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We introduce lower bounds for the rate of entropy production of an active stochastic process
by quantifying the irreversibility of stochastic traces obtained from mesoscopic degrees of freedom.
Our measures of irreversibility reveal signatures of time’s arrow and provide bounds for entropy
production even in the case of active fluctuations that have no drift. We apply these irreversibility
measures to experimental recordings of spontaneous hair-bundle oscillations in mechanosensory hair
cells from the ear of the bullfrog. By analysing the fluctuations of only the tip position of hair
bundles, we reveal irreversibility in active oscillations and estimate an associated rate of entropy
production of at least ∼ 3kB/s, on average. Applying thermodynamic uncertainty relations, we pre-
dict that measuring both the tip position of the hair bundle and the mechano-electrical transduction
current that enters the hair cell leads to tighter lower bounds for the rate of entropy production, up
to ∼ 103kB/s in the oscillatory regime.

I. INTRODUCTION

Active systems are maintained out of equilibrium by
processes that consume resources of energy and produce
entropy. This is the case of living cells, where energy is
provided in the form of biochemical fuel such as adeno-
sine triphosphate that drives active mesoscopic cellular
processes. As discussed below, an important example of
active cellular fluctuations are spontaneous oscillations of
mechanosensory hair bundles of auditory hair cells [1, 2].
These oscillations have been proposed to amplify sound
stimuli in the ear of many vertebrates, providing exquisite
sensitivity and sharp frequency selectivity [3].

Active mesoscopic processes do not obey the
fluctuation-dissipation theorem: measuring both the lin-
ear response of the system to weak external stimuli and
spontaneous fluctuations provides a means to quantify
deviations from thermal equilibrium [4–10]. A related
important question is how entropy production can be es-
timated in active mesoscopic systems. In cases where
active systems generate movement with drift, such as
molecular motors moving along filaments [11–13], the
rate of entropy production can be estimated from mea-
surements of drift velocities and viscous forces [11, 14].
However, for active fluctuations without drift, such as
spontaneous oscillations, it is unclear how entropy pro-
duction can be characterized. Time irreversibility is a
signature of the nonequilibrium nature of a system [15].
This suggests that quantification of irreversibility of fluc-
tuations provides information about entropy production.

Hair cells are the cellular microphones of the inner
ear [16]. They transduce sound-evoked mechanical vi-
brations of their hair bundle—a cohesive tuft of cylin-
drical stereocillia that protrudes from their apical sur-
face (Fig. 1A)—into electrical signals that then travel to

the brain. Fluctuations and response of the hair bun-
dle provide a paradigmatic case study of nonequilibrium
physics in biology. Hair bundles from the ear of the
bullfrog show noisy spontaneous oscillations [1]. Un-
der periodic external stimulation, oscillatory hair bun-
dles can actively amplify their response, resulting in a
hysteretic behaviour corresponding to a net energy ex-
traction from the bundle [17]. Furthermore, it was shown
that the fluctuation-dissipation theorem does not hold
for oscillatory hair bundles, revealing that their sponta-
neous fluctuations are also active [4]. This finding demon-
strates that hair bundle fluctuations must be described
by nonequilibrium stationary states. Such behaviour can
be captured by a minimal two-variable stochastic model
with nonlinear and non-conservative forces [1, 2, 18–20].
In these models, one variable describes the tip position of
the hair bundle, whereas the other variable describes the
dynamics of a collection of molecular motors that power
the bundle oscillations. Although the tip position can be
measured, motors’ fluctuations are hidden and hence can
only be estimated from stochastic simulations [2, 18, 21].
Experimental and theoretical evidence led to the pro-
posal that hair bundle spontaneous fluctuations are akin
to noisy limit-cycle oscillations close to a Hopf bifur-
cation [20]. Hence, as any active system, hair-bundle
spontaneous fluctuations are characterized by probabil-
ity fluxes in suitable phase spaces and by entropy pro-
duction. Whether, and to what extent, tools from the
emerging field of stochastic thermodynamics [22, 23] can
be used to estimate entropy production from measure-
ments of active hair-bundle fluctuations remains an open
question.

In this work, we introduce and put to the test a hi-
erarchy of bounds for the steady-state rate of entropy
production based on measures of irreversibility of sets
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of mesoscopic observables. We show that quantifying
irreversibility can reveal whether a noisy signal is pro-
duced by an active process or by a passive system. We
apply the theory to experimental recordings of spon-
taneous mechanical oscillations of mechanosensory hair
bundles in an excised preparation from the ear of the
bullfrog [24]. Quantifying irreversibility from measure-
ments of the bundle tip position, we obtain lower bounds
for the entropy production of its spontaneous fluctua-
tions. Finally, by means of uncertainty relations [25, 26],
we show that tighter bounds of entropy production can
be obtained if one also measures the mechano-electrical
transduction current.

The paper is organized as follows. In Sec. II, we dis-
cuss generic properties of irreversibility and dissipation
of mesoscopic nonequilibrium stationary states, and de-
scribe a method to quantify irreversibility from the statis-
tics of a single stochastic variable. In Sec. III, we provide
estimates of irreversibility from experimental measure-
ments of hair-bundle fluctuations. In Sec. IV we com-
pare the one-variable irreversibility estimates with en-
tropy production obtained from numerical simulations of
a stochastic model of active hair-bundle fluctuations. In
Sec. V, we use thermodynamic uncertainty relations to
predict how much entropy production can be estimated
by having access to the motors hidden state. Finally, in
Sec. VI we discuss our main findings and conclude the pa-
per. Mathematical derivations, details on experimental
data analysis and on biophysical modelling are provided
in the Appendices.

II. IRREVERSIBILITY AND DISSIPATION IN
STATIONARY PROCESSES

A. Generic properties

We first discuss the relation between entropy produc-
tion and irreversibility for generic nonequilibrium sta-
tionary processes. Consider a physical system described
by a set of variables labeled as Xα, with α = 1, 2, . . . . In
a stationary nonequilibrium process of time duration t,
the physical system traces a trajectory in the phase space
described by the stochastic processes Xα(t). We denote
by Γ[0,t] ≡ {(x1(s), x2(s), . . . ))}ts=0 a given trajectory
described by the system variables and its corresponding
time-reversed trajectory as Γ̃[0,t] ≡ {(θ1x1(t−s), θ2x2(t−
s), . . . )}ts=0, where θα = ±1 is the time-reversal signa-
ture of the α−th variable. Assume now that Xα are the
variables that may be out of equilibrium, i.e. we do not
include in Γ[0,t] those variables corresponding to thermal
reservoirs, chemostats, etc. In that case, the steady-state
rate of entropy production σtot is given by

σtot = kB lim
t→∞

1

t
D
[
P
(
Γ[0,t]

)∣∣∣ ∣∣∣P (Γ̃[0,t]

)]
, (1)

where kB is the Boltzmann constant and P denotes the
steady-state path probability [27–30]. Here D[Q||R] ≥ 0

is the Kullback-Leibler (KL) divergence between the
probability measures Q and R, which quantifies the dis-
tinguishability between these two distributions. For mea-
sures of a single random variable x the KL divergence
is given by D[Q(x)||R(x)] ≡

∫
dxQ(x) ln[Q(x)/R(x)].

