Violation (LFV) processes or Flavour Chang-
ing Neutral Currents (FCNC).

A motivation for expanding the type-2 seesaw mechanism is that as one can see from
section 1.2.3 there is no coupling to quarks, so in colliders this model can only be
produced in processes where vector bosons are emitted. Hence, an extension in which
direct couplings of quarks or gluons to the triplet field are generated would have a large
impact in these channels. So, in the next section we discuss the dimension-6 Lagrangian
of the type-2 seesaw mechanism EFT expansion (∆EFT).

2.1 Complete Dimension Dimension-6 Basis

The type-1 seesaw mechanism has already been extended to a dimension 6 basis [48],
so we continue with this idea and we extend the type-2 seesaw mechanism, the ∆EFT.
This basis has also been worked in [49], however we have reached to a basis with a few
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differences, and we try to justify the choice of our basis.

2.1.1 Dimension 5 Operators
In this section we are aiming to formulate a Lagrangian with operators up to dimension
6, in the momentum expansion of eq. 2.1:

LD≤6∆EFT = LD≤4type-2+LD=5
∆EFT+LD=6

∆EFT =
∑
i

C
(4)
i (µ)O(4)

i +
∑
j

C
(5)
j (µ)

Λ
O(5)
j +

∑
k

C
(6)
k (µ)

Λ2
O(6)
k

(2.1)
As we have mentioned in the previous sections the prescription to build an EFT is

to follow the symmetries that we want to fulfill, in this case the same as the SMEFT
but with an extra field, the complex scalar SU(2)L triplet ∆. The operators that make
the dimension-5 Lagrangian are found in Table 2.1 divided in two groups, operators
containing fermions and operators containing only scalar particles.

Fermions Scalars
O∆e (ecper)Tr(∆∆) O(1)

∆3ϕ2 Tr(∆†∆)ϕ†∆ϕ̃

O∆qd q̄p∆drϕ̃ O(3)

∆3ϕ2 ϕ†∆∆†∆ϕ̃

O∆le l̄p∆erϕ̃ Oϕ4∆ (ϕ†∆ϕ̃)(ϕ†ϕ)
O∆qu ϕ†∆ūrqp

Table 2.1: Dimension 5 operators of the type-2 seesaw mechanism EFT expansion.

In this dimension-5 Lagrangian there are 7 operators. These operators contain terms
that couple directly the ∆ field to quarks, making it very interesting for collider searches.
Other possible phenomenological observables may be affected, like the coupling of the
fermions to the Higgs, although this would be proportional to vt, hence small, and Higgs
couplings are poorly measured at the LHC. The scalar part of this Lagrangian is not of
such a phenomenological relevance, since in absence of evidence of the ∆ particle, the
possible modifications induced by these operators in the SM Lagrangian are to the Higgs
quartic coupling or the Higgs mass, but again proportional to ∼ vt.

In the literature, e.g. [40], the operator ϕ†Dµ∆Dµϕ̃ also appears in the dimension-
5 Lagrangian. As we have seen in section 1.3.1, field redefinitions do not change the
S-matrix, in particular, fields can be redefined by using the EoM to eliminate the op-
erators containing derivatives. We prove in the appendix section A.1 that a particular
combination of total derivatives (unimportant in the Lagrangian), since can be dropped
by integration "by parts", relates this operator with a term proportional to the equations
of motion and operators that are already found in the basis, so by renaming the Wilson
coefficient we show that this operator is redundant.
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2.1.2 Dimension 6 Operators

The dimension 6 Lagrangian offers, as expected, a much richer phenomenology since
many more couplings are allowed by the symmetries and the looser restriction on the
mass dimension. We find the final basis after all redundancies have been removed in
tables (2.2, 2.3).

∆6 and ∆4D2 ∆4ϕ2 and ∆2ϕ4 ∆2ϕ2D2 and ϕ̃2ϕ2∆2

O1
∆ [Tr(∆†∆)]3 O1

ϕ∆ Tr(∆†∆) (ϕ†ϕ)2 O∆�ϕ Tr(∆†∆) � (ϕ†ϕ)
O2

∆ Tr(∆†∆)2 Tr(∆†∆) O2
ϕ∆ (ϕ†∆∆†ϕ) (ϕ†ϕ) O1

∆Dϕ (ϕ†i
↔
Dµϕ)Tr(∆†i

↔
Dµ∆)

O3
∆ Tr

(
∆†∆

)3 O1
∆ϕ Tr(∆†∆) (ϕ†∆∆†ϕ) O2

∆Dϕ (Dµϕ)†∆†∆Dµϕ
O∆� Tr(∆†∆) � Tr(∆†∆) O2

∆ϕ Tr(∆†∆)2 (ϕ†ϕ) O3
∆Dϕ (ϕ†

↔
DIµϕ)Tr(∆†

↔
DI
µ∆)

O1
D∆ Tr(∆†Dµ∆)∗ Tr (∆†Dµ∆) O3

∆ϕ (Tr∆†∆)2 (ϕ†ϕ) O1
ϕ̃∆ (ϕ†∆ϕ̃) (ϕ†∆ϕ̃)

O2
D∆ Tr[∆†∆ �(∆†∆)] O4

∆ϕ ϕ†∆∆†∆∆†ϕ O2
ϕ̃∆ (ϕ̃†∆ϕ) (ϕ†∆†ϕ̃)

∆2X2 ∆2ψ2ϕ ψ2∆2D

O∆G Tr(∆†∆) GA
µνG

Aµν O(1)
leϕ Tr(∆†∆) (l̄perϕ) O(1)

∆l Tr(∆†i
↔
Dµ∆) (l̄pγµlr)

O∆G̃ Tr(∆†∆) G̃A
µνG

Aµν O(1)
qdϕ Tr(∆†∆) (q̄pdrϕ) O(3)

∆l Tr(∆†i
↔
DI
µ∆) (l̄pτ Iγµlr)

O∆W Tr(∆†∆) W I
µνW

Iµν O(1)
quϕ Tr(∆†∆) (q̄purϕ̃) O∆e Tr(∆†i

↔
Dµ∆) (ēpγµer)

O∆W̃ Tr(∆†∆) W̃ I
µνW

Iµν O(3)
leϕ l̄p∆∆†erϕ O(1)

∆q Tr(∆†i
↔
Dµ∆) (q̄pγµqr)

O∆B Tr(∆†∆) BµνB
µν O(3)

qdϕ q̄p∆∆†drϕ O(3)
∆q Tr(∆†i

↔
DI
µ∆) (q̄pτ Iγµqr)

O∆B̃ Tr(∆†∆) B̃µνB
µν O(3)

quϕ q̄p∆∆†urϕ̃ O∆u Tr(∆†i
↔
Dµ∆) (ūpγµur)

O∆WB Tr(∆†τ I∆) W I
µνB

µν O∆d Tr(∆†i
↔
Dµ∆) (d̄pγµdr)

O∆W̃B Tr(∆†τ I∆) W̃ I
µνB

µν

O∆WW Tr(∆†τ I∆τJ ) W I
µνW

Jµν

O∆W̃W Tr(∆†τ I∆τJ ) W̃ I
µνW

Jµν

Table 2.2: Operators of dimension 6 extension of the type-2 seesaw mechanism that are
lepton number conserving. We have ordered them in a similar way to the War-
saw basis [44], only-scalar terms on top and in the lower row, combinations
with the gauge bosons, leptons and Higgs doublet and lepton respectively.

Many operators that are found in this table are very similar in structure to those of
the Warsaw basis, for example the lower row of Table 2.2. In this row there are a few
different combinations due to the fact that ∆ is a triplet, for example O(3)

leϕ. The upper
number indicates that it is a triplet-triplet combination, to see write a property of the
Pauli matrices that will be useful in this work:

τajkτ
a
mn = 2δjnδkm − δjkjδmn (2.2)

Terms like Tr
(
∆†∆

)
and lperϕ are singlets under the gauge group of the SM, but

we can for example make a triplet by adding a Pauli matrix: lpτ Ierϕ and Tr
(
∆†τ I∆

)
,
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L-Violating
O(1)

∆l Tr(∆†∆) (l̄cpiσ
2∆lr)

O(3)
∆l (l̄cpiσ

2∆∆†∆lr)
O1

∆ϕl (ϕ†ϕ) (l̄cpiσ
2∆lr)

O2
∆ϕl (lTp iσ

2ϕ) C (ϕ†∆lr)
Ol∆D l̄criσ

2γµer∆Dµϕ
O∆lB (l̄criσ

2σµν∆lp) Bµν

O∆lW (l̄criσ
2σµν∆τ I lp)W

I
µν

Table 2.3: Dimension 6 operators of the ∆EFT that are lepton number violating.

so the singlet combination of this 3 ⊗ 3 is just multiplying this terms and summing the
index I . Now by using the property of eq. (2.2) we can rewrite this term like:

Tr
(
∆†τ I∆

)
lpτ

Ierϕ = ∆†ijτ
I
jk∆kilp,mτ

I
mnerϕn =

2∆†ij∆kilp,kerϕj −∆†ij∆jilp,merϕm = 2lper∆
†∆ϕ− Tr

(
∆†∆

)
lperϕ (2.3)

By renaming the couplings we have a different way of writing the triplet and singlet
combinations both ways are equivalent and our choice of basis is this last one. As we can
see, also the operators of the type ∆2X2, where X represents any field strength of the
gauge bosons, there are new ways of combining the triplet with the W-bosons, O∆WW

and O∆W̃W . The row containing field combinations ψ∆2D has the same structure and
has one operator less than in the Warsaw basis.

The first row containing combinations of the triplet, the doublet and derivatives is
quite different from the SMEFT. Again here there are some operators that can be reduced
by using the properties of the Pauli matrices. Since it is different to the Warsaw basis
we will explain a couple of example to show the kind of relations between operators,
for example operators such as Tr(∆∆)Tr

(
∆†∆†

)
Tr
(
∆†∆

)
respect all the symmetries

of the gauge group, however it is related to other operators through the Pauli matrices
property:

{σi, σj} ≡ σi, σj + σj, σi = 2δij I (2.4)

Taking operator Tr
(
∆†∆∆†∆

)
Tr
(
∆†∆

)
and applying this property we have:

Tr
(
∆†∆∆†∆

)
Tr
(
∆†∆

)
= Tr

(
∆†∆

)3 − Tr
(
∆†∆†∆∆

)
Tr
(
∆†∆

)
(2.5)

Now we can use eq. (2.2) on the couple of ∆iσiσj∆j and since the ∆i fields are
symmetric under exchange of indices the second term of eq. 2.2 vanishes, leaving the
expression as:
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Tr
(
∆†∆∆†∆

)
Tr
(
∆†∆

)
= Tr

(
∆†∆

)3 − Tr
(
∆†∆†

)
Tr(∆∆)Tr

(
∆†∆

)
(2.6)

So, in the end we can turn around the previous equation and write the last operator
in terms of the other two, having proved that this operator is redundant. Similarly, the
operator Tr

[
(∆†∆)3

]
, does not seem redundant, however, by using again 2.2:

Tr
[
(∆†∆)3

]
= Tr

[
(∆†∆)2

]
(∆i)†∆i + Tr

[
(∆†∆)2σi

]
iεijk∆

j†∆k (2.7)

The first term is the operator Tr
[
(∆†∆)2

]
Tr
(
∆†∆

)
so it can be eliminated by re-

defining the Wilson coefficient. If we keep working with the second term and use again
eq. (2.2) the term proportional to δij will be zero since there will be two ∆ fields that
are symmetric under the exchange of index. The second term gives:

Tr
[
(∆†∆)2σi

]
iεijk∆

j†∆k = −Tr
(
∆†∆∆†σl

)
εlmi∆

mεijk∆
j†∆k) =

−Tr
(
∆†∆∆†∆†

)
Tr(∆∆) + Tr

(
∆†∆∆†∆

)
Tr
(
∆†∆

)
(2.8)

Where in the last step we used εilmεijk = δljδmn − δlkδmj . Now it is simple since
the first term can be rewritten by using ∆†∆† = 1

2
{∆†,∆†} = Tr

(
∆†∆†

)
1. So, we can

finally write:

Tr
[
(∆†∆)3

]
= −Tr

(
∆†∆

)
Tr
(
∆†∆†

)
Tr(∆∆) + 2Tr

(
∆†∆∆†∆

)
Tr
(
∆†∆

)
(2.9)

And now the first term we already proved that can be written in terms of the other
operators, so this operator is also redundant. There are several more operators that
through the same properties can be reduced, but we chose to show in this work two of
them as the most representative.

The last set of operators that are reduced in a different way are those which contain
derivatives. We will just pick one to show the methodology. When trying to combine 2
derivatives and 4 fields there are in total 6 possible combinations of derivatives acting on
different fields, but we can make use of some properties to reduce two of the operators.
Our choice is to make it as similar to the Warsaw basis [44] as possible, so by using the
Leibniz rule we can relate the two operators Tr(∆†∆) ((Dµϕ)†Dµϕ), Tr((Dµ∆)†Dµ∆)
(ϕ†ϕ) with total derivatives:

(ϕ†ϕ)∂µTr(∆†Dµ∆) = (ϕ†ϕ)
[
Tr((Dµ∆)†Dµ∆) + Tr(∆†DµDµ∆)

]
(2.10)

∂µ(ϕ†ϕ)Tr((Dµ∆)†∆) = (ϕ†ϕ)
[
Tr((Dµ∆)†Dµ∆) + Tr((DµDµ∆)†∆)

]
(2.11)
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Now by adding the terms to have the equations of motion, for example in equation
(2.10) we obtain:

(ϕ†ϕ)∂µTr(∆†Dµ∆) = (ϕ†ϕ)Tr((Dµ∆)†Dµ∆) + (ϕ†ϕ) EoM +M2 ϕ2∆2

+µ ϕ4∆ + f ϕ2∆ψ2 + (λ1, λ4) ϕ
4∆2 + (λ2, λ3) ϕ

2∆4 (2.12)

The terms in boxes refer to other operators that are already in the basis, so we can
just redefine the couplings and ignore these terms. Then by summing equations (2.10)
and (2.11) we obtain:

O∆� = (ϕ†ϕ)�Tr(∆†∆) = 2(ϕ†ϕ)Tr((Dµ∆)†Dµ∆) + (ϕ†ϕ) EoM

+M2 ϕ2∆2 + µ ϕ4∆ + f ϕ2∆ψ2 + (λ1, λ4) ϕ
4∆2 + (λ2, λ3) ϕ

2∆4 (2.13)

Now we see that (ϕ†ϕ)�Tr(∆†∆) and Tr(∆†∆)�(ϕ†ϕ) are related by "integration
by parts" and dropping the total derivatives. There are 4 more operators: Tr(∆†Dµ∆)
((Dµϕ)†ϕ), Tr((Dµ∆)†∆) ((Dµϕ)†ϕ),Tr((Dµ∆)†∆) (ϕ†Dµϕ) and Tr(∆†Dµ∆) (ϕ†Dµϕ).
We will skip the derivation but it can be shown that these 3 of these operators are
redundant. This can be shown by writing 4 equations relating the operators to to-
tal derivatives using again Leibniz rule. This way we will have 4 equations relat-
ing the 6 possible operators, two of them are O∆� so the other 3 equations relate
the other 4 operators. However, we see that these 4 operators are not self-hermitian,
hence we will always have to write the hermitian conjugate even if the number of
operators (and Wilson coefficients) necessary is just 1. To do this, the term that we

write is O∆ϕD = (ϕ†i
↔
Dµϕ)Tr(∆†i

↔
Dµ∆), with ϕ†i

↔
Dµϕ = iϕ†

(
Dµ −

←
Dµ

)
ϕ and

ϕ†
←
Dµϕ = (Dµϕ)

†ϕ. This operator contains the 4 operators written above, however
with just one Wilson coefficient, so we have reduced the number of coefficient, and
written it in a self-hermitian way. In these operators we have found a difference with
the basis developed in [49].

