
Nonlinear caging in All-Bands-Flat Lattices

Carlo Danieli,1, 2 Alexei Andreanov,2, 3 Thudiyangal Mithun,2, 4 and Sergej Flach2, 3

1Max Planck Institute for the Physics of Complex Systems, Dresden D-01187, Germany
2Center for Theoretical Physics of Complex Systems, Institute for Basic Science(IBS), Daejeon 34126, Korea

3Basic Science Program(IBS School), Korea University of Science and Technology(UST), Daejeon 34113, Korea
4Department of Mathematics and Statistics, University of Massachusetts, Amherst MA 01003-4515, USA

(Dated: October 20, 2020)

We study the impact of classical short-range nonlinear interactions on transport in lattices with no
dispersion. The single particle band structure of these lattices contains flat bands only, and cages
non-interacting particles into compact localized eigenstates. We demonstrate that there always
exist local unitary transformations that detangle such lattices into decoupled sites in dimension
one. Starting from a detangled representation, inverting the detangling into entangling unitary
transformations and extending to higher lattice dimensions, we arrive at an All-Bands-Flat generator
for single particle states in any lattice dimension. The entangling unitary transformations are
parametrized by sets of angles. For a given member of the set of all-bands-flat, additional short-
range nonlinear interactions destroy caging in general, and induce transport. However, fine-tuned
subsets of the unitary transformations allow to completely restore caging. We derive the necessary
and sufficient fine-tuning conditions for nonlinear caging, and provide computational evidence of
our conclusions for one-dimensional systems.

I. INTRODUCTION

Understanding the impact of interactions on single par-
ticle localized states has been one of the most intriguing
quests of the past decades in condensed matter physics.
Classical and quantum approaches may yield seemingly
distinct outcomes while starting from the same single
particle localization. One notable example concerns the
impact of interactions on Anderson localization – i.e. the
exponential localization of all single particle states due
to uncorrelated disorder and the confinement of nonin-
teracting particles over finite portions of the lattice.1,2

Weakly interacting quantum particles show a finite tem-
perature transition from a thermalized to a many-body
localized phase.3–5 Classical interactions instead predict
finite heat and particle conductivity at arbitrarily small
temperatures, and related indefinite subdiffusive wave-
packet spreading.6,7

In translationally invariant networks destructive inter-
ference can fully localize subfamilies of single particle
eigenstates within a finite portion of the lattice. These
eigenstates – dubbed compact localized states (CLS) –
have macroscopically degenerate eigenenergies and form
disperionless (or flat) Bloch bands in band structures
containing otherwise dispersive bands. While they were
originally used to study degenerate ferromagnetic ground
states,8,9 flatband lattices have drawn a lot of theoretical
attention ever since and compact localized states have
been observed experimentally in several settings, from
ultracold atomic gases to photonics – for an overview on
recent advances see Refs. 10–12. Flatband networks can
be viewed as fine-tuned submanifolds in a suitably de-
fined space of Hamiltonian tight-binding networks.

Remarkably, flatband networks can be further fine-
tuned in order to flatten remaining dispersive bands, all
the way down to an important subclass of the family of
flatband lattices which possess only perfectly flat Bloch

bands. The absence of single particle dispersion yields
the strict confinement of noninteracting particles within
the lattice. This was first shown in a two-dimensional
lattice structure in presence of a magnetic field which
was fine-tuned to reach a time-reversal invariant model,13

and was dubbed Aharonov-Bohm caging (AB), while the
compact eigenstates were referred to as caged states. This
path to reach single particle caging has been extended
further in the past decade14–18 and it has been experi-
mentally realized using photonic lattices19,20 and qubits
nano-circuits,21 among others. Interestingly the intro-
duction of a magnetic field, which in general does break
time reversal, is not of essence and not needed at all, as
we will show below. The route to zero dispersion and
caging via magnetic fields leads to one model realization
among whole manifolds of systems which lack dispersion.
We coin such systems all bands flat (ABF) lattices.

The impact of interactions on the ABF single parti-
cle caging has been studied in a number of attempts in
both classical and quantum regimes. A notable set-up
for these studies has been the 1D diamond (rhombic)
ABF chain. In this case, while local Kerr nonlinear in-
teractions preserve caging,22,23 Hubbard interactions in-
duce transporting bound states of two particles simulta-
neously.24 The study of quantum interactions for caged
noninteracting particles has been further developed in
different ABF geometries, including the 1D Creutz lat-
tice25–30 and the 2D Dice lattice.31

In this work, we study classical nonlinear interactions
in ABF networks. We will obtain conditions under which
an additional fine-tuning in the manifold of ABF net-
works leads to a complete caging in the presence of non-
linear interactions. We will show that in the absence
of interactions, proper local unitary transformations lead
to a complete detangling of the network into decoupled
sites for 1D systems – a fact which holds for any num-
ber of bands and provides a systematic (in any lattice
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dimension) and exhaustive (at least in 1D) generator
for ABF lattices. We employ these unitary transfor-
mations to show that nonlinear interactions in general
break the single particle caging and result in transport
and delocalization. We then obtain necessary and suffi-
cient fine-tuning conditions for the nonlinear interaction
to preserve caging. The condition is then tested for 1D
networks with ν = 2, 3, 4 flatbands, which will include
previously studied diamond chain (ν = 3) examples, for
which the nonlinear caging was previously found.22,23 We
further present extensions to 2D nonlinear caging mod-
els. The intricate related caging features arising from
quantum interactions will be unfolded in a subsequent
work.32

II. SINGLE PARTICLE CAGING

Let us consider the unitary evolution of a one-
dimensional tight-binding problem with nearest neigh-
bour unit cell coupling:

iψ̇n = −H0ψn −H1ψn+1 −H†1ψn−1. (1)

For any n ∈ Z, each component of the complex vector
ψn = (ψn,1, . . . , ψn,ν)T represents a site of the periodic
lattice, and therefore ψn represents its unit cell. The
profile of the network is defined by the square matrices
H0, H1. The transformation ψn = xne

−iEt yields the
eigenvalue problem associated to Eq. (1), and then the
Bloch solution xn = eiknyk defined for the wave-vector k
gives rise to the band structure {Ej(k)}νj=1 of Eq. (1).

In this work we focus on ABF networks where all
bands Ej are independent on k – hence all bands are
flat. The collapse of the single-particle spectrum into
several flatbands and the absence of dispersive states is
coined caging. Any compact initial condition remains
confined within a finite (compact) sub-volume of the net-
work ψn(t) 6= 0 for 1 ≤ n ≤M and ψn(t) = 0 otherwise,
for all t ∈ R.