Note that for isothermal systems σtotT equals to the rate
of heat dissipated to the environment at temperature T .

Often in experiments only one or several of the
nonequilibrium variables can be tracked in time. Con-
sider the case where only X1, . . . Xk are known. We de-
fine the k−variable irreversibility measure in terms of
path probabilities of k mesoscopic variables

σk ≡ kB lim
t→∞

1

t
D
[
P
(
Γ

(k)
[0,t]

)∣∣∣ ∣∣∣P (Γ̃(k)
[0,t]

)]
, (2)

where Γ
(k)
[0,t] ≡ {(x1(s), . . . , xk(s))}ts=0 and Γ̃

(k)
[0,t] ≡

{(θ1x1(t−s), . . . , θkxk(t−s))}ts=0 denote paths described
by k variables. The k−variable irreversibility measure in-
creases with the number of tracked degrees of freedom,
providing a set of lower bounds to entropy production:

0 ≤ σ1 ≤ · · · ≤ σk ≤ σk+1 ≤ · · · ≤ σtot. (3)

It can also be shown that the estimator σk equals the
physical entropy production σtot if the missing variables,
X` with ` > k, are at thermal equilibrium [31–33]. When
the missing variables are not at thermal equilibrium,
which is often the case in active systems, the estimate
σk ≤ σtot yields only a lower bound for the entropy pro-
duction rate.

B. One variable irreversibility measure

We now introduce a method to estimate the irre-
versibility measure σ1 for any nonequilibrium steady
state from a single stationary time series xi = X(i∆t)
(i = 1, . . . , n) of a variable X that is even under time
reversal. We describe the technique for a single vari-
able, but it can be generalized to several variables Xα(t).
In discrete processes, the KL divergence in σ1 can be
accurately measured from the statistics of sequences of
symbols [34, 35]. In continuous processes however, esti-
mating σ1 is a herculean task due to the difficulties in
sampling the whole phase space of paths [36–38].

The key idea of the method is to exploit the invari-
ance of the KL divergence under one-to-one transfor-
mations. Suppose that there exists a one-to-one map
ξi(x1, . . . , xn), i = 1, . . . , n, that transforms the original
time series and its time reversal into two new time series
ξFi = ξi(x1, . . . , xn) and ξRi = ξi(xn, . . . , x1) that are in-
dependent and identically distributed (i.i.d.) processes.
Such a procedure is often called a whitening filter [39, 40].
Because the new series are i.i.d., the KL divergence is
now simple to calculate: it is given by the KL divergence
between two univariate distributions p(ξ) and q(ξ), cor-
responding to the stationary probability distribution of
ξFi and ξRi , respectively [38]. In general, it is not possible
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to find a one-to-one map that fully eliminates the correla-
tions of both the forward (x1, . . . , xn) and the backward
(xn, . . . , x1) time series. In that case, the removal of the
correlations in the backward series is enough to provide
a lower bound for σ1:

σ1 ≥ kBfsD[p(ξ)||q(ξ)] ≡ σ̂1 , (4)

where fs = (∆t)−1 is the sampling frequency and
D[p(ξ)||q(ξ)] =

∫
dξ p(ξ) ln[p(ξ)/q(ξ)] is the KL diver-

gence between the univariate distributions p(ξ) and q(ξ).
We estimate D[p(ξ)||q(ξ)] ' γ

∑
i p̂i ln(p̂i/q̂i) where p̂, q̂

are empirical densities, and the sum runs over the num-
ber of histogram bins. We introduce the prefactor γ =
1−pKS ≤ 1, where pKS is the p-value of the Kolmogorov-
Smirnov statistic between p(ξ) and q(ξ), to correct the
statistical bias of our KL divergence estimate [41]. The
proof of the bound (4) and further details of the estimate
are found in Appendices A and B.

III. ONE VARIABLE IRREVERSIBILITY IN
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now discuss irreversibility and entropy production
in active mechanosensory hair cells from the bullfrog’s
ear. In experimental recordings of spontaneous hair-
bundle oscillations, only the tip position X1 of the bun-
dle is measured (Fig. 1B-C). Hair-bundle oscillations take
the shape of relaxation oscillations corresponding: an al-
ternation of fast jumps between two extreme positions
interspaced by dwell times. Measuring X1, we can only
estimate σ1, which provides a lower bound to the total
steady-state entropy production rate σtot. We later com-
pare this estimate to that obtained for a passive bistable
system in a thermal bath (Fig. 1D).

In the following, we make use of autoregressive (AR)
models for the whitening transformation. More precisely,
we obtain the transformed time series ξFi (ξRi ) as the dif-
ference between the observed values of the forward (back-
ward) time series and the forecast of that value based on
an AR model of order m = 10. Parameters of the model
are determined from fits of the AR-model to the time-
reversed series of positions. The residual time series ξFi
and ξRi (Fig. 1B-D, center column) obtained from the
whitening transformation are uncorrelated (Fig. 1B-D,
right column) and are therefore i.i.d. processes in good
approximation.

We find that the irreversibility measure σ̂1 given
by Eq. (4) distinguishes active hair-bundle fluctuations
(σ̂1 > 0) from passive fluctuations of a bistable system
(σ̂1 ' 0). Note that the estimate saturates to a plateau
when the time series is long enough, in practice here
longer than 10s. Using a population of 182 hair cells that
showed spontaneous hair-bundle oscillations [24], we ob-
tain an exponential distribution of σ̂1 with mean value
3 kB/s (Fig. 2B). Interestingly, this result depends on the
sampling frequency fs (see Appendix C): irreversibility
is maximal in the range fs ∼ (200 − 600)Hz where its
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FIG. 1. (A) Electron micrograph showing hair bundles that
protrude from the sensory epithelium of the bullfrog’s saccu-
lus. This organ from the frog’s inner ear is dedicated to the de-
tection of low frequency vibrations (∼ 5−150 Hz). The height
of the hair bundles is about ∼ 7µm. (B-C) Experimental
recordings of the tip position of two active mechanosensory
hair bundles that display spontaneous oscillations. (D) Time
series obtained from a simulation of a stochastic bistable os-
cillator, see text for details. In panels (B-D), we plot: the
position X of a hair bundle as a function of time (top left);
their time reversals (bottom left); residual time series ξFi (top
middle), ξRi (bottom middle); and the autocorrelation func-
tions (right column) of the full 30s recording (black "+"), ξFi
(blue squares), and ξRi (red circles). The data in (D) cor-
responds to a stochastic simulation of a system obeying the
Langevin equation ẋ = −V ′(x)+

√
2Dξ, with the bistable po-

tential V (x) = −ax2/2 + bx4/4 and parameter values a = 30,
b = 0.4, D = 20 [42].

value goes up to 4.3 kB/s. This frequency dependency
may provide additional information about timescales of
the underlying active process [43].

