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A B S T R A C T   

An important debate on the architecture of the language faculty has been the extent to which it relies on a 
compositional system that constructs larger units from morphemes to words to phrases to utterances on the fly 
and in real time using grammatical rules; or a system that chunks large preassembled, stored units of language 
from memory; or some combination of both approaches. Good empirical evidence exists for both ’computed’ and 
’large stored’ forms in language, but little is known about what shapes multi-word storage/ access or compo
sitional processing. Here we explored whether predictive and retrodictive processes are a likely determinant of 
multi-word storage/ processing. Our results suggest that forward and backward predictability are independently 
informative in determining the lexical cohesiveness of multi-word phrases. In addition, our results call for a 
reevaluation of the role of retrodiction in contemporary language processing accounts (cf. Ferreira and Chan
tavarin, 2018).   

1. Multi-word storage and compositionality 

Are frequent and larger language units (e.g. it was really funny) 
constructed online using compositional rules or can they be retrieved as 
‘pre-assembled’ stored chunks from long-term memory? This question 
has received much attention recently because it has been thought to 
elucidate between competing theoretical accounts of language pro
cessing. On one side of the debate there are several influential theoret
ical frameworks of human information processing that claim that 
linguistic structure is the consequence of ‘emergent’ processes: (1) 
usage-based accounts of language processing (e.g., Goldberg, 2006) 
according to which whole chunks are taken directly from the input to be 
stored in the mind, and (2) exemplar models of stored knowledge (e.g., 
Nosofsky, 1988) that assume that we store examples in memory rather 
than forming abstract generalisations, i.e. linguistic structures ‘emerge’ 
from experienced patterns in the input. If frequent multi-word sequences 
were represented and used routinely as chunks (rather than composi
tionally computed online) then this would provide support for notions 
that argue that language processing involves the processing of dynamic 
patterns at different grain sizes (Elman, 2009) rather than stable lexical 
(word-like) units. 

On the other side of the debate there are approaches that assume an 
essential role for the computation of compositional multi-word phrases 
(e.g., Pinker and Ullman, 2002). Compositional approaches do not deny 
that some longer phrases can occasionally be stored, for example idioms 
(e.g. kick the bucket) could be stored as a whole, but the debate is un
resolved about whether a very large number of frequent multi-word 
phrases (e.g. it was really funny) are computed in real time from their 
component words, or are instead stored and retrieved as a whole chunk. 

More and more researchers (e.g., Snider and Arnon, 2012, cf. Bod, 
2006) have started to question a strict distinction between composi
tionally constructed vs. stored longer phrase units. Jackendoff (e.g., 
Jackendoff, 2002) for examples argues in this regard that the ease or 
speed with which a rule may be activated relative to stored phrases plays 
a role in how ‘freely productive’ it is. Further work is needed to elucidate 
among competing accounts of multi-word processing. The present study 
aims to contribute to this endeavour. 

2. Multi-word frequency effects 

Frequency effects seem ubiquitous in language (Pfänder and Beh
rens, 2016): forms and structures that are highly frequent are acquired 
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and processed faster than infrequent ones, both in comprehension and 
production. Crucially, such processing advantage is often taken as a 
signature of the fact that the language units are accessed as ‘pre
compiled’ from memory, and not computed on the fly. To the extent that 
frequency effects apply to the lexicon, they would be consistent with a 
division of labour whereby compositional mechanisms do the indepen
dent syntactic work of assembling morphemes and words (Pinker, 2015; 
Ullman, 2016; Ullman, 2004). However, the detection of so-called fre
quency effects for larger units of language such as grammatical phrases 
that include lexical and syntactic items has been proposed as evidence 
that language is much less compositional. Consistent with such sug
gestions, Bannard and Matthews (2008) proposed that children store 
more than individual words in memory based on their results that young 
children were significantly more likely to repeat frequent sequences 
such as a drink of milk correctly than to repeat infrequent sequences such 
as a drink of tea. Such a view is consistent with the notion that compo
sitional constructions only emerge gradually during child development 
(e.g., Tomasello, 2000). 