In short-range flatband networks, the eigenstates
associated to the flatband can always be recast as
spatially compact.33 Using this as a starting point we
prove the following:

Theorem: Any one-dimensional ν ≥ 2 all bands
flat network (1) with short-range hopping can be recast
into a fully decoupled lattice

iφ̇n = HRφn HR = diag(E1, E2, . . . , Eν) (2)

by applying a local detangling protocol ψn 7−→ φn which
nest a finite sequence of local unitary transformations
each redefining the unit cell.

The main idea behind this result is that in one dimen-
sion there always exist local unitary transformations each
redefining the unit cells which recast all the flatband com-
pact eigenstates within a single unit cell - revealing there-

fore their orthogonality. Therefore an equivalent state-
ment of the theorem is that the d = 1 ABF lattices always
have orthonormal compact localized eigenstates. This
statement is far from trivial: compact localised states
of a flatband which coexists with other dispersive bands
are not necessarily orthogonal – e.g. stub lattice34–36 or
the notable Lieb lattice11 provide counterexamples. Fur-
thermore in the latter case compact states are not even
complete (similarly to kagome and pyrochlore lattices37).
The detailed proof can be found in Appendix A 1. For
the specific ABF case of nearest neigbour unit cell cou-
pling in Eq. (1) it follows that compact localized states
occupy two unit cells, and the detangling procedure in-
volves one local unitary transformation which decouples
the lattice into noninteracting ν-mers. One subsequent
unit cell redefinition and one more unitary transforma-
tion which diagonalizes the ν-mer results in the detan-
gled form (2). Increasing the hopping range results in
the corresponding increase of the number of nested unit
cell redefinitions and local unitary transformations.

We conjecture that this result holds in higher dimen-
sions, and any short-range ABF lattice in any dimen-
sions is equivalent to decoupled sites up to a local uni-
tary transformation. Note that the inverse is always
true. Starting from a detangled set of sites, reversing
the detangling procedure φn 7−→ ψn yields a generator
of any one dimensional ABF lattice, and of a plethora
(if not any) of higher-dimensional ABF lattices, for any
finite number of bands ν. In the simplest case of nearest
neighour unit cell coupling and a fixed unit cell redefini-
tion one ABF manifold has dimension 2(ν2−1) since it is
controlled by two unitary transformations (we removed
the trivial global phases as irrelevant parameters). The
manifold contains the detangled model. Since there are
2ν − 2 possible unit cell redefinitions, there are as many
different ABF manifolds, all originating from one and the
same detangled model. Extending to a nested sequence
of µ unit cell redefinitions increases the hopping range
to distance µ and dramatically increases the number of
ABF manifolds as well as their dimensions. This scheme
completes a list of several other generator schemes in-
troduced in recent years38–43 which instead were focused
on flatband networks supporting both flat and dispersive
bands.

The manifold of ABF lattices generated with this
method include the known examples of Aharonov-Bohm
caging, e.g. the Creutz ladder (as discussed below) and
diamond chain in a fine-tuned magnetic field.13,14,25 On
the other hand it is not at all obvious, and likely also not
very relevant, whether any such generated ABF lattice
is equivalent to some tight-binding lattice in a properly
fine-tuned magnetic field, even if one allows for artificial
fluxes in the spirit of the Haldane model.44

Let us visualize this procedure for the simplest case
of ν = 2 networks in Fig. 1(a1)-(a4), with the canonical
coordinates ψn = (an, bn) and the detangled coordinates
φn = (αn, βn). The detangling procedure ψn 7−→ φn
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(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

U1 T U T U2

an

bn

pn

fn

αn

βn

an

bn

pn

fn

αn

βn

pn

fn

pn

fn

FIG. 1. Schematic representation of the unit cell redefinition for a ν = 2 ABF lattice. In each panel, the black dots label the
chosen unit cell. The solid gray lines represent the linear hopping terms; the red shaded lines represent the interaction terms.
(a1)-(a4) Noninteracting regime. (b1)-(b4) Interacting regime.

unfolds in three steps(
an

bn

)
U17−−−−→

(
pn

fn

)
T7−−−→

(
pn

fn

)
U27−−−−→

(
αn

βn

)
(3)

with the alternation of two unitary transformations U1

and U2 and one relabeling of the lattice sites T :

Ui = eiθi
(

zi wi

−w∗i z∗i

)
T :

{
pn 7−→ pn
fn 7−→ fn−1

(4)

The complex numbers zi, wi are constrained with |zi|2 +
|wi|2 = 1. Without loss of generality the two flatband
energies can be locked at E = ±1. We then parametrize
the matrices H0, H1 for ν = 2 ABF networks in Eq. (1)
as

H0 = Γ0

(|z1|2 − |w1|2 −2z1w1

−2z∗1w
∗
1 |w1|2 − |z1|2

)
(5)

H1 = Γ1

(
z1w

∗
1 z21

−(w∗1)2 −z1w∗1

)
(6)

with Γ0 = |w2|2−|z2|2 and Γ1 = 2z2w2 (see Appendix A 2
for details). The resulting manifold of ν = 2 ABF lattices
in Eqs. (5-6) includes the notable Creutz lattice,25, which

is obtained for z1 = z2 = w2 = 1/
√

2 and w1 = i/
√

2.
Our manifold also includes a lower-dimensional subman-
ifold of lattices related to the Creutz lattice via a gauge
transformation.3045

The result that any 1D ABF lattice is unitarily equiva-
lent to a set of decoupled sites provides a powerful frame-
work for analysis of ABF networks, for example their
transport properties, in presence of various perturba-
tions, in particular interactions/nonlinearities.

III. NONLINEAR INTERACTIONS:
SUB-DIFFUSION AND FINE-TUNED CAGING

Any linear ABF network cages any localized initial ex-
citation. An important question is the fate of this caging

behaviour in presence of interactions. We will address
this question in the following way: A given linear ABF
Hamiltonian is a member of a manifold of ABF Hamilto-
nians linked together by (local) unitary transformations.
We pick one of the members of that manifold, add local
nonlinear interactions, and need to figure whether caging
is destroyed or not. For that we transform the chosen
member into the detangled basis, inspect the transformed
nonlinear interactions and arrive at necessary and suffi-
cient conditions for nonlinear caging.

