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The influence of hypothetical new interactions beyond the Standard Model on atomic spectra
has attracted recent interest. In the present work, interelectronic photon-exchange corrections and
radiative quantum electrodynamic corrections to the hypothetical contribution to the energy levels of
few-electron ions from a new interaction are calculated. The 1s, 2s and 2p1/2 ground states of H-like,
Li-like and B-like ions are considered, as motivated by proposals to use isotope shift spectroscopy
of few-electron ions in order to set stringent constraints on hypothetical new interactions. It is
shown that, for light Li-like and B-like ions, photon-exchange corrections are comparable to or even
larger, by up to several orders of magnitude, than the leading one-electron contribution from the
new interaction, when the latter is mediated by heavy bosons.

I. INTRODUCTION

Precision spectroscopy of one- and few-electron ions
is a powerful tool for testing fundamental physical
theories [1–9]. It has also allowed the most precise
determination of the electron mass [10, 11] at the
time. Moreover, proposals have been put forward to
use comparisons of measurements and calculations on
g factors of highly-charged ions to obtain an improved
determination of the fine-structure constant α of electro-
dynamics [12–14]. The high-precision regime in which
both experimental and theoretical efforts operate also
motivates proposals [15–17] to use highly charged ions
to search for physics beyond the Standard Model (SM),
also known simply as New Physics (NP). Indeed, NP
would bring small contributions to precisely measured
and calculated spectroscopic quantities [18, 19], such as
energy levels and g factors. This is the premise for the
search for NP at the precision frontier [16, 20–22]: when
experiment and theory agree at a certain level of accu-
racy, NP can be constrained at that same level, which
in some cases can be competitive [15, 18, 20, 21, 23, 24]
with constrained obtained from high-energy physics
and cosmology. Conversely, a disagreement between
experiment and theory might be a sign of NP.

The purpose of this work is to calculate quantum
electrodynamic (QED) corrections, coming from in-
terelectronic interactions (IEI) as well as radiative
processes, to the hypothetical NP contribution to ionic
energy levels. It is naturally expected that, if they
exist, NP contributions to energy levels would be very
small. Hence, it could seem that considering QED
corrections to these hypothetical contributions is a
purely academic exercise of little practical relevance,
since these corrections can typically be expected to
be even smaller than the leading NP contribution.
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However, for highly localised potentials, the second-
order contributions can be comparable to, or even up
to some orders of magnitude larger than the leading
contribution from that potential [25, 26]. In our case,
the leading contribution is the one-electron hypothetical
NP correction, generated by a Yukawa potential. Our
results do show that interelectronic interactions and, to
a lesser extent, radiative corrections, bring contributions
which can compete with those of the leading one-electron
contribution. Our analysis thus provides a more secure
footing to the search for NP with few-electron ions.
Moreover, we note that Li-like and B-like ions are more
accessible to spectroscopy than H-like ions, since their
low-lying transitions are of lower frequency, making
the former promising candidates for experiments (see
Ref. [17]).

In Sec. II, we briefly review the main guiding lines of
the search for NP at the so-called precision frontier. In
Sec. III, we give the leading contribution from a hypo-
thetical fifth force to the energy levels of few-electron
ions. In Sec. IV, we calculate IEI and radiative QED
corrections to that FF contribution for the energy levels.
Numerical results are given in Sec. V. Finally, we draw
conclusions in Sec. VI.

II. SEARCH FOR NEW PHYSICS AT THE
PRECISION FRONTIER

High-precision experiments and calculations on simple
atomic systems provide a path to test proposed exten-
sions of the SM, complementing particle accelerators,
beam dumps and cosmological observations. NP is
expected to provide small–and heretofore unobserved–
contributions to spectroscopic atomic quantities such as
energy levels and g factors. The combined precision of
experiment and theory should allow for the setting of
competitive bounds on such hypothetical contributions
and, hence, on the unknown parameters of SM exten-
sions.
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FIG. 1. Feynman diagram corresponding to the leading one-
electron contribution to the hypothetical fifth force correction
to the energy level of a bound electron. The double line rep-
resents the bound electron, and the dashed line terminated
by a square denotes the fifth force potential.

This general idea can be implemented directly, by com-
paring the most precise measurements and calculations
of a given quantity, and setting the maximum discrep-
ancy between the two allowed by the error bars to be
the maximum possible NP contribution to that quan-
tity [15, 20, 21]. It can also be implemented indirectly, by
considering isotope shifts of spectroscopic quantities [17–
19], and scrutinising experimental King plots for devia-
tions from linearity. Such nonlinear King data can be a
sign of NP, but it was shown in Refs. [15, 27, 28] that
carefully accounting for SM sources of King nonlinearity
is important for a reliable interpretation of isotope shift
data on few-electron ions. In the present work, the focus
is on computing the NP correction to the energy levels
of few-electron ions with improved accuracy.