There are however similar data with adult participants. Arnon and 
Snider (2010) for example found that adults responded faster to higher 
frequency than lower frequency phrases in a phrase-recognition task. 
Adult speakers’ recognition times for we have to talk for instance were 
faster than for we have to sit, with the latter having lower overall fre
quency as a four-word unit than the former. 

In the following section we first consider some possible conceptual 
objections to a theoretical distinction between ‘stored’ and ‘computed’ 
linguistic forms. Then, in the next section we ask whether the docu
mented phrase-frequency effects for multi-word phrases may emerge 
from dynamic online processes driven by context predictability rather 
than phrase frequency per se. The subsequent corpus analyses indeed 
support the view that frequency effects for multi-word sequences are 
effects of online prediction and retrodiction in disguise. We find evi
dence that (forward and backward) transitional probabilities at multiple 
levels (which may contribute to the overall high frequency of the entire 
multi-word sequence) could support sequential, compositional pro
cessing rather than chunk-based processing. In the Discussion section, 
we then consider which cognitive and neural mechanisms could give rise 
to predictability effects on multi-word sequences. This allows us to 
reappraise the debate on ‘stored’ versus ‘computed’ forms by proposing 
an alternative framework that can account for facilitative processing 
effects on combinatoriality. Finally, we discuss some limitations of the 
present approach in particular with regard to hierarchical syntactic 
compositional parsing approaches. 

2.1. Some conceptual inadequacies concerning a strict dichotomy 

First, considering conceptual inadequacies, we conjecture that a 
theory of language processing that relied on a very large number of 
memorised pre-existing chunks would face difficulties accounting for 
graded effects of lexical access. Indeed, Arnon and Snider (2010), Snider 
and Arnon (2012) showed that their documented frequency effects for 
four-word sequences occurred across the frequency range and was thus a 
gradient one. 

Secondly, and consequently, if frequency effects are graded it is 
difficult to establish an empirical threshold for what multi-word se
quences should be retrievable whole versus being compositionally 
computed online. Given that frequency is a continuous variable in lan
guage, and the logarithm of frequency is linearly related to reaction 
times in various psycholinguistic tasks, a dichotomous categorization of 
lexical items in stored versus non-stored/ compositionally computed 
sequences is hard to achieve. 

Third, the frequency distribution of linguistic items – including 
multi-word sequences – while being continuous is highly non-linear and 
skewed (Zipf, 1949). The vast majority of sequences (or n-grams in 
technical parlance) are positioned in the long tail of infrequent and rare 
events. This would practically leave most of the language of interest 

outside the benefits of mental storage, and would thus be of little 
theoretical relevance in explaining how the entirety of language works. 
A theory of weak memory storage for such a large number of sequences 
would have to account for what else holds language together in pro
cessing such sequences besides a weak frequency effect. 

A fourth consideration is that while storage of single lexical items is 
large, storage of unique 2-, 3-, 4-grams, and so on, is even larger by 
several magnitudes, as evidenced by large scale n-gram corpus analyses, 
including our own below. And this state of affairs does not even consider 
non-adjacent n-grams such as in X opinion, where X can be replaced by a 
personal pronoun (in my/your/their/opinion) or a noun in genitive form 
(in teachers’ opinion). Most language in fact has been characterised in 
terms of partially matching sequences, which may have gaps or open 
slots (Kolodny et al., 2015). 

Relatedly, as a fifth consideration most frequent linguistic patterns 
are composed of sequences of varying degree of compositionality and 
abstraction (e.g., more than Y know*, where Y is an open slot that can be 
filled by various pronouns and nouns, and the verb stem know* agrees 
morphologically with Y and can take different tense forms). 

As a sixth and final point, phrases can be part of linguistic patterns of 
different sizes, just like syllables can be part of different words. For 
instance, you know is one of the most frequent interjections in oral 
everyday communication, but so is also the phrase you know what?or 
what do you know?. Which of these phrases is a stored sequence in the 
mind? If the first one is, then the latter larger phrases must allow a 
compositional process. If the latter two are stored sequences, then they 
must allow a decompositional process to account for the first phrase. 