This procedure is applied to the other possible classes of operators with derivatives
∆4D2 and also to the triplet combinations of these classes of operators, with just a few

remarks: for the case of 4 ∆ fields and 2 derivatives it is not necessary to write
↔
Dµ since

we can pick an operator that is self-hermitian, for instance: Tr
(
∆†Dµ∆

)∗
Tr
(
∆†Dµ∆

)
.

The choice of the operators O2
∆Dϕ and O3

∆Dϕ is explained in appendix A.2.
A different set of operators appears in this model due to the hypercharge of the triplet

field. This field allows configurations in which we have two lepton doublets l and lc,
since they are allowed by invariance under U(1)Y . These operators are listed in Tab. 2.3
and are lepton-violating operators: we find two operators very similar to the Weinberg
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operator but with dimension-6, O1,2
∆ϕl. We also find other combinations which combine

the lepton number violating structure l̄c∆l combined with gauge bosons, which could
be interesting for LFV processes.

2.1.3 Choice of Basis and Scales
Apart from the choice of basis allowed by total derivatives, rewriting some operators
using some properties or using the EoM, there are still some more choices to cover.
Fields can be chosen to be on its mass basis or on its flavour basis. This change in
fermionic sector is done by applying the CKM or PMNS matrix to the appropriate fields.
In the SM normally we transform the fields by a transformation that leave their Yukawa
matrix diagonal, for instance d̄′LYdd

′
R = d̄LVdLYdV

†
dR
dR such that VdLYdV

†
dR

= Y diag
d ,

and as we saw in equation (1.29) this makes the CKM matrix VCKM = V †dRVdL appear
in the W-boson interaction. In this case, the ∆EFT extension adds more operators that
are in general non-diagonal in flavour which makes that coefficients such as O∆d to be
transformed as:

(C∆d)
prd̄′pγ

µd′r = (C∆d)
pr(V †dL)rt(VdL)psd̄sγ

µdt (2.14)

In the case where it is flavour-diagonal (C∆d)
pr ∼ C∆dδ

pr we do not need to take care
of these matrices, however, in general this is not the case and we would have to deal with
all different matrices that are needed to diagonalize the Yukawa matrices. As discussed
in [61] we can make U(3) flavour transformations, which leave SM gauge interactions
invariant but modify Yukawa interactions and Wilson coefficients, making the specific
transformation that leave YD and Ye diagonal and YU = V †CKMYU , we then only need
to transform uL → VCKMuL so we only need to keep track of the CKM matrix in the
operators where uL appears. Results and bounds set for other choices of basis will be
different.

During this work we will assume that the scale Λ � M where M is the mass of
the triplet. Although it seems trivial, this hierarchy of scales should never be broken,
otherwise the ansatz of the whole EFT does not work and this basis would not be useful.
During this work we will generally assume the mass of the triplet not to be larger than
1 TeV, thus we will be always assuming Λ & 1 TeV. Different specific assumptions on
the masses and scale will be given on the different sections.
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3 Phenomenology

There are several strategies to constrain the different parameters of the model, one of
them is to consider the mass of the triplet larger than the scale of the experiment, then
observe which operators of the SMEFT and with the data that we currently have on this
operators infer the bounds on the parameters of our model. This is the first approach we
are going to follow in this study.

The second strategy is to obtain information on different parameters through mod-
ifications of the SM parameters. This is well known in the SMEFT [62], where well
measured quantities such as the Fermi constant GF or, for instance, the couplings of the
fermions to the Z bosons are modified by some of the Wilson coefficients. Some oper-
ators of the ∆EFT also modify these couplings, and can be constrained with different
assumptions with data from the Large Electron Positron collider (LEP) [64] and LHC.

The last strategy we will use is more straightforward, and consists on looking for the
signal (rather absence of it) of the doubly- and singly-charged Higgs to constrain some
of the new possible production channels that appear in the ∆EFT.

3.1 Below the Triplet Mass Scale

3.1.1 Lepton Flavour Violating Processes

In this section we assume that the scale of the experiment is much lower than the mass
of the triplet ∆, p2 � M2. In this case this heavy state cannot be produced on-shell,
so we look for indirect measurements to constrain our model. We will start with the
renormalizable Lagrangian and then we will generalize it to a subset of dimension 5
operators.

The best way to test the type-2 seesaw mechanism at a low scale is through the LFV
processes. Since the coupling to the fermions fab of equation (1.63) is related to the
PMNS matrix, it will be in general non-diagonal. This coupling also generates the
lalbH

++ vertex, so the charged Higgs will couple leptons of different generations, pro-
ducing this LFV processes, for instance the µ → 3e at tree level and µ → γe at loop
level as we can see in Figure 3.1. These two processes have an upper bound on the
branching ratio of the muon of BR(µ → 3e) < 1 × 10−12 at 90% C.L. by the SIN-
DRUM experiment [51] and BR(µ → eγ) < 4.2 × 1013 at 90% C.L. by the MEG
experiment [52]. Assuming that p2 ≤ m2

µ � M2
H++ we can obtain the branching ratio

for both decays [53]:

42



H−−

µ−

e+

e−

e−

H−−

l+α

µ− e−

γ

Figure 3.1: Figures of the LFV processes that could happen in the type-2 seesaw mecha-
nism (left) decay of the muon into 3 electrons at tree level through H−− and
(right) the loop-induced decay of the muon into a photon and an electron.

Br(µ→ 3e) =
|fµef ∗ee|2

4G2
f m

4
H++

(3.1)

Br(µ→ γe) =
αem
3π

|fµαf ∗αe|2

G2
f

(
1

m2
H++

+
1

8m2
H++

)2

(3.2)

The factors fαβ are given by the PMNS matrix as we saw in eq. (1.66) if the neutrino
masses are known. Since they are not, these couplings can only be tested for different
assumption of the mass states. Notice that if the oscillations parameters are known we
just need one known mass state to determine the rest of the parameters. Hence, we will
obtain upper bounds on the parameters vt by using 4 different cases a) m1 = 0 eV NH,
b) m1 = 0.1 eV NH, c) m3 = 0 eV IH and d) m3 = 0.1 eV IH. We choose m = 0 eV
as the limit case and m = 0.1 to investigate what happens in the nearly degenerate case
(all the mass differences are smaller than the absolute mass ∆m < (0.1 eV)2). That
is why cases b) and d) should be almost the same, since in that scenario the masses of
the neutrinos are nearly degenerate, the hierarchy is negligible. However, the CP-phase
given by the fits, Tab. 1.2, is different for the IH and NH, so the nearly degenerate case
will be different depending on which CP-phase we choose, so we will consider both
cases labeled as we mentioned above.

It is also not trivial to determine which process puts the more stringent constrain. The
µ → eγ process is loop suppressed, however the experimental constrain is currently
better than for the tree level process µ→ 3e. But that is not the only reason, it has been
shown [54] that the muon to electron photon process is independent of the Majorana
phases, however the µ to 3e process is not. Furthermore, the loop-induced decay of the
muon is almost independent of the neutrino mass spectrum:
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(m†m)eµ ∼
√
6

8
∆m2

12 +

√
2

2
∆m2

31s13 (NH, and degenerate) (3.3)

(m†m)eµ ∼
√
6

8
∆m2

12 −
√
2

2
∆m2

31s13 (IH) (3.4)

Where we have set all three phases to 0, to test the dependence on the neutrino oscil-
lation parameters. Even if the IH and NH are different, the difference is not as big as
one might imagine since the second term is an order of magnitude larger than the first
one. In the case of µ to 3e it is the opposite, the three cases are different:

m†eemeµ ∼
√
6

31
∆m2

21 +

√
2

8

√
∆m2

21∆m
2
31 s13 (NH) (3.5)

m†eemeµ ∼
√
6

16
∆m2

21 +

√
2

4
∆m2

31s13 (Degenerate) (3.6)

m†eemeµ ∼
√
6

16
∆m2

21 −
√
2

2
∆m2

31s13 (IH) (3.7)

This will induce that in some cases the constrain of the loop-induced decay becomes
better than the tree-level one. To obtain the bounds we assume mH+ ' mH++ and
invert equations (3.1) and (3.2). This gives a relation between mH++ and vt so we plot
the curves in this plane to obtain the exclusions 90% C.L. Fig. 3.2. As a general feature
of the three plots, the exclusion limit becomes relevant for low values of vt, this can be
seen from eq. (3.1) since fµe ∼ mµevt vt will be in the denominator of the expression,
but this comes from the fact that we fix the couplings fαβ to the neutrino masses and
PMNS matrix, this makes that when vt is small fαβ must compensate to give the mass
matrix, thus, a lower vt gives a large fαβ giving a large coupling of H++ → l+α l

+
β .

As we can see from the figures the NH is best constrained by the MEG experiment,
however, for the IH and degenerate (for both different δ) scenarios the µ to 3e process
places more stringent constrains. For vt = 10−9 and NH the bound from MEG is
734 GeV & mH++ , for the IH the bound is given by the µ to 3e process 2.4 TeV &
mH++ and for the degenerate cases the constraints are 3.5 TeV & mH++ with δ = 1.08π
and 7.3 TeV & mH++ with δ = 1.58π, both constrains coming from the µ to 3e decay.

For completeness, we can turn around eq. (1.51), and instead of having a exclusion
plot in the vt −mH++ we can have exclusion limits of the parameters µ − vt, valid for
the degenerate case, using:

M2
H++ ' µv2d√

2vt
(3.8)

By introducing this approximate relation in equations (3.1) and (3.2) we obtain the
exclusion plots shown in Figure 3.3. We again observe that in NH the most stringent
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(a) (b)

(c)

Figure 3.2: In (a) we observe the exclusion plot for the NH for the cases m1 = 0 eV
(blue) and m1 = 1 eV (green). In (b) we plot the same assuming IH so this
time is the lower state m3 = 0 eV (blue) and m3 = 1 eV (green). In Fig. (c)
we have the constrains of the MEG experiment on the loop-induced decay
of the muon assuming normal and inverted hierarchy, we also observe that
it is almost independent of the choice of mass spectrum.

values come from the MEG experiment while for the rest the µ to 3e decay is best for
constraining the parameter space available.

In summary, we have observed that both processes are necessary to constrain, in the
best possible way, the parameter space available in the type-2 seesaw model, since the
µ→ eγ decay currently constrains best the parameters of the model. On the other hand,
the IH and degenerate mass spectrum are best constrained by the µ to 3e process and in
these cases the constrains are much better than for normal hierarchy. As a final remark,
experiments such as the Mu3e experiment [55] aim to set a lower upper bound on the
branching ratio of 10−16 on its final phase, which would set a constrain on the mass of
the type-2 seesaw mechanism of ∼ 5 TeV at low values of the vev vt ∼ 10−9.
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(a) (b)

(c)

Figure 3.3: Using equation (3.8) we can turn the plots of Figure 3.2 into exclusion plots
in the plane vt − µ, again the plot (a) assumes NH with (b) IH both using
the exclusion limit of the SINDRUM experiment, and in (c) NH and IH are
plotted with the exclusion limit of the MEG experiment.

3.1.2 Dimension 5 Contributions to the SMEFT

The LFV processes of the last section can be produced by other models, besides since
it is commonly thought that BSM particles should have large masses, we could study
the decays of the previous section in a model independent way. In the SMEFT basis,
the decay of the muon due to a much heavier internal state would be parameterized by
the SMEFT operator Oll for the µ → 3e process. What we did in the last section by
assuming M2 � p2 was to give a particular expression of Cll ∼ feef

2
µe/M

2. In other
words, by calculating the Feynman diagram with this approximation we obtained and
effective coupling of the SMEFT basis, Cll and then we put a bound on the parameters
of the model that generate this coefficient. We can do this approximation in a more
general way without the need of calculating any Feynman diagram obtaining all the op-
erators generated by the type-2 seesaw mechanism, and also the some of the dimension
5 coefficients.

Reference [56] offers a general way of obtaining the coefficients of the EFT step by
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step in perturbation theory. It consists of calculating the saddle point approximation of
the Feynman path integral of the action, which gives that the heavy field on the minimum
satisfies δ§

δΦ
= 0. This expression leads to the equations of motion which we can solve in

an approximate way by expanding it in powers of pa/M b, and then substitute the heavy
field Φ into the action. In our case we want to integrate out the heavy field ∆a to do
that we obtain the equations of motion upt to linear terms in ∆a, we cut it here because
an operator with more insertions of ∆ fields would lead to higher dimension operators.
The equation of motion for the type-2 renormalizable Lagrangian (1.49) and (1.63) is:

[
−DµD

µ − M2 −
(
λ1 +

λ4
2

)
ϕ†ϕ

]
∆a =

frp√
2
l̄criσ

2σalp

+
µ√
2
ϕ̃†σaϕ+

λ4
2
ϕ†iεbacσ

cϕ∆b +O(∆2) (3.9)

Where we have cut only to linear terms in ∆ since going further would generate
operators of dimension larger than 6. The last term of this expression can generate some
dimension 6 operators, however those operators give a null contribution since the Levi-
Civita is antisymmetryc and these operators are symmetric under the SU(2)L indices.
Now, we invert the previous expression and expand it in powers of mass to substitute in
the Lagrangian (1.49) and (1.63):

∆a '
[
− 1

M2
+
DµD

µ

M4
+

(
λ1 +

λ4
2

)
ϕ†ϕ

M4

] [
frp√
2
l̄criσ

2σalp +
µ√
2
ϕ̃†σaϕ

+
λ4
2
ϕ†iεbacσ

cϕ∆b

]
(3.10)

In the previous expression we only added operators up to dimension 4, but later on
we will include also non-renormalizable operators. Now, we can substitute into the
Lagrangian to obtain the SMEFT operators generated by the triplet. We will start by
looking to contributions to the operators that only contain Higgs doublets.

