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Abstract

Periodically driven quantum many-body systems play a central role for our under-
standing of nonequilibrium phenomena. For studies of quantum chaos, thermal-
ization, many-body localization and time crystals, the properties of eigenvectors
and eigenvalues of the unitary evolution operator, and their scaling with phys-
ical system size L are of interest. While for static systems, powerful methods
for the partial diagonalization of the Hamiltonian were developed, the unitary
eigenproblem remains daunting.

In this paper, we introduce a Krylov space diagonalization method to obtain
exact eigenpairs of the unitary Floquet operator with eigenvalue closest to a
target on the unit circle. Our method is based on a complex polynomial spectral
transformation given by the geometric sum, leading to rapid convergence of the
Arnoldi algorithm. We demonstrate that our method is much more efficient than
the shift invert method in terms of both runtime and memory requirements,
pushing the accessible system sizes to the realm of 20 qubits, with Hilbert space
dimensions ≥ 106.
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1 Introduction

Periodically driven, Floquet quantum many-body systems host fascinating nonequilibrium
phenomena [1, 2]. While they generically relax to a featureless state [3, 4] independent of
the initial state, they can undergo nonequilibrium phase transitions, such as the many-body
localization transition [5–10]. In this context, Floquet systems are often cleaner counterparts
of Hamiltonian systems, capturing the essence of these phenomenona, due to the absence of
an energy structure and a uniform density of states. This is for example useful for high quality
tests of the eigenstate thermalization hypothesis [4, 11–17].

Interestingly, Floquet quantum many-body systems can exhibit altogether new physics,
absent in Hamiltonian systems [18], such as robust [19–24] or fine tuned [25,26] time crystals
or prethermal states [27–32].

Many questions, in particular in the context of the many-body localization transition, rely
on studying the scaling of the properties of eigenvectors of the unitary one period evolution
operator U with system size. While in static systems powerful methods like shift-invert
diagonalization [33,34] and polynomial filter diagonalization [35–38] were developed for finding
interior eigenpairs of a large hermitian and sparse Hamiltonian up to Hilbert space dimensions
of 107, the case of the dense unitary eigenproblem remains daunting.

Although progress was made for the special case deep in the many-body localized phase
based on matrix product state variants of the shift invert technique [39, 40] for the Floquet
operator [41], a general purpose method which can go beyond full diagonalization of the
unitary matrix U , limited to system sizes of about L = 14 . . . 16 qubits is yet missing.

In this paper, we introduce a new method using a spectral transformation given by the
geometric sum gk(U) of order k. The spectral transformation is a complex polynomial of U
and an efficient matrix vector product gk(U)|ψ〉 can be defined, provided there is an efficient
matrix vector product U |ψ〉. This is the case in local Floquet systems (e.g. in a matrix product
operator formulation). The spectral transformation is designed to enhance the absolute value
of eigenvalues of U close to an arbitrary target on the unit circle, and to reduce the absolute
value of all other eigenvalues, thus allowing rapid convergence of the Arnoldi algorithm to the
requested eigenpairs of gk(U).

We show that this procedure is effective and can be carried out with a low memory
footprint, compared to dense shift-invert or full diagonalization. Effectively, it gives access to
system sizes up to L ≥ 20 qubits, while full diagonalization is limited to L ≈ 15.

This computational advantage makes extensive finite size scaling studies of Floquet MBL
systems possible, and can help to make progress on the recent debate on the stability of
many-body localization in the thermodynamic limit [42–49], which highlights the importance
of finite size effects.

2 Model

To investigate the performance of our method, we consider a simple generic model for a time
periodic one dimensional quantum many-body system of L qubits, with a Hilbert space of
dimension d = 2L. The model is designed such that it is ergodic, with highly entangled
eigenstates, and is not tractable by alternative methods, e.g. tensor network techniques [41].

The evolution operator U over one driving period is given by a two layer brickwork circuit,
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composed of two site unitaries.

U = (1)

Each of the boxes in Eq. (1) represents a unitary ui,i+1 ∈ C4×4, acting on qubit i and its
right neighbor (i + 1). At the boundaries, we fill in single qubit unitaries u1, uL ∈ C2×2 if
needed. We sample all unitaries randomly from the uniform measure on the unitary group [50].
Our construction ensures that each link in the chain of qubits is represented by a 4×4 unitary,
corresponding to generic 2-qubit interactions.

We can express U in terms of the two layers Ua and Ub (for even L):

U = UaUb,

Ua = u1,2 × u3,4 × · · · × uL−1,L
Ub = u1 × u2,3 × · · · × uL−2,L−1 × uL.