We further quantify differences in irreversibility in
typical examples of: (i) active oscillatory hair bundles
(Fig. 3A, top); (ii) hair bundle that we were brought to
quiescence upon exposure to a drug (gentamicin) that
blocks the transduction channels (Fig. 3A, middle); (iii)
noisy signals produced by the recording apparatus when
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FIG. 2. (A) Irreversibility measure σ̂1 (symbols) as a func-
tion of the observation time τ obtained from the time series
partially shown in Fig. 1A. The horizontal dashed line is set
to zero, corresponding to the reversible limit. The values of
irreversibility obtained for these time series is indicated in the
figure legends. They are given by the mean of the values of
σ̂1 for τ > 10s and the error bars by the standard deviation of
the same values. (B) Histogram of the irreversibility measure
σ̂1 obtained from 182 experimental recordings of spontaneous
active oscillations of the hair bundle of duration 30 s. The
experimental average value of the irreversibility measure σ̂1

is ∼ 3kB/s. Inset: Empirical cumulative distribution function
(CDF) of irreversibility (black circles). The red line is a fit to
an exponential distribution with mean value (2.82±0.02)kB/s
and R2 > 0.9990.

there is no hair bundle under the objective of the micro-
scope (Fig. 3A, bottom). To further characterize differ-
ences in irreversibility, we apply the local irreversibility
measure defined as

ŝ1(ξ) ≡ kBfs

[
p(ξ) ln

p(ξ)

q(ξ)
+ q(ξ)− p(ξ)

]
, (5)

which obeys ŝ1(ξ) ≥ 0 for all ξ [44], and σ̂1 =
∫
dξŝ1(ξ).

We find that for all the analyzed values of ξ, the local
irreversibility of active oscillations is ∼ 103 times larger
than for passive oscillations and experimental noise.

IV. ENTROPY PRODUCTION RATE OF
ACTIVE HAIR-BUNDLE FLUCTUATIONS

We now relate the estimate σ̂1 of entropy production
from experimental recordings (Fig. 2B) to the entropy
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FIG. 3. (A) Examples of experimental traces for the tip posi-
tion of different mechanosensory hair bundles as a function of
time. Top: active hair bundles. Bottom: passive hair bundles,
i.e. when the channel blocker gentamicin is present (magenta,
green), and experimental noise trace (black). (B) Estimate of
the local irreversibility measure (5) obtained from single 30s
recordings of the oscillations shown in panel A as a function
of the residual value ξ. The sampling rate was fs = 2.5 kHz.

production σtot which we obtain from stochastic sim-
ulations of hair-bundle oscillations. Spontaneous hair-
bundle oscillations are thought to result from an inter-
play between opening and closing of mechanosensitive ion
channels, activity of molecular motors that pull on the
channels, and fast calcium feedback. This interplay can
be described by two coupled stochastic differential equa-
tions for the position of the bundle X1 and of the center
of mass of a collection of molecular motors X2 [2, 24, 45]
(see Appendix D):

λ1Ẋ1 = − ∂V

∂X1
+
√

2kBTλ1 ξ1 (6)

λ2Ẋ2 = − ∂V

∂X2
− Fact +

√
2kBTeffλ2 ξ2 . (7)

Here, λ1 and λ2 are friction coefficients and ξ1 and
ξ2 in (6-7) are two independent Gaussian white noises
with zero mean 〈ξi(t)〉 = 0 (i = 1, 2) and correlation
〈ξi(t)ξj(t′)〉 = δijδ(t−t′), with i, j = 1, 2 and δij the Kro-
necker’s delta. T is the temperature of the environment,
whereas the parameter Teff > T is an effective tempera-
ture that characterizes fluctuations of the motors. The
conservative forces derive from the potential associated
with elastic elements and mechano-sensitive ion channels

V (X1, X2) =
kgs∆X

2 + kspX
2
1

2
(8)

− NkBT ln

[
exp

(
kgsD(X1 −X2)

NkBT

)
+A

]
,

where kgs and ksp are stiffness coefficients; D is the gat-
ing swing of a transduction channel; and A = exp[(∆G+
(kgsD

2)/2N)/(kBT )], ∆G being the energy difference
between open and closed states of the channels and
N the number of transduction elements. The force
Fact(X1, X2) = Fmax(1− SPo(X1, X2)) is an active non-
conservative force exerted by the molecular motors with
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FIG. 4. (A,B) Trajectories of the reduced variables X1 (A)
and X2 (B) as a function of time obtained from a simula-
tion of the stochastic model given by Eqs. (6-7). (C) Rep-
resentation of a 2-s trace of the simulations in (A,B) in the
{X1(t), X2(t)} plane. The black arrows illustrate the value
of the instantaneous velocity and the base of the arrow the
position. Parameters of the simulations: λ1 = 0.9 pNms/nm,
λ2 = 5 pNms/nm, kgs = 0.55 pN/nm, ksp = 0.3 pN/nm, D =
72 nm, S = 0.73, Fmax = 45.76 pN, N = 50, ∆G = 10kBT ,
kBT = 4.143 pNnm and Teff/T = 1.5.

a maximum value Fmax. The parameter S quantifies
calcium-mediated feedback on the motor force [18] and

Po(X1, X2) =
1

1 +A exp(−kgsD(X1 −X2)/NkBT )
,

(9)
is the open probability of the transduction channels.
Note that Eq. (9) is the open probability of a two-state
equilibrium model of a channel that with a free energy
difference between open and close states which depends
linearly on the distance X1−X2. As shown earlier [2, 18],
this model can capture key features of noisy spontaneous
oscillations of hair-bundle position X1 that have been
observed experimentally (Fig. 4A). The oscillation of the
motors’ position (Fig. 4B) is known in the model but hid-
den in experiments. Trajectories of only X1(t) or X2(t)
do not reveal obvious signs of a net current, which here
would correspond to a drift. However, trajectories in the
(X1, X2) plane show a net current which is a signature
of entropy production (Fig. 1C). In the following, we will
use this stochastic model to compare the irreversibility
measure σ̂1 to the total entropy production σtot.