Let us add nonlinear terms to the Schrödinger equa-
tion (1) which result e.g. from a mean-field approxima-
tion to a bosonic many-body interacting system. For
convenience we choose the local Kerr-like nonlinearity.
This choice is not essential for the following arguments,
and is made for convenience only. Equation (1) turns
into

iψ̇n = −H0ψn −H1ψn+1 −H†1ψn−1 + UF (|ψn|2)ψn.
(7)

Here F (|ψn|2) is a diagonal matrix with nonzero elements
Fµ,µ ≡ |ψn,µ|2. The above Gross-Pitaevski-type lattice
equations are generated by the Hamiltonian:

iψ̇n = ∇ψ∗
n
HG, ĤG = ĤG0 + ĤG1 (8)

HG0 = −
∑
n∈Z

[
1

2

(
ψ∗Tn H0ψn

)
+
(
ψ∗Tn H1ψn+1

)
+ h.c.

]
,

(9)

HG1 =
U

2

∑
n∈Z

F 2(|ψn|2). (10)

The coordinate redefinition ψn 7−→ φn to Eq. (7) decou-
ples the quadratic part. The local nonlinear terms in
the original representation ψn turn nonlocal in the new
coordinates φn of the detangled basis. The evolution
equation (7) in the new representation reads

iφ̇n = HRφn + gP({φn}). (11)
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HR is the diagonal matrix in Eq. (2) and P a homoge-
neous polynomial of degree three in {φn}:

P({φn}) =
∑

mb;kc,ld

Vna,mb;kc,ldφ
∗
m,bφk,cφl,d. (12)

Here n labels unit cells and a labels sites in the unit cell
n. The matrix elements Vna,mb;kc,ld define a nonlinear
interaction network in the detangled basis with the cor-
responding Hamiltonian

HG1 =
U

2

∑
na,mb;kc,ld

Vna,mb;kc,ldφ
∗
n,aφ

∗
m,bφk,cφl,d. (13)

Note that it is straightforward to consider e.g. a two-
dimensional square lattice or three-dimensional cubic lat-
tice, which leaves the expressions (13) invariant while
turning the unit cell indices n,m into two-component or
three component vectors with integer components, re-
spectively.

A. Necessary and sufficient condition
for nonlinear caging

Nonlinear caging is defined similar to the linear case
as confinement of initial excitation{

ψn(t) 6= 0 |n| ≤M
ψn(t) = 0 |n| > M

∀ t > 0 (14)

For convenience we refer to the set of nonzero amplitudes
as an excitation. To study the spreading of this initial
condition it is enough to consider sites n, a in the unit
cell just outside the excitation: if the amplitude on those
sites becomes nonzero, by induction it follows that the
spreading will continue to other unit cells outside the
initial excitation.

The time evolution of the amplitude on a site n, a out-
side the initial excitation is governed by:

iφ̇n,a = Eaφn,a +
∑

mb;kc,ld

Vna,mb;kc,ldφ
∗
m,bφk,cφl,d, (15)

φn,a(t = 0) = 0.

At time t = 0 it follows by assumption that φn,a = 0.
Nonlinear caging implies that φn,a = 0 for all times. This
can happen if and only if the total nonlinear contribution
on the rhs of (15) vanishes at all times. Excluding acci-
dental cancellations of the time-dependent rhs terms, the
caging requirement is equivalent to enforcing the vanish-
ing of each individual term in the above sum.46 Therefore
at least one amplitude in all the terms φ∗m,bφk,cφl,d must

be located outside the original excitation (and be there-
fore zero as well). Furthermore if that one amplitude is
located in a unit cell different from n in at least one inter-
action term, we can use translation invariance and shift
the interaction, so that all the amplitudes in that inter-
action term are located inside the excitation.47 Then the

interaction term becomes nonzero and will induce spread-
ing of the initial excitation. Therefore at least m = n, or
k = n, or l = n. However because of the Hermiticity and
translation invariance of the problem the remaining two
amplitudes have also to be equal, otherwise we can find
a unit cell outside the excitation, with a nonzero non-
linear term in the evolution equation. Therefore all the
unit cells in the amplitudes φ of the interaction terms in
Eq. (13) have to appear in pairs, so that Eq. (15) be-
comes:

iφ̇n,a = Eaφn,a+
∑
b;mc,d

Vna,nb;mc,mdφ
∗
n,bφm,cφm,d (16)

+
∑
b;mc,d

Vna,mb;nc,mdφ
∗
m,bφn,cφm,d,

φn,a(t = 0) =0.

The corresponding Hamiltonian becomes

HG1 =
∑

na,b;mc,d

Vna,nb;mc,mdφ
∗
n,aφ

∗
n,bφm,cφm,d (17)

+
∑

na,b;mc,d

Vna,mb;nc,mdφ
∗
n,aφ

∗
m,bφn,cφm,d.

To achieve caging, it is necesessary and sufficient if a
given Hamiltonian with a linear ABF part can be trans-
formed into Eq. (17) in the detangled basis.

Our approach can be readily extended to more compli-
cated interactions, e.g. involving higher powers of den-
sities or nonlocal interactions (as has been pointed out
already in Ref. 23), as well as to higher lattice dimen-
sions, whenever single-particle Hamiltonian admits de-
tangling,34 which we conjecture to be true for any ABF
Hamiltonian. We arrived at a direct way to test for
caging in a given nonlinear AFB network with local non-
linearity: transform into the detangled basis, obtain the
transformed interaction Hamiltonian, and check that all
the nonlinear terms are included in Eq. (17). If they are,
the nonlinear network exhibits caging, otherwise it does
not.

Now we can address the question whether a given lin-
ear ABF manifold contains a submanifold which supports
nonlinear caging when adding local Kerr-like nonlinear-
ities. We remind that the ABF manifold is supposed to
contain the detangled ABF Hamiltonian member. The
manifold members are connected by the action of a pair
of unitary transformations. Each unitary transformation
is controlled by ν2 parameters. The nonlinear caging
reduces to zeroing a number of dangerous terms in the
transformed nonlinearity, which amounts to the same
number of equations for the unitary transformation pa-
rameters. Let us zero one element in the unitary trans-
formation U1. That leads to a zeroing of ν3 nonlinear
coefficients V in Eq. (13). It therefore appears that we
can always remove all non-caging terms and remain with
a non-empty submanifold of nonlinear caging Hamiltoni-
ans.
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B. Two band networks

We now illustrate the above generic result for nonlinear
caging with examples drawn from the fully parametrized
class of ν = 2 ABF networks (5-6). Equation (7) with
ψn = (an, bn) results in

iψ̇n = −H0ψn −H1ψn+1 −H†1ψn−1 + UF (|ψn|2)ψn,
(18)

with F (|ψn|2) =

(|an|2 0

0 |bn|2
)
,

while the nonlinear Hamiltonian HG1 reads

HG1 =
U

2

∑
n∈Z

[
|an|4 + |bn|4

]
. (19)