A similar issue is that chunk-based processing could be seen as akin 
to deferring recognition of a spoken word until all its phonemes have 
occurred. Such a mechanism would arguably slow processing. More
over, strong cues to end-of-sequence may only occur in a few circum
scribed contexts. This raises the issue of how word recognition for word 
sequences would be deferred. Indeed, unlike spoken words, where 
sublexical components arguably remain highly ambiguous at least in 
some languages, ‘sub-sequence’ units in multi-word sequences are 
words, each linked to distinct semantic representations and form classes. 
In other words, it seems implausible that ”it is time to…” in ”it is time to 
talk” would be analogous to hearing “formul…” (all but the final 
phoneme of ’formula’), where there are arguably not discrete elements 
that require actual classification (rather than a distribution of activa
tions/probabilities over possible phonemes or syllables at each 
position). 

Clearly, compositionality cannot be disposed of easily even in the 
case of frequent multi-word sequences. What could plausibly reconcile 
the ubiquitous frequency effects for multi-word phrase processing found 
in the literature while allowing for an essentially compositional system? 
And, could this change the debate over stored versus computed lan
guage? In the next section we propose that prediction and retrodiction 
processes (cf. Ferreira and Chantavarin, 2018; Ferreira and Qiu, 2021), 
here formalized as sensitivity to contextual forward and backward 
probabilities between words, can account for facilitative effects in lan
guage processing for multi-word expressions of the kind empirically 
found in the literature. 

3. A role for prediction and retrodiction in multi-word 
processing 

The evidence and theoretical arguments considered above leave 
open the crucial question of what determines whether frequent multi- 
word phrases become stored in (and accessed online from) memory or 
are compositionally constructed on the fly. In essence we are exploring 
what determines whether phrases of various sizes are ’lexically listed’. 
More specifically we tested whether dynamic probabilistic online pro
cesses are informative in answering this question and investigated 
whether forward and backward transitional probabilities can provide 
important insights about lexical cohesiveness, which in turn can affect 
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the online processing of multi-word phrases. In reanalysing existing 
four-word phrases from two published studies, we conducted new 
corpus analyses (see Method and Results sections) on both the Arnon 
and Snider (2010) and corresponding developmental Bannard and 
Matthews (2008) studies and found that the last words in the frequent 
phrases used in the above studies are also more predictable, both in 
terms of forward and backward predictability. This, we contend, sug
gests that predictive and ‘postdictive’ (or retrodictive) processes may be 
an important factor determining multi-word storage and processing. Our 
analyses cannot directly reveal whether participants retrieved multi- 
word phrases from memory or constructed them online composition
ally but they are compatible with the notion that the processing 
advantage found in the two ‘stored sequences studies’ may be a conse
quence of (a) pre-activation of the last words in the multi-word se
quences (consistent with forward predictability), and/or (b) ease of 
integration of the last word (consistent with backward predictability). 

4. Method 

4.0.1. Dataset 

The dataset under scrutiny contained all 122 experimental stimuli 
used by Bannard and Matthews (2008) (n  = 32) and (Arnon and Snider, 
2010) (n  = 90). While the two subsets came from separate studies, they 
were constructed with the same criteria and design in mind, and are thus 
groupable into a single dataset here. The stimuli were pairs of four-word 
phrases that differed in the final word. In each pair, the phrases differed 
in phrase-frequency (high vs.low) but were matched for substring fre
quency (word, bigram, and trigram): the phrases did not differ in the 
frequency of the final word, bigram or trigram. 

For the Bannard set, the high-frequency repeated 4-word sequences 
(e.g., when we go out) were selected from a naturalistic corpus of about 

1.72 million words of maternal child-directed speech. The Arnon set was 
selected from a 20-million corpus of American English collected from 
telephone conversations in the Switchboard and Fisher corpora for the 
Arnon study. 

The other half of the dataset was made of sequences matched by the 
authors with low-frequency sequences on the last word (e.g., when we go 
in), to obtain 61 minimal lexical pairs. Each 4-word sequence had been 
labelled ‘frequent’ or ‘infrequent’, according to the authors’ analyses of 
corpus frequency, and we used such information as Dependent Variable 
in our analyses. For the Bannard set, the final words of matched se
quences were controlled for (a) the frequency of the final word (e.g., 
juice and noise were roughly equally frequent), (b) the frequency of the 
final bigram (e.g., of juice and of noise were roughly equally frequent), 
and (c) the length of the final word in syllables. The Arnon set also 
controlled for trigram frequency. Six additional sequences from the 
Bannard dataset were labelled ‘intermediate frequency’ and were not 
considered in our analysis, because of their insufficient number to form a 
third category on their own. 