III. LEADING FIFTH FORCE CORRECTIONS
TO THE ENERGY LEVELS

It has been hypothesised [29] that new massive scalar
bosons could carry a new fundamental force, a fifth force
(FF), resulting, as far as atomic physics is concerned,
in an interaction between nucleons and electrons [18, 27,
30]. The spin-independent potential exerted on electrons
by this force is of the Yukawa type [19]:

VFF (r) = −~c αFFA
e−

mφc

~ |r|

|r|
, (1)

where mφ is the mass of the scalar boson that medi-
ates the FF, ~ and c are Planck’s reduced constant and
the vacuum velocity of light, and A is the nuclear mass
number of the considered ion. This force can be caused
by the Higgs portal mechanism [19, 31], in which case
the FF coupling constant reads αFF = yeyn/4π, with ye
and yn the coupling of the FF boson to the electrons
and the nucleons, respectively. Or, this force can be
caused by the gauging of the B − L symmetry in the
SM [19], in which case the FF coupling constant reads
αFF = g2B−L/4π, with gB−L the coupling of the new
gauge boson to fermions.

It will be useful to know the momentum-space expres-
sion of the Yukawa potential (1), which reads

VFF (r) = −~c 4π αFFA
1

k2 +
(mφc

~
)2 . (2)

The leading FF correction to the energy level a of an
ion can be represented by the diagram in Fig. 1, and the
corresponding expression is simply given by the diagonal
matrix element 〈a| V̂FF |a〉 of the FF potential, namely

EFF(a) = −αFFA ~c
∫ +∞

0

dr r e−
mφc

~ r
[
g2a (r) + f2a (r)

]
.

(3)
Here ga and fa are the radial wave functions (large and
small component, respectively) of the bound electron in
state a [32]. We give the explicit expression for the 1s
state in the pointlike nucleus approximation:

EFF(1s) = −αFFAme c
2 (Zα)

γ

(
1 +

mφ

2Zαme

)−2γ
, (4)

with me the electron mass, α the fine-structure constant,

and Z the nuclear charge, and γ =

√
κ2 − (Zα)

2
, with κ

the relativistic angular quantum number (κs = −1 and
κp1/2 = 1). The expression for the 2s and 2p1/2 states is
too heavy to be reproduced here, but can be calculated
from Eq. (3). Numerical values for the correction to the
1s, 2s and 2p1/2 energy levels in single-electron ions are
given in Tables III, IV and V for various values of the
boson mass.

IV. SUBLEADING FIFTH FORCE
CORRECTIONS TO THE ENERGY LEVELS DUE

TO QED

We now turn to calculating corrections to this FF con-
tribution to the energy levels of few-electron ions. Two
families of corrections coming from QED are considered
and calculated in detail: the corrections coming from IEI
via single photon exchange, and the radiative QED cor-
rections at the one-loop level.

A. Interelectronic interaction corrections

The correction to the NP contribution to the energy
levels of few-electron ions, due to the interaction between
valence and core electrons, can be represented by the sum
of the contributions from the diagrams in Fig. 2, namely:

v v

c c

(a)

(2)

v c

c v

(b)

(2)

c c

v v

(c)

(2)

c v

v c

(d)

(2)

FIG. 2. The diagrams corresponding to the one-photon ex-
change interelectronic-interaction corrections to the fifth force
contribution to the energy level of the valence electron. Here,
v stands for a valence electron, and c for a core electron. All
diagrams have an equivalent diagram, as such, their contribu-
tions should be counted twice, as indicated by the 2 between
brackets under them.
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EIEI
FF(a) = EIEI,a

FF(a) + EIEI,b
FF(a) + EIEI,c

FF(a) + EIEI,d
FF(a) (5a)

with the contributions of the four diagrams (counted together with those of their respective equivalent diagrams)
given by

EIEI,a
FF(a) = 2

∑
n,εn 6=εv

〈v|V̂FF|n〉〈cn|Î (0) |cv〉
εv − εn

EIEI,b
FF(a) = −2

∑
n,εn 6=εv

〈v|V̂FF|n〉〈cn|Î (∆) |vc〉
εv − εn

− 〈v|V̂FF|v〉〈cv|Î ′ (∆) |vc〉

EIEI,c
FF(a) = 2

∑
n,εn 6=εc

〈c|V̂FF|n〉〈vn|Î (0) |vc〉
εc − εn

EIEI,d
FF(a) = −2

∑
n,εn 6=εc

〈c|V̂FF|n〉〈vn|Î (∆) |cv〉
εc − εn

+ 〈c|V̂FF|c〉〈cv|Î ′ (∆) |vc〉. (5b)

Here, v stands for a valence electron in state |a〉, c for a core electron, ∆ = εv− εc, and Î (ω) is the photon propagator
in the Feynman gauge, given in configuration space representation by

I (ω,x1,x2) = α
(1−α1 ·α2) exp

(
ix12
√
ω2 + i0

)
4πx12

, (6)

with the relative distance x12 = |x1 − x2|. We also wrote Î ′ = ∂Î/∂ω, and note that the summation in Eq. (5b)
goes over the full spectrum of the Dirac equation, including negative- and positive-energy states. Using the angular
decomposition of I (ω), as was done for instance in Refs. [33, 34], and performing the angular integration in Eq. (5b)
analytically, we obtain