The caging condition can be established already in the
pn, fn representation (see Fig. 1). Indeed the transfor-
mation U2 (see Fig. 3) only affects the couplings inside
one unit cell and therefore cannot introduce terms that
violate the nonlinear caging criterion. This results in
the following necessary and sufficient condition (see Ap-
pendix B 1 for details):

|w1|2 = |z1|2. (20)

Then the Hamiltonian HG1 in Eq. (10) recast via the
transformations U1 and T in Eqs. (3-4) is represented
by the amplitudes (pn, fn) (see Appendix B 2)

HG1 = U
∑
n

{
|z1|4

[
|pn|4 + |fn|4 + 4|pn|2|fn+1|2

]
+z∗21 w2

1p
∗2
n f

2
n+1 + z1w

∗2
1 p

2
nf
∗2
n+1

}
. (21)

The full Hamiltonian in the detangled representation is
obtained in Appendix B 3 for two cases - one which sat-
isfies caging, and another which does not. The condi-
tion (20) leads to a fine-tuned subclass of nonlinear lat-
tices which support nonlinear caging.

1. Two examples

We test two example networks parametrized via
Eqs. (5,6) – one which satisfies Eq. (20) and one which
does not – generated by setting zi = cosϕi, wi = sinϕi
in Eqs. (5,6).

Model A is obtained by setting ϕ1 = π/4 and ϕ2 = π/6
and satisfies nonlinear caging Eq. (20):

iȧn = −2bn +
√

3 (an+1 + an−1 + bn+1 − bn−1) + Uan|an|2,
iḃn = −2an −

√
3 (bn+1 + bn−1 + an+1 − an−1) + Ubn|bn|2.

(22)

The network schematics is shown in Fig. 2(a1). For
U = 0, there are two flatbands at E1,2 = ±4 with the

(a1)

(b1)

(b3)

an

bn

E2 = −4

3 = −
√

3

3 = −3

−
√

3

1 = +
√

3 =

an

bn

= +1

+1

−
√

3

−
√

3

+1

− 1 +

+1 +
√

3
(b2)E1 = +4

E2 = −4

E1 = +4

3 = −
√

3

1 = +
√

3 =

(a2)

(a3)

−1 +

+1 +1

+1

−1 +

+1

−1 +

−1 +

= −2

FIG. 2. (a1) Schematic representation of model A, Eq. (22).
(a2)-(a3) CLSs of the two flatbands at E1,2 = ±4. (b1)
Schematic representation of model B, Eq. (23). (b2)-(b3)
CLSs of the two flatbands at E1,2 = ±4.

respective CLSs shown in Fig. 2(a2)-(a3). Notably model
A cannot be obtained from the previously studied Creutz
ladder nor from its gauge transformation related partners
since ϕ1 6= ϕ2.

Model B is obtained by setting ϕ1 = π/6 and ϕ2 =
π/4. This model does not provide nonlinear caging since
the fine-tuning condition (20) is violated. The equations
read

iȧn =
√

3an+1 +
√

3an−1 + bn+1 − 3bn−1 + Uan|an|2,
iḃn = −

√
3bn+1 −

√
3bn−1 − 3an+1 + an−1 + Ubn|bn|2.

(23)

The network schematics is shown in Fig. 2(b1). For
U = 0, there are two flatbands at E1,2 = ±4 with the
respective CLSs shown in Fig. 2(b2)-(b3).

We visualize the presence (respectively absence) of
nonlinear caging in these models by numerically comput-
ing the time evolution of an initially compact localized
excitation. We use second order splitting ABC schemes
for the numerical integration.48 We consider a sample
compact excitation IC1 spanning over two unit cells, and
we evolve the local density Sn = |an|2+|bn|2. The results
are shown in Fig. 3 for both models A (22) and B (23)
and for two interaction strengths U = 1 and U = 5. For
model A, Eq. (22) – panels (a1)-(a2) – the initial compact
excitation IC1 remains confined within four unit cells,
confirming the expected nonlinear caging. For model B,
Eq. (23) – panels (b1)-(b2) – the initial excitation is prop-
agating into the chain, confirming that caging is lost.

In Fig. 4 we show the time evolution of the second
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Sn

0

0.2

0.4

0.6

0.8

1.0

Sn

0

0.2

0.4

0.6

0.8

1.0

(a1)

(a2)

(b1)

(b2)

Sn

0

0.2

0.4

0.6

0.8

1.0

Sn

0

0.2

0.4

0.6

0.8

1.0

FIG. 3. (a1)-(a2) time-evolution of IC1 according to model
A, Eq. (22) for U = 1 and U = 5 respectively. (b1)-(b2) same
as (a1)-(a2) for model B, Eq. (23).

1 2 3 4
log10t

100

101

µ
2

mod.B,U=1
mod.B,U=1.5
mod.B,U=2
mod.B,U=2.5
mod.B,U=3
mod.B,U=5
mod.A,U=1
mod.A,U=5

µ2~t
0.5

FIG. 4. Time-evolution of the second moment µ2 over an en-
semble of 48 initial conditions according to model B, Eq. (23)
(upper five curves) and model A, Eq. (22) (bottom two curves)
with N = 40 for different U .

moment µ2 defined as

µ2 =

N∑
n=1

[(X − n)2(|an|2 + |bn|2)] (24)

with X =
∑N
n=1[n(|an|2 + |bn|2)] for both models. The

curves have been averaged over an ensemble of 48 com-
pact initial conditions spanning over two unit cells all
chosen with the same total norm S =

∑
n Sn = 7. In the

case of the cage-preserving model A, Eq. (22) we observe
no signature of spreading as the second moment remains
µ2 ∼ 1 over time. In the case of the non-caging preserv-
ing model B, Eq. (23) we observe a subdiffusive spreading
regime: within the studied time-window our data agree
semi-quantitatively with µ2 ∼ t0.5 for various values of

) (b) (

(a) (

FIG. 5. Sample ν = 3 (a) and ν = 4 (b) ABF lattices defined
in Eq. (25) and in Eq. (27) respectively. For sake of simplicity,
in these drawings all parameters µ, χ have been set to 0. Solid
lines: hopping amplitude t = +1. Dashed lines; hopping
amplitude t = −1. These lattices preserve nonlinear caging.

the interaction strength U . The details of this process
and its relation to previous studies of nonlinear destruc-
tion of Anderson localization6 is certainly an interesting
future project. We conjecture here that subdiffusion re-
sults from weak interactions renormalizing the compact
localized states and inducing nonlinear interactions be-
tween them. Both effects are proportional to the local
norm density which decreases with further spreading of
the wave packet.