(2)

It is important to note that the unitary matrix U is dense in the computational basis. To
construct an efficient matrix vector product |ψ′〉 ← U |ψ〉, we split the circuit in a left part
UL ∈ CdL×dL (red tensors in Eq. (1)) and a right part UR ∈ CdR×dR (blue tensors in Eq. (1)).
It is advisable to chose dL, dR ≈

√
2L.

The Floquet operator is then decomposed into U = (UL×1)(1×UR), and we can calculate
U |ψ〉 by two matrix products, first calculating

ψdL×d/dL ← ULψdL×d/dL and then

ψd/dR×dR ← ψd/dR×dRU
T
R .

(3)

Note, that here ψdL×d/dL and ψd/dR×dR are two different reshapings of the vector |ψ〉 into
matrices of dimensions indicated in the subscript.

The advantage of this procedure is that instead of the very large matrix U ∈ Cd×d, we
only need to store two much smaller matrices UL and UTR , and we have expressed the matrix
vector product in terms of two matrix products, with efficient memory access per floating
point operation.

This decomposition is specific to brickwork circuits, but for general one dimensional local
Floquet problems efficient matrix free matrix vector products can be formulated, for example
based on a matrix product operator formulation of U [41]. The matrix product operator is
guaranteed by locality to have a constant bond dimension due to the area law of the operator
entanglement entropy of U [51, 52].

3 Method

Our goal is to calculate a subset of the eigenpairs {ωn, |n〉} of the large unitary matrix U in
such a way that we obtain all nev eigenpairs with eigenvalue ωn closest to a target ztgt ∈ C.
The eigenvalues ωn of U lie on the complex unit circle, |ωn| = 1 and can therefore not be sep-
arated by magnitude, which is necessary for the convergence of Krylov space diagonalization
techniques.
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Figure 1: Left: Mapping of the complex unit circle |z| = 1 (inset) by the geometric sum gk(z)
with polynomial order k = 30. The “target” arc of the unit circle highlighted in red is mapped
to the red line in the main panel by gk(z). Right: Absolute value of the mapped values as a
function of phase angle φ. The part of the curve marked in red is the mapped “target” arc of
the unit circle, given by the target phase φtgt.

To achieve this, spectral transformations f(U) can be used to transform the eigenvalues
ωn → f(ωn), while leaving the the eigenvectors |n〉 invariant. If the magnitude |f(ωn)| is large
for eigenvalues ωn close to the target and small otherwise, e.g. the Arnoldi algorithm can be
used to calculate the eigenpairs of interest of f(U), while only the matrix vector product
|ψ′〉 ← f(U)|ψ〉 is needed.

One of the most effective spectral transformations is the “shift and invert” transformation

fsinvert(U) = (U − ztgt1)−1 (4)

which provides excellent convergence of the Arnoldi algorithm if the target is chosen on
or close to the unit circle. The downside of fsinvert is that for the matrix vector product
(U − ztgt1)−1 |ψ〉, an inversion is involved. Due to the dense spectrum of U , the condition
number of U − ztgt1 is exponentially large in system size and therefore only a direct solution
using a LU decomposition of the dense matrix U − ztgt1 can be used, with a memory com-
plexity O(d2) and runtime complexity O(d3). We provide benchmark results of this technique
in Tab. 1 for comparison.

Polynomial spectral transformations are useful, because they do not suffer from large
memory requirements since any power of U can be applied to a vector |ψ〉 by repeated matrix
vector products Uk|ψ〉 = U(U . . . (U |ψ〉)). Generally, the polynomial of degree k

pk(U) =

k∑
m=0

amU
m (5)

can be efficiently multiplied onto a vector to obtain pk(U)|ψ〉.
We argue here that an effective complex polynomial spectral transformation to single out

eigenpairs with eigenvalue closest to ztgt = eiφtgt is given by the geometric sum

gk(U) =
k∑

m=0

e−imφtgtUm. (6)
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Figure 2: Benchmark calculation of nev = 50 eigenpairs closest to ztgt = 1 using 4 cores of
an AMD EPYC 7H12 2.6 GHz CPU. The colormap shows the measured runtimes in seconds,
the black dashed line indicates Krylov space dimensions equal to the number of eigenvalues
on the outer apple line in Fig. 1. The red dashed line shows the Krylov space dimension 80%
smaller than this value. Red crosses show the position of absolute minimal runtime. Scanning
algorithmic parameters ncv and k disabled core boost and therefore numbers can differ from
Tab. 1.