EIEI
FF(a) = 2

√
2jc + 1

2jv + 1
R0 (cvcδFFv, 0)− 2

∑
J

(−1)
jv−jc−J

2jv + 1

[
RJ (vccδFFv,∆) +R′J (vccv,∆) 〈v| V̂FF |v〉

]

+ 2

√
2jc + 1

2jv + 1
R0 (vcvδFFc, 0)− 2

∑
J

(−1)
jc−jv−J

2jv + 1

[
RJ (cvvδFFc,∆)−R′J (cvvc,∆) 〈c| V̂FF |c〉

]
. (7)

Here, δFFa stands for the FF-perturbed state:

|δFFa〉 =
∑

i,εi 6=εa

|i〉〈i|V̂FF|a〉
εa − εi

, (8)

and RJ (abcd, ω) and R′J (abcd, ω) are the generalized
Slater radial integral given explicitly in Refs. [33, 34] and
its derivative w.r.t. ω, respectively. The radial integra-
tions in Eq. (7) and the summations over the spectrum,
were performed numerically. The calculations are per-
formed in the dual kinetic balance (DKB) approach [35]
based on B splines [36]. The solutions of the Dirac equa-
tion for an arbitrary spherically symmetric potential can
be found in a finite size cavity, which allows for the de-
scription of both the discrete and continuous spectra with
a finite number of electronic states for every given κ.
The wave functions of low-lying bound states, such as
those considered here, are very well reproduced, so that
summations over the Dirac spectrum can be performed
with high accuracy. A homogeneously charged sphere
model was used for the charge distribution inside of the

nucleus, with the root-mean-square nuclear radii taken
from Ref. [37]. The final numerical results are given in
Sec. V A.

B. Radiative corrections

The one-loop radiative corrections to the hypotheti-
cal FF contribution to the energy levels of bound va-
lence electrons are given by the contributions of the di-
agrams represented in Fig. 3. Diagram 3(a) corresponds
to the electric loop correction, 3(b) to the bosonic loop
correction (named in analogy with the familiar electric
loop and magnetic loop diagrams [38]). They are both
vacuum polarization (VP) corrections. In this work, we
treat fermionic VP loops in the free-loop approximation.
It is expected [38–40] that further binding corrections to
this approximation only bring about smaller contribu-
tions, which are hence of little relevance to the search for
NP. Diagrams 3(c) and 3(d) correspond to the self-energy
(SE) correction.
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(a)

(2)

(b) (c)

(2)

(d)

FIG. 3. The diagrams corresponding to the one-loop radia-
tive corrections to the fifth force contribution to the energy
level of the valence electron. The diagrams are referred to
as (a) electric loop and (b) bosonic loop vacuum polariza-
tion contributions, and as the (c) wave function-type and (d)
vertex-type self-energy contributions. Diagrams (a) and (c)
each have an equivalent diagram, as such, their contributions
should be counted twice, as indicated by the 2 between brack-
ets under them.

1. Vacuum polarization corrections

The correction to the energy corresponding to the elec-
tric loop diagram 3(a) is given by

Ea
FF(a) = 2

∑
i,εi 6=εa

〈a| V̂FF |i〉 〈i| V̂VP |a〉
εa − εi

, (9)

where V̂VP is the vacuum polarization (electric loop) op-
erator. It is then convenient to numerically compute this
sum by using either the FF-corrected wave functions, or
the VP-corrected wave functions. Both approaches evi-
dently yield the same result. In the latter approach, the
energy correction can be rewritten as

Ea
FF(a) = −2αFFA ~c

∫ +∞

0

dr r e−
mφc

~ r

× [ga (r) (δVPga (r)) + fa (r) (δVPfa (r))] , (10)

where δVPga and δVPfa are the corrections to the radial
wave functions due to the VP loop (defined in the same
way as in Eq. (8), but with the VP potential). In the free-
loop approximation used here, the correction is generated
by the Uehling potential [41, 42]

VUe (r) = −Zα
r

~c
(

2α

3π

)∫ +∞

1

du

u2

√
u2 − 1

(
1 +

1

2u2

)
e−2u

mec
~ r, (11)

and the wave function corrections can be computed numerically using known methods.
The contribution from the bosonic loop diagram 3(b) is simply given by the matrix element

Eb
FF(b) = 〈a| V̂BL |a〉 , (12)

where the bosonic loop potential V̂BL comes from the insertion of a VP loop into the propagator of the FF boson
in the tree-level diagram of Fig. 1. We note that the propagator between the VP loop and the bound electron in
diagram 3(b) is that of a photon. If it were that of a FF boson, the corresponding correction would be quadratic
in the FF coupling constant αFF and hence presumably many orders of magnitude smaller than all contributions
considered in this work. The bosonic loop potential can be derived following the same method used for deriving the
Uehling potential (see details in App. A). It takes a similar, but somewhat more involved form, namely

VBL (r) = −Aα
r

~c
(

2αFF

3π

)∫ +∞

1

du

u2

√
u2 − 1

(
1 +

1

2u2

)e−2u
mec
~ r −

(
mφ

2ume

)2
e−

mφc

~ r

1−
(

mφ
2ume

)2
 . (13)

Although it is not obvious at first glance, the integrand
is regular at u = mφ/ (2me). Expressions of the Uehling
potential (11) convenient for numerical implementation
were given by Klarsfeld in Ref. [43] in terms of modi-
fied Bessel functions. We used this approach to calcu-
late the Uehling potential (11) and, thence, the electric
loop correction (9) to the energy levels. On the other
hand, this approach cannot be generalized to the bosonic
loop potential (13). Indeed, the corresponding expres-

sion would involve an infinite sum of terms to be re-
expressed as modified Bessel functions, and in Ref. [43],
the lower-index Bessel terms are expressed in function of
the highest-index relevant term, which does not exist for
an infinite sum, and cannot be determined in advance for
the truncated sums used for numerical implementation.
As a result, we numerically compute the bosonic loop
potential on pre-determined radial grids.