Lint ⊇ m2ϕ†ϕ− λ

4
(ϕ†ϕ)2 − |µ|2

2
ϕ†σaϕ̃

[
− 1

M2
+
DµD

µ

M4
+

(
λ1 +

λ4
2

)
ϕ†ϕ

M4

]
ϕ̃†σaϕ

− |µ|2

2M4

(
λ1 +

λ4
2

)
ϕ†ϕϕ̃†σaϕϕ†σaϕ̃+ h.c. (3.11)

We can use again the properties of the Pauli matrices (2.2), and skipping some calcu-
lations we get:
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Lint ⊇ m2ϕ†ϕ− 1

4

(
λ− 4

|µ|2

M2

)
(ϕ†ϕ)2 − |µ|2

2M4
ϕ†σaϕ̃DµD

µ ϕ̃†σaϕ

−|µ|2

M4

(
λ1 +

λ4
2

)
(ϕ†ϕ)3 + h.c. (3.12)

Here we already obtained some of the SMEFT operators like Oϕ and some modi-
fications to the quartic coupling of the Higgs potential. Now it requires some more
calculations that we will skip to work out the term with derivatives of the last expres-
sion. This term gives two kind of operators: with two derivatives acting on just a field
or the derivatives acting on different fields. The first term can be rewritten in other oper-
ators by using the classical equations of motion of the Higgs field as we showed on the
section 1.3.1. The other terms with derivatives acting on different fields will generate
operators Oϕ� and OϕD, obtaining in the end the following contributions:

Lint ⊇ m2ϕ†ϕ− 1

4

(
λ− 4

|µ|2

M2
+ 8

|µ|2m2

M4

)
(ϕ†ϕ)2 + 2

|µ|2

M4
ϕDµϕ

(
ϕ†Dµϕ

)∗
+
|µ|2

M4
ϕ†ϕ�(ϕ†ϕ) +

|µ|2

M4
ϕ†ϕ

(
ye∗rp l̄perϕ+ yd∗rp q̄pdrϕ+ yu∗rp q̄purϕ̃

)
−|µ|2

M4
(λ1 + λ4 − λ) (ϕ†ϕ)3 + h.c. (3.13)

After eq. (3.1.2) we omitted the calculation with the leptonic operator on the right-
hand side of the equation as well as operators of dimension 5, in order to tackle the
problem step by step. Now, we consider the contributions given by this leptonic opera-
tor.

Lint ⊇ −µfrp
2M2

l̄criσ
2σalpϕ̃

†σaϕ+ h.c. − µfrpf
∗
st

2M2
l̄criσ

2σalpl̄sσ
aiσ2lct (3.14)

The first term is simple to rewrite using eq. (2.2), getting the Weinberg operator. The
second term, requires also the following Fierz identity, to leave it in terms of the Warsaw
basis:

lpl̄s = −1

2
l̄sγ

µlpγµ (3.15)

Now, we can just apply again the property of the Pauli matrices of eq. (2.2), and find
that the operators generated are:

Lint ⊇ −µfrp
M2

(ϕ̃†lr)
TC(ϕ̃†lp) + h.c. +

frpf
∗
st

2M2
(l̄rγ

µlt)(l̄sγµlp) (3.16)
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We have discussed the tree-level contributions to the lagrangian coming from renor-
malizable terms, now, we start adding the dimension 5 operators that also have a tree-
level contribution. Actually, the only terms that we need to use from eq. (3.1.2) are
the first order term in the expansion and the term containing only Higgs particles, since
all other terms would generate dimension 7 operators (or larger) when combined with
dimension 5 operators. Those that contribute at tree level are linear in ∆, and give the
following contributions:

Lint ⊇
µ

M2
ϕ†ϕ

(
µCrp

∆lel̄perϕ+ µCrp
∆qdq̄pdrϕ+ (µCrp

∆qu)
∗q̄purϕ̃

)
+
2Re(µCϕ4∆)

M2
(ϕ†ϕ)3 + h.c. (3.17)

Notice that the dimension 6 operator with only 6 Higgs fields gives the real part of the
coefficient since we the coefficients may be complex and then the hermitian conjugate
removes the imaginary part. Finally, we can write all the possible contributions to the
SMEFT dimension 6 operators from the dimension 5 terms of our basis:

L>4 ≡
∑
i

CiOi = −λ
′

4
(ϕ†ϕ)2 + C5O5 + CϕOϕ + CϕDOϕD + Cϕ�Oϕ� + CllOll

+CeϕOeϕ + CdϕOdϕ + CuϕOuϕ + h.c. (3.18)

With the following contributions:

λ′ =

(
λ− 4

|µ|2

M2
+ 8

|µ|2m2

M4

)
(3.19)

(C5)rp = −µfrp
M2

(3.20)

Cϕ� =
|µ|2

M4
(3.21)

CϕD = 2
|µ|2

M4
(3.22)

Cϕ = −|µ|2

M4
(λ1 + λ4 − λ) +

2

Λ

Re(µCϕ4∆)

M2

(3.23)

(Cll)rpst =
frpf

∗
st

2M2
(3.24)

(Ceϕ)rp =
|µ|2

M4
ye∗rp +

1

Λ

µ

M2
(C∆le)rp (3.25)

(Cdϕ)rp =
|µ|2

M4
yd∗rp +

1

Λ

µ

M2
(C∆qd)rp (3.26)

(Cuϕ)rp =
|µ|2

M4
yu∗rp +

1

Λ

µ∗

M2
(C∆qu)

∗
rp (3.27)
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3.1.3 Constrains from Higgs Measurements to Dimension 5
Operators

It is worth it going back a step back and see what we have won. Previous to the last sec-
tion we had a set of coefficients of dimension 5 containing ∆ fields in the Lagrangian,
however, not a single particle related to this field has yet been observed, thus studying
this operators becomes a challenge. In a similar way to the Fermi theory we have as-
sumed that the heavy state is heavier than the momentum scale we work with and hence
it can only be produced virtually as in the case of the W boson in Fermi’s theory.

This way we can work with SM fields as external states where we have information
on several coefficients. Furthermore, we have written the contributions of the ∆EFT
at low energies in terms of the Warsaw basis, which several groups have studied in a
model-independent way [39, 57], meaning that we can benefit from their data to put
constrains in our operators by using the relations obtained in equations (3.19 - 3.27).

In this analysis we will use the data from [39] since they provide the χ2 function,
constraining many operators generated by the ∆EFT model. This χ2 function provided
uses 159 data points, including LEP measurements on EWPO, Higgs production data
of the runs 1 and 2 of the LHC and some more data on production on W boson pair
production. This then included in the expression:

χ2 = (y − µ(C))TV −1(y − µ(C)) (3.28)

Where y is the vector of central values, V −1 is the inverse of the covariance matrix
(which takes into account correlations when possible) and µ = µSM + µEFT (C) is the
theoretical predictions of the observable, which we separate in a SM contribution plus a
correction of the EFT coefficient of the subset of the Warsaw basis chosen. In this case
the global analysis done is to linear order on the Wilson coefficients, which makes the
likelihood function associated to this χ2 function is Gaussian distribution. In our case
we will drop the generality of the global analysis and focus on the operators generated
by our model of equations (3.19 - 3.27), however not all operators can be measured with
this set of data, for example λ′ has not been yet measured at the LHC, so this operator
andCϕ will be dropped. Weinberg operator is also dropped since it is typically measured
at 0νββ experiments, which are at a much lower scale than LHC experiments, although
it is also possible to study this operator in colliders [58]. This analysis also makes the
assumption of U(3)5 symmetry on the dimension-6 coefficients of the SMEFT. This is,
however not consistent with our model since we need the coefficient fαβ to be different
for each component, otherwise neutrino masses would be degenerate and no oscillations
would be seen.

Using eq. (3.8), we can rewrite µ in terms of vt, setting M = 1 TeV, which is a more
interesting parameter in the type-2 seesaw mechanism. In any case this is not such a bad
approximation since colliders do not constrain vt − f as well as the LFV processes, so
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the differences between the different components of f can be neglected.
Neglecting operators of dimension 5 we just get a constrain of the vt − f plane.

Minimizing the χ2 function we can find the best-fit values and draw the confidence
level intervals in which the parameters can lie at different confidence level.

The result of Fig. 3.4 has already been obtain in Ref. [39], however we used expres-
sion (3.8) to rewrite the parameter µ as the vev and setting the mass of the triplet to
1 TeV. f is the coupling that through vt should give mass to the neutrinos, this means
that

√
2fvt . 0.2 eV, for instance for a value of vt ∼ 1 GeV then f . 1.4 × 10−10.

So, looking at Fig. 3.4 we see that we are far from constraining the set of values for
vt − f that can generate the masses of neutrinos that we observe. On the other hand the
maximum value of the vev at 95% C.L. is of vt . 2.7 GeV, a good bound on this value.

Although the bound on vt is good, it is clear that LFV processes put more stringent
constrains for these set of parameters when we set them to the mass of the neutrinos,
however, this procedure is a very useful for constraining C∆le, C∆qu an C∆qd, since
Higgs data is needed to analyze these couplings. Minimizing again the χ2 function this
time we will draw the confidence levels profiling the parameters that are not shown in
the plot using MINUIT [59]. The three C.L. can be found in Fig. 3.5

The form of plots 3.5a-3.5c can be understood from equations (3.25)-(3.27), where
one must once again apply equation (3.8). The parameter vt is multiplied to each of
the dimension 5 Wilson coefficient so the dependence is clear, if vt is low the available
space for the Wilson coefficient is large, on the other hand if vt is larger the Wilson
coefficients have more stringent constrains. The value of vt is constrained at 95% C.L.

(a) (b)

Figure 3.4: Confidence level regions of the vacuum expectation value vt and f at 68%
(blue) and 95%(orange) with χ2/dof = 0.989, and setting the mass of the
triplet to M = 1 TeV. (left) for the f − vt plane and (rigth) in the f − v2t
plane, which helps comparing this result with that of Ref. [47]. The black
line corresponds to the 95% exclusion limit from the ρ-parameter, vt ≤ 2.1
GeV obtained in Ref. [60].
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(a) (b)

(c)

Figure 3.5: Allowed regions for the different Wilson coefficients of dimension 5 with
respect to the vev vt. In plot (a) C∆le, (b) C∆qd and (c) C∆qu for the different
confidence levels 68% (blue) and 95% (orange) with χ2/dof=0.99.

to be lower than vt . 4 GeV, a bit higher than for the previous plots, since the more
parameters we allow to come into the fit the more range of values will have the rest of
parameters to vary.

To have better constrains of these parameters, better measurements of Higgs observ-
ables are required. Operators Cuϕ and Cdϕ contribute to Higgs production processes
such as in the tth channel and also ggF at loop level. However, the strongest contribu-
tions of all these 3 operators are to the decays of the Higgs, h → b̄b for Cdϕ, h → c̄c
for Cuϕ and h → µ̄µ for the Wilson coefficient Ceϕ. These decays have still some
room for improvement, for instance the signal strength, µ = (σBRf )obs

(σBRf )SM
where f indicates

the final state and σ is the production cross section, of the process pp → h → µµ is
µ = −0.1± 1.5. So, to get good constrains on these coefficients these decays also need
to be measured with a better precision.
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3.2 Modified of Electroweak Parameters

It is a known fact that in the SMEFT some of the dimension-6 operators modify some
of the definitions of the SM parameters. For instance the Fermi constant is defined
through the muon decay into an electron and two neutrinos. As shown in Fig. 1.4 this
interaction is a 4-lepton interaction that in the SMEFT can also be produced by the
operator Cll. Another contribution comes from the operator C(3)

ϕl , this term contains an
extra contribution coupling of the W boson:

(ϕ†i
↔
DI
µϕ)(l̄pγ

µτ I lr) ⊃
g

2

1

GSM
F

W−
µ ēLγ

µνL (3.29)

All in all, the definition of the SMEFT in the Warsaw basis of the Fermi constant is:

ĜF =
1√
2v̄2

−
√
2

4
((Cll)µeeµ + (Cll)eµµe)−

1√
2
((C

(3)
ϕl )ee + (C

(3)
ϕl )µµ) (3.30)

Assuming now U(3)5 symmetry, we obtain the expression:

ĜF =
1√
2v̄2

− 1√
2
Cll +

√
2C

(3)
ϕl (3.31)

The notation that we will use is the same as in refs. [62, 63] which obtained these
expression that we are now reproducing. Constants with a hat are inferred from in-
put measurements and those which have a bar are the expressions obtained from the
canonically normalized Lagrangian in the EFT approach. Operators such as OϕW in
the Warsaw basis modify the typical form of the kinetic terms for the gauge field as
(1 + CϕWv

2)WµνW
µν by absorbing these couplings in the gauge fields we canonically

normalize the Lagrangian. However this adds modifications to some couplings, these
modified couplings through this process will have a bar on them. In this notation also
Wilson coefficients have been redefined so that the factor 1/Λ2 is implicit in each of
them.

The EW sector of the SM model is only given by three constants, {g, g′, v}, the two
couplings to the SU(2)L×U(1)Y group and the vacuum expectation value. These three
values can be determined experimentally for instance by the set of measurements on the
parameters {α,GF ,MZ}, where α is the fine structure constant, or on the other hand
we can measure {MW , GF ,MZ}. These two different working schemes are called the
α and MW schemes respectively.

In the following sections we apply this logic of the SMEFT and apply it in the α-
scheme to the ∆EFT which modifies as well some of the parameters of the SM model.
Then these operators will be constrained with LEP [64] data and analyzed using differ-
ent assumptions.
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3.2.1 Modified Parameters by the ∆EFT

The ∆EFT contains several operators that have similar structure as in the SMEFT, so
we can imagine the modifications of this model to the SM EW parameters. In this
section we will omit the contributions of the Warsaw basis, which will be recovered in
the following section. We will analyze those parameters that contribute up to v2tC/Λ

2

where vt is the triplet vev and C is any Wilson coefficient, higher powers of vt will be
dropped since v2t � v2d is assumed. The set of operators used in this section are:

{O∆ϕD,O(1)
∆ψ,O

(3)
∆ψ,O∆WB} (3.32)

Starting by the definition of the Fermi constant, the result is analog to that of the
SMEFT with the exception of the 4-fermion operator which in this case does not appear
in the ∆EFT.

ĜF =
1√
2v̄2

+
v2t
v̄2

√
2C

(3)
∆l (3.33)

Here we already notice the first difference, in this case the deviation from the SM will
be also suppressed by powers of vt/v.