This polynomial maximizes the absolute value of eigenvalues close to the target and has
minimal modulus outside the target region. We conjecture here, that it is in fact the optimal
choice, although we have checked this only numerically. The phase factor can be understood
by noticing that multiplication by e−iφtgt rotates the eigenvalues of U closest to eiφtgt to the
proximity of 1.

The geometric sum gk(U) has the closed form (if ωn 6= 1)

gk(U) =
[
1− e−i(k+1)φtgtUk+1

] [
1− e−iφtgtU

]−1
, (7)

and has some similarity with fsinvert.
Fig. 1 illustrates the mapping of the unit circle by gk(z). A number eiφ on the unit circle

is mapped onto

gk(e
iφ) =

1− ei(k+1)(φ−φtgt)

1− ei(φ−φtgt)
. (8)
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The left panel shows the transformed unit circle under gk(z) on the complex plane, while
the right panel depicts |gk(eiφ)| as a function of the phase angle φ. In the limit φ → φtgt,
gk(e

iφ) is on the real axis and given by k + 1. This is the place with maximal modulus. If
we tune φ away from φtgt, gk(e

iφ) moves away from this point, and the modulus decreases,
until we reach gk(e

iφ) = 0 for φ− φtgt = ± 2π
k+1 . If φtgt − 2π

k+1 ≤ φ ≤ φtgt + 2π
k+1 , we therefore

get the “apple” shaped outer line in the left panel of Fig. 1, while the rest of the circle is
compressed into the inner spirals. The target arc satisfying this condition is shown in red in
Fig. 1. It is noteworthy that the target arc is not only strongly enhanced in magnitude by
gk, but also shows the largest separation of eigenvalues on the complex plane. These features
are important for a rapid convergence of the Arnoldi algorithm.

Quantum many-body Floquet systems typically have a uniform eigenvalue density on the
unit cirle. Therefore, on average for a fixed polynomial order k, the 2d/(k + 1) eigenvalues
closest to ztgt will be mapped to the outer “apple” line by gk.

4 Arnoldi algorithm for gk(U)

The Arnoldi algorithm [53] is a generalization of the Lanczos method [54] to nonhermitian
matrices. It is a numerically stable variant of the power iteration, and iteratively builds
an orthonormal basis {vj} of the Krylov space span

(
|ψ〉, gk(U)|ψ〉, g2k(U)|ψ〉 . . . gncv−1

k |ψ〉
)

of
dimension ncv, starting from a random initial vector |ψ〉. Raising gk to high powers in this
process filters out components of eigenvectors of gk which are in the target space (i.e. whose
eigenvalues of gk have a large magnitude and are therefore enhanced). At the same time,
gk(U) is projected into the Krylov space by the matrix V ∈ Cd×ncv with columns given by vj ,
yielding the upper Hessenberg matrix

Hm = V †gk(U)V. (9)

The eigenvalues λi and eigenvectors xi of Hm yield the Ritz pairs (λi, V xi), which are approx-
imations of the eigenpairs of gk(U). If the dimension of the Krylov space ncv is sufficiently
large, the Ritz pairs will converge with the number of Arnoldi iterations. Typically, λi with
the largest magnitude converge first, and therefore an effective spectral transformation is im-
portant. One should not expect to converge all ncv Ritz pairs, but rather chose a maximal
size of the Krylov space ncv > nev, if nev eigenvalues are required.

Once nev Ritz pairs are converged, we obtain excellent approximations for eigenpairs of
gk(U). The eigenvectors |n〉 of gk(U) are also eigenvectors of U . The eigenvalues λn of gk(U)
are related to the corresponding eigenvalues ωn via gk(ωn) = λn. Rather than solving this
equation by root finding, we calculate them from ωn = 〈n|U |n〉. This has the advantage that
we can at the same time check the residuals 1

rn = ‖U |n〉 − ωn|n〉‖2 (10)

as a measure of eigenpair quality.

1We note here in passing that for very high orders of filtering polynomials the numerical precision of applying
gk(U) may be insufficient. In this case, one can perform one iteration of the Ritz method by diagonalizing
Anm = 〈ñ|U |m̃〉 with approximate eigenvectors |ñ〉 of gk(U) to improve the precision of Ritz pairs of U . We
did however not observe such problems in practice.
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We pursue here the following strategy: Since the eigenvalues on the outer “apple” line
of gk(z) are well separated from the rest of the spectrum, it is advisable to use a Krylov
space dimension ncv = 2d/(k + 1) (in practice, one can take it about 80% smaller as we
will see below). If we want to calculate nev eigenpairs, we furthermore use ncv > 2nev. We
use the reference implementation of the implicitly restarted Arnoldi method as provided by
arpack [55].