5

2. Self-energy corrections

In the same way as what was done in Ref. [44] for the
SE corrections to the g factor, the contribution of dia-
gram 3(c) to the energy level a can be decomposed in two
contributions, referred to as reducible and irreducible, re-
spectively. The propagator of the bound electron that is
found between the FF vertex and the self-energy loop can
be written in spectral form:

Ĝ (ε) =
∑
k

|k〉 〈k|
(ε− εk)

, (14)

that is, as a sum over the bound and continuous parts of
the Dirac-Coulomb spectrum. The term for which k = a
(the intermediate state coincides with the reference state)
generates the so-called reducible contribution, which is
given by

E
c(red)
FF(a) = EFF(a) 〈a| γ0

∂Σ̂

∂ε

∣∣∣∣∣
ε=εa

|a〉 , (15)

with EFF(a) the leading one-electron FF correction (3) to

the energy of level a and Σ̂ (ε) the self-energy operator,
studied in detail in Ref. [33].

All other terms in the bound electron propagator, for
which k 6= a, are added together to generate the so-called
irreducible contribution. This term can be computed ei-
ther as

E
c(irr)
FF(a) = 〈δFFa| γ0

ˆ̃
Σ (εa) |a〉+ 〈a| γ0 ˆ̃

Σ (εa) |δFFa〉 (16a)

where |δFFa〉 is the correction (8) to the bound state a
from the FF potential (1), or as

E
c(irr)
FF(a) = 〈δSEa| V̂FF |a〉+ 〈a| V̂FF |δSEa〉 (16b)

where |δSEa〉 is the SE correction to the bound state a. A
method has been developed for the challenging numeri-
cal computation of the SE-corrected wave functions, and
described in detail in Ref. [34]. We use the codes and re-
sults developed in that work, for our present calculations.
The matrix elements (16b) can be obtained through an
expression identical to Eq. (10), with the VP-corrected
wave functions replaced with the SE-corrected ones.

The contribution of diagram 3(d) (the so-called ver-
tex diagram) is decomposed into a UV-divergent zero-
potential term, where the propagator of the electron un-
der the self-energy loop is taken to be that of a free elec-
tron, and a finite many-potential term, according to the
standard method [44–46]. The UV divergence is can-
celled by a divergence in the reducible contribution (15),
and the renormalized zero-potential term reads

E
d(0)
FF(a) =

∫
dp

(2π)
3

∫
dp′

(2π)
3 ψ̄a (p) Γ0

R (p, p′)VFF (p− p′)ψa (p′) (17)

where ΓR is the renormalized vertex function, studied in detail in Ref. [33], and the four-momenta read p = (εa/c,p),
p′ = (εa/c,p

′). The many-potential term is expressed as

E
d(1+)
FF(a) =

i

2π

∫ +∞

−∞
dω
∑
n1n2

〈an2| Î (ω) |n1a〉 〈n1| V̂FF |n2〉
(εa − ω − εn1

(1− iη)) (εa − ω − εn2
(1− iη))

− zero pot. (18)

Here, the subtraction of the zero-potential term corre-
sponds to subtracting a term structurally identical to
the explicitly written one, but with the double sum over
bound states replaced with a double sum over the spec-
trum of the free Dirac equation. The operator Î was
defined in Eq. (6), and the calculation of its matrix el-
ements has been carried out following the methods of
Refs. [33, 44].

V. NUMERICAL RESULTS

To analyze the importance of the calculated effects for
different values of the hypothetical boson mass mφ and
of the nuclear charge Z, we calculated the respective con-
tributions for a broad range of combinations of these pa-

rameters. We also give a graphical representation of these
results for Li-like and B-like Si and Sn in Fig. 4.

A. Interelectronic interaction corrections

In Table I, we present the results for the IEI correction
to the FF contribution to the energy of the 2s state of
a Li-like ion, giving the individual contributions a, b, c,
d, corresponding to the diagrams in Fig. 2, and the total
contribution. In Table II, we present the results for the
IEI correction to the FF contribution to the energy of
the 2p1/2 state of a B-like ion. In this Table, we present
the individual contributions due to the interactions of the
valence electron with the specific core electron shells, as
well as the total contribution. All results are given in
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(a) Z = 14 (Si nucleus) (b) Z = 50 (Sn nucleus)

FIG. 4. Contributions of the hypothetical fifth force to the energy levels of few-electron ions, as a function of the new boson
mass mφ. The leading one-electron contribution is represented in solid red, the contribution from one-photon interelectronic
interaction is represented in densely dashed orange, and the radiative contribution at the one-loop level is represented in loosely
dashed pink. The values for Li-like ions are represented by circles and those for B-like ions are represented by squares. Both
axes are in logarithmic scale.

units of αFFAmec
2.