For simplicity we will not probe modifications of the parameters coming from terms
which only contain scalar fields, hence there are no modifications to the vev apart from
the one induced by the triplet and now on we will drop the bar on v. We note that a
consistent analysis must include all these operators. However, one can easily see that
the complexity of the problem rises since many operators will modify the definition of
the vev. The vev in the SMEFT is only modified by Oϕ, here many other parameters
affect its definition. Besides, these scalar operators are difficult to probe experimentally,
for instance the quartic coupling of the Higgs has not been measured yet, so consider-
ing more operators will be pointless in the sense that we would not have independent
measurements of them. This two-fold difficulty makes us not consider these operators
in this work.

Since we consider {α̂, ĜF , M̂Z} to be fixed by the measurements we should rewrite
the rest of the parameters of the EW Lagrangian in terms of these two. Since this has
been done in the literature and can be easily found in Refs. [35, 62, 63] we will place
these definitions in the appendix B, and refer to these articles for further information.
These parameters will take the value:

α̂(MZ) = (127.952)−1, ĜF = 1.1663787× 10−5 GeV, M̂Z = 91.1876GeV (3.34)

The next modification is to the mass of the Z boson. One can easily see that after
SSB not only the kinetic term of the Higgs gives mass to the Z boson, but also all the
rest of scalar operators with derivatives. Operators O∆W and O∆B are absorbed in the
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redefinition so that the kinetic terms have the canonical form BµνB
µν this introduces a

redefinition in the couplings g′ = ḡ′(1 + v2tC∆B) and similar for g = g(1 + v2tC∆W ).
However the operator O∆WB as shown in [63] modifies the Weinberg angle, introducing
a correction to the SM mass of the Z-boson:

M̄2
Z =

v2

4
(ḡ2 + ḡ′2) +

M̂2
Z

2
v2tC

′
D∆ +

v2v2t
2
ḡḡ′C∆WB (3.35)

In this expression we have defined C ′D∆ ≡ 1
2
C1

∆D + 4 (C2
∆D + C3

∆D), this is done
because it is not possible to distinguish these operators in a fit. Since we cannot measure
any of the ∆ fields, we do not have any observable that constrains a different direction
than this particular combination. Following [35] we will denote δk = k̄ − k̂, where k is
any parameter, since it will become very useful later on. Using this definition we obtain:

δGF =
√
2 v2t C

(3)
∆l (3.36)

δM2
Z = M̂2

Z

(
1

2
v2tC

′
D∆ + 2v2t cos θ̂w sin θ̂wC∆WB

)
(3.37)

We want to point out that δGF does not have the same dimensions as GF , however,
to avoid mistakes later on, we will follow analog definitions to those of refs. [35, 62],
although in this case it might be misleading. Now on, we will abbreviate sin θ̂ ≡ sθ̂
and similarly the other trigonometric functions of the Weinberg angle. The rest of the
modifications can be written in terms of these two:1

δg =
ĝ

2c2θ̂

[
s2
θ̂

(
√
2δGF +

δM2
Z

M̂2
Z

)
+ c2

θ̂
s2θ̂v

2
tC∆WB

]
(3.38)

δg′ = − ĝ′

2c2θ̂

[
c2
θ̂

(
√
2δGF +

δM2
Z

M̂2
Z

)
+ s2

θ̂
s2θ̂v

2
tC∆WB

]
(3.39)

δs2θ = 2c2
θ̂
s2
θ̂

(
δg

ĝ
− δg′

ĝ′

)
+
s2θ̂c2θ̂
2

v2t C∆WB (3.40)

δM2
W = M̂2

W

(√
2δGF + 2

δg′

ĝ′

)
(3.41)

We start seeing that all these modifications imply that to exclude deviations from the
standard model one would need to obtain good measurements on the parameters related
to the Z and W bosons. In a similar way to what happens in the SMEFT, e.g. eq. (3.29),

1Someone following Refs. [35, 62] should not mistake their v̄T for our vt in ur case vt will always refer
to the triplet vev.
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the couplings of the fermions to the gauge bosons are also perturbed by the dimension-6
coefficients. We will define the Z-boson coupling to the fermions as:

LZ,eff = ĝZ
∑

ψ=l,ν,u,d

ψ̄γµ

(
ḡψV − γ5ḡ

ψ
A

)
ψZµ (3.42)

Here, we have omitted any flavour components on the couplings, but they can be
recovered by adding indices to the couplings g and fields ψ. We have also used the
definition ĝZ = −ĝ′/cθ̂. Now we can write the contribution of the dimension-6 operators
to these couplings. Defining δgψV,A as:

δgψV,A = ḡψV,a − gψ,SM
V,A (3.43)

With:

gψ,SM
V =

T3
2

−Qψs
2
θ̂

and gψ,SM
A =

T3
2

(3.44)

We can easily obtain that the modifications to the fermion-gauge couplings produced
by the dimension-6 operators of the ∆EFT are:

δgνV = δgνA = δgZ g
ν,SM
V +

v2t
2

(
C

(3)
∆l − C

(1)
∆l

)
(3.45)

δglV = δgZ g
l,SM
V − v2t

2

(
C

(3)
∆l + C

(1)
∆l + C∆e

)
+ δs2

θ̂
(3.46)

δglA = δgZ g
l,SM
A +

v2t
2

(
−C(3)

∆l − C
(1)
∆l + C∆e

)
(3.47)

δguV = δgZ g
u,SM
V +

v2t
2

(
C

(3)
∆q − C

(1)
∆q − C∆u

)
− 2

3
δs2

θ̂
(3.48)

δguA = δgZ g
u,SM
A +

v2t
2

(
C

(3)
∆q − C

(1)
∆q + C∆u

)
(3.49)

δgdV = δgZ g
d,SM
V − v2t

2

(
C

(3)
∆q + C

(1)
∆q + C∆d

)
+

1

3
δs2

θ̂
(3.50)

δgdA = δgZ g
d,SM
A +

v2t
2

(
−C(3)

∆q − C
(1)
∆q + C∆d

)
(3.51)

δgZ = − 1√
2
δGF − δM2

Z

2M2
Z

+ sθ̂cθ̂ v
2
tC∆WB (3.52)

We have computed the modifications of the EW parameters of the SM, now we can
calculate how these variations modify observables such as the decay width of the Z bo-
son, cross-sections, asymmetries... In fact these modifications have already been com-
puted [62], and they are given in terms of these modified parameters δg, δM2

Z , ... that we
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have computed. Hence, we will skip how these observables change with respect to these
modifications, but for completeness and in order to refer to them in the next section they
are listed in the appendix B

For the W -boson the modifications are only dependent on C(3)
∆ l and C(3)

∆ q. It can
be seen that this is due to the fact that the fermionic part of the operators of the class
∆2ψ2D is neutral (e.g. only terms like ūγµuwhile when we have the triplet combination
we can have terms like ūγµd. The contribution from these operators to the W -boson
coefficients is:

δgW,l,qV = gW,l,qA =
v2t
2

(
C

(3)
H(l,q) +

1

2

cθ̂
sθ̂
C∆WB

)
− 1

4

δs2θ
s2
θ̂

(3.53)

3.2.2 Constraining ∆EFT with LEP

As we have mentioned in the previous section, all these modifications affect EW ob-
servables. Clearly, this means looking at observables related to the gauge boson Z.
Furthermore, this means using LEP data at the Z-pole resonance [64] in order to put
bounds to these modified couplings, as it is done in the SMEFT.

Before starting with the data, we will first discuss the validity of the constrains we are
about to obtain. One of the most important, if not the most, aspect of EFTs is that we
do not make any judgment about the UV theory generating the effective operators of the
model. At the same time, as it has been discussed in previous sections, we are doomed
to make some choices, and simplify by assuming symmetries, for instance U(3)5 in
some global analyses , or reducing the set of operators due to the complexity of the
analysis or even unavailability of measurements, the case of for example Oϕ. All in all,
without simplifications like these, we could not get any constraint, however, we must
be clear on what set of operators, which flavour assumptions and with what purpose
we are working. It is clear why if we are looking for BSM particles coupling to top
quarks we will apply U(2) symmetry to the quark sector, so now we must ask what kind
assumptions are we willing to make to reduce the complexity of the work.

We already argued in the previous section that taking into account scalar-only opera-
tors was not useful, since measurements would not be available. The subset of operators
was also reduced to those which can be measured by the Z-boson, however we still have
to make a last decision. It is likely that if the triplet Higgs ∆ exists, the way to work in
EFTs would be to use SEMFT+∆EFT operators in the different sections, since not in-
cluding one of these models would imply making an assumption on the UV completion.
However, that is not the case, the type-2 seesaw field ∆ has not yet been observed and
thus, as we have already said, making a global analysis, if possible, perhaps would not
be the most resource-wise option. At the risk of sounding redundant, global analyses
are a powerful tools for looking for new physics with a set of external states that are

57



measurable, when this is not the case, a great part of the operators cannot be measured,
so other utilities should be found.

After this discussion, we hope to be able to justify the two frameworks in which we
will analyze the subset of operators that we have chosen. Firstly we will consider only
∆EFT operators, this is a big assumption that can be justified in some scenarios. We
will give an example of one: it has been noted that couplings such as those of the class
ψ2ϕ2D could be generated through an exchange of a heavy gauge boson [65]. This is
analog in the ∆EFT, to show it we denote this new gauge field as Z ′µ, and write the
vertices:

Z ′

∆

∆† ψ̄

ψ

g∆Tr
(
∆†Dµ∆

) 1

p2 −M2
Z′
gSM
ψ ψ̄γµψ

∆†

ψ

ψ̄

∆

−
gSM
ψ g∆

M2
Z′

Tr
(
∆†Dµ∆

)
ψ̄γµψ

Figure 3.6: Diagram representing how a dimension-6 operator of the class ψ2∆2D as
well as the contribution of each coupling.

Figure 3.6 shows a typical diagram that could generate this class of operators. In a
general case the couplings to the particles of the SM and the ∆ could be different. In
fact we could study the case in which g∆ � gSM , this would make C∆ψ � Cϕψ. By no
means this reduces the magnitude of the assumption, but this exemplifies a scenario in
which the bounds of this subset of operators would be valid.

The second framework that we will analyze does not make this assumption and takes
into account some of the operators of the SMEFT. As we will discuss later on in more
detail, expressions (3.45)-(3.52) are also modified by the coefficients of the Warsaw
basis. The problem lies in the fact that one cannot distinguish the SMEFT operators
from those of the ∆EFT with measurements of the Z-boson. The operators enter into
all the expressions in the same combination, so we need an extra measurement to put
constrains on the different directions of the parameter space. We will show how this can
be done in section 3.2.3.

So, placing ourselves in the first framework in which we only consider operators
containing ∆ fields, we are going to use measurements provided by the different ex-
periments of LEP at the resonance of the Z boson. These measurements are listed in
Table 3.1. Observables ΓZ and σhad of Tab. 3.1 are the decay width and hadronic cross-
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Observable Measurement SM prediction
ΓZ [GeV] 2.4952± 0.0023 2.4943± 0.0005
σ0

had [nb] 41.540± 0.037 41.488± 0.006
R0
l 20.767± 0.025 20.752± 0.005

A0,l
FB 0.0171± 0.0010 0.0171± 0.00009

Al (Pτ ) 0.1465± 0.0033 0.1470± 0.0004
Al (SLD) 0.1513± 0.0021 0.1470± 0.0004

R0
b 0.21629± 0.00066 0.2158± 0.00015

R0
c 0.1721± 0.0030 0.17223± 0.00005

A0,b
FB 0.0992± 0.0016 0.1031± 0.0003

A0,c
FB 0.0707± 0.0035 0.0736± 0.0002
Ab 0.923± 0.020 0.9347
Ac 0.670± 0.027 0.6678± 0.0002

MW [GeV] 80.387± 0.016 80.361± 0.006
MW [GeV] 80.370± 0.016 80.361± 0.006
ΓW [GeV] 2.085± 0.042 2.0896± 0.0008

BR(W → lν) 0.1086± 0.0009 0.10832± 0.00005
BR(W → hadrons) 0.6741± 0.0027 0.6752± 0.0004

Table 3.1: List of measurements used in our analysis. All SM predictions come from
[64] except the mass measurements of the W boson which come from [66]
and [67]. The SM predictions have been taken from [39] and references
therein. Branching ratios, both theoretical predictions and measurements are
taken from [15].

section of the Z-boson, similar for theW -boson, where we included the decay width and
branching ratios to leptons and hadrons. The observables A correspond to asymmetries
in the couplings of the Z-boson:

AFB =
σF − σB

σF + σB
(3.54)

AFB is the forward-backward asymmetry, in which σF takes the angles [0, π/2] and
σB the angles [π/2, π]. These asymmetries can be rewritten in terms of the couplings,
so assuming f is f = l, c, b:

AFB =
3

4
AlAf , with Af = 2

gfV g
f
A

(gfV )
2 + (gfA)

2
(3.55)

The observables R are ratios of different partial decay widths: R0
l = ΓZ→had/ΓZ→ff

and in the case of quarks as the inverse of the previous case R0
q = ΓZ→qq/ΓZ→had.
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We perform a χ2 fit to the parameters using equation (3.28) but with the observables
and measurement of Table 3.1. Again the matrix V −1 is the inverse of the covariance
matrix, where correlations into different parameters are taken into accounts when avail-
able as well as the theoretical errors. The modifications to the SM observables are given
in the appendix B, and we keep these modifications to linear order, that is O(C/Λ2).

It is important to notice that all parameters of the ∆EFT modifying SM observables
come with vt. Although it is theoretically possible, it is technically very difficult to
include vt in the fit. One option would be to include the ρ parameter to constrain the
parameter vt on its own, however the Wilson coefficient C∆D would also enter, making
the constrain on vt less powerful. In any case, the real problem becomes the numerical
instability of the fit, which is lost when this parameter is introduced freely in the fit.