In the stochastic model of hair-bundle oscillations
given by Eqs. (6-7) we deal with only two variables,
therefore σtot = σ2. From the analytical expression of
σ2, we find that the steady-state entropy production rate
can be written as [46, 47] (see Appendix E)

σtot = −〈Q̇1〉
(

1

T
− 1

Teff

)
+
〈Ẇact〉
Teff

, (10)

where −〈Q̇1〉 = −〈(∂V/∂X1) ◦ Ẋ1〉 is the steady-state
average heat dissipated to the thermal bath at tempera-
ture T and 〈Ẇact〉 = −〈Fact ◦ Ẋ2〉 is the power exerted
by the active force on the motors. Here 〈 · 〉 denote steady
state averages and ◦ the Stratonovich product [43, 48].
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FIG. 5. Dynamical and thermodynamic features of spon-
taneous hair-bundle oscillations as a function the calcium-
feedback strength S and maximal motor force Fmax obtained
from numerical simulations of the model given by Eqs. (6-
7): (A) Quality factor Q; (B) Steady-state average of the
open channel probability 〈Po〉; (C) Irreversibility measure σ̂1;
(D) Steady-state entropy production rate σtot. In (B,C,D)
we indicate the parameter values for which 〈Po〉 = 0.1, 0.5
and 0.9 (white dashed lines from top to bottom, respec-
tively). The results are obtained from numerical simulations
of Eqs. (6-7) of total duration tsim = 300 s, sampling fre-
quency fs = 1 kHz and parameter values λ1 = 2.8 pNms/nm,
λ2 = 10 pNms/nm, kgs = 0.75 pN/nm, ksp = 0.6 pN/nm,
D = 61 nm, ∆G = 10kBT , kBT = 4 pNnm and Teff/T = 1.5.

Equation (10) reveals two sources of nonequilibrium in
the model: the difference of effective temperature and
temperature, and the active force.

We performed numerical simulations of Eqs. (6-7) for
different values of the control parameters Fmax and S
(Fig. 4) to explore entropy production throughout the
state diagram of the system. The quality factor of the
oscillation Q −given by the ratio between the oscillation
frequency and the bandwidth at half the maximal height
of the power spectrum (see Appendix F)− and the aver-
age open probability 〈Po〉 at steady state are displayed
in Fig. 5A-B in the state diagram. The irreversibility
measure σ̂1 for trajectories X1(t) of spontaneous oscilla-
tions is shown in Fig. 4C. This measure can be compared
to the quantification of total entropy production σtot of
the model, given by Eq. (10), which is shown in Fig. 4D.
Irreversibility of trajectories and total entropy produc-
tion correlate strongly. As expected, σ̂1 provides a lower
bound to the actual dissipation rate. Actually, the rate
of entropy production estimated from σ̂1 is here typically
three orders of magnitude smaller than the total entropy
production. Clearly, measuring other degrees of freedom
additional to the hair-bundle position would be required
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FIG. 6. Estimating entropy production using a thermodynamic uncertainty relation. (A,D) Scatter plots of a sample trajec-
tories Γ[0,τ ] ≡ {(X1(s), Po(s))}τs=0 of duration τ = 30s (symbols) obtained from a numerical simulations of Eqs. (6-7). The
black lines show the initial 0.3s of the sampled trajectory. (B,E) Sample trajectories of the counterclockwise current of the
phase θ(t) = tan−1[P̄o(t)/X̄1(t)] obtained from the reduced variables P̄o(t) = Po(t)− 〈Po(t)〉 and X̄1(t) = X1(t)− 〈X1(t)〉 for
the quiescent (blue line) and oscillatory (red line) simulations. For comparison, we show in (E) (light blue lines) the same
trajectories displayed in (B). Note that, even in the quiescent regime, we can detect a current in the (X1, Po) space, revealing
activity in the fluctuations. These current fluctuations show both smaller mean and larger relative uncertainty compared to
those obtained with simulations in the oscillatory regime. (C,F) Histograms of the cumulated current up to τ = 2s obtained
from in the quiescent (blue bars, (C)) and the oscillatory (red bars, (F)) regimes. (G) Comparison between the irreversibil-
ity estimate σ̂2 from the thermodynamic uncertainty relation (Eq. (12), symbols) and the total entropy production rate σtot

(Eq. (10), lines) as a function of the observation time τ in the quiescent (blue squares, blue dotted line) and oscillatory (red
circles, red dashed line) regimes. (H) Comparison between the total entropy production rate σtot (black diamonds), the one-
variable irreversibility measure σ̂1 (green squares), and the two-variable irreversibility measure σ̂2 from the thermodynamic
uncertainty relation (Eq. (12), orange circles), as a function of the maximum motor force Fmax. In (G,H) the lines are a guide
to the eye. Simulation parameters: λ1 = 2.8 pNms/nm, λ2 = 10 pNms/nm, kgs = 0.75 pN/nm, ksp = 0.6 pN/nm, D = 61 nm,
∆G = 10kBT , kBT = 4 pNnm, Teff/T = 1.5, S = 0.94, and simulation time step ∆t = 1ms. Simulations were run for a
total duration of 300s at the two operating points with maximum motor force Fmax = 31pN (A-C) and Fmax = 62pN (D-F),
corresponding to quiescent and oscillatory regimes, respectively.

to obtain tighter bounds to the rate of entropy production
with our method or other estimation techniques [49–54].

V. THERMODYNAMIC UNCERTAINTY
RELATION IN THE EAR OF THE BULLFROG

Noisy limit-cycle oscillations in, for instance, a two-
dimensional phase space can reveal irreversibility in the
form of probability currents. It has been shown that
the so-called thermodynamic uncertainty relations pro-
vide lower bounds to the rate of entropy production in
terms of the mean and the variance of empirical time-
integrated currents (see e.g. [25, 26]). Here, we apply one
of these relations to predict how much entropy produc-

tion one can assess by measuring two mesoscopic degrees
of freedom: the tip positionX1 of the hair bundle and the
transduction current, normalized to its maximum value,
Po (see Eq. (9)). Specifically, we analyze two-dimensional
stochastic trajectories Γ[0,τ ] ≡ {(X1(s), Po(s))}τs=0 ob-
tained from simulations of Eqs. (6-7) in the quiescent
(Fig. 6A) and oscillatory region (Fig. 6D) of the state di-
agram shown in Fig. 5. These trajectories reveal a larger
circulating probability current within the oscillatory re-
gion, as expected, but also a smaller relative uncertainty.