B. Radiative corrections

In Tables III, IV and V, we respectively present the re-
sults for the radiative corrections to the FF contribution
to the energy of the 1s state of a H-like ion, the 2s state
of a Li-like ion, and the 2p1/2 state of a B-like ion, giving
the individual contributions a, b, c, d, corresponding to
the diagrams in Fig. 3, and the total contribution. All
results are given in units of αFFAmec

2.

VI. DISCUSSION AND CONCLUSION

In the heavy boson regime, the calculated QED cor-
rections to the hypothetical fifth force contribution to
the energy levels due to interelectronic interactions via
single photon exchange, are often comparable or even
larger in magnitude than the leading one-electron con-
tribution from the fifth force. As shown in Fig. 4 (see
Tables I–V for detailed results), this is seen both for the
2s ground state of Li-like ions, and for the 2p1/2 ground
state of B-like ions, and occurs more markedly for lighter
ions. For Z = 6 and Z = 14, and for boson masses
mφ = me and mφ = ~/RNc (with RN the nuclear ra-
dius), the fifth force contribution to the 2p1/2 energy level
due to interelectronic interactions is one to three orders
of magnitude larger than the leading one-electron fifth
force contribution. This result can be understood in the
following way: for heavy bosons, the Yukawa potential is
highly localised around the nucleus, and the photon ex-
change diagrams where the core electron, which is in an
s state, interacts with this potential (see Fig. 2), bring

a large contribution, compared to the one-electron dia-
gram, which is suppressed by the low probability density
for p states around the origin. This can be described as a
‘photon bridge’, enhancing the hypothetical New Physics
correction to the levels of few-electron ions. These results
mean that, for multi-electronic ions, contributions from
New Physics must take account of interelectronic interac-
tions, as was done in the present work in a rigorous QED
approach, or as was done in the Hartree-Fock approach
in Refs. [18, 23, 24]. For Z = 6, and for the boson mass
mφ = me, the fifth force contribution to the 2p1/2 energy
level due to one-loop radiative phenomena is comparable
in magnitude to the one-electron fifth force contribution.
The better accessibility [4, 17] of Li-like and B-like ions
to precision laser spectroscopy, compared to that of H-
like ions, makes our results highly relevant to the search
for NP. Our results also motivate further investigation of
the g factor of light Li-like and B-like ions [6, 15, 47, 48]
for the search for New Physics.
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Appendix A: Derivation of the bosonic loop
potential

In this appendix we provide the derivation of the
bosonic loop potential given in Eq. (13). We start by
writing down the one-loop vacuum polarization (VP) cor-
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Z A RN (fm) mφ EIEI,a
FF(2s) EIEI,b

FF(2s) EIEI,c
FF(2s) EIEI,d

FF(2s) EIEI
FF(2s)

6 12 2.4702 0 2.649 [−3] 1.079 [−4] 4.219 [−4] −2.680 [−4] 2.911 [−3]
αme 2.234 [−3] 1.465 [−4] 4.135 [−4] −2.629 [−4] 2.531 [−3]
Zαme 8.480 [−4] 1.769 [−4] 2.998 [−4] −1.925 [−4] 1.132 [−3]
me 1.740 [−5] 2.257 [−6] 5.983 [−6] −3.884 [−6] 2.176 [−5]

~/RNc 1.423 [−9] 1.819 [−10] 4.882 [−10] −3.169 [−10] 1.776 [−9]

14 28 3.1224 0 2.680 [−3] 1.131 [−4] 4.284 [−4] −2.725 [−4] 2.949 [−3]
αme 2.567 [−3] 1.238 [−4] 4.267 [−4] −2.713 [−4] 2.846 [−3]
Zαme 8.651 [−4] 1.804 [−4] 3.052 [−4] −1.959 [−4] 1.154 [−3]
me 7.795 [−5] 1.066 [−5] 2.694 [−5] −1.743 [−5] 9.812 [−5]

~/RNc 1.321 [−8] 1.692 [−9] 4.521 [−9] −2.925 [−9] 1.650 [−8]

20 40 3.4776 0 2.720 [−3] 1.197 [−4] 4.370 [−4] −2.785 [−4] 2.998 [−3]
αme 2.659 [−3] 1.253 [−4] 4.361 [−4] −2.778 [−4] 2.943 [−3]
Zαme 8.874 [−4] 1.849 [−4] 3.123 [−4] −2.002 [−4] 1.184 [−3]
me 1.398 [−4] 2.016 [−5] 4.861 [−5] −3.136 [−5] 1.772 [−4]

~/RNc 3.612 [−8] 4.639 [−9] 1.232 [−8] −7.944 [−9] 4.514 [−8]