That is why in this first part we will redefine the Wilson coefficients as:

C = v2t
C

Λ2
(3.56)

In this first approach the fit is not much different from the one of the Warsaw basis,
since many modifications are similar and some are the same. In Figure 3.7 we make
a comparison between the values obtained for the ∆EFT basis (Orange), the Warsaw

Figure 3.7: Comparison between different basis and analyses. In orange our analysis
of the ∆EFT operators that modify EWPO, in green the same thing for the
Warsaw basis and in blue the result from a global fit to a larger set of oper-
ators. X indicates which set of operators we are plotting. For the ∆EFT we
have set vt = 5 GeV.
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Operator ∆EFT Warsaw Basis Global Analysis [47]

C
(3)

Xl −0.002± 0.003 −0.01± 0.03 −0.015± 0.011

C
(1)

Xl −0.001± 0.005 0.003± 0.015 0.002± 0.003

C
(3)

Xq −0.003± 0.002 −0.01± 0.03 −0.017± 0.013

C
(1)

Xq 0.000± 0.003 −0.003± 0.005 −0.002± 0.003

CXe −0.006± 0.016 0.00± 0.02 0.002± 0.007
CXu 0.006± 0.014 −0.004± 0.016 0.000± 0.011
CXd −0.023± 0.012 −0.032± 0.016 −0.036± 0.017
CXD 0.02± 0.06 −0.01± 0.05 −0.001± 0.014
CXWB −0.01± 0.03 0.01± 0.04 0.006± 0.007
C ll × −0.002± 0.007 −0.015± 0.011

Table 3.2: Values of the Wilson coefficients obtained in different analyses. X is ∆ in
the first column and ϕ in the last two. The first column shows the fit of the
∆EFT coefficients, the second row with the subset of the Warsaw basis used
in this work and the same data as in the first column. The last column is taken
from a global analysis to a large set of observables [47].

Basis (Green) and we also introduced the results from a global fit to a larger set of data
and Wilson coefficients (Blue), Ref. [47].

We observe that the fit is consistent with that of the other basis and the global analysis,
this is because global analyses include most of the EWPO that we also put into ours, and
they are the most constraining to these parameters, so there are only small deviations.
We see that the errors of the ∆EFT parameters are lower in general than those of the
fit to the subset of operators of the Warsaw basis, this is probably due to the fact that
the fit of the ∆EFT has one parameter less than the Warsaw basis, which also contains
the coefficient Cll, not shown in Fig. 3.7. Errors of the parameters C∆D and C∆WB

are much larger than the ones in the global fit, similar for the analog operators of the
Warsaw basis, this is caused by the fact that these parameters are directly constrained
by Higgs measurments of the LHC, such as h → γγ, this measurement reduces the
fluctuations of these parameters. Values of this plot are found in Table 3.2.

Now we would like to introduce the vacuum expectation value of the triplet into the
analysis, however as we said above the fit becomes very unstable, and even though
one could introduce some restrictions the fit is still dependent on the initial values.
Instead, what we will do is to scan the best fit parameters for different values of vt, i.e.
to minimize the χ2 function for different values of vt.

In Fig. 3.8 we show the best fit value of each Wilson coefficient with vt fixed at a
certain value. We scan in the range of [1GeV − 5GeV], since ∼ 5 GeV is a sensible
upper bound of the vev, and below 1 GeV the constrains become less stringent, besides
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this range is good enough to show the dependence of these bounds with respect to the
vev. We can see by plugging different values of Λ that the bounds of C are above ∼ 1.
This is due to the range of vt chosen, clearly for larger vt we could be setting Λ in the
order of ∼ TeV, however those values of vt do not respect the measurements of the ρ
parameter. In conclusion these measurements are rather weak when compared to the
SMEFT operators, since we cannot constrain in a sensible way values of Λ ∼ TeV. On
the other hand these bounds depend on vt and even though this parameter is related to
the mass, we do not need to make any assumption on the mass triplet.

3.2.3 SMEFT and ∆EFT

As we have mentioned in the previous section, the analysis of just ∆EFT is only valid
when making assumptions that relate new physics to be coupled stronger to the type-2
triplet than to the SM particles. However, we introduce a huge assumption by making
so, but necessary since studying both basis at the same time would be really difficult, if
not impossible.

In this section we will study the dependence of the ∆EFT Wilson coefficients studied
in the previous section when we introduce different coefficients of the Warsaw basis.
In this section we are not aiming to do a fit to all the subset of operators of the ∆EFT
and Warsaw basis included in the previous section, since that would require a more
careful treatment depending on the goal. What we want to show here is that even if the
operators enter in the modification of the EWPO in a similar way, we can add extra data
to distinguish them. To be completely specific, we will use now the subset of operators
that combines:

{O∆u,O∆d,O(1)
∆q,O

(3)
∆q,O∆WB} ∪ {Oϕu,Oϕd,O(1)

ϕq ,O(3)
ϕq ,OϕWB} (3.57)

We will explain the choice of operators later on in this section. First, we can start see-
ing the problem, these operators are so similar that one cannot constrain them with only
EWPO. The reason is that, for instance O(3)

ϕq and O(3)
∆q modify the different parameters

always in the same way:

δguV = δgZ g
u,SM
V +

v2t
2

(
C

(3)
∆q − C

(1)
∆q − C∆u

)
+
v2d
4

(
C(3)
ϕq − C(1)

ϕq − Cϕu
)
− 2

3
δs2

θ̂
(3.58)

The combination of the two subsets of operators is always the same, hence, with
all the measurements of the different observables we will not able to distinguish one
subset from the other in the fit. We need some extra measurements that allow us to
constrain some different direction. A possible way is to introduce direct measurements
of these coefficient, i.e. to look for processes produced or contributions to processes in
which only one of these operators participate. For instance, operator OHWB contributes
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(i)

Figure 3.8: Best fit values (dashed black), 1−σ (blue) and 2−σ (orange) values for the
different values of the vacuum expectation value of the triplet vt.

strongly to the Higgs decay h → γγ, so if we introduce Higgs measurements in which
only operators of the second subset of operators of eq. (3.58) we will be able to constrain
the parameter space of these two parameters. Note that operators of the first subset could
also contribute, since the Higgs particle in this model is a linear combination of the
triplet and the doublet, see eq. (1.57). However this is really supressed when compared
to the SMEFT basis:

C∆WB

Λ2
Tr
(
∆†τ I∆

)
W I
µνB

µν ∼ C∆WB

Λ2
sinα vt cos θ sin θ (hAµνA

µν)

δσ∆EFT

δσSMEFT =
C∆WB

CϕWB

sinα vt
cosα vd

. 0.31
vt
vd

(3.59)

Where we used the result from [29] that sinα . 0.3 at 95% C.L. and that C∆WB ∼
CϕWB. If we plug in vt ∼ 5 GeV we obtain that the contribution is at least 6.3× 10−3

times smaller, taking the largest allowed values at 95% C.L. Similarly the other oper-
ators behave in the same way, even in the case of maximal mixing the cross section
contribution is 0.02 times smaller, hence we will assume only SMEFT operators con-
tributing directly to higgs processes, indirectly through modified couplings they could
still enter.

For the Higgs decay into two photons this process is easy to calculate, in fact it has
been done and can be found in several references, e.g. [68], σ(h → γγ)/σSM(h →
γγ) = 1+26.144CϕWB. Typically what one does in these cases is to compute this pro-
cess through a Monte Carlo simulator giving some values to the Wilson coefficients and
then obtain the linear dependence of this process. The most used program is MadGraph
[70] where there is a package containing the different operators of the Warsaw basis
with different flavour assumptions and input-schemes, this package is called SMEFT-
sim [69].
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Figure 3.9: Different Feynman diagrams denoting the different contributions from dif-
ferent basis. Dots are SM couplings, squares are couplings of an EFT.

This way of obtaining the different contributions is straightforward in the Warsaw
basis, however, in the combination of both basis there exists one problem: for some the
processes containing the Z-boson the modifications of the couplings calculated in the
previous section also contribute to this process, meaning that to be fully consistent one
should take into account also these corrections. This is represented in Figure 3.9 for the
production channel pp→ hZ. In this case couplings of q̄qZ are modified by the ∆EFT
as well as the Warsaw basis, as seen in this figure, however the 4-point interaction is
only dependent on C(3)

ϕq .
In Figure 3.9 we do not show all contributions, only those given by C(3)

Xq but other
contributions would also need to be included. That is why we will restrict this analysis to
each pair of operators at each time, i.e. setting to 0 the rest of operators not shown in each
plot. In order to include correctly both terms we modify slightly the code of SMEFTfit
so that we are able to distinguish the contribution of the coupling-modification and
contributions that only come from the Warsaw basis, then we make the substitution
C

(3)
ϕq → C

(3)
ϕq + 2

v2t
v2d
C

(3)
∆q on the coupling-correction contributions since, as we have seen

in eq. (3.58) it is the way in which these two coefficients are related in this type of
contribution.

Since we are not aiming to make a global analysis we will use a reduced data set of
measurments of the LHC. We will take the measurements that allow us to reduce the
parameter space of the observables subset that we have chosen and that offer the best
constrains to the operators. We will show that it is possible to constrain parameters of
both basis if we include a larger set of data points which constrain other directions in
the parameter space.

We are going to include in our analysis 5 different Higgs signal strengths, listed in
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Table 3.3 and performed in the run 2 of the LHC. These signal strength are defined as:

µ(h→ X) =
σiBR(H → X)

(σiBR(H → X))SM
(3.60)

Where the numerator of this expression contains also corrections of the EFT up to or-
der O(C/Λ2). Then by expanding in small corrections of the cross section and branch-
ing ratio we obtain:

µ(h→ X) = 1 +
δσi

σiSM
+

δBR(h→ X)

BR(h→ X)SM
≡ 1 + δµi + δµX (3.61)

The contributions of the EFT are calculated by the method explained above, and are
listed in equations (3.62-3.2.3):

δµhγγ = 26.144CϕWB (3.62)

δµhZ = 1.717C(3)
ϕq + 0.142

(
C(3)
ϕq + 2

v2t
v2d
C

(3)
∆q

)
− 0.133C(1)

ϕq

−0.010

(
C(1)
ϕq + 2

v2t
v2d
C

(1)
∆q

)
+ 0.452Cϕu + 0.033

(
Cϕu + 2

v2t
v2d
C∆u

)
−0.155Cϕd − 0.014

(
Cϕd + 2

v2t
v2d
C∆d

)
+ 0.280CϕWB − 0.097

(
CϕWB +

v2t
v2d
C∆WB

)
(3.63)

δµhW = 1.838C(3)
ϕq + 0.1260

(
C(3)
ϕq + 2

v2t
v2d
C

(3)
∆q

)
− 0.187

(
CϕWB +

v2t
v2d
C∆WB

)
(3.64)

δµVBF = −0.719C(3)
ϕq + 0.260

(
C(3)
ϕq + 2

v2t
v2d
C

(3)
∆q

)
− 0.010C(1)

ϕq

−0.327Cϕu + 0.017

(
Cϕu + 2

v2t
v2d
C∆u

)
− 0.008Cϕd + 0.018

(
Cϕd + 2

v2t
v2d
C∆d

)
+0.020CϕWB − 0.339

(
CϕWB +

v2t
v2d
C∆WB

)
(3.65)

We introduce these measurements in the previous χ2 function and we draw minimize
each time a pair of Wilson coefficients setting to 0 the rest. We set at vt ∼ 5 and Λ ∼ 1
TeV to make this calculation. The results can be seen in Figure 3.10, where again in blue
we see the 1−σ region and in orange the 2−σ region. The shape is clearly determined by
the combinations of the two different types of measurements, the direction in which the
ellipse is best constrained comes from the LEP measurements, while the other direction
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Ref. Process Observed µ δµ
[71] hZ, h→ bb̄ 0.9± 0.5 δµhZ
[71] hW , h→ bb̄ 1.7± 0.7 δµhW
[72] gg → h→ γγ 1.10+0.20

−0.18 δµhγγ
[72] VBF, h→ γγ 0.8+0.6

−0.5 δµhγγ + δµV BF
[73] VBF, h→ τ̄ τ 1.11+0.34

−0.35 δµV BF

Table 3.3: Higgs signal strength included in the analysis of operators of both basis
∆EFT and Warsaw basis.

comes from Higgs measurements. It is straightforward to notice this if we, for instance,
compare the case of the C∆WB − CϕWB plot to the others. The CϕWB is constrained
by the measurement of the process h → γγ, one of the best measured processes in the
Higgs sector. Moreover, the contribution of this coefficient to this process is large, hence
the constrain in this direction is more stringent than in the other cases, and that is why
in this case the ellipse is not heavily shrunk in one direction as it happens in the other
pictures. The coefficient C(3)

ϕq is another similar case, since it has a large coefficient in
processes such as the hV production channels, where V = Z, W .

It is clear that a better constrain of these coefficients would be possible if we are able
to obtain better measurements on the Higgs signal strengths. However, it is also impor-
tant to note that many of the couplings contribute very little to the signal strength, so
the possibility of constrining them better is limited. Then again, the the constrains on
the SMEFT parameters is more stringent since the parameters of the ∆EFT are multi-
plied by a vt that is small, however as we can see whn we have a strong dependence
and a good measurement of the signal strength, such as in the C∆WB − CϕWB case, the
constraints are more competitive.

Other operators that we have not studied in this section such as those of the class
∆2ϕψ2 also could be studied in this way, since they modify the couplings of the Higgs
to the quarks. However, in this case we do not have the good measurements of LEP, and
the method becomes even worse, although some of the couplings would enter strongly
in the decay of the Higgs to fermions.

We have shown a possible way of studying both basis at the same time, however,
introducing more operators is complicated, since operators such as C(1,3)

Hl do not par-
ticipate in either Higgs decays or production channels (in the LHC), so they only enter
through modified couplings of the EW sector. In lepton colliders for instance one could
distinguish the two operators since in the production channel it could also enter. It
would also be interesting to study the modification of the fit by varying the mixing of
the Higgs.
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Figure 3.10: Figures with the 68% (blue) and 95% (orange) confidence levels of the
different Wilson coefficients. These fits have been done setting to 0 the
rest of the coefficients.

3.3 LHC Searches

Models such as the type-2 seesaw mechanisms, which introduce a new Higgs are very
interesting to probe at the LHC, since, for instance, a pair of same-sign leptons has
low background and could be well observed in hadron colliders. In fact, models which
contain doubly- and singly-charged scalar particles have been studied at the LHC, the
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Figure 3.11: Production and decay channels of the doubly-charged Higgs particle. (left)
Process analyzed by the CMS collaboration [33] and (right) process studied
with the ATLAS data [74].

most recent using the biggest integrated luminosity are the CMS [33] and ATLAS [74].
Since no observation of any of these particles has been made these studies offer a very
useful amount of data that can be used for setting bounds on these models.

In Ref. [33] the process studied is the VBF production of H±±/H±, decaying into
the gauge bosons W±W±/W±Z respectively, while [74] makes an analysis of the pro-
duction channel of H++H−−/H−H++ pairs through a Z/W+ and decaying into 4
gauge bosons, the two processes are found in Fig. 3.11. Both processes are interest-
ing in the regime where vt is large, since the vertex H++ → W+W+ is proportional
to vt. At lower vt other decay channels start becoming more important, for instance
H++ → W+H+ if masses allow it or H++ → l+l+.