C. Generalizations to more bands and higher
lattice dimensions

We now make use of the approach introduced in
Sec. III A and employed in Sec. III B for one-dimensional
ν = 2 lattices to present cage preserving nonlinear lat-
tices with ν ≥ 3 and higher lattice dimensions.

In one-dimension, we consider the family of ν = 3 ABF
lattices Eq. (7) defined by

H0 =

 µ 1 −µ
1 0 1

−µ 1 µ

 , H1 =

 1 χ 1

0 0 0

−1 −χ −1

 (25)

with free parameters µ, χ. The family – shown in
Fig. 5(a) for µ, χ = 0 for clarity – preserves nonlinear
caging since the unitary transformation that detangles
the linear part

Uν=3 =
1√
2

 1 0 1

0
√

2 0

−1 0 1

 , (26)

does not generate any forbidden transporting nonlinear
terms in the detangled representation. The ν = 3 ABF
family in Eq. (25) is a submanifold of the full ν = 3
ABF manifold. The full manifold also contains the ABF
diamond chain which preserves nonlinear caging as well
as studied in Refs. 22 and 23, but is not part of the
above example family. This demonstrates that previously
observed ABF networks which satisfy nonlinear caging
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) (b) ((a) (

FIG. 6. Nonlinear caging in two dimensions. (a) ν = 5 cage
preserving two-dimensional (decorated Lieb) lattice. Solid
lines indicate hopping +1, dashed lines indicate hopping −1.
(b) ν = 2 cage preserving two-dimensional lattice with second
nearest neighbor hopping defined in Eqs. (29,30). For sake of
clarity, the tilted ellipses represent the unit cells, while the
solid lines represent the hopping matrix elements Eq. (30).

are single members of entire families of multi-parameter
ABF submanifolds which preserve nonlinear caging.

The very same reasoning applies to larger number of
bands, e.g. for ν = 4. The family of nonlinear lattices
Eq. (7) defined by

H0 =


µ1 1 −µ1 −1

1 µ2 1 µ2

−µ1 1 µ1 −1

−1 µ2 −1 µ2

 , H1 =


1 χ1 1 −χ1

1 χ2 1 −χ2

−1 −χ1 −1 χ1

1 χ2 1 −χ2


(27)

with free parameters µ1, µ2, χ1, χ2 – shown in Fig. 5(b)
with µ1, µ2, χ1, χ2 = 0 for clarity – is cage preserving. In-
deed the unitary transformation that detangles the linear
part

Uν=4 =
1√
2


1 0 1 0

0 1 0 1

−1 0 1 0

0 −1 0 1

 (28)

does not introduce any dangerous transporting nonlinear
terms in the detangled representation.

In two dimensions, we use the ν = 5 two dimen-
sional lattice called decorated Lieb lattice49 as one ex-
ample which satisfies nonlinear caging (see Fig. 6(a)).

Another example is a novel two-dimensional ν = 2
ABF lattice with additional diagonal hopping connectiv-
ities (see Fig. 6(b)):

iψ̇n,m =−H1,nψn+1,m −H†1,nψn−1,m
−H1,mψn,m+1 −H†1,mψn,m−1
−H2,Dψn+1,m+1 −H†2,Dψn−1,m−1
−H2,Aψn+1,m−1 −H†2,Aψn−1,m+1

+ UF (|ψn,m|2)ψn,m

(29)

with

H1,n = −
√

3

4

(
0 1

1 0

)
, H1,m =

1

4

(−1 −1

1 1

)
H2,D =

√
3

8

(
1 1

−1 −1

)
, H2,A =

√
3

8

(−1 1

−1 1

) (30)

This model is cage preserving since the detangling pro-
cess obtained by the unitary transformation

Uν=2 =
1√
2

(
1 1
−1 1

)
twice alternated by the redefinition ψn,m 7−→ ψn,m−1 re-
duces the Kerr nonlinearity to the form given by Eq. (17).

IV. DISCUSSIONS AND PERSPECTIVES

In this work we showed that in one dimension disper-
sionless networks can be completely detangled via local
unitary transformations. The inversion of that procedure
yields a systematic generator for all band flat networks
with finite-range hopping terms in any lattice dimen-
sion.34 We then studied the impact of classical nonlinear
interactions on lattices without linear dispersion and for-
mulated necessary and sufficient conditions for nonlinear
caging. We used two bands networks as testbeds to show
that single particle caging is in general broken by clas-
sical interactions. We further extended our analysis to
three and four band networks, and went into two dimen-
sions with two respectively five band models which again
show the possibility of nonlinear caging.

An observation aligned with Ref. 23 which follows from
the detangling procedure developed in this work is that
nonlinear caging is not specific to Kerr nonlinearity but
holds also for other, even nonlocal nonlinear terms. The
detangling method leads to a broad number of nontrivial
ABF caged model with complicated nonlocal nonlinear
interaction terms. Interesting future challenges include
the search for experimentally feasible examples, and their
potentially novel features beyond the known ABF models
with local Kerr nonlinearity. Another thrilling question
we intend to address in a related work concerns the inter-
acting quantum many-body dynamics in ABF networks
which satisfy nonlinear caging.
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cussions. This work was supported by the Institute for
Basic Science, Korea (IBS-R024-D1).



8

Appendix A: Detangling of ABF one-dimensional
networks

1. Proof

In this section we provide the proof of the Theorem
in Sec. II stating that any d = 1 Hamiltonian with all
bands flat and finite-range hopping can be recast in a set
of decoupled sites via a sequence of local unitary transfor-
mation. That is equivalent to show that in these Hamil-
tonians all compact localized states can be recast to have
non-zero amplitude over a single unit cell - showing there-
fore their orthogonality. Throughout this appendix we
will use 〈A,B〉 to denote the scalar product of matrices:
〈A,B〉 = Tr(A†B) or vectors 〈A,B〉 =

∑
aA
∗
aBa, and we

will denote with u the number of unit cells occupied by
the CLS.