50 120 4.6519 0 3.187 [−3] 1.937 [−4] 5.415 [−4] −3.496 [−4] 3.572 [−3]
αme 3.175 [−3] 1.943 [−4] 5.412 [−4] −3.491 [−4] 3.562 [−3]
Zαme 1.160 [−3] 2.369 [−4] 3.991 [−4] −2.537 [−4] 1.542 [−3]
me 5.779 [−4] 1.059 [−4] 2.068 [−4] −1.305 [−4] 7.601 [−4]

~/RNc 8.181 [−7] 1.050 [−7] 2.716 [−7] −1.693 [−7] 1.025 [−6]

92 238 5.8337 0 5.464 [−3] 4.930 [−4] 1.136 [−3] −7.379 [−4] 6.355 [−3]
αme 5.460 [−3] 4.924 [−4] 1.135 [−3] −7.370 [−4] 6.351 [−3]
Zαme 2.695 [−3] 4.763 [−4] 9.180 [−4] −5.717 [−4] 3.518 [−3]
me 2.222 [−3] 4.022 [−4] 7.957 [−4] −4.916 [−4] 2.928 [−3]

~/RNc 2.704 [−5] 2.901 [−6] 8.822 [−6] −5.268 [−6] 3.349 [−5]

TABLE I. Interelectronic interaction corrections to the hypothetical fifth-force contributions to the 2s energy level, for various
ions and various new boson masses mφ. The contributions from the diagrams on Fig. 2 are listed individually, and their sum
is given in the last column. All corrections are given in units of αFFAmec

2, the product of the nuclear mass number with the
New Physics coupling constant and the electron rest energy. Powers of 10 are given between square brackets.

rection to the photon propagator [1, 39]:

D(1)
µν (k) =

(α
π

)
ηµν

∫ 1

0

dz
z2
(

1− z2

3

)
4
[
m2
e − 1

4 (1− z2) k2
] . (A1)

Hence the bosonic loop potential (see Eq. (2))

VBL (k) = D
(1)
00 (k)VFF (k)

= −~c 4π αFFA
1

k2 +
(mφc

~
)2 (απ)

×
∫ 1

0

dz
z2
(

1− z2

3

)
4
[
m2 + 1

4 (1− z2)k2
] . (A2)

This potential is then Fourier-transformed to configura-
tion space:
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Z A RN (fm) mφ EIEI
FF(2p1/2)

Core shell 1s 2s total
6 12 2.4702 0 3.431 [−3] 2.157 [−3] 5.589 [−3]

αme 2.957 [−3] 1.816 [−3] 4.774 [−3]
Zαme 8.457 [−4] 5.630 [−4] 1.408 [−3]
me 5.671 [−6] 7.318 [−6] 1.299 [−5]

~/RNc 4.586 [−10] 5.960 [−10] 1.054 [−9]

14 28 3.1224 0 3.490 [−3] 2.181 [−3] 5.671 [−3]
αme 3.368 [−3] 2.090 [−3] 5.459 [−3]
Zαme 8.711 [−4] 5.747 [−4] 1.445 [−3]
me 2.685 [−5] 3.328 [−5] 6.013 [−5]

~/RNc 4.295 [−9] 5.527 [−9] 9.823 [−9]

20 40 3.4776 0 3.566 [−3] 2.212 [−3] 5.779 [−3]
αme 3.501 [−3] 2.164 [−3] 5.665 [−3]
Zαme 9.044 [−4] 5.901 [−4] 1.494 [−3]
me 5.149 [−5] 6.078 [−5] 1.122 [−4]

~/RNc 1.188 [−8] 1.509 [−8] 2.697 [−8]

50 120 4.6519 0 4.469 [−3] 2.582 [−3] 7.051 [−3]
αme 4.456 [−3] 2.573 [−3] 7.029 [−3]
Zαme 1.328 [−3] 7.810 [−4] 2.109 [−3]
me 3.588 [−4] 2.901 [−4] 6.489 [−4]

~/RNc 3.044 [−7] 3.399 [−7] 6.443 [−7]

92 238 5.8337 0 9.206 [−3] 4.474 [−3] 1.368 [−2]
αme 9.201 [−3] 4.471 [−3] 1.367 [−2]
Zαme 4.143 [−3] 1.940 [−3] 6.083 [−3]
me 2.953 [−3] 1.458 [−3] 4.411 [−3]

~/RNc 1.557 [−5] 1.195 [−5] 2.753 [−5]

TABLE II. Interelectronic interaction corrections to the hypothetical fifth-force contributions to the 2p1/2 energy level, for
various ions and various new boson masses mφ. The contributions from interaction with different core shells are listed separately,
and their sum is given in the last column. All corrections are given in units of αFFAmec

2, the product of the nuclear mass
number with the New Physics coupling constant and the electron rest energy. Powers of 10 are given between square brackets.