As we have said many times already, the vacuum expectation value of vt is not very
large, so the VBF production channel would be suppressed, as well as the decay to
the gauge bosons. In this point the ∆EFT can come in handy, as several new couplings
appear, which do not depend on the vev, particularly operators which couple the charged
Higgs to the quarks are of great interest. For instance, operators O∆qu and O∆qd would
generate the following couplings:

− i
1

2
vd
(C∆qu − C∆qd)rp

Λ
(V CKM)∗srūsdpH

+ + h.c. (3.66)

This is not the only interesting operator that couples to quarks, in fact other operators
such as those of the class ψ2∆2D generate couplings to the production channel H+H−:

i

(
C

(1)
∆q + C∆u

)
st

Λ2
(V CKM)∗rs(V

CKM)tpur

(
/p3 − /p4

)
upH

−(p4)H
+(p3)

+ i

(
C

(1)
∆q + C∆d

)
rp

Λ2
dr

(
/p3 − /p4

)
dpH

−(p4)H
+(p3) (3.67)
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Or to the production channel H++H−−:

i

(
C

(1)
∆q − C

(3)
∆q + C∆u

)
st

Λ2
(V CKM)∗rs(V

CKM)tpur

(
/p3 − /p4

)
upH

−−(p4)H
++(p3)

+ i

(
C

(1)
∆q − C

(3)
∆q + C∆d

)
rp

Λ2
dr

(
/p3 − /p4

)
dpH

−−(p4)H
++(p3) (3.68)

We have as well contributions to the production of a single charged Higgs H± :

i

(
C

(3)
∆q

)
rp

Λ2
vt(V

CKM)∗srus/p3dpH
+ + h.c. (3.69)

The pair production processes are independent of the vev, unlike the last expression.
However, these couplings are momentum enhanced, so even if vt is small, larger mo-
mentums might compensate making it an interesting vertex. Other couplings are also of
interest to produce pairs of singly- and doubly-charged Higgs, for instance it might be
interesting the ggH++H−− vertex produced by the operator O∆G, similarly operators
O∆WW O∆WB could produce this pair of charged Higgs in VBF-like processes.

In order to investigate some of these couplings we will use the data of one of the
analyses previously mentioned. In our case we will work with the data of the CMS
analysis [33], since the analysis from ATLAS [74] uses different cuts for different mass
hypotheses, which might induce some bias in our analysis.

These processes are very hard to study, if not impossible, analytically, since they in-
clude Parton Density Functions (PDF) of quarks, and we are including many Feynman
diagrams that will interfere. That is why the most used resource for this kind of searches
is MadGraph [70]. In order to use MadGraph with our model we first need to imple-
ment it in FeynRules [75], a program which will take all the information on couplings,
particles, and the Lagrangian and write it in what is called UFO (Universal FeynRules
Output). This way MadGraph is able to read all the necessary information to perform
the necessary computations to set constraints on our model.

For this kind of searches it is also necessary to be able to apply all the cuts performed
by the CMS collaboration in Ref. [33], so we need to use different programs in order
to get something close to their analysis. We use PYTHIA8 [76] for calculating the
hadronic showers in our processes, Delphes3 [77] to simulate the detector response to
the final particles, in a faster way than other programs, and MadAnalysis5 [78] to apply
all the cuts. It is important to note, that even though great achievements have been
made in terms of emulating detector responses, and that many analysis have been recast
in MadAnalysis5 with great success, this is an "approximate" way of obtaining similar
analyses to those performed with more powerful simulations, but also resource-wise
expensive programs such as GEANT4 [79].
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Variable W±W± W±Z
Leptons 2 leptons, pT > 25/20 GeV 3 leptons, pT > 25/10/20 GeV
pjT > 50/30 GeV > 50/30

|mll −mZ | > 15 GeV (ee) < 15 GeV
mll > 20 GeV −
mlll − > 100 GeV
pmiss
T > 30 GeV > 30 GeV

b jet veto Required Required
τh veto Required Required
max(z∗l ) < 0.75 < 1.0
mjj > 500 GeV > 500 GeV
|∆ηjj| > 2.5 > 2.5

Table 3.4: Cuts implemented in the CMS analysis of Ref. [33] targeting W± and W±Z
pairs.

As we said before, in FeynRules we declare the particles, couplings and the La-
grangian, and then we generate some files that can be read by MadGraph. Different
checks have been made in order to make sure that our model works correctly, for
instance reproducing the values for the cross section of the processes of Table 1 of
Ref. [74] at LO. Also we have checked our program against other models containing a
charged Higgs such as the Gerogi-Machacek (GM) model, implemented in FeynRules
in Ref. [80] to leading order (LO) and only up to dimension 4 operators.

Once the model has been checked, we must implement the same analysis as CMS.
These includes two different set of cuts depending on what we are looking for: a W±

pair if we are looking for a doubly-charged Higgs or a ZW± pair for a singly-charged
Higgs. These cuts can be found in Tab. 3.4. Some other typical cuts applied for the
selection of particles not listed in this table are also applied. We do not aim to explain
in depth all these cuts, and we refer to the analysis itself for the details [33], however,
we will discuss some of them; for example, the requirement on the invariant mass of the
dielectron final state to be larger than 15 GeV so that we can reject some lepton final
states that could have come from Z-boson and in which the charge of one of them has
been misidentified. The requirement is the other way around for the W±Z cuts, since
we want to get all the leptons coming from the Z-boson, so we impose a cut on two
leptons with the same flavour and opposite charge to be close to Z−boson mass. Other
interesting requirement is the Zeppenfeld variable [81], which along with the invariant
mass mjj > 500 GeV and the pseudorapidity separation cuts are able to target the VBF
candidates.

A method employed by many people is to use some fast simulator of detectors such
such as DELPHES3 [77] and then use MadAnalysis5 [78]. The detector simulation
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lies on smearing and efficiency functions implemented in the program, then the files
are typically analized by MadAnalysis5, as we can see by the large amount of analysis
of CMS and ATLAS reproduced by using these methods [82]. This program has two
modes of running, the normal mode, which offers a simple way of implementing cuts
with a simple syntax, and the expert mode where the analysis is implemented in a C-file
containing all the cuts. To reproduce an analysis of the LHC this last mode is normally
necessary since several of the cuts cannot be implemented in the user-friendly version
of MadAnalysis5. In this way we write the analysis and try to reproduce the analysis of
[33].

In order to check the consistency of the analysis we will generate the background
processes of W±W± and W±Z as well as the signal produced by our model. The other
backgrounds are taken directly from Ref. [33] since they are either not reproducible
with this analysis, such as the non-prompt lepton background which is estimated with
the data, or other background processes with not such a big impact. We then try to
reproduce figures 3 and 4 from Ref. [33] to check the analysis and simulation of the
different processes. The variables used for these plots are the invariant mass of the two
jets mjj and the transverse mass of the di-boson pair, defined as:

mWW
T =

√√√√(∑
i

Ei

)2

−

(∑
i

pz,i

)2

(3.70)

Where we sum over the outgoing final leptons and neutrinos, assuming that the longi-
tudinal momentum of the neutrino and its mass are 0. The Signal Regions (SR) chosen
for these two variables are for the WW cuts: mWW

T , [0, 250, 350, 450, 550, 650, 850,
1050,∞] GeV and in mjj [500, 800, 1200, 1800,∞] GeV. For the WZ cuts the SR is:
mWZ
T ([0, 325, 450, 550, 650, 850, 1350,∞] GeV and mjj [500, 1500,∞] GeV. As we

can see, these are not the bins drawn in Fig. 3.12, in this figure bins are rescaled to
reproduce the histograms of Ref. [33], but the histogram used for the fit corresponds to
the bi-dimensional histogram corresponding to mWW

T ×mjj (4 × 8 bins) of the WW
SR and mWZ

T ×mjj (2× 7 bins) for the WZ SR. This histogram can be found in Fig.
3.13 and it is the plot we will use to obtain the exclusion limits. We have also included
in this plots different operators of the ∆EFT that contribute to the VBF processes.

Taking into account the corrections produced by the NNLO corrections used in the
signal, and the NNLO also used in the background, which we have only taken to LO, we
observe that our analysis is quite in agreement. The most notable differences are in the
histograms mjj of the WZ region (bottom figures of Fig. 3.12) where the background
is notably larger, but taking into account that the cross-section is reduced by a ∼ 10%
when NLO and EW corrections are included, both plots agree. The same thing applies
for the diagrams of theWW SR (top figures of Fig. 3.12), where perhaps is less notable,
but also taking into account these corrections the cross section is reduced by a ∼ 10 −
15%.
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Figure 3.12: Histograms of the W±W± (top) and W±Z (bottom) signal regions, with
respect to the di-jet invariant mass mjj (left) and transverse di-boson mass
mWW
T (right). In orange we have the background of the W±W± SM pro-

cesses and in green the W±Z SM background. In blue we observe the
background coming from non-prompt leptons and other background that
we have not computed. Signals produced by different operators of the
∆EFT basis are also included at arbitrary values.

To generate the signal we use our model implemented in FeynRules to LO and com-
paring it with the histograms of Ref. [33] we observe a discrepancy in the shape of the
function of the histogram mWW

T of the WW SR (top right of Fig. 3.12). We discard,
with a reasonable margin of error, a mistake in the analysis since the background and
other histograms are in good agreement and most of the cuts are the same for both sig-
nal regions. Those cuts which are different should also be correct since the background
data is reproduced to a good agreement, taking into account the corrections mentioned
above. Besides, we have also used the same PDFs, NNPDF2.3LO for the data of 2016
and NNPDF3.1 NNLO for the 2017-2018 samples. Again, we have also checked the
implementation of our model with other models available and they all give the same
shape. A probable cause for this deviation might be in the simulation of the detector,
a difference between the processes WW and WZ is that for the first one we have 2
neutrinos, while there is only one in the second process, meaning that we probably have
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Figure 3.13: Reproduction of Figure 4 of Ref. [33]. Backgrounds of W±W± (orange)
and W±Z (green) have been generated at LO, while the other background
(blue) has been taken from the CMS analysis.

more missing energy in each process. It is noted that for instance in Delphes [77] they
do not apply algorithms to mitigate the pileup in missing energy as they do in CMS [83].
This could explain why the mWW

T is only different in the WW SR and not in the WZ
SR, since there would be less missing energy. Even if this is not the direct cause, it is
a good point to remember that these fast simulations can not reproduce the detail of the
simulations used in LHC analysis, so, we will work with it and take into account these
possible deviations in the fit.

We will use the same statistical methods of [33], that is, the modified frequentist ap-
proach CLs criterion of [84] and asymptotic methods of [85] implemented in pyhf [86],
a python implementation of HistFactory. Assuming N measurements in a histogram
where the expectation value of a certain bin j, has a signal sj , background, bj and a
number of entries nj , the Poissonian likelihood can be written as:

L(µ, θ) =
N∏
j

(µsj + bj)
nj

nj!
e−(µsj+bj) (3.71)

Our signal and background may depend on parameters in which we are not really
interested, called nuisance parameters, represented by θ. The parameter µ is the signal
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strength and is the parameter of interest on which we will try to derive an upper bound
to translate it later into an upper limit on the Wilson coefficients. To test a hypothesized
value of µ we use the profile likelihood ratio:

λ(µ) =
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)
(3.72)

Where here ˆ̂
θ is the maximum-likelihood estimator for a certain µ, and in the denom-

inator we have the µ̂ and θ̂ as the maximum-likelihood estimators. The test statistic that
we will use is called qµ and is defined as:

qµ =

{
−2 lnλ(µ) µ̂ ≤ µ

0 µ̂ > µ
(3.73)

This test statistic is used for deriving upper bounds since one is not interested in
values of µ̂ > µ, because these values represent less agreement with µ than with the
data obtained. Then, one can calculate the confidence level on the signal as:

CLs =
CLs+b
CLb

=

∫∞
qµ,obs p(qµ, µ

′ = µ)dqµ∫∞
qµ,obs p(qµ, µ

′ = 0)dqµ
(3.74)

Where in this case p(qµ, µ′) are the the distributions of the test statistic qµ with re-
spect to µ. The formulas for deriving these pdfs in an approximate way are obtained
in [85] and implemented in pyhf [86]. The number of background nuisance parameters
in this program are one per bin, and by introducing the error of each bin we allow the
background parameters to fluctuate along these errors. Once the value of µ at 95% C.L.
we obtain the bound on the Wilson coefficients.

Since we chose to use the data from [33] we must look for VBF processes, hence,
we will focus on operators O∆WW and O∆WB from our basis. Besides, we will also
study the operator Oϕ̃∆D = (Dµϕ)

†∆Dµϕ̃. We argued in section 2 that this operator
is redundant, since it can be related to the EoM through integration by "parts" and thus
rewrite it in terms in other operators. However, this operator can still be introduced in
exchange of some other operator, in fact, the only reason why we discarded this opera-
tor was because it is customary to eliminate operators which contain derivatives. This
operator can still be produced by some UV completion, for instance at loop level by a
heavy gauge boson, while some dimension-5 operators could not be produced in this
UV completion. In that case the operators of our basis would have a contribution pro-
duced by the redefinition of Wilson coefficients that we use to eliminate this operator,
such as it should, since physical results do not depend on the basis. With this discus-
sion we want to argue that it is perhaps more interesting to introduce this operator in
exchange of some other operator that is harder to probe experimentally. This operator
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offers a really interesting coupling for VBF-fusion processes since it is not suppressed
by vt, we can see its contribution in eq. (3.75).

− iv2d
C ˜ϕ∆D

Λ

e2

2 sin2 θw
H++W−

µ W
−µ + h.c. (3.75)

The other two operators,O∆WW and O∆WB studied in this section give the following
contributions to the VBF-like vertices H++W−W− and H+W+Z respectively:

−i
√
2
C∆WB

Λ2
sin θwvt(p

µ1
2 p

µ2
3 − p2 · p3ηµ1µ2)H+W−

µ1
(p2)Zµ2(p3) + h.c. (3.76)

−i4
√
2
C∆WW

Λ2
vt(p

µ1
2 p

µ2
3 − p2 · p3ηµ1µ2)H++W−

µ1
(p2)W

−
µ2
(p3) + h.c. (3.77)

We have included signals of these operators in Figure 3.12. As one can see, the
operator Oϕ̃∆D has the same shape as the signal of the renormalizable type-2 seesaw
mechanism. However, for the other 2 operators we a observe a more peaked distribution
over the mass of the particle. This difference is produced by the momentum contribution
appearing in the new couplings.

All in all, we can now generate different samples of signals and run the analysis to
obtain the bounds. To get bounds on the Wilson coefficients we need to make assump-
tions on the branching ratio and vt, in this case since some of our operators have a
dependence in vt we will choose 3 and 5 GeV, since they are in the range of maximum
allowed values from the mesurement of the ρ-parameter. We will also assume a 100%
branching ratio to gauge bosons. With this assumptions we can run our analysis for the
three different operators. Notice that vt and mH++ do not fully determine the branch-
ing ratio, since if mH+ < mH++ the branching ratio can be reduced depending on the
difference of the two masses, that is why we have to assume a certain branching ratio.