Let us consider a d = 1 ν band Hamiltonian with all
bands flat. From Ref. 33 it follows that all of its eigen-
states can be represented as spatially compact of size, and
we assume that u ≤ ν (in case of flatbands with CLS of
different size, we assume that they are all padded by ze-
ros to the size of the largest one). This immediately con-
strains the possible eigenstates of the Bloch Hamiltonian
and it implies that the corresponding Bloch eigenstates
take the following form (up to a normalisation prefactor,
which still depends on the wavevector q):

Ψα,a(q) =

∑u−1
b=0 Cα,ab ωqb√
〈Cαωq, Cαωq〉

∝
u−1∑
b=0

Cα,ab e
ibq, (A1)

ωq = (1, eiq, . . . eiq(u−1)), (A2)

where α is the band index, a is the wave function compo-
nent. The ν × u matrix Cα is parameterising the CLS of
band α, and the central object of all the following deriva-
tions. The eigenstates of a Hermitian Hamiltonian have
to be orthogonal, giving the first set of constraints on the
matrices Cα:

δαβ =
∑
a

Ψ∗α,a(q)Ψβ,a(q) ∝∑
abc

eiq(c−b)C∗α,abCβ,ac =
∑
bc

eiq(c−b)Tαβ,bc. (A3)

We have defined the ν × ν matrices Tαβ = 〈Cα, Cβ〉,
that will be used later. The above orthogonality condi-
tion reduces to a specfic Fourier transform of the matrices
Tαβ , which implies that the matrices Tαβ , α 6= β have to
have zero sums over any diagonal.

Using this parameterisation of the eigenstates, we can
use the spectral decomposition to reconstruct the Hamil-
tonian itself:

Hq = MqΛM
†
q Λab = εaδab, (A4)

Mq = (Ψ1Ψ2 . . .Ψν),

Ψα,a =
Cαωq√

〈Cαωq, Cαωq〉
.

The Hamiltonian becomes:

Hq =
∑
α

εα
(Cαωq)⊗ (Cαωq)

∗

〈Cαωq, Cαωq〉
.

Here, Pα(q) = (Cαωq) ⊗ (Cαωq)
∗ and Qα(q) =

〈Cαωq, Cαωq〉 are polynomials in eiq of degree u− 1 and
degree at most u− 1 respectively, and every term in the
above sum is their ratio. Therefore the Hamiltonian is
long-ranged in general. The above Hamiltonian becomes
short-ranged iff Pα is divisible by Qα ∀α. If the degree
of Qα is u− 1 the ratio Pα/Qα is a constant, the respec-
tive eigenvector is q-independent and the CLS is of class
u = 1. Since they are already of class u = 1, these eigen-
values can be excluded, for example by considering only
an orthogonal subspace of the Hilbert space. Therefore I
assume that the degree of Qα(q) is at most u− 2 in gen-
eral. This implies that Tαα,1u = Tαα,u1 = 0 always (see
Eq. (A3)). The lower the degree of Qα the more zero
sum diagonals do Tαα have, starting from the corners.
Combining this statement with the earlier result that di-
agonals of Tαβ sum up to zero we see that the amplitudes
in the first unit cell of any CLS are always orthogonal to
the amplitudes in the last unit cell of any CLS. As we
will see below this is the cornerstone of the proof of the
triviality of the all bands flat Hamiltonians in d = 1.

To reconstruct the Hamiltonian we need to find the
matrices Cα. This requires a solution of a system of
coupled matrix quaratic equations with respect to Cα,
α = 1, . . . , ν:

〈Cα, Cβ〉 = Tαβ ,

considering Tαβ as input parameters. The solution can
be constructed sequentially: we parameterise Cα =
(cα1, cα2, . . . cαu), where cαa is a vector of the eigenfunc-
tion amplitudes in the unit cell a of the CLS of the band
α. This transforms the above equations into a set of cou-
pled quadratic equations for cαa. We solve these equa-
tions iteratively by fixing cα,a one by one starting from
α = 1 and only taking into account the equations in-
volving β ≤ α. We also employ extensively our freedom
in the choice of the basis vector of the Hilbert space, to
simplify the solution. The core idea is to see how the
equations constrain the possible shapes of cα,1 and cα,ν
and show that one can always redefine the unit cell to
reduce the sizes of all the CLS by 1.

We start by setting c11 = e1 - this defines the first
basis vector. Then T11,1u = 0 implies that we can define
c1u = e2. For c21 we have the following constraint:

T12,u1 = 〈c1u, c21〉 = 0,

and we can choose c21 = ∗e1 + ∗e3, where we defined
the next basis vector e3 and the asterisks stand for some
(possibly zero) coefficients. The c2u is constrained by

T21,1u = 〈c11, c2u〉 = 0,

T22,1u = 〈c21, c2u〉 = 0.
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The most generic form of c2u = ∗e2 +∗e4 - again defining
the basis vector e4. Such incremental construction en-
forces cβu to have zeros at positions where cα1 has non-
zero elements and vice versa. It therefore guarantees the
existence of a pattern of non-zero elements in Cα that is
the same ∀α.

We illustrate this result by a specific case of ν = 3,
u = 3 (there is a single possible redefinition of the unit
cell in the case of ν = 2 and u = 2, that we discuss in
the next appendix): working out the matrices C1, C2, C3

following the above rules we find:

C1 =

∗ ∗ 0
0 ∗ ∗
0 ∗ 0

 , C2 =

∗ ∗ 0
0 ∗ ∗
∗ ∗ 0

 , C3 =

∗ ∗ 0
0 ∗ ∗
∗ ∗ 0

 .

As before the asterisks ∗ denote unspecified coefficients.
The shape of the all the matrices supports a redefini-
tion of the unit cell, that reduces the sizes of all the
CLS/matrices to u = 2.

2. Parametrization of ν = 2 networks

The above proof when inverted yields a generator
scheme for dispersionless networks. In this subsection,
we explicitly unfold the two bands problem, ν = 2.
Let us consider a non-degenerate (two different flat-
band energies) fully decoupled network in coordinates
φn = (αn, βn).

iφ̇n = −H(1)
0 φn −H(1)

1 φn+1 −H(1)†
1 φn−1, (A5)

H
(1)
0 =

(−1 0

0 1

)
H

(1)
1 =

(
0 0

0 0

)
, (A6)

with two flatband energies E1 = −1 and E2 = 1. The
mapping in Eq. (3) consists of two unitary transforma-
tions U1 and U2, which are parametrized as

Ui = eiθi
(

zi wi

−w∗i z∗i

)
i = 1, 2 (A7)

by the complex numbers zi, wi such that |zi|2 + |wi|2 = 1
and the phases θi. The unit cell redefinition T is

T :

{
pn 7−→ pn
fn 7−→ fn−1

(A8)

We generate all the ν = 2 dispersionless lattices by ap-
plying the transformations, Eqs. (A7,A8) in the following
order(

αn

βn

)
U27−−−−→

(
pn

fn

)
T7−−−→

(
pn

fn

)
U17−−−−→

(
an

bn

)
, (A9)

as shown in Fig. 7.