To quantify these effects, we map the dynamics into the
complex plane z(t) = X̄1(t) + iP̄o(t) and measure θ(t) =
φ(t)+2πNφ(t), where φ(t) = tan−1(P̄o(t)/X̄1(t)) ∈ [0, 2π]
is the phase and Nφ(t) is the net number of counter-
clockwise turns—the winding number. Here, X̄1(t) =
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X1(t)−〈X1〉, P̄o(t) = Po(t)−〈Po〉. Using sample trajec-
tories of duration τ = 2s, we found that the counterclock-
wise current j(t) = φ(t)/τ displays both a larger absolute
mean and a larger signal-to-noise ratio, corresponding to
more accurate currents, when the system operates in the
oscillatory (Figs. 6D) rather than in the quiescent regime
of the dynamics (Figs. 6B). Following Refs. [52, 55], the
following thermodynamic uncertainty relation holds for
any observation time window τ :

σtot
Var[j(τ)]

〈j(τ)〉2
τ ≥ 2kB , (11)

where Var[j(τ)] = 〈j2(τ)〉−〈j(τ)〉2 is the finite-time vari-
ance of the current. From Eq. (11), we extract the esti-
mate (see also Ref. [52, 56])

σ̂2 ≡
2kB

τ

〈j(τ)〉2

Var[j(τ)]
, (12)

which provides a lower bound for the total entropy pro-
duction σ̂2 ≤ σtot. Note that the inequality (11) holds for
any time-integrated current of a Markovian nonequilib-
rium steady state, which includes the one we measure as
a particular case. We show estimates σ̂2 for the two case
studies in (Fig. 6G). For an example trajectory in the
quiescent regime of the dynamics, σ̂2 ∼ 1kB/s is of the
same order of magnitude as σ̂1 (Fig. 6G, blue squares).
Remarkably, operating in the oscillatory regime instead
yields an estimate σ̂2 ∼ 103kB/s (Fig. 6G, red circles),
which is three orders of magnitude larger than σ̂1 and
only a few fold smaller than σtot.

To get further insights on entropy production upon
varying the operating point in the state diagram of the
system, we plot σ̂2 as a function of the maximal motor
force Fmax at fixed S = 0.94 (Fig. 6H). In the quiescent
region, σ̂2 is not significantly different from σ̂1, predict-
ing low entropy production (∼ 1kB/s) about one order of
magnitude below σtot. Increasing Fmax, the two-variable
irreversibility measure σ̂2 and the total entropy produc-
tion σtot both exhibit a jump when the system enters the
oscillatory region of the dynamics, which is indicative
of the underlying deterministic Hopf bifurcation, as also
observed for other oscillatory systems in Ref. [56]. The

one-variable irreversibility measure σ̂1 also increased in
this region but the variation was smoother.

VI. DISCUSSION

In this work, we have have shown that fluctuations
of active systems can reveal the arrow of time even in
the absence of net drifts or currents. The hierarchy of
measures of time irreversibility introduced here provides
lower bounds for the entropy production of an active pro-
cess. We have demonstrated the applicability of the ap-
proach by estimating entropy production associated with
experimental noisy oscillations of a single degree of free-
dom in the case of mechanosensory hair bundles from the
bullfrog’s ear. We have shown that quantifications of the
arrow of time can efficiently discriminate quiescent and
oscillatory hair bundles, as well as reaveal transitions be-
tween the two regimes in response to changes in a control
parameter (e.g. Calcium concentration as in Ref. [2]).
However, using a model of active hair bundle oscillations,
we also showed that estimating the rate of entropy pro-
duction with only one degree of freedom yields a lower
bound that can be orders of magnitude smaller than the
total entropy production rate in the system. In the case
of hair-bundle oscillations, we predict that measuring a
second degree of freedom, e.g. the transduction current,
would add sufficient information to get a tight bound.
With two degrees of freedoms, the current in the phase
space and its fluctuations can be used to bound entropy
production by means of thermodynamic uncertainty rela-
tions. Overall, our results show that irreversibility mea-
sures can quantify entropy production in active matter,
including living systems, from fluctuations of only a few
mesoscopic degrees of freedom.
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[28] C. Maes and K. Netočnỳ, J. Stat. Phys. 110, 269 (2003).
[29] U. Seifert, Phys. Rev. Lett. 95, 040602 (2005).
[30] I. Neri, É. Roldán, and F. Jülicher, Phys. Rev. X 7,

011019 (2017).
[31] A. Gomez-Marin, J. M. R. Parrondo, and C. Van den

Broeck, EPL 82, 50002 (2008).
[32] J. Mehl, B. Lander, C. Bechinger, V. Blickle, and

U. Seifert, Phys. Rev. Lett. 108, 220601 (2012).
[33] A. Celani, S. Bo, R. Eichhorn, and E. Aurell, Phys. Rev.

Lett. 109, 260603 (2012).
[34] E. Roldán and J. M. R. Parrondo, Phys. Rev. Lett. 105,

150607 (2010).

[35] É. Roldán and J. M. R. Parrondo, Phys. Rev. E 85,
031129 (2012).

[36] D. Andrieux, P. Gaspard, S. Ciliberto, N. Garnier,
S. Joubaud, and A. Petrosyan, J. Stat. Mech. 2008,
P01002 (2008).

[37] S. Tusch, A. Kundu, G. Verley, T. Blondel, V. Miralles,
D. Démoulin, D. Lacoste, and J. Baudry, Phys. Rev. Lett.
112, 180604 (2014).

[38] E. Roldán, Irreversibility and dissipation in microscopic
systems (Springer Theses, Berlin, 2014).

[39] A. J. Efron and H. Jeen, IEEE Trans. Sign. Proc. 42,
1572 (1994).

[40] A. Galka, T. Ozaki, J. B. Bayard, and O. Yamashita, J.
Stat. Phys. 124, 1275 (2006).

[41] J. A. Bonachela, H. Hinrichsen, and M. A. Munoz, Jour-
nal of Physics A: Mathematical and Theoretical 41,
202001 (2008).

[42] L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni,
Reviews of modern physics 70, 223 (1998).

[43] See Supplemental Material.
[44] N. Shiraishi, K. Saito, and H. Tasaki, Phys. Rev. Lett.

117, 190601 (2016).
[45] V. Bormuth, J. Barral, J.-F. Joanny, F. Jülicher, and

P. Martin, PNAS 111, 7185 (2014).
[46] R. Chetrite and K. Gawedzki, Comm. Math. Phys. 282,

469 (2008).
[47] L. Dabelow, S. Bo, and R. Eichhorn, arXiv:1806.04956

(2018).
[48] K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998).
[49] É. Roldán, I. Neri, M. Dörpinghaus, H. Meyr, and

F. Jülicher, Phys. Rev. Lett. 115, 250602 (2015).
[50] P. Pietzonka, A. C. Barato, and U. Seifert, Phys. Rev. E

93, 052145 (2016).
[51] C. Maes, Phys. Rev. Lett. 119, 160601 (2017).
[52] J. Li, J. M. Horowitz, T. R. Gingrich, and N. Fakhri,

Nature communications 10, 1 (2019).
[53] A. Frishman and P. Ronceray, arXiv:1809.09650 (2018).
[54] T. Van Vu, Y. Hasegawa, et al., Physical Review E 102,

062132 (2020).
[55] P. Pietzonka, F. Ritort, and U. Seifert, Physical Review

E 96, 012101 (2017).
[56] D. S. Seara, B. B. Machta, and M. P. Murrell, Nature

Communications 12, 1 (2021).
[57] F. Jülicher, K. Dierkes, B. Lindner, J. Prost, and P. Mar-

tin, Eur. Phys. J. E 29, 449 (2009).