VBL (r) =

∫
dk

(2π)
3 eik·r VBL (k)

= −~c 4π αFFA
(α
π

)(
− i

4 |r|

)
1

(2π)
2

∫ 1

0

dz

[
z2
(

1− z2

3

)]∫ +∞

−∞
dk eik|r|

k3

k2 +
(mφc

~
)2 1[

m2 + 1
4 (1− z2)k2

]
= −~c 4π αFFA

(α
π

)(
− i

4 |r|

)
1

(2π)
2

∫ 1

0

dz

[
z2
(

1− z2

3

)]
4iπ

(
4m2

e e
−2

mφc

~
|r|√
1−z2 −m2

φ

(
1− z2

)
e−

mφc

~ |r|
)

(1− z2)
(

4m2
e − (1− z2)m2

φ

)
= −2

3

~c
r
αFFA

(α
π

)∫ +∞

1

du

u2

√
u2 − 1

(
1 +

1

2u2

)e−2u
mec
~ r −

(
mφ

2ume

)2
e−

mφc

~ r

1−
(

mφ
2ume

)2


(A3)

where the change of variables u = 1/
√

1− z2 was used in the last step. This establishes Eq. (13).
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Z A RN (fm) mφ EFF(2s) Ea
FF(2s) Eb

FF(2s) E
c(irr)

FF(2s) E
c(red)+d

FF(2s) Erad
FF(2s)

6 12 2.4702 0 −1.096 [−2] −1.846 [−8] −6.224 [−9] −3.71(1) [−7] 2.90(5) [−5] 2.86(5) [−6]
αme −6.248 [−3] −1.638 [−8] −6.173 [−9] −3.23(1) [−7] 1.70(5) [−5] 1.67(5) [−6]
Zαme −2.059 [−3] −9.626 [−9] −5.614 [−9] −1.713(5) [−7] 5.73(2) [−5] 5.71(2) [−5]
me −3.565 [−5] −1.038 [−9] −7.812 [−10] −1.305(5) [−8] 1.05(5) [−7] 9.0(5) [−8]

~/RNc −2.906 [−9] −4.545 [−13] −3.771 [−13] −2.15(5) [−12] 8.5(5) [−12] 5.5(5) [−12]

14 28 3.1224 0 −2.571 [−2] −2.265 [−7] −7.647 [−8] −3.091(5) [−6] 6.69(2) [−5] 6.35(2) [−5]
αme −1.974 [−2] −2.197 [−7] −7.631 [−8] −2.978(5) [−6] 5.93(2) [−5] 5.60(2) [−5]
Zαme −4.870 [−3] −1.176 [−7] −6.868 [−8] −1.361(1) [−6] 1.38(1) [−5] 1.23(1) [−5]
me −3.750 [−4] −3.122 [−8] −2.041 [−8] −3.074(5) [−7] 1.16(1) [−6] 8.0(1) [−7]

~/RNc −6.259 [−8] −2.947 [−11] −2.136 [−11] −1.086(5) [−10] 2.03(2) [−10] 4.4(2) [−11]

20 40 3.4776 0 −3.698 [−2] −6.593 [−7] −2.207 [−7] −7.359(5) [−6] 9.622(5) [−5] 8.798(5) [−5]
αme −3.065 [−2] −6.488 [−7] −2.205 [−7] −7.212(5) [−6] 8.06(5) [−5] 7.25(5) [−5]
Zαme −7.081 [−3] −3.434 [−7] −1.978 [−7] −3.172(2) [−6] 2.065(1) [−5] 1.694(1) [−5]
me −9.664 [−4] −1.284 [−7] −7.874 [−8] −1.076(1) [−6] 3.117(2) [−6] 1.834(2) [−6]

~/RNc −2.428 [−7] −1.884 [−10] −1.262 [−10] −5.973(5) [−10] 8.55(1) [−10] −5.7(1) [−11]

50 120 4.6519 0 −9.970 [−2] −1.335 [−5] −3.891 [−6] −7.274(1) [−5] 2.516(5) [−4] 1.616(5) [−4]
αme −9.281 [−2] −1.332 [−5] −3.890 [−6] −7.25(2) [−5] 2.379(5) [−4] 1.482(5) [−4]
Zαme −2.139 [−2] −7.530 [−6] −3.493 [−6] −3.1764(2) [−5] 7.627(2) [−5] 3.348(2) [−5]
me −9.941 [−3] −5.434 [−6] −2.582 [−6] −2.2778(1) [−5] 3.95(1) [−5] 8.7(1) [−6]

~/RNc −1.290 [−5] −4.091 [−8] −1.923 [−8] −7.753(2) [−8] 6.75(1) [−8] −7.02(1) [−8]

92 238 5.8337 0 −2.427 [−1] −2.579 [−4] −4.828 [−5] −5.754(2) [−4] 7.009(2) [−4] −6.152(2) [−4]
αme −2.256 [−1] −2.578 [−4] −4.828 [−5] −5.751(2) [−4] 8.6(1) [−4] −4.6(1) [−4]
Zαme −7.446 [−2] −1.794 [−4] −4.466 [−5] −3.238(1) [−4] 3.72(1) [−4] −1.76(1) [−4]
me −6.058 [−2] −1.639 [−4] −4.216 [−5] −2.912(1) [−4] 3.124(2) [−4] −1.849(2) [−4]

~/RNc −6.058 [−4] −6.575 [−6] −1.709 [−6] −8.91(2) [−6] 7.21(2) [−6] −9.98(3) [−6]