4.0.2. Corpus 

To calculate new lexical statistics over the existing dataset, we used 
two corpora. To model child language sequences in the Bannard set, we 
downloaded all 1-, 3-, and 4-grams of child-directed speech from an 
online repository of Childes corpora available at http://www.lucid.ac. 

uk/resources/for-researchers/toolkit/ as part of the Language Re
searchers’ Toolkit project (Chang, 2017). This corpus contains 40,507 1- 
gram types (9,222,801 tokens), 1,725,122 3-gram types (5,331,077 to
kens), and 2,467,181 4-gram types (4,062,022 tokens). 

To model adult sequences in the Arnon set, we obtained 1,3, and 4- 
grams based on the Corpus of Contemporary American English (COCA), 
one of the largest publicly-available, genre-balanced corpus of English. 
The data at the time of compilation contained approximately 430 
million word tokens. 

4.0.3. Measures 

From the corpora we obtained three lexical statistics of cohesion for 
each sequence in the dataset: (1) the frequency of each sequence on 
logarithmic scale; (2) the forward and (3) backward Surprisal of the last 
word on each sequence. In psycholinguistics, a hypothesis has gained 
ground that processing difficulty is proportional to the amount of in
formation conveyed. Surprisal S is an information-theoretic measure 
that estimates how unexpected a given event is. Conceptually, improb
able, i.e. ‘surprising’ events carry more information than expected ones, 
so that surprisal is inversely related to probability, through a logarithmic 
function. In the context of language processing, if w1 denotes a multi- 
word sequence, then the cognitive effort required for processing the 
next word, wt, is assumed to be proportional to its surprisal (Hale, 2006): 

effort(t)∝surprisal(wt) = − log(P(wt|w1,…,wt− 1)) (1)  

where P(wt |w1,…,wt− 1) is the forward probability of wt given the sen
tence’s previous words w1,…,wt− 1. 

For example, the surprisal of one of the sequences in our dataset when 
we go out is simply the sum of the individual items’ surprisal:  

where < sos > denotes a start-of-sentence symbol. The summation is 
relevant psychologically because surprisal is linearly related to reading 
times, and the reading time of a sequence of words equals the sum of 
reading times of its parts. Hence, surprisal of a multi-word sequence 
must equal the sum of surprisals of its parts. In our case, because the 
high-frequency and low-frequency sequences differed only in the last 
word, it was sufficient to measure the surprisal at the last word, e.g. 
comparing 

− logP(out|when,we, go)
(3)  

and 

− logP(in|when,we, go)
(4) 

The measure above is forward surprisal, i.e. as a function of the 
probability of a word given its previous context. Backward surprisal can 
also be calculated, based on the backward transitional probability, 
namely the likelihood of a context preceding a word. It denotes the 
frequency of the 4-gram sequence relative to all instances of the final 
word in the sequence. Again using the example above, the relevant 
comparison of backward surprisal was: 

− logP(when,we, go|out)
(5)  

S(when we go out) = S(when) + S(we)+ S(go)+ S(out) = − logP(when| < sos >) − logP(we| < sos >,when) − logP(go| < sos >,when,we) − logP(out|

< sos >,when,we, go)
(2)   
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and 

− logP(when,we, go|in)
(6) 

Forward and backward probabilities were calculated using the 
corpus n-grams described above. 

5. Results 

5.0.4. Baseline model 

Of the total 122 4-word sequences under scrutiny, 3 from the Arnon 
and 4 from the Bannard sets were excluded because 4-gram frequencies 
could not be calculated from the corpora. To first establish that our 
analyses with our corpora were comparable to original analyses, we 
assessed whether frequency of 4-gram sequences was a predictor of 
category assignment. A baseline logistic regression model included the 
(log) Frequency and Study (Arnon vs Bannard) to predict the category 
(low frequency vs high frequency sequences, as defined by Bannard and 
Arnon) of their experimental items (4-gram sequences). In line with the 
two previous studies, we also found that Frequency was a predictor for 
both datasets (β = 0.33, CI = − 0.37, 1.03, see Table 1 and Fig. 1). 