Results of the 95% C.L. can be found in tables 3.5 and 3.6 for the masses of the par-
ticles, mH++ = mH+ = 500 GeV and mH++ = mH+ = 1 TeV respectively. Operators
Oϕ̃∆D and O∆WW are tested with the H++ channel while O∆WB is tested by producing

Operator Observed Expected 1− σ Range
Cϕ̃∆D/Λ [TeV−1] 1.7 1.5 1.7− 0.9

vt = 5 GeV C∆WW/Λ
2 [TeV−2] 27.8 24.2 29.1− 20.1

C∆WB/Λ
2 [TeV−2] 75.5 78.8 94.9− 65.3

Cϕ̃∆D/Λ [TeV−1] 2.1 1.9 2.2− 0.6
vt = 3 GeV C∆WW/Λ

2 [TeV−2] 49.3 43.0 51.7− 35.9
C∆WB/Λ

2 [TeV−2] 148.9 154.3 184.3− 129.8

Table 3.5: 95% C.L. exclusion limits on the Wilson coefficients assuming 100% decay
into gauge bosons and mass of 500 GeV for both particles.
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Operator Observed Expected 1− σ Range
Cϕ̃∆D/Λ [TeV−1] 2.1 2.0 2.4− 1.7

vt = 5 GeV C∆WW/Λ
2 [TeV−2] 30.3 30.4 37.8− 25.5

C∆WB/Λ
2 [TeV−2] 96.9 106.5 130.2− 88.2

Cϕ̃∆D/Λ [TeV−1] 4.1 4.1 4.9− 3.5
vt = 3 GeV C∆WW/Λ

2 [TeV−2] 42.0 44.4 54.4− 36.6
C∆WB/Λ

2 [TeV−2] 145.9 167.2 130.2− 88.2

Table 3.6: 95% C.L. upper bounds on the Wilson coefficients assuming 100% decay into
gauge bosons, vt = 5 GeV and mass of 1000 GeV for both particles.

a H+ Higgs, due to this fact the bounds on this last operator are worse in both cases,
this is also observed in Ref. [33].

As it is expected, lower values of vt make the constraints worse, C∆WW and C∆WB

depend directly on vt, as seen from eq. (3.77) and (3.76). The constraint on Cϕ̃∆D
is also slightly worse for the case of vt, since, even though it does not depend directly
on vt, due to the interference of the Feynman diagram the linear contribution of this
coupling gets smaller for lower values of vt. It is interesting to note that even if the
background is lower, the bounds get worse for larger masses. The reason is that for
constant couplings the cross section decreases with the mass. So, even if the cross
section is more constrained for larger masses (do to less background), since the cross
section decreases with the mass, the couplings do not get so constrained. This effect
is larger for the operators O∆WW and O∆WB, probably due to the binning and the
momentum enhancement. The binning affects all of the operators, and as we can see
from the signal regions if we have a peak at 1 TeV the signal will be less spread since the
width of the bins is larger, so the upper bounds are mainly obtained by large deviations
on a smaller number of bins. This is effect is more important in momentum enhanced
operators since larger momenta are favored and thus the signal is less spread as we can
see from Fig. 3.14.

In previous sections we also discussed that if we expected new physics to be at scales
of Λ ∼ 1 TeV, some bounds obtained in section 3.2.1 would be far from probing them.
Here, on the other hand, we see we are able to put some more competitive bounds.
However, we have had to make assumptions on several parameters of the model, so the
constraints are only relevant for this particular scenario. As we have discussed at the
beginning of this section, the new amount of couplings linking quarks directly to quarks
may be interesting as new ways of producing the type-2 particles, moving out of the
restrictions of the model.
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Figure 3.14: WZ SR with a signal produced by operator O∆WB at a mass of 1 TeV.
Again the magnitude of the parameter is arbitrary.
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4 Ultraviolet Completions

During this thesis we have dealt with great number of operators in a general way, trying
to make as few assumptions as possible on the models that could generate the operators.
In this last section, we will make the opposite, we will aim to discuss several models that
could generate some operators of the type-2 seesaw EFT basis, and discuss the physical
implications of these extensions. In particular we will motivate and discuss models that
extend the type-2 seesaw mechanism with possible dark matter candidates. First we will
give a short review into the classic dark matter evidences, then we will discuss why the
type-2 seesaw is not a good candidate and then mention some models and their interplay
with the ∆EFT basis.

There are several astrophysical observations that have led us to believe in the exis-
tence of a new type of particle in the universe that we have not yet discovered. These
observations appear for the first time in the 30s, by the observations of F. Zwicky [88]
on the velocity dispersion of the Coma cluster galaxies. Applying the virial theorem, he
realized that the speed of the galaxies was not in correspondence to the observed mass,
hypothesizing that there was some dark matter that did not interact with light.

It was not until the 70s, that this idea of DM took off, with the observations of V.
Rubin on the galaxy rotation curves [89]. In this article it was noticed that the velocity
of the stars on the outer parts of the galaxy were not following the expected velocity
distribution predicted by the Newtonian mechanics. Several more precise measurements
came and solidified the idea that a new kind of particle was necessary.

We know that we need some extra mass, but why do we need a particle? and what
do we know about it? Theories of modified gravity were proposed as well to solve
this hidden mass problem, however, as more and more observations were made, these
theories started facing many difficulties to explain them all. In particular, the Bullet
cluster observation [90] , makes it hard to accommodate modified gravity theories. In
this cluster, two subclusters are bound gravitationally, and collided leaving a track of
electromagnetic radiation produced by this collision. Mapping the distribution of matter
by gravitational lensing, we observe that the electromagnetic radiation and the center of
mass of the two subclusters are shifted, meaning that a part of the cluster, that does not
interact electromagnetically must exist. This observation along with the anisotropies
of the cosmic microwave background helped establishing the idea that a new kind of
matter was necessary.

Besides of this, several other important assumptions can be made for this kind of
matter. We already discussed that this particle should not interact electromagnetically.
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Moreover, this particle should be stable. It appears that dark matter does not decay
into any SM particle, since the abundance of DM particles does not appear to vary. A
final observation is that DM, should be cold. In this case, cold means that the free
streaming length of the particle should allow for the creation of small-scale structures
in the universe.

With these requirements in hand we can discuss whether any of the particles of the
type-2 seesaw mechanism could make a candidate for dark matter. We observe that type-
2 seesaw mechanism offers neutral and massive (and hence cold) particles. However,
it fails into giving a good stable neutral particle. Two neutral particles appear in the
type-2 seesaw mechanism, we called them H and A, referring to a CP-even and CP-
odd particles respectively. In both cases these particles are allowed to decay into other
particles, for large vt these particles preferably decay into H → ZZ,W+W− and A→
hZ, and for lower vt the preferred decay is into neutrinos for both particles. So, we can
see that stability is a major threat to making this particle a good DM candidate.

This is why, if one wants to make the type-2 seesaw mechanism work for DM, it is
quite necessary to introduce an extra particle. This works well with the basis that we
have been working with in this thesis. If we introduce a DM along with the triplet and
make the new particle to have a larger mass M2

χ �M2
∆ we inevitably will obtain many

effective operators depending on which new χ, DM particle we introduce. Now, we will
discuss several extensions that have been used in the literature with the type-2 seesaw
mechanism to explain DM and study its interplay with the ∆EFT.

Scalar Gauge-Singlet Dark Matter

The most simplest of the extensions that we could add to the type-2 seesaw mechanism
is a gauge-singlet real scalar. This kind of particle could make for a good DM particle,
as being a singlet it would not interact electromagnetically. In many models an extra Z2

parity symmetry is introduce. With this symmetry SM particles transform as +1 while
DM particles −1, by requiring this symmetry DM particles are made stable. In this case,
and following Ref. [91], we also make the type-2 seesaw have a Z2 value of +1. Using
D to denote the DM scalar particle the extra terms in the potential are:

VD =
1

2
m2
DD

2 + λDD
4 + λϕD

2ϕ†ϕ+ λ∆D
2Tr
(
∆†∆

)
(4.1)

Due to the requirement of the Z2 symmetry all the parameters of the ∆EFT basis
can only be generated at loop-level. However, as shown in Ref. [91], with this simple
extension it is possible to accommodate these two models to fit the measurements of the
cosmic ray spectrum made by several different collaborations.

The operators of the ∆EFT basis are listed here:

{O1
∆, O1

ϕ∆, O3
∆ϕ} (4.2)
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If we break this Z2 symmetry, other terms in the potential would be possible, for
instance λ′ϕDϕ

†ϕ or λ′∆DTr
(
∆†∆

)
allowing for the previous operators to be generated

at tree-level.

Innert Higgs Doublet

Increasing in complexity, Ref. [92] shows that an extra Higgs doublet φ, odd with re-
spect to a Z2 parity symmetry can again produce a sensible candidate for DM. Both
of this models benefit from having a combination of the triplet and some dark matter
candidate to be able to fit to the electron-positron spectrum data, since a collision of
the type χχ → ∆++∆−−, where χ is any of the DM candidates of this section or the
previous one, would produce an increase in the flux of charged leptons.

Again in this case, the Z2 makes impossible to generate tree-level operators, since to
respect this symmetry and make the DM particle stable each coupling comes with two
fields φ in the Lagrangian. The operators that can be generated at loop-level also allow
for more combinations of SU(2)L:

{O1
ϕ∆, O2

ϕ∆, O1
∆, O1

∆ϕ, O2
∆ϕ, O3

∆ϕ,O1
ϕ̃∆,O2

ϕ̃∆} (4.3)

Again, by breaking the Z2 symmetry the previous operators can be generated at tree-
level. In this case also operators of the class ∆2ψ2ϕ can be generated, since leptons can
be coupled to this Higgs, losing most likely the stability of this inert Higgs used in [92].

U(1)B−L Gauge Boson

Another possible way of DM could come through a new gauge symmetry. The gauge
boson of this symmetry, typically called Z ′, could be by itself a DM particle or a me-
diator to a DM sector. It is hard to make the Z ′-boson a dark matter candidate, since
through the mixing with the SM Z−boson could decay to a neutrino pair. Hence, it is
more interesting to think of it as a mediator between the 2 sectors.

A particular theory containing aZ ′-boson would be a theory withU(1)B−L symmetry.
This is a global symmetry used in grand unified theories, that would not be broken by
chiral anomalies, typically also requires a set of three right-handed neutrinos. In such a
theory, the lightest of these right-handed neutrinos could be a dark matter candidate. It
can be found in the literature, see for instance [93–95], that one can get in a similar way,
a spontaneously broken U(1)B−L symmetry, that solves the neutrino mass question as
well as a viable DM candidate, along with a new gauge boson, with a relatively big mass
due to experimental constraints.

This is a "better case", for the ∆EFT basis, since even if a Z2 parity is applied to
the DM candidates, the Z ′ boson acting as a mediator into SM and DM could generate
effective couplings in our basis. So, after the SSB of U(1)B−L symmetry, the massive
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gauge boson would generate the operators of the class ∆2ψ2D as well as operators of
the scalar sector containing derivatives at tree-level:

{O(1)
∆l ,O

(1)
∆q,O∆e,O∆u,O∆d,O1

D∆,O∆�,O∆�ϕ,O1
∆Dϕ} (4.4)

The Georgi-Machacek Model

We have seen several models that can help solving the dark matter problem, as well as
having a triplet to explain neutrino masses. In this section now, even though this model
can be accommodated to produce a viable DM candidate [96], we will not consider it in
too much detail on this section. The Georgi-Machacek model (GM) [97], is an extension
of the SM which contains two scalar triplets, one with hypercharge Y = 0, a real triplet,
and a complex triplet with hypercharge Y = 1. By requiring the two triplets to generate
the same vacuum expectation value the ρ-parameter can be kept to be 1. This model
also conserves what is called custodial symmetry, which is a global SU(2)L × SU(2)R
symmetry, which is tightly related to the ρ-parameter.

To preserve this symmetry, in this model it is customary to write both triplets in a
bitriplet, with the same mass term. This is not what we want, since we want the real
triplet to generate the operators of the ∆EFT basis. We can see that this symmetry is
broken at the loop-level, as pointed out in Ref. [98]. Hence, it is possible to extend
the GM model to allow for different mass terms [98], breaking custodial symmetry at
tree level and restore it at a higher energy-scale [99]. In that case the Lagrangian can
be written in a more general way, which introduces new terms such as1 ϕ†σaϕξa and
χ†σaξϕ̃†σaϕ+ h.c.. All in all the operators of the ∆EFT produced would be:

{O1
ϕ̃∆,O2

ϕ̃∆,O1
ϕ∆,O2

ϕ∆} (4.5)

In all these models, also operators off the Warsaw basis can be generated, which can
be found in [40]. Hence, studying each different model in the ∆EFT must be comple-
mented also by analyzing the Warsaw basis operators. It is also interesting to note that
the GM model can be extended with some other particles as different DM candidates,
which would combine and extend this set of operators, e.g. [96].

1The whole Lagrangian can be found in Ref. [99],
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5 Conclusions

Neutrino oscillations have proved that neutrinos must have a mass, albeit it should be
really small compared to the SM model particles. This huge difference in the masses of
the SM has led scientist to create models which suppress neutrino masses, typically by
including a much heavier state that through its interaction would create this suppression.
This is the idea of the seesaw mechanism, that we have shortly reviewed in this work,
the type-1 and type-2 seesaw mechanism. Both of these models require the inclusion of
a new particle, either a heavier right-handed neutrino or a triplet complex scalar particle.

Since, there are no large fluctuations from the SM predictions, people have come up
with a set of tools that allow for indirect searches for these new states, that is EFT. By
allowing non-renormalizable terms in the Lagrangian we are able to investigate possible
deviations in a UV-completion independent way. Using the tools of EFTs, we have
computed a complete non-redundant basis by allowing up to dimension 6 operators
in the Lagrangian. We have argued several new ways of reducing the basis that are
slightly different from the SMEFT, and discussed several differences and similarities to
the Warsaw Basis.

We have used three different methods in order to set bounds, or constrain, the different
parameters of this large model. Firstly, we have used LFV processes to study the regime
in which vt � vd, by assuming the internal state much larger than the momentum scale
of the experiment. This EFT way of thinking has led us to extend this to our dimension-
5 operators and obtain bounds on these operators in terms of vt, by using the data on the
SMEFT.