T U2

βn

αn

fn

pn

fn

pn

T U
pn

fn

pn

fn

U1
an

bn

(a1)

(a2)

(a3)

FIG. 7. Schematic representation of the unit cell redefinition
for ν = 2 bands lattice. In each panel, the black dots represent
the chosen unit cell.

The first coordinate rotation U2 turns H
(1)
0 in Eq. (A6)

to

H
(2)
0 = U2H

(1)
0 U†2 =

(|w2|2 − |z2|2 2z2w2

2z∗2w
∗
2 |z2|2 − |w2|2

)
,

(A10)

while H
(2)
1 = U2H

(1)
1 U†2 remains zero - as shown in

Fig. 7(a1), right plot.

The unit cell redefinition T in Eq. A8) redefines H
(2)
0 and

H
(2)
1 as

H
(3)
0 =

(|w2|2 − |z2|2 0

0 |z2|2 − |w2|2
)
, (A11)

H
(3)
1 =

(
0 2z2w2

0 0

)
, (A12)

as shown in Fig. 7(a2), right plot.

At last, the rotation U1 turns H
(3)
0 and H

(3)
1 in

Eqs. (A11,A12) to the following matrices

H0 = U1H
(3)
0 U†1 = Γ0

(|z1|2 − |w1|2 −2z1w1

−2z∗1w
∗
1 |w1|2 − |z1|2

)
,

(A13)

H1 = U1H
(3)
1 U†1 = Γ1

(
z1w

∗
1 z21

−(w∗1)2 −z1w∗1

)
, (A14)

for Γ0 = |w2|2 − |z2|2 and Γ1 = 2z2w2 - as shown in
Fig. 7(a3), right plot.

Appendix B: Detangling procedure applied to
nonlinear dispersionless models

In this appendix, we apply the detangling procedure
as described by Eq. (3) to the dispersionless, two band
models in presence of a local Kerr nonlinearity (10).
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1. Preserving the caging in ν = 2 networks: a
necessary and sufficient condition

We now work out the detangled local Kerr nonlinearity
for a general ν = 2 AB lattice. The transformation U1 in
components read

U1 :

{
an = eiθ1(z1pn + w1fn)

bn = eiθ1(−w∗1pn + z∗1fn)
(B1)

Via Eq. (B1), the nonlinear terms turn

an|an|2 = eiθ1
[
z1|z1|2pn|pn|2 + z21w

∗
1p

2
nf
∗
n

+z∗1w
2
1p
∗
nf

2
n + w1|w1|2fn|fn|2

+2|z1|2w1|pn|2fn + 2z1|w1|2pn|fn|2
]
,

bn|bn|2 = eiθ1
[
−w∗1 |w1|2pn|pn|2 + z1w

∗2
1 p

2
nf
∗
n (B2)

−z∗21 w1p
∗
nf

2
n + z∗1 |z1|2fn|fn|2

+2z∗1 |w1|2|pn|2fn − 2|z1|2w∗1pn|fn|2
]
.

The equations for pn then read

iṗn = −(|z2|2 − |w2|2)pn + 2w2z2fn−1

+ U
{(
|z1|4 + |w1|4

)
pn|pn|2

+2z∗21 w2
1 p
∗
nf

2
n + 4|z1|2|w1|2 pn|fn|2

+z1w
∗
1

(
|z1|2 − |w1|2

)
p2nf

∗
n (B3)

+z∗1w1

(
|w1|2 − |z1|2

)
fn|fn|2

+2z∗1w1

(
|z1|2 − |w1|2

)
|pn|2fn

}
.

The unit cell redefinition fn 7−→ fn−1 yields the terms
fn−1|fn−1|2

iṗn = −(|z2|2 − |w2|2)pn + 2w2z2fn

+ U
{(
|z1|4 + |w1|4

)
pn|pn|2

+2z∗21 w2
1 p
∗
nf

2
n−1 + 4|z1|2|w1|2 pn|fn−1|2

+z1w
∗
1

(
|z1|2 − |w1|2

)
p2nf

∗
n−1 (B4)

+z∗1w1

(
|w1|2 − |z1|2

)
fn−1|fn−1|2

+2z∗1w1

(
|z1|2 − |w1|2

)
|pn|2fn−1

}
which break the caging effect. These terms are not
present if |w1|2 = |z1|2, which reduces Eq. (B4) to

iṗn = −(|z2|2 − |w2|2)pn + 2w2z2fn (B5)

+ 2eiθ1U
{
|z1|4(pn|pn|2 + 2pn|fn−1|2) + z∗21 w2

1 p
∗
nf

2
n−1
}
.

Similarly follows for fn where under the condition
|w1|2 = |z1|2 the motion equation reads

iḟn = (|z2|2 − |w2|2)fn + 2w∗2z
∗
2pn (B6)

+ 2U
{
|z1|4(fn|fn|2 + 2|pn+1|2fn) + z21w

∗2
1 p

2
n+1f

∗
n

}
.

As a result we observe the following:

1. the condition |w1|2 = |z1|2 in Eq. (A7) is necessary
to preserve the caging - otherwise ”fully nonlocal”
terms which break the caging exist in Eq. B4 - and
it is sufficient - since the subsequent transforma-
tion by U2 in Eq. (A7) will not introduce additional
”fully nonlocal” terms.

2. the condition |w1|2 = |z1|2 in Eq. (A7) yields all the
entrees of the matrix H1 in Eq. (A14) have equal
magnitude in absolute value.