5.0.5. Additive model 

To assess whether the predictability of the last word of each sequence 
was informative in distinguishing sequence category, we ran a separate 
logistic regression adding Forward and Backward surprisal, in addition 
to (log) Frequency and Study. In this model, Backward surprisal (β =
− 0.40, CI = − 0.61, − 0.19) and Forward surprisal (β = − 0.52, CI =
− 0.76, − 0.27) but not Frequency nor Study were significant predictors 
in categorising the stimuli, (see Fig. 1). The three predictor variables 
were only weakly to moderately correlated (Forward surprisal and 
Frequency, r = − 0.34, Backward surprisal and Frequency, r = − 0.42, 
Forward surprisal and Backward surprisal, r = 0.18, see Table 2), 
justifying the choice of including them as linearly independent pre
dictors. Furthermore, a test of multicollinearity tested negative (the 
squared root of the Variance Inflation Factor was less than two). Finally, 
when directly comparing the two regression models, the Additive model 
dropped the deviance by 265.15–230.50  = 34.64, which was highly 
significant p < .001. Thus, based on these analyses the two categories of 
stimuli from the Bannard and Arnon datasets were distinguishable by 
predictability of the last word, more than the frequency of the stimuli. 
Surprisal estimates based of both forward and backward conditional 
probabilities were predictive of stimulus category, with more surprising 
sequence endings being categorised as ‘low-frequency’ items by the lo
gistic regression. These results dovetail with the literature in reading 
and sentence processing that found that words in more predictable 
contexts are read more quickly (e.g. Hale, 2006; Frank and Bod, 2011), 

and suggest that corpus-derived conditional probabilities are a signifi
cant predictor of single as well as multiword processing, over and above 
base frequencies as a covariate. 

6. Discussion 

We conceptually and statistically re-evaluated two well cited 
empirical studies that manipulated four-word phrases into frequent and 
infrequent categories, and found facilitative processing effects for the 
frequent phrases. Following these studies, frequency effects for multi- 
word expressions have been taken as evidence that a larger amount of 
language than previously acknowledged may be pre-compiled and 
stored in the mental lexicon rather than being processed on the fly by a 
real-time processor. In new corpus analyses, we found that the last word 
in the frequent phrases used in the above studies are also more pre
dictable than in the infrequent phrases, both in terms of forward and 
backward predictability. This suggests an alternative interpretation of 
the original studies, namely that multi-word storage effects are predic
tion and retrodiction effects in disguise. We now discuss the implications 
of the present results. 

6.1. Forward and backward looking 

First, our results fit very much with recent accounts that highlight an 
important role for proactive prediction and integrative ‘retrodiction’ in 
language processing and learning (cf. Ferreira and Chantavarin, 2018; 
Ferreira and Qiu, 2021; Huettig and Guerra, 2019; Huettig and Mani, 
2016). A large body of psycholinguistic evidence suggests that language 
users frequently predict upcoming words (e.g., Huettig, 2015; Pickering 
and Gambi, 2018, for review). One type of evidence consistent with such 
views are findings that word-to-word statistical information can 
constrain interpretation in the forward direction, so information from 
one word yields predictions about properties of upcoming words. 
Crucially, in the present study we found also evidence for the impor
tance of probabilistic processing in the backward direction. Accordingly, 
our results point to a reevaluation of the role of what might be called 
‘probabilistic retrodiction’ in language, which is understudied (or at 
least currently underappreciated, cf. Ferreira and Chantavarin, 2018; 
Ferreira and Qiu, 2021) in the psycholinguistics literature in favour of 
forward predictive models. In addition, our results suggest that forward 
and backward predictability are independently informative (and 
perhaps equally so, as the standardised beta values are of similar 
magnitude and influence the dependent variable in the same direction) 
in determining the storage, access, and processing of multi-word phra
ses. These findings also dovetail with recent evidence that probabilistic 
integration in the backward direction explains variance in processing 
modifier-noun collocation combinations like vast majority McConnell 
and Blumenthal-Dramé (2019), as well as reading times of naturally 
occurring sentences read silently (Onnis et al., 2021), and aloud – see 
Moers et al. (2017), although in the latter study the contributions of 
forward and backward probabilities were combined in a single predic
tor, and could not be disentangled. 