It is known that Warsaw basis operators would modify certain couplings or obserav-
ables of the SM, in particular many couplings related to electroweak observables are
modified. This also happens for the ∆EFT and can be used to set bounds on some
operators, since these observables are well constrained. We have studied this opera-
tors on their own and argued again their dependence on the vacuum expectation value
of the triplet. Moreover, we have argued that in a more UV-completion independent
framework one should study a combination of the SMEFT+∆EFT. This is a very large
set of operators that cannot be constrained only from EWPO but when including Higgs
measurements we we have shown that it is possible to lift the degeneracy of the op-
erators and studied the range of values in which pairs of analog operators can moved
within the restrictions imposed by the measurements. However, it is still a very complex
framework, so handling this in detail may require a whole dedicated study.

In the third phenomenological study, we have discussed several new ways observing
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the charged scalar particles of the ∆EFT that are only possible in this extension, for
instance, direct couplings with quarks, which does not happen at dimension 4. We have
then shown how these operators can be studied in colliders, by recasting the analysis
of the CMS [33] and applying it to VBF processes produced by some operators of our
basis. This required to make some assumptions on some of the other parameters such as
the mass and branching ratios, however these bounds are quite competitive since some
of them are able to constrain C ∼ O(1− 100) for Λ ∼ TeV.

Finally, we have given a brief set of models that could produce this basis in the UV,
and how the different models would be seen in the ∆EFT through contributions to the
Wilson coefficients.

As an overlook, we have studied an EFT extension of a particular model, the type-2
seesaw mechanism. Many more extensions could be done, however it would be inter-
esting, with the knowledge gained, for instance in works such as this, to evaluate the
usefulness of these kind of models. As we have argued, global analysis are difficult, if
not impossible to make in these models, and the complexity is higher due to the amount
of operators. On the other hand, couplings that offer different production channels also
appear, albeit sometimes proportional to already experimentally low parameters of the
new states. This is why a more general study on these models pointing out the pros and
cons, and better directions to study these models could be of great interest.
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Appendices

A Reducing Operators of the Lagrangian

A.1 Dimension 5 Operator with Derivatives

The operator (Dµϕ)
†∆Dµϕ̃ has been used in the literature [40], however, in a complete

non-redundant basis it can be reduced with the EoM and other operators that are already
found in the basis. Using Leibniz rule we can get three relations of the operators into a
term proportional to the equations of motion and other operators that are already found
on the basis.

∂µ((D
µϕ)†∆ϕ̃) = (Dµϕ)

†∆Dµϕ̃+ (Dµϕ)
†Dµ∆ϕ̃+ EoM + ... (A.1)

∂µ(ϕ
†Dµ∆ϕ̃) = ϕ†Dµ∆Dµϕ̃+ (Dµϕ)

†Dµ∆ϕ̃+ EoM + ... (A.2)

∂µ(ϕ
†∆Dµϕ̃) = (Dµϕ)

†∆Dµϕ̃+ ϕ†Dµ∆D
µϕ̃+ EoM + ... (A.3)

For instance, combining the previous equations as (A.1) + (A.3) - (A.2) we obtain the
following equation:

∂µ(ϕ
†∆Dµϕ̃)+∂µ((D

µϕ)†∆ϕ̃)−∂µ(ϕ†Dµ∆ϕ̃) = 2(Dµϕ)
†∆Dµϕ̃+ EoM +... (A.4)

As we can see this operator is completely redundant as we have three relations and
three possible operators, so in a complete basis this kind of operator is unnecessary.

A.2 Reducing Dimension-6 Operators with Derivatives

As we did in the previous section of the appendix, for the case of dimension six now we
have 4 relations similar as those of the previous section, in this case:

∂µ(ϕ
†∆∆†Dµϕ) = (Dµϕ)

†∆∆†Dµϕ+ ϕ†Dµ∆∆†Dµϕ+ ϕ†∆(Dµ∆)†Dµϕ+ EoM + ...

(A.5)
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∂µ(ϕ
†∆(Dµ∆)†ϕ) = (Dµϕ)

†∆(Dµ∆)†ϕ+ ϕ†Dµ∆(Dµ∆)†ϕ+ ϕ†∆(Dµ∆)†Dµϕ+ EoM + ...

(A.6)

∂µ(ϕ
†Dµ∆∆†ϕ) = (Dµϕ)

†Dµ∆∆ϕ+ ϕ†Dµ∆(Dµ∆)†ϕ+ ϕ†Dµ∆∆†Dµϕ+ EoM + ...
(A.7)

∂µ((D
µϕ)†∆∆†ϕ) = (Dµϕ)

†Dµ∆∆ϕ+ (Dµϕ)†∆(Dµ∆)†ϕ+ (Dµϕ)
†∆∆†Dµϕ+ EoM + ...

(A.8)
The singlet singlet combination that give rise to operators O∆� and O∆D is treated

in section 2.1.2. In this case, we have 6 operators and 4 relations that allow for 2
independent operators. In this case we cannot choose the operators at will, for instance
the combination: (A.5)-(A.6)+(A.8)-(A.7) gives the relation:

Total derivatives = 2(Dµϕ)
†∆∆†Dµϕ− 2ϕ†Dµ∆(Dµ∆)†ϕ+ EoM + ... (A.9)

Hence, we cannot choose these two operators in our basis since it would be redundant,
as it has been shown in the previous equation. Thus we choose one of these operators
and the other one we pick a self-hermitian combination of the other 4:

(ϕ†i
↔
DI
µϕ) Tr

(
∆†i

↔
DI
µ∆
)
= ϕ†∆(Dµ∆)†Dµϕ+ (Dµϕ)

†Dµ∆∆†ϕ

−
[
ϕ†Dµ∆∆†Dµϕ+ (Dµϕ)

†∆(Dµ∆)†ϕ
]

(A.10)

Where we skipped an intermediate step in which we used the property (2.2) and the
definition of the derivative ϕ†i

↔
DI
µϕ = iϕ†τ IDµϕ− i(Dµϕ)

†τ Iϕ. This operator is self-
hermitian and can be written with just one Wilson coefficient since thanks to equations
(A.5)-(A.8) we can reduce these operators to only two, which are non-redundant.

B Modified Electroweak Observables

Since these modifications are known and calculated (see [35, 62, 63]) and we are not
adding anything new, we will just mention briefly the most important points and list, for
completeness of the work, the different modifications to the EW observables.

In the α-scheme we set {α̂, m̂Z , ĜF} as input parameters, redefining all the rest of
the constants in terms of these three (from Ref. [35]):
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s2
θ̂
=

1

2

[
1−

√
1− 4πα̂

√
2ĜF m̂2

Z

]

ĝ′ =
ê

cθ̂

v̂ =
1√

21/4ĜF

ê =
√
4πα

ĝ =
ê

sθ̂
(B.1)

m̂2
W = m̂2

Zc
2
θ̂

The coupling redefinitions introduced in section 3.2.1, modify as well the observables
that we use in our fit in Tab. 3.1. First we use that:

Γ̄(Z → f̄f) =

√
2ĜF m̂

3
ZNc

3π

(
|ḡfV |

2 + |ḡfA|
2
)

(B.2)

Γ̄(Z → had) = 2Γ̄(Z → ūu) + 3Γ̄(Z → d̄d) (B.3)

Defining the correction of the SMEFT to the SM values as Γ̄(Z → f̄f) = ΓSM
Z→f̄f +

δΓZ→f̄f

δΓSM
Z→l̄l =

√
2ĜF m̂

3
Z

6π

[
−δglA +

(
−1 + 4s2

θ̂

)
δglV
]

(B.4)

δΓSM
Z→ν̄ν =

√
2ĜF m̂

3
Z

6π
[δgνA + δgνV ] (B.5)

δΓSM
Z→had

√
2ĜF m̂

3
Z

π

[
−δguA − 1

3

(
−3 + 8s2

θ̂

)
δguV − 3

2
gdA +

1

2

(
−3 + 4s2

θ̂

)
δgdV

]
(B.6)

Thus, with these definitions we can write the correction to the decay width of the
Z-boson as:

δΓZ = 3δΓSM
Z→l̄l + 3δΓSM

Z→ν̄ν + δΓSM
Z→had (B.7)

Corrections to other observables measured at LEP can be written in terms of these
expressions. The ratio of the decay rates, defined as Rf = ΓZ→had/ΓZ→f̄f with f = l, ν
the correction according to the definition above is:

δRf =
1

(ΓSM
Z→f̄f )

2

[
δΓSM

Z→hadΓ
SM
Z→f̄f − δΓSM

Z→f̄fΓ
SM
Z→had

]
(B.8)

When f is a quark the definition is the inverse, so the expression above gets an overall
minus sign. The other observables that we use in our fit are the asymmetries. The
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different asymmetries listed in Tab. 3.1 can be expressed in the SM in terms of the
fermion couplings such as:

AfFB =
3

4
AlAf , Af = 2

gfV g
f
A

(gfV )
2 + (gfA)

2
(B.9)

Where f = l, c, b, and c and b refer to the c and b quarks. When we introduce the
modifications of an EFT we can rewrite them as:

Āf =
2r̄f

1 + r̄2f
, r̄f =

ḡfV
ḡfA

(B.10)

Then again we redifine the EW observable as the SM part and a correction, this
correction can be written as:

δAf = (Af )
SM

(
1−

2(r2f )
SM

1 + (r2f )
SM

)
δrf (B.11)

with:

r̄f = (rf )
(SM)(1 + δrf ), δrf =

δgfV
gf,SM
V

− δgfA
gf,SM
A

(B.12)

The last observables correspond to the decay width and branching rations of the W -
boson. These expressions get modified in a similar way as the Z-boson:

ΓSM
W→f̄pfr =

NC |V f
pr|2

√
2ĜFm

3
W

12π
(B.13)

δΓW→f̄pfr =
NC |V f

pr|2
√
2ĜFm

3
W

12π

(
4δgW,fV/A +

1

2

δm2
W

m̂2
W

)
(B.14)

ΓSMW =
3
√
2ĜFm

3
W

4π
, δΓW = ΓSMW

(
4

3
δglW +

8

3
δgqW +

1

2

δm2
W

m̂2
W

)
(B.15)
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1.2 In (a), we have a summary of neutrino oscillation experiments com-

paring the ratio of observed events and predicted events. Here Neutral
Current (NC) processes are in good agreement whereas Charged Cur-
rent (CC) processes are fewer than expected. In (b) we observe typical
oscillation pattern, in this case from KamLand experiment [22], where
antineutrinos are detected 180 km away from nuclear reactors. . . . . . 17

1.3 Typical image representing the seesaw mechanism, where the heavy
right-handed neutrino lifts the lighter left-handed neutrino. Source:
Symmetry Magazine. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 (left) The Feynman diagram for a β-decay mediated through a W-boson,
(right) the external momentum is much smaller than the mass of the W -
boson, so we can describe the theory as an effective 4-fermion interaction. 27

1.5 Scheme of the correct procedure to integrate out a heavy state Φ with a
mass M, and go from an energy scale to a different one. Source: Ref. [38]. 30

1.6 Scheme indicating the different data sets used in Ref. [50] to constraint
Higgs, top and di-boson Wilson coefficients, which exemplifies the use
of different data sets to constrain different directions of the SMEFT-
operators space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Figures of the LFV processes that could happen in the type-2 seesaw
mechanism (left) decay of the muon into 3 electrons at tree level through
H−− and (right) the loop-induced decay of the muon into a photon and
an electron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2 In (a) we observe the exclusion plot for the NH for the cases m1 = 0 eV
(blue) and m1 = 1 eV (green). In (b) we plot the same assuming IH so
this time is the lower state m3 = 0 eV (blue) and m3 = 1 eV (green).
In Fig. (c) we have the constrains of the MEG experiment on the loop-
induced decay of the muon assuming normal and inverted hierarchy, we
also observe that it is almost independent of the choice of mass spectrum. 45
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3.3 Using equation (3.8) we can turn the plots of Figure 3.2 into exclusion
plots in the plane vt−µ, again the plot (a) assumes NH with (b) IH both
using the exclusion limit of the SINDRUM experiment, and in (c) NH
and IH are plotted with the exclusion limit of the MEG experiment. . . 46

3.4 Confidence level regions of the vacuum expectation value vt and f at
68% (blue) and 95%(orange) with χ2/dof = 0.989, and setting the mass
of the triplet to M = 1 TeV. (left) for the f − vt plane and (rigth) in
the f − v2t plane, which helps comparing this result with that of Ref.
[47]. The black line corresponds to the 95% exclusion limit from the
ρ-parameter, vt ≤ 2.1 GeV obtained in Ref. [60]. . . . . . . . . . . . . 51

3.5 Allowed regions for the different Wilson coefficients of dimension 5
with respect to the vev vt. In plot (a) C∆le, (b) C∆qd and (c) C∆qu

for the different confidence levels 68% (blue) and 95% (orange) with
χ2/dof=0.99. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Diagram representing how a dimension-6 operator of the class ψ2∆2D
as well as the contribution of each coupling. . . . . . . . . . . . . . . . 58

3.7 Comparison between different basis and analyses. In orange our analy-
sis of the ∆EFT operators that modify EWPO, in green the same thing
for the Warsaw basis and in blue the result from a global fit to a larger
set of operators. X indicates which set of operators we are plotting. For
the ∆EFT we have set vt = 5 GeV. . . . . . . . . . . . . . . . . . . . . 60

3.8 Best fit values (dashed black), 1 − σ (blue) and 2 − σ (orange) values
for the different values of the vacuum expectation value of the triplet vt. 64

3.9 Different Feynman diagrams denoting the different contributions from
different basis. Dots are SM couplings, squares are couplings of an EFT. 65

3.10 Figures with the 68% (blue) and 95% (orange) confidence levels of the
different Wilson coefficients. These fits have been done setting to 0 the
rest of the coefficients. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.11 Production and decay channels of the doubly-charged Higgs particle.
(left) Process analyzed by the CMS collaboration [33] and (right) pro-
cess studied with the ATLAS data [74]. . . . . . . . . . . . . . . . . . 69

3.12 Histograms of the W±W± (top) and W±Z (bottom) signal regions,
with respect to the di-jet invariant mass mjj (left) and transverse di-
boson mass mWW

T (right). In orange we have the background of the
W±W± SM processes and in green the W±Z SM background. In blue
we observe the background coming from non-prompt leptons and other
background that we have not computed. Signals produced by different
operators of the ∆EFT basis are also included at arbitrary values. . . . . 73
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3.13 Reproduction of Figure 4 of Ref. [33]. Backgrounds of W±W± (or-
ange) and W±Z (green) have been generated at LO, while the other
background (blue) has been taken from the CMS analysis. . . . . . . . 74

3.14 WZ SR with a signal produced by operator O∆WB at a mass of 1 TeV.
Again the magnitude of the parameter is arbitrary. . . . . . . . . . . . . 78
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