For large system sizes, the runtime of the algorithm is dominated by matrix vector products
gk(U)|ψ〉. We can therefore estimate the computational cost for the matrix vector product
proposed in Eq. (3). A single matrix vector product, rephrased as two matrix matrix products
of matrices of dimension 2L/2 has a cost of O(23L/2). For a fixed number of required eigenpairs
nev, we use an exponentially large polynomial order k = 0.8 · 2L+1/ncv, and therefore a single
matrix vector product gk(U)|ψ〉, requiring k matrix vector products involving U , has an
asymptotic cost of O(25L/2/ncv). In the Arnoldi algorithm, we need at least ncv of these
matrix vector products, and hence the overall asymptotic runtime complexity is O(22.5L).
We note that in the benchmarks in Sec. 5 this asymptotic complexity is only approximately
visible, since even for the largest system sizes, CPU specific effects like cache sizes play a role.

5 Benchmarks

To find the optimal algorithmic parameters k and ncv, we perform benchmark calculations
to obtain nev = 50 eigenpairs closest to ztgt = 1 of Floquet random circuits from Eq. (1) of
length L = 12, 14, 16 for a range of Krylov space dimensions ncv and polynomial orders k.
The results are shown in Fig. 2. The black dashed line corresponds to the ncv = 2L+1/k,
where the Krylov space dimension is equal to the number of eigenvalues on the outer apple
line in Fig. 1. The colormap shows the obtained runtimes in seconds. There is a distinct
minimum visible in the runtime, when the Krylov space dimension is about 0.8 · 2L+1/k (red
dashed) for large ncv. This corresponds to the number of eigenvalues with larger modulus
than the rest of the spectrum and is therefore the optimal size of the Krylov space for each
k. We observe a tendency that for larger sizes, larger Krylov space dimensions are better.
And we are therfore using ncv = b2L/2+1c, k = 0.8 · 2L+1/ncv in the following benchmarks for
larger sizes.

For an assessment of the performance of our method in comparison with the state of the
art, we carry out a calculation of 50 eigenpairs of U with eigenvalues closest to 1 using (i)
full diagonalization of U using the zgeev Routine from MKL, (ii) shift invert diagonalization
based on the LU decomposition of U−1 using the zgetrf Routine from MKL in combination
with arpack’s Arnoldi algorithm (iii) our new geometric sum filtered diagonalization using
arpack’s Arnoldi algorithm.

We measure the total runtime of the calculation as well as the memory footprint and show
the results in Tab. 1 and Fig. 3. We also calculate the maximal residue max50

n=1‖U |n〉−ωn|n〉‖2
to check the quality of the obtained eigenpairs. Fig. 3 reveals that the scaling of all techniques
is exponential in system size L due to the nature of the problem. However, with a fixed
runtime, geometric sum filter diagonalization yields eigenpairs of systems about 4 sites larger,
i.e. for Hilbert spaces about 16 times larger. Due to the very small memory footprint, system
sizes up to about L = 20 are therefore reachable, which would require about 50 TiB of memory
with shift-invert. Despite the use of quite large polynomial orders, the algorithm is stable
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Figure 3: Scaling of total runtime for the calculation of nev = 50 eigenpairs close to ztgt = 1
for different methods. The data is the same as in Tab. 1. The dotted line indicates the
expected theoretical scaling O(22.5L) of the method.

and yields eigenpairs of excellent quality with residuals about one order of magnitude smaller
than obtained from full diagonalization. As an example of how the obtained eigenstates of
the unitary U can be investigated, we show in Fig. 4 the entanglement entropy as a function
of the subsystem size LA. For this, we cut the system into a left half (subsystem A) consisting
of LA qubits, and a right half (subsystem B) with L−LA qubits. Due to the open boundaries
we use in this system, there is only one cut between the two subsystems. For each eigenstate
|ψ〉, we can then calculate the entanglement entropy between the two subsystems, given by

SA = −TrρA ln ρA = −
∑
i

s2i ln s2i , ρA = TrB|ψ〉〈ψ|. (11)