TABLE IV. Leading one-electron contribution, and radiative corrections to the hypothetical fifth-force contributions to the 2s
energy level, for various ions and various new boson masses mφ. All corrections are given in units of αFFAmec

2, the product of
the nuclear mass number with the New Physics coupling constant and the electron rest energy. Powers of 10 are given between
square brackets. The various contributions correspond to (leading) the diagram in Fig. 1, and to (radiative corrections) the
diagrams a, b, c, d in Fig. 3.
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Z A RN (fm) mφ EFF(2p1/2) Ea

FF(2p1/2) Eb

FF(2p1/2) E
c(irr)

FF(2p1/2)
E

c(red)+d

FF(2p1/2)
Erad

FF(2p1/2)

6 12 2.4702 0 −1.096 [−2] −5.172 [−12] −1.036 [−12] −5.101 [−5] 1.840 [−5] −3.265 [−5]
αme −5.920 [−3] −4.043 [−12] 1.214 [−11] −4.328 [−5] 8.585(2) [−6] −3.479 [−5]
Zαme −6.880 [−4] −1.725 [−12] 5.848 [−11] −9.598 [−6] 2.50(1) [−7] −9.348(1) [−6]
me −4.848 [−8] −4.746 [−14] 1.789 [−12] −1.027 [−9] −1.158 [−8] −1.261 [−8]

~/RNc −1.047 [−12] −2.766 [−17] 1.210 [−16] −1.912 [−14] −7.210(2) [−14] −9.113(2) [−14]

14 28 3.1224 0 −2.571 [−2] −3.606 [−10] −7.177 [−11] −1.201(1) [−4] 4.250(2) [−5] −7.76(1) [−5]
αme −1.954 [−2] −3.333 [−10] −1.817 [−11] −1.154 [−4] 2.966(2) [−5] −8.574(2) [−5]
Zαme −1.646 [−3] −1.214 [−10] 7.050 [−10] −2.293 [−5] 8.5(1) [−7] −2.208(1) [−5]
me −2.889 [−6] −9.167 [−12] 9.483 [−11] −5.821 [−8] −2.445(2) [−8] −8.276(2) [−8]

~/RNc −1.236 [−10] −1.178 [−14] 6.922 [−15] −2.161 [−12] −3.221(2) [−12] −5.387(2) [−12]

20 40 3.4776 0 −3.698 [−2] −2.205 [−9] −4.342 [−10] −1.729 [−4] 5.74(1) [−5] −1.155 [−4]
αme −3.050 [−2] −2.110 [−9] −3.443 [−10] −1.694 [−4] 4.45(1) [−5] −1.249(1) [−4]
Zαme −2.428 [−3] −7.536 [−10] 1.909 [−9] −3.364 [−5] −5.6(2) [−7] −3.420(2) [−5]
me −1.562 [−5] −9.040 [−11] 4.579 [−10] −3.023 [−7] −1.344(2) [−7] −4.362 [−7]

~/RNc −9.858 [−10] −1.674 [−13] −3.076 [−16] −1.638(1) [−11] −1.924(2) [−11] −4.364(2) [−11]

50 120 4.6519 0 −9.970 [−2] −3.129 [−7] −5.510 [−8] −4.530(1) [−4] 9.53(5) [−5] −3.586(5) [−4]
αme −9.274 [−2] −3.106 [−7] −5.479 [−8] −4.515 [−4] 8.37(5) [−5] −3.687(5) [−4]
Zαme −8.412 [−3] −1.248 [−7] −3.935 [−9] −1.044 [−4] −1.22(5) [−5] −1.167(5) [−4]
me −1.124 [−3] −5.224 [−8] 4.445 [−9] −1.655 [−5] −4.92(2) [−6] −2.153(2) [−5]

~/RNc −3.528 [−7] −2.960 [−10] −1.270 [−10] −2.920(1) [−9] −1.88(1) [−9] −5.22(1) [−9]

92 238 5.8337 0 −2.427 [−1] −2.341 [−5] −2.934 [−6] −5.898(2) [−4] 4.9(2) [−5] −5.67(2) [−4]
αme −2.356 [−1] −2.337 [−5] −2.934 [−6] −5.893(2) [−4] 4.2(2) [−5] −5.74(2) [−4]
Zαme −4.064 [−2] −1.315 [−5] −2.175 [−6] −1.462(1) [−4] −5.3(1) [−5] −2.15(1) [−4]
me −2.473 [−2] −1.086 [−5] −1.880 [−6] −6.99(1) [−5] −5.29(2) [−5] −1.355(2) [−4]

~/RNc −8.888 [−5] −2.395 [−7] −6.541 [−8] −1.431(2) [−6] −7.01(1) [−7] −2.437(2) [−6]

TABLE V. Leading one-electron contribution, and radiative corrections to the hypothetical fifth-force contributions to the 2p1/2
energy level, for various ions and various new boson masses mφ. All corrections are given in units of αFFAmec

2, the product of
the nuclear mass number with the New Physics coupling constant and the electron rest energy. Powers of 10 are given between
square brackets. The various contributions correspond to (leading) the diagram in Fig. 1, and to (radiative corrections) the
diagrams a, b, c, d in Fig. 3.
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