9

APPENDIX

Here we present additional details of the methods and results discussed in the Main Text. In Secs. A and B, we
provide a derivation of the bound used in Eq. (4) in the Main Text, and describe the whitening transformation that we
use to estimate irreversibility of stochastic time traces. In Sec. C, we analyze how our irreversibility measure depends
on the data sampling rate of the experimental recordings of hair-bundle spontaneous fluctuations. In Sec. D, we
discuss the biophysical model of hair-bundle oscillations and the experimental techniques. In Sec. E, we discuss how
entropy production is estimated in numerical simulations of the hair-bundle biophysical model. Section F provides
details on the calculation of the quality factor of spontaneous oscillations shown in Fig. 5A in the Main Text.

Appendix A: Bounds on the multivariate Kullback-Leibler divergence

Here we prove a general lower bound for the Kullback-Leibler (KL) divergence between two multivariate probability
densities PX(x1, . . . , xn) and QX(x1, . . . , xn) that fulfill the following: there exits a one-to-one map ξi = ξi(x1, . . . , xn)
with i = 1, . . . , n, such that

1. the transformed variables ξi are identically distributed under both P and Q, that is, the distributions
PΞ(ξ1, . . . , ξn) and QΞ(ξ1, . . . , ξn) have, respectively, identical marginal distributions p(ξ) and q(ξ) for any ξi
(i = 1, . . . , n);

2. the transformed variables ξi are independent and identically distributed (i.i.d.) under the distribution Q, that
is, QΞ(ξ1, . . . , ξn) = Πi q(ξ).

The first step in the derivation is a simple application of the invariance of the KL distance under a one-to-one map:

D [PX(x1, . . . , xn)||QX(x1, . . . , xn)] = D [PΞ(ξ1, . . . , ξn)||QΞ(ξ1, . . . , ξn)] . (A1)

Second, we can rewrite the relative entropy as

D [PΞ(ξ1, . . . , ξn)||QΞ(ξ1, . . . , ξn)] =

∫
dξ1· · ·

∫
dξn PΞ(ξ1, . . . , ξn) ln

PΞ(ξ1, . . . , ξn)

Πi q(ξi)

=

∫
dξ1· · ·

∫
dξn

[
PΞ(ξ1, . . . , ξn) ln

Πi p(ξi)

Πi q(ξi)
+ PΞ(ξ1, . . . , ξn) ln

PΞ(ξ1, . . . , ξn)

Πi p(ξi)

]
= nD[p(ξ)||q(ξ)] +D [PΞ(ξ1, . . . , ξn)||Πi p(ξi)] . (A2)

Because the KL divergence between two distributions is always positive, Eqs. (A1) and (A2) yield the bound

D [PX(x1, . . . , xn)||QX(x1, . . . , xn)] ≥ nD[p(ξ)||q(ξ)] , (A3)

and the inequality saturates if the transformed variables ξi (i = 1 . . . n) are also i.i.d. under PΞ(ξ1, . . . , ξn), i.e. when
PΞ(ξ1, . . . , ξn) = Πi p(ξi). If one can find a one-to-one map that transforms the original random variables into i.i.d.
variables under both distributions P and Q, then (A3) becomes an equality and the exact KL divergence between the
two multivariate distributions PX and QX can be reduced to the KL divergence between single variable distributions
p(ξ) and q(ξ), which is much easier to evaluate from real data. This is the key idea of our method to estimate the
irreversibility of experimental time series.

Appendix B: Irreversibility in continuous time series: the whitening transformation

The estimation of the KL divergence rate from single stationary trajectories of both discrete and continuous random
variables have been previously discussed [38]. For continuous random variables, the most common strategy is to make
a symbolization or discretization of the time series [36]. Then, the KL divergence is estimated from the statistics
of substrings of increasing length [34, 35]. The main limitation of this method is that one easily reaches lack of
statistics even for short substrings. If the observed time series is non-Markovian, this limitation could yield inaccurate
bounds for the entropy production. For instance, the KL divergence between two data substrings can be zero in
non-equilibrium stationary states without observable currents [34, 35, 38].

Here we introduce a new method to estimate the KL divergence rate

σ1

kB
≡ lim
t→∞

1

t
D
[
P
(
{x(s)}ts=0

)
||P
(
{x(t− s)}ts=0

)]
, (B1)
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that is valid for continuous and possibly non-Markovian stochastic processes X(t). First, in practice one has access to
discrete-time observations of the process xi ≡ X(i∆t), i = 1, . . . , n, i.e., a time series containing n = t/∆t consecutive
samples of the process with sampling rate fs = 1/∆t. The time discretization implies a loss of information yielding a
lower bound to the KL divergence rate:

σ1

kB
≥ fs lim

n→∞

1

n
D[PX(x1, . . . , xn)||QX(x1, . . . , xn)] , (B2)

where QX(x1, . . . , xn) = PX(xn, . . . , x1) is the probability to observe the reverse trajectory (xn, . . . , x1).
We can now apply the inequality (A3) to the right-hand side in Eq. (B2) To do that, it is necessary to find a one-

to-one map ξi = ξi(x1, . . . , xn) that transforms the reverse time series (xn, . . . , x1) into a sequence of n i.i.d. random
variables, that is, into a white noise. Such a transformation is usually termed whitening transformation.

An example of whitening transformation is the time series formed by the residuals of an autoregressive model, which
is the transformation that we will use along this paper. A discrete-time stochastic process Yi is called autoregressive
of order m, AR(m), when its value at a given time is given by a linear combination of its m previous values plus a
noise term. Such process is univocally determined by m ≥ 1 real coefficients, a1, a2, . . . , am, a discrete-time white
noise ηi and a set of initial values Y1, Y2, . . . , Ym. The values of Yi for i > m are given by the linear recursion

Yi =

m∑
j=1

ajYi−j + ηi . (B3)

Inspired by the AR(m) process, we introduce the following one-to-one map

ξi =


xi if i ≤ m

xi −
m∑
j=1

ajxi−j if i > m
, (B4)

which is a linear transformation defined by a unitriangular matrix with Jacobian equal to one. With an appropriate
choice of the coefficients aj , one can get a new process (ξ1, . . . , ξn) which is approximately i.i.d. A good choice is given
by a maximum likelihood fit of the process to the AR(m) model. In that case, the elements ξi in this new time series
for i > m are usually called residuals of the original time series (x1, . . . , xn) with respect to the AR(m) model. Notice
also that, if (x1, . . . , xn) is indeed a realization of the stochastic process (B3), then the residuals are i.i.d. random
variables and the process (ξm+1, . . . , ξn) has correlations 〈ξiξj〉 = δij for all i, j > m.