Here, s2i are the eigenvalues of the reduced density matrix ρA of subsystem A, which can
be calculated also by determining the singular values si of the wave function reshaped as
a matrix ψ2LA×2L−LA , where the number of rows and columns reflect the dimensions of the
Hilbert spaces of the respective subsystems. It is clear in Fig. 4 that the entanglement
entropy follows a volume law, it is extensive as a function of subsystem size, almost up to
LA = L, at which point the entropy decreases due to the symmetry SA = SB. This clean
scaling is expected, since our circuit (1) is designed to be ergodic. Since we are dealing
with a Floquet system, all eigenstates are “infinite temperature” states, with volume law
entanglement. This is why this system is not amenable to tensor network techniques for
calculating exact eigenstates, since the required bond dimension would scale exponentially
with system size. We can go one step further and compare these results quantitatively to
the expected entanglement entropy for a cut of the system into two parts of size LA and LB
(LA+LB = L) for random pure states. Page [56] conjectured this entropy to be for LA ≤ LB

SA =
2L∑

k=2LB+1

1

k
− 2LA − 1

2LB+1
, (12)

and this was later proven to be correct [57,58].
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Figure 4: Entanglement entropy as a function of subsystem size LA for eigenstates of the
unitary (1) for different system sizes L = 10 . . . 20. For each curve, a different realization of
the random circuit was generated and the mean over 50 eigenstates was taken. The variance
over eigenstates is very small (of the order of 10−4 and smaller). The dashed red lines show
the expected entanglement entropy for infinite temperature pure states [56].

The red dashed lines in Fig. 4 show the expected entropy (12), revealing a perfect match.
This confirms the expectation, that in the random circuit model (1), the eigenstates are
maximally chaotic.

6 Conclusion

We have shown that the geometric sum is an effective polynomial filter to obtain interior
eigenpairs of local Floquet unitary operators. Due to the locality, an efficient matrix vector
product U |ψ〉 can be defined and the geometric sum can be efficiently applied to any wave
function. This allows the application of the implicitly restarted Arnoldi algorithm for finding
eigenpairs closest to an arbitrary target on the complex unit circle.

Although the overall exponential scaling of the problem remains, the method has a mod-
erate memory footprint compared to full diagonalization and shift-invert, and is roughly one
order of magnitude faster than shift-invert, making systems of L ≥ 20 qubits accessible.

We note that a large fraction of the runtime of the algorithm is spent in the matrix
vector product due to the high order of the polynomial, and that runtimes can be reduced
significantly by optimizing it.
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method L time [s] mem. [GiB] max res.
geom. sum 10 0.3 0.167 4.2× 10−15

geom. sum 11 0.7 0.224 2.3× 10−15

geom. sum 12 2.3 0.265 1.9× 10−15

geom. sum 13 6.6 0.288 2.8× 10−15

geom. sum 14 26.0 0.369 2.5× 10−15

geom. sum 15 46.8 0.434 2.5× 10−15

geom. sum 16 193.3 0.861 2.5× 10−15

geom. sum 17 903.6 1.802 2.8× 10−15

geom. sum 18 4965.2 4.601 3.4× 10−15

geom. sum 19 16 579.0 12.081 3.7× 10−15

geom. sum 20 97 706.9 33.323 4.3× 10−15

full diag. 10 3.0 0.289 1.9× 10−14

full diag. 11 17.2 0.556 1.9× 10−14

full diag. 12 102.8 1.341 2.8× 10−14

full diag. 13 687.2 4.476 4.1× 10−14

full diag. 14 3622.3 16.622 4.0× 10−14

full diag. 15 23 025.9 64.581 5.2× 10−14

full diag. 16 198 568.0 192.614 6.8× 10−14

shift invert 10 0.6 0.264 5.7× 10−15

shift invert 11 1.8 0.454 6.2× 10−15

shift invert 12 5.5 0.996 9.0× 10−15

shift invert 13 18.6 3.25 1.7× 10−14

shift invert 14 78.3 12.263 1.4× 10−14

shift invert 15 352.9 48.19 2.7× 10−14

shift invert 16 2197.3 192.248 3.6× 10−14

shift invert 17 11 433.5 768.247 3.8× 10−14

Table 1: Average runtime and memory consumption for the calculation of nev = 50 eigenpairs
close to ztgt = 1 of our proposed geometric sum polynomial filter method with ncv = b2L/2+1c
and the optimal polynomial order k = 0.8 · 2L+1/ncv (cf. Fig. 2) in comparison with full
diagonalization using MKL’s zgeev, as well as a custom shift invert implementation using
MKL’s zgetrf. Runtimes were measured using 16 cores of an AMD EPYC 7H12 2.6 GHz
CPU. Memory usage is estimated from the maximum resident set size (max RSS). Mem-
ory footprints are only indicative since our simple benchmark codes were not optimized for
memory usage.
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