2. Rotating the interaction Hamiltonian HG1

The rotated Eqs. (B5,B6) are the equations of motion

iṗn = ∂HG
∂p∗n

and iḟn = ∂H
∂f∗
n

of the Hamiltonian HG

HG = HG0 +HG1 , (B7)

where

HG0 =
∑
n

{
(|z2|2 − |w2|2)(|fn|2 − |pn|2)

+2w2z2p
∗
nfn +H.c.} , (B8)

and

HG1 = U
∑
n

{
|z1|4

[
|pn|4 + |fn|4 + 4|pn|2|fn+1|2

]
+z∗21 w2

1p
∗2
n f

2
n+1 + z1w

∗2
1 p

2
nf
∗2
n+1

}
. (B9)

3. Fully detangled models A and B

By applying further transformations (see Fig. 1) one
can fully detangle both models A and B introduced in
the main text. This computation is straightforward but
lengthy and we only provide the final result for both mod-
els. Namely the nonlinear evolution equation for model
A is

iα̇n = 2αn+
U

8

{
αn|αn|2 + β2

nα
∗
n + 2αn|βn|2

+α∗nα
2
n+1 + α∗nβ

2
n+1 − 2α∗nαn+1βn+1

+β∗nα
2
n+1 + β∗nβ

2
n+1 − 2β∗nαn+1βn+1

+α∗nα
2
n−1 + α∗nβ

2
n−1 + 2α∗nαn−1βn−1

−β∗nα2
n−1 − β∗nβ2

n−1 − 2β∗nαn−1βn−1

+2(αn|αn+1|2 − αnα∗n+1βn+1 (B10)

−αnαn+1β
∗
n+1 + αn|βn+1|2)

+2(βn|αn+1|2 − α∗n+1βnβn+1

−αn+1βnβ
∗
n+1 + βn|βn+1|2)

+2(αn|αn−1|2 + αnα
∗
n−1βn−1

+αnαn−1β
∗
n−1 + αn|βn−1|2)

−2(βn|αn−1|2 + α∗n−1βnβn−1

+αn−1βnβ
∗
n−1 + βn|βn+1|2)

}
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and a similar equation for the other component βn. It is
straightforward to check that all the terms in the above
expression are exactly of the type required by the non-
linear caging criterion (16) introduced in Sec. III A.

The equation for model B reads (again we only provide
the equation for one component, the equation for the
other component βn is qualitatively similar):

iα̇n = 4αn+
U

64
{ 2
√

3
[
αn+1|αn+1|2 − αn−1|αn−1|2

−α2
n+1β

∗
n+1 − α2

n−1β
∗
n−1

+β2
n+1α

∗
n+1 − β2

n−1α
∗
n−1 (B11)

−βn+1|βn+1|2 − βn−1|βn−1|2

−2|αn+1|2βn+1 − 2|αn−1|2βn−1
+2αn+1|βn+1|2 − 2αn−1|βn−1|2
+ [. . . ]} ,

We have only kept the terms in the above expression, that
break the nonlinear caging criterion (16). The remaining
terms, indicated by [. . . ] conform with the caging crite-
rion.
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Aleksandra Maluckov, “Nonlinear symmetry breaking of
Aharonov-Bohm cages,” Phys. Rev. A 99, 013826 (2019).

23 Marco Di Liberto, Sebabrata Mukherjee, and Nathan
Goldman, “Nonlinear dynamics of Aharonov-Bohm cages,”
Phys. Rev. A 100, 043829 (2019).
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Mosseri, “Disorder and interactions in Aharonov-Bohm
cages,” Phys. Rev. B 64, 155306 (2001).

32 Carlo Danieli, Alexei Andreanov, Thudiyangal Mithun,
and Sergej Flach, “Quantum caging in interacting many-
body all-bands-flat lattices,” (2020), arXiv:2004.11880
[cond-mat.quant-gas].

33 N. Read, “Compactly supported wannier functions and al-
gebraic k-theory,” Phys. Rev. B 95, 115309 (2017).

34 Sergej Flach, Daniel Leykam, Joshua D. Bodyfelt, Peter
Matthies, and Anton S. Desyatnikov, “Detangling flat
bands into Fano lattices,” Europhys. Lett. 105, 30001
(2014).

35 F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin,
A. Lemâıtre, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E.
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49 M. Röntgen, C. V. Morfonios, I. Brouzos, F. K. Diakonos,
and P. Schmelcher, “Quantum network transfer and stor-
age with compact localized states induced by local symme-
tries,” Phys. Rev. Lett. 123, 080504 (2019).

http://dx.doi.org/ 10.1103/PhysRevLett.85.3906
http://dx.doi.org/ 10.1103/PhysRevLett.83.2636
http://dx.doi.org/ 10.1103/PhysRevLett.83.2636
http://dx.doi.org/10.1103/PhysRevA.88.063613
http://dx.doi.org/ 10.1103/PhysRevB.88.220510
http://dx.doi.org/10.1103/PhysRevB.94.245149
http://dx.doi.org/ 10.1103/PhysRevX.7.031057
http://dx.doi.org/10.1103/PhysRevB.98.134513
http://dx.doi.org/10.1103/PhysRevB.64.155306
http://arxiv.org/abs/2004.11880
http://arxiv.org/abs/2004.11880
http://dx.doi.org/ 10.1103/PhysRevB.95.115309
http://stacks.iop.org/0295-5075/105/i=3/a=30001
http://stacks.iop.org/0295-5075/105/i=3/a=30001
http://dx.doi.org/ 10.1103/PhysRevLett.116.066402
http://dx.doi.org/ 10.1103/PhysRevLett.116.066402
https://www.nature.com/articles/s41598-017-15441-2
https://www.nature.com/articles/s41598-017-15441-2
http://dx.doi.org/10.1103/PhysRevB.78.125104
http://dx.doi.org/10.1038/srep16852
http://dx.doi.org/ 10.1103/PhysRevA.94.043831
http://dx.doi.org/ 10.1103/PhysRevA.94.043831
http://dx.doi.org/ 10.1103/PhysRevB.95.115135
http://dx.doi.org/ 10.1103/PhysRevB.95.115135
http://dx.doi.org/10.1103/PhysRevB.97.035161
http://dx.doi.org/ 10.1088/1751-8121/aaf25c
http://dx.doi.org/ 10.1088/1751-8121/aaf25c
http://dx.doi.org/10.1103/PhysRevB.99.125129
http://dx.doi.org/ 10.1103/PhysRevLett.61.2015
http://dx.doi.org/ http://dx.doi.org/10.3934/mine.2019.3.447
http://dx.doi.org/ http://dx.doi.org/10.3934/mine.2019.3.447
http://dx.doi.org/10.1103/PhysRevLett.123.080504

	Nonlinear caging in All-Bands-Flat Lattices
	Abstract
	I Introduction
	II Single particle caging
	III Nonlinear interactions: sub-diffusion and fine-tuned caging
	A Necessary and sufficient condition for nonlinear caging
	B Two band networks
	1 Two examples

	C Generalizations to more bands and higher lattice dimensions

	IV Discussions and perspectives
	V Acknowledgments
	A Detangling of ABF one-dimensional networks
	1 Proof
	2 Parametrization of =2 networks

	B Detangling procedure applied to nonlinear dispersionless models
	1 Preserving the caging in =2 networks: a necessary and sufficient condition
	2 Rotating the interaction Hamiltonian H1G
	3 Fully detangled models A and B

	 References