6.2. What is retrodiction? 

The question of how the past, which has already been observed, can 
be a random variable that comprehenders model probabilistically, may 
raise thorny questions of interpretability to some. Many current theo
retical treatments conceive of predictive processing as involving an 
explicit representation of likely future input that is ‘compared’ to the 
actual input to compute an error signal. Given such accounts, a model 
that predicts the past, may perhaps not be considered a reasonable ac
count of probabilistic retrodiction. If we acknowledge that probability 
theory is just one of several valid levels of describing processing and 
change the level of description, then the interpretation of the present 
results is simple. One psychological candidate mechanism is integration, 

Table 1 
Summary of the logistic regression analyses for variables predicting 4-word 
sequence category   

Dependent variable:  

Sequence category  

Baseline Model Additive Model 

(log) Frequency 0.200∗ ∗ ∗ (0.063, 0.337)  − 0.023 (− 0.189, 0.143) 
Study 0.329 (− 0.372, 1.031) 0.598 (− 0.222, 1.418) 
Backward surprisal  − 0.402∗ ∗ ∗ (− 0.613, − 0.191)  
Forward suprisal  − 0.516∗ ∗ ∗ (− 0.764, − 0.268)  
Constant − 0.569* (− 1.167, 0.029)  5.122∗ ∗ ∗ (2.811, 7.434)  

Observations 198 198 
Log Likelihood − 132.573 − 115.252 
Akaike Inf. Crit. 271.146 240.505 

Note: *p<0.1; ∗∗p<0.05; ∗ ∗ ∗p<0.01. 
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whereby the processing system does not always pre-activate, or predict, 
upcoming input but intergrates it faster if the preceding context is a good 
fit, or to put it probabilistically, is more likely to precede it. This fits with 
experimental evidence that suggests that language input is often fast and 
sub-optimal and may in a fairly large number of situations ‘afford’ rather 
limited forward looking (cf. Huettig and Mani, 2016). 

6.3. Multi-word processing 

How then do forward and backward looking processes affect the 
processing of multi-word phrases? On the level of the brain, one possi
bility is that single words are encoded as populations of neurons that can 
have different levels of activation. Such activation is likely highest when 
the neurons respond to a perceptual event (such as reading or hearing 
the word percept itself), or they might encode a perceptual simulation of 
that event, via spreading of activation with related words. If forward and 
backward conditional probabilities reflect the degree of potential 
spreading of activation between words, it is possible to envisage how 
words in an expression pass recurrent activation back and forth among 
each other, thus reinforcing each other with different degrees of acti
vation. Higher neuronal activations can lead to faster recognition and 
thus faster reading or naming times at the behavioural level. Now to 
understand how a phrase such as a drink of milk can be read, named or 
repeated faster than a drink of tea, imagine a population of inter
connected neurons that functions as a distributed and dynamic (over 
time) representation for a drink of …. At time step 1 the population code 
can spread activation to various words that might continue the 

sequence, and quicker activations are expected for words that have a 
higher forward probability (milk versus tea, alcohol, water, soda, etc.). At 
timestep 2, milk or tea are read or heard and thus their percepts send 
bottom-up activations that add up to the pre-activations that were 
spread at timestep 1. Because the forward probability of milk is higher 
than tea, neuronal preactivation was higher for milk and the word can be 
recognised faster than tea. 