We now apply the bound (A3) to the KL divergence in the right hand side of Eq. (B2), using the transformation
defined by Eq. (B4). Since the contribution of the first, possibly correlated, m values of the time series ξi, vanishes
in the limit n→∞, we obtain the following lower bound to the KL divergence rate [Eq. (7) in the Main Text]:

σ1

kB
≥ fsD[p(ξ)||q(ξ)] . (B5)

We can obtain empirical estimates of p(ξ) and q(ξ) from a single stationary time series (x1, . . . , xn) as follows.
We apply the transformation (B4) to both the original time series (x1, . . . , xn) and to its time reversal (xn, . . . , x1)
obtaining, respectively, two new time series (ξF

1 , . . . , ξ
F
n ) and (ξR

1 , . . . , ξ
R
n ), which are stationary at least for i > m.

The empirical PDFs obtained from the data of each series are estimations of, respectively, p(ξ) and q(ξ). Note that
the same transformation (B4) must be applied to both the original time series (x1, . . . , xn) and its time reverse
(xn, . . . , x1), but the inequality (A3) only requires uncorrelated residuals in the reverse series. For this purpose, we
calculate the coefficients a1, . . . , am by fitting the reverse time series (xn, . . . , x1) to the AR(m) model in Eq. (B3).

As indicated in the previous section, the inequality (B5) is tighter when the residuals are uncorrelated in the
forward series as well. This is the case of the experimental series that we have analyzed (see, for instance, Fig. 2B in
the Main Text) although, in principle, it is not guaranteed by this procedure. We remark that the inequality (B5) is a
rigorous result if the transformation (B4) applied to the reverse time series yields an uncorrelated series (ξR

1 , . . . , ξ
R
n ).

In that case, kBfsD[p(ξ)||q(ξ)] is an estimate of σ1 with only two possible sources of error: i) the discrete sampling
of the process X(t) and ii) the remnant correlation time in the residuals (ξF

1 , . . . , ξ
F
n ) obtained from the forward time

series.

To summarize, our theory provides an estimate σ̂1 for the KL divergence rate σ1 which can be evaluated as
follows:

1. Estimate the coefficients, a1, . . . , am, by fitting the time-reversed series (xn, . . . , x1) to an autoregressive AR(m)
model of order m > 1. A reasonable choice is m = 10, but it should be tuned to minimize the correlation time
in the residuals (ξR

1 , . . . , ξ
R
n ).
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2. Apply the whitening transformation (B4) to the original series (x1, . . . , xn) and to its time reversal (xn, . . . , x1)
to obtain, respectively, new time series (ξF

1 , . . . , ξ
F
n ) and (ξR

1 , . . . , ξ
R
n ). Note that the new processes are not each

other’s time reversal.

3. Obtain the empirical distributions p(ξ) and q(ξ) from the time series (ξF
1 , . . . , ξ

F
n ) and (ξR

1 , . . . , ξ
R
n ), respectively.

4. Calculate the KL divergence between p(ξ) and q(ξ)

D[p(ξ)||q(ξ)] =

∫
dξ p(ξ) ln

p(ξ)

q(ξ)
, (B6)

which can be estimated from numerical integration of the right hand side in (B6) using the empirical normalized
histograms p(ξ) and q(ξ). We call this estimate D̂, which is given by

D̂ = γ
∑
i

p̂i ln
p̂i
q̂i

, (B7)

where p̂i = nF
i /(
∑
i n

F
i ) and q̂i = nR

i /(
∑
i n

R
i ) are the empirical probabilities, obtained from the number of times

nF
i and nR

i that the sequences (ξF
1 , . . . , ξ

F
n ) and (ξR

1 , . . . , ξ
R
n ) lie in the i−th bin, respectively. The sum in (B7)

runs over all bins for which nF
i > 0 and nR

i > 0. For simplicity, we used 100 bins of equal spacing ranging from
the minimum to the maximum values of the residual time series (ξF

1 , . . . , ξ
F
n ).

The value of the estimate D̂ of the KL divergence (B6) is weighted by a prefactor γ ≤ 1 defined in terms of the
probability to reject the null hypothesis p(ξ) = q(ξ). We use this procedure to correct the statistical bias in the
estimation of the KL divergence that appears when two stochastic processes have similar statistics [35, 41]. For
this purpose, we use the Kolmogorov–Smirnov (KS) statistical test under the null hypothesis H0 : p(ξ) = q(ξ)
which yields a p-value pKS for the two distributions to be equal. Here, small pKS means that there is stronger
statistical evidence in favour of the alternative hypothesis p(ξ) 6= q(ξ), thus γ = 1 − pKS serves as a weight of
irreversibility: γ ' 0 when it is hard to reject H0 (reversibility) and γ ' 1 there is a larger statistical evidence
to reject H0.

5. Finally, our estimate of σ̂1 is thus given by the KL divergence estimate D̂ times the Boltzmann constant and
the data sampling frequency:

σ̂1 = kBfsD̂ . (B8)

Appendix C: Dependency of the irreversibility measure on the sampling frequency

In this section, we analyse the dependency of our irreversibility measure on the sampling frequency fs. For this
purpose, we evaluate σ̂1 defined in Eq. (B8) for 30s recordings of the 182 cells that showed spontaneous oscillations at
different sampling frequencies, ranging from 125Hz to 2500Hz (the latter corresponding to the data shown in Fig. 3C
in the Main text). Figure 7 shows that the distribution of the irreversibility measure depends strongly on the sampling
frequency of the data. Notably, the distributions shift towards higher irreversibility when the sampling frequency is
reduced, until there is too much filtering fs < 250Hz such that oscillations cannot be distinguished clearly.

In Fig. 8 we report the distributions of the parameter γ for the 182 recordings of spontaneous oscillations at
different sampling frequencies. For all the analyzed cases, the distributions are right-sweked towards values of γ close
to 1. Interestingly, the number of cells that display large γ (i.e. KS p-value pKS < 0.05) attains its maximum in an
intermediate frequency range ∼ 200− 600Hz. To gain further insight on this result, we plot in Fig. 9 box plots of the
distributions of γ and of the corresponding irreversibility estimate σ̂1 as a function of the data sampling frequency.
Notably, the median of γ is above 0.95 for intermediate sampling frequencies ranging from 208 to 625Hz (Fig. 9A).
For values of fs of this frequency band 208 − 625Hz, the median of γ is above 0.95 indicating that more than half
of the cells display irreversibility with "significant" KS p-value pKS < 0.05 at those frequencies. Within this band,
the median of the irreversibility measure σ̂1 decreases monotonically with fs from 3.5 kB/s (fs = 208 Hz) to 2.6 kB/s
(fs = 625 Hz).