This can be taken as the neural instantiation of the effect of forward 
probability on reading the last word on the 4-word phrases contem
plated in this study, and is consistent with recent accounts that explain 
prediction in terms of neural pattern completion (Falandays et al., 
2021). But how would backward probability influence processing times? 
Because the backward probability of a drink of … is higher given milk 
than given tea, the perceptual activation of milk can send stronger 
feedback signals back and forth to a a drink of … which reinforce each 
other, ultimately producing higher neuronal activation patterns for the 
sequence a drink of milk than for the sequence a drink of tea. We point out 
here that behaviourally such a neuronal state of affairs would translate 
into the stored sequences effects found in the literature, but crucially 
without the need for the sequence to be ‘unanalyzed’ and stored as a 
single mental representation. This is because the underlying neuronal 
structure of the lexicon can still be instantiated as a network of more or 
less loosely connected population codes for word representations that 
spread activation to each other in a web-like fashion. The strength of 
activation that flows back and forth from these words determines how 
fast these words are processed as a sequence, and is proportional to 
word-to-word probabilistic properties such as forward and backward 
probabilities, frequencies, and numerous potential other factors not 
considered here, such as semantic relations, phonological similarity, and 
grammatical dependencies (cf. Ferreira and Qiu, 2021). 

We stress here however that our results should not be taken as ruling 
out that some multi-word phrases can be stored and retrieved as a 
whole. We do interpret our findings however as suggesting that there is 
most likely a strong limit to what kind of sequences end up stored as 
multi-word sequences and will be retrievable whole versus being 
compositionally constructed online. We believe that the present results 

Fig. 1. Marginal effects in the Baseline and Additive logistic regressions.  

Table 2 
Correlation matrix for variables predicting 4-word sequence category.   

(log) Frequency Forward suprisal Backward surprisal 

(log) Frequency 1    
Forward suprisal -0.344  1  0.176  
Backward surprisal -0.416  0.176  1   
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are most compatible with some form of a dual-route process, in which 
compositional construction of multi-word sequences is akin to a default 
process but leaving open the possibility for storage and retrieval of 
multi-word units. 

6.4. Future work and conclusion 

Further research is required to explore the circumstances that in
crease the likelihood of storage and (preferential) access of multi-word 
sequences. Similarly, another important task for future research will 
be to investigate the exact mechanisms of how predictive and retro
dictive processes determine the extent to which frequent multi-word 
phrases are compositionally constructed on the fly. For example, it 
may be possible to assess the independent contribution of forward and 
backward surprisal on different real-time processing tasks, such as self- 
paced reading, phrase repetition, phrase recognition, and phrase naming 
tasks, by selectively manipulating the informativeness of each cue (high 
or low), while maintaining constant the sequence overall frequency. It is 
possible to select from a large database of language such as Google 
Books multi-word sequences that are matched in forward surprisal but 
differ in backward surprisal, and vice versa. Based on our regression 
analyses, we predict facilitatory effects of processing (faster reading 
times, more accurate repetitions, and faster recognition) for both types 
of stimuli. 

Electrophysiological studies may also turn out to be a fruitful avenue 
for further work. For example, when considering neural activity, the 
N400 ERP component has been studied extensively and taken as a 
measure of expectation violation, including probabilistic expectations 
that are measurable in terms of conditional probabilities between ele
ments. Because the N400 is sensitive to different degrees of probabilistic 
violations, it is a candidate neural signature for both forward and 
backward probabilistic processing. Thus, one would predict that a 
stronger N400 ERP component is correlated with higher levels of multi- 
word surprisals in both the forward and backward direction, lending 
support for a common neural mechanism. 

Another direction for future work could be to explore the effect of 
stored multi-word sequences on (word) cohort processing in speech 
processing (cf. Allopenna et al., 1998). If a multi-word sequence is 
processed as a chunk, reduced cohort competition should be observed 
for words in the sequence other than the first word (similar to reduced 
activation of ‘bone’ in trombone’ or ‘ate’ in ‘agitate’ in spoken word 
recognition). 

Finally, it is important to mention that the focus of the present study 
has been on whether people learn and process multi-word phrases as 
lexical units rather than as sequential combinations of individual words. 
In this type of research, the items under scrutiny are typically fragments 
of sentences that occur within phrases and are all syntactically cohesive, 
such as when we go out, a lot of noise, I have to pay, etc. Perhaps for this 
reason, such work has mostly ignored any hierarchical syntactic analysis 
of multi-word units. Further work thus could also usefully ‘scale up’ to 
make more contact with contemporary hierarchical syntactic composi
tional parsing approaches (cf. Ferreira and Qiu, 2021). 
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