Appendix D: Biophysics of mechanosensory hair bundles

Details of the experimental procedure have been published elsewhere [2]. In short, an excised preparation of the
bullfrog’s (Rana catesbeiana) sacculus was mounted on a two-compartment chamber to reproduce the ionic environ-
ment of the inner ear. This organ is devoted to sensitive detection of low-frequency vibrations (5 − 150 Hz) of the
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FIG. 7. Histograms of the irreversibility measure σ̂1/kB for different values of the sampling frequency fs indicated above each
panel of the figure. All the histograms were obtained from the same ensemble of 182 oscillatory hair cells that displayed active
oscillations.
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FIG. 8. Histograms of the parameter γ = 1 − pKS with pKS given by the Kolmogorov-Smirnov p-value for different values of
the sampling frequency fs indicated above each panel of the figure. All the histograms were obtained from the same ensemble
of 182 oscillatory hair cells that displayed active oscillations.

animal’s head in a vertical plane; it contains about 3000 sensory hair cells that are arranged in a planar epithelium.
The basal bodies of hair cells were bathed in a standard saline solution and the hair bundles projected in an artificial
endolymph. The preparation was viewed through a ×60 water-immersion objective of an upright microscope. Under



13

125 166 208 250 500 625 833 1250 2500
Frequency     (Hz)

0

2

4

6

8

10

12

125 166 208 250 500 625 833 1250 2500
Frequency     (Hz)

0

0.2

0.4

0.6

0.8

1A) B)

FIG. 9. Box plots of the parameter γ (A) and of the irreversibility measure σ̂1 (B) as a function of the sampling frequency
obtained from recordings of the tip position of hair bundles in the entire population of 182 cells. The yellow dashed line in (A)
is set to the threshold γ = 0.95 corresponding to the Kolmogorov-Smirnov p-value pKS < 0.05. In (B), we highlight (horizontal
yellow thick lines) the median of the distributions of σ̂1 for which the median value of γ is larger than 0.95.

these conditions, spontaneous hair-bundle oscillations were routinely observed. The oscillations could be recorded
by imaging, at a magnification of ×1000, the top of the longest stereociliary row onto a displacement monitor that
included a dual photodiode. Calibration was performed by measuring the output voltages of this photometric system
in response to a series of offset displacements. Here, we analyzed 182 spontaneously oscillating hair bundles from data
previously published [24].

Spontaneous hair-bundle oscillations were described by a published model of active hair-bundle motility [2] that
rest on a necessary condition of negative hair-bundle stiffness, on the presence of molecular motors that actively pull
on the tip links, and on feedback by the calcium component of the transduction current. Hair-bundle deflections
affect tension in tip links that interconnect neighbouring stereocillia of the bundle. Changes in tip-link tension in
turn modulate the open probability of mechano-sensitive ion channels connected to these links. Importantly, the
relation between channel gating and tip-link tension is reciprocal: gating of the transduction channels affects tip-link
tension. Consequently, channel gating effectively reduces the stiffness of a hair bundle, a phenomenon appropriately
termed "gating compliance", which can result in negative stiffness if channel-gating forces are strong enough. Active
hair-bundle movements result from the activity of the adaptation motors. By controlling tip-link tension, adaptation
motors regulate the open probability of the mechanosensitive channels. The force produced by the motors is in turn
regulated by the Ca2+ component of the transduction current which thus provides negative feedback on the motor
force [2]. When the fixed point of this dynamical system corresponds to an unstable position of negative stiffness, the
system oscillates spontaneously. The maximal force exerted by the motors Fmax and the calcium feedback strength S
are control parameters of the system and fully determine its dynamics (oscillatory, quiescent, bi-stable) [18].

Appendix E: Quantification of entropy production in numerical simulations of hair bundle oscillations

In this Section, we provide numerical results for the stochastic model of the ear hair bundle given by Eqs. (3-5) in
the Main Text. The steady-state entropy production rate of the model is given by

σtot =
1

T

〈
F1 ◦

dX1

dt

〉
+

1

Teff

〈
F2 ◦

dX2

dt

〉
, (E1)

where F1 = F1(X1, X2), F2 = F2(X1, X2) and ◦ denotes the Stratonovich product. Using the definitions of the forces
in Eq. (E1) one obtains after some algebra Eq. (6) in the Main Text. In all our numerical simulations, we estimate
the steady-state averages of the type 〈

F ◦ dX
dt

〉
= lim
t→∞

1

t

∫ t

0

F (t′) ◦ dX(t′) , (E2)
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for a generic force F (t) = F (X(t), Y (t)) from a single stationary trajectory of total duration τ = 300 s and sampling
time ∆t = 1 ms as follows: 〈

F ◦ dX
dt

〉
' 1

τ

n∑
i=1

(
F (ti) + F (ti−1)

2

)
(X(ti)−X(ti−1)) , (E3)

where ti = i∆t and n = τ/∆t.

Appendix F: Estimation of the quality factor of stochastic oscillations

We estimate the quality factor Q of spontaneous hair-bundle oscillations from numerical simulations of the hair-
bundle stochastic model given by Eqs. (3-4) in the Main Text. For this purpose, we generate a single numerical
simulation of duration tsim = 300 s. We then partition the simulation into 10 consecutive traces of duration T =
tsim/10 = 30 s. For each of these traces {Xα(t)} (α = 1, . . . , 10) we compute the power spectral density as Cα(f) =

(1/T )
∣∣∣∫ T0 Xα(s)e2πift dt

∣∣∣2. We then calculate the average of the power spectral density over the 10 different traces

C̃(f) = (1/10)
∑10
α=1 Cα(f) and fit the estimate C̃(f) as a function of f to the sum of two Lorentzian functions [4,

24, 57]

C̃(f) =
A

(fo/2Q)2 + (f − fo)2
+

A

(fo/2Q)2 + (f + fo)2
, (F1)

where Q is the quality factor, fo is the oscillation frequency and A > 0 is an amplitude parameter. Figure 10 shows
examples of numerical simulations for which we apply this procedure to determine the value of the quality factor by
extracting the value Q from the fit of the data to Eq. (F1). Notably, Eq. (F1) reproduces power spectra of hair-bundle
simulations for oscillations with values Q that are in a wide range of orders of magnitude (Fig. 10C).
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FIG. 10. Estimation of the quality factor Q from numerical simulations of the hair bundle. (A) Values of the quality factor
Q calculated from numerical simulations of duration tsim = 300 s for the same parameter values as in Fig. 4 in the Main Text.
(B) Examples of 0.5-second traces of X1 as a function of time for the parameter values indicated in A: B.1) [1 in (A)]; B.2) [2 in
(A)], B.3) [3 in (A)]; B.4) [4 in (A)]. (C) Power spectral density (black line) of the numerical simulations with parameter values
indicated with black open circles in (A). The quality factor is estimated from a fit of the power spectra to Eq. (F1) (red line).
The values of Q and fo extracted from the fits are: Q = 0.5, fo = 7.3Hz (C.1), Q = 7, fo = 25Hz (C.2), Q = 0.45, fo = 10.6Hz
(C.3), Q = 3.8, fo = 41.3Hz (C.4).
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