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We observe that a weak guided light field transmitted through an ensemble of atoms coupled
to an optical nanofiber exhibits quadrature squeezing. From the measured squeezing spectrum we
gain direct access to the phase and amplitude of the energy-time entangled part of the two-photon
wavefunction which arises from the strongly correlated transport of photons through the ensemble.
For small atomic ensembles we observe a spectrum close to the lineshape of the atomic transition,
while sidebands are observed for sufficiently large ensembles, in agreement with our theoretical
predictions. Furthermore, we vary the detuning of the probe light with respect to the atomic
resonance and infer the phase of the entangled two-photon wavefunction. From the amplitude
and the phase of the spectrum, we reconstruct the real- and imaginary part of the time-domain
wavefunction. Our characterization of the entangled two-photon component constitutes a diagnostic
tool for quantum optics devices.

Non-classical states of light are at the heart of quan-
tum optics. Many experimental approaches for the gener-
ation of non-classical states of light are based on strong
coupling between photons and quantum emitters, e.g.,
making use of resonant enhancement of atom-light inter-
action via high finesse optical cavities [1–8] or employing
collective response of strongly interacting Rydberg atoms
[9–16]. These approaches aim to maximize the interac-
tion strength between atoms and photons to generate
non-classical states of light.

In contrast, it has recently been predicted that light
with non-classical signatures can be generated in a con-
ceptually simple system consisting of N two-level emit-
ters weakly coupled to a continuum of modes propagating
in a one-dimensional waveguide and driven with a coher-
ent laser field [17]. This occurs even when the atoms are
driven far below saturation. This has led to the obser-
vation of highly correlated states of light which can be
tuned to exhibit antibunching or bunching by control-
ling the optical depth of the atomic ensemble [18]. At
low input powers, the photon correlations arise from the
two-photon component of the field, which can be written
as a superposition of a separable part and an entangled
part [19]. Measuring the second-order correlation func-
tion of the field, as in [18], probes the absolute magni-
tude of the entire two-photon component. However, it
does not provide direct access to the relative phase and
amplitude of the entangled and separable parts.
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FIG. 1. (a) Atom-mediated photon interaction: Two pho-
tons interact with a two-level atom and exchange energy such
that they become red- and blue-detuned with respect to the
incident light. (b) The scattered light exhibits a Lorentzian
shaped spectrum. (c) As the generated photon pairs propa-
gate through the ensemble, absorption around the atomic res-
onance ω0 attenuates the central part of the spectrum, leaving
red- and blue-detuned sidebands. (d) Schematic setup: Probe
light exiting the nanofiber interferes with a local oscillator at
phase θ on a 50 : 50 beam splitter and is analyzed on balanced
photo-detectors. Atoms are trapped in the evanescent field of
the nanofiber-waist of a tapered optical fiber by a combina-
tion of red-detuned standing-wave light field at a wavelength
of 935 nm (solid gray line) and blue-detuned running-wave
light field (dashed gray line) at 685 nm.

Here, we report the observation of quadrature squeez-
ing [20–24] of the light that is transmitted through an
ensemble of atoms coupled to a nanofiber. While the
measurement of squeezing at low powers in a weakly
coupled atomic ensemble is novel in itself, we also use
this measurement to gain direct experimental access to
the phase and magnitude of the entangled part of the
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transmitted field. More precisely, to leading order, the
squeezing spectrum is proportional to the amplitude of
the entangled part of the two-photon wavefunction, and
the homodyne measurement of a continuous field allows
us to measure the entanglement of the spectral compo-
nents of opposite frequency, ω0 ± ω, around the probe
field with frequency ω0 [25]. The entanglement in the
transmitted light is a consequence of the collective non-
linear response of the atomic ensemble. Entangled pho-
tons from each atom constructively interfere which leads
to collectively enhanced squeezing. At the single atom
level, the entanglement arises from the two-photon scat-
tering process of resonance fluorescence, as depicted in
Fig. 1(a). Two resonant photons that arrive during the
lifetime of the excited state are scattered into spectrally
entangled blue- and red-detuned sidebands, resulting in
energy-time entangled photon pairs. This process resem-
bles degenerate four-wave mixing (FWM) by a Kerr non-
linearity [26]. However, unlike FWM in a single-mode
cavity QED [27–29], the multimode nature of the cas-
caded system produces richer physics and requires a full
multimode treatment of the light field. In our theoreti-
cal and experimental analysis we characterize the photon
pairs by measuring the resulting quadrature squeezing.
The latter allows us to infer the magnitude and the phase
of the entangled part of the two-photon wavefunction.

We consider the physical setting of N emitters weakly
coupled to a single-mode continuum of the electromag-
netic field with a continuous spectrum. In our setup, we
use laser-cooled Cesium atoms in the evanescent field sur-
rounding a tapered optical fiber with a 400 nm diameter.
The atoms are trapped in two 1D arrays of trapping min-
ima along the nanofiber created through a combination
of red- and blue-detuned fiber guided light fields [30–32].
The atoms are located at a distance of ∼ 250 nm from the
fiber surface, and each site contains at most one atom.
The nanofiber-guided probe field of power Pin is near-
resonant with the Cesium D2-line transition and inter-
faces the atoms via the evanescent field of the nanofiber
mode as depicted in Fig. 1(d) [33]. The coupling of in-
dividual atoms to the nanofiber mode is weak, with a
coupling constant β = Γwg/Γtot = 0.0070(5) [34], where
Γwg is the spontaneous emission rate into the waveg-
uide and Γtot = 2π × 5.2 MHz is the total emission rate.
We analyze the transmitted light via a balanced homo-
dyne detection scheme: The output is first filtered from
the trapping light fields and then sent to a 50:50 beam
splitter where it is mixed with a local oscillator (LO)
field [35–37] as shown in Fig. 1 (d). The two outputs
are measured on balanced photo-detectors, and we record
the amplified differential current I(t) between both pho-
todiodes, which is proportional to the field quadrature
Xθ(t). Here, θ is the relative phase between the LO and
the probe field. The quadrature operator is given by
X̂θ(t) = 1

2

[
â(t)eiθ + â†(t)e−iθ

]
, where â (â†) is the an-

nihilation (creation) operator. For a classical (coherent)

state of light 〈X̂θ(t)〉 oscillates as cos(θ), and the fluctu-

ations ∆X̂θ(t) = X̂θ(t)− 〈X̂θ(t)〉 are independent of the
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FIG. 2. The observed output noise as a function of the
phase θ. The noise is normalized to the vacuum reference
and deduced from the frequency range fmin = 1.5 MHz to
fmax = 23 MHz. The signal obtained with trapped atoms
(shown in circles) is compared to the measurement without
atoms (shown in triangles). We fit the experimental data
with trapped atoms using the function −A cos(2θ + ϕ) + c
(black line) which reveals the expected cos(2θ) modulation.
Squeezing occurs for θ around 0 and π while anti-squeezing
occurs around π/2 and 3π/2. The resonant input power is
Pin/Psat = 0.51± 0.04.

phase θ and have minimum uncertainty, i.e., they are at
the shot noise limit.

We probe an ensemble of N atoms with an incident
light that has a saturation parameter s = Pin/Psat, where
Psat = ~ωΓtot/(8β) = 136±10 pW, and detuning ∆ from
the atomic resonance. The transmitted light experiences
a change in phase and amplitude upon interaction such
that the output field has the average field quadrature

〈X̂θ(t)〉 = |t∆|Ns
1
2

√
Γtot

8β
cos(θ + δ) +O (s) . (1)

Here, O(s) refers to terms of order s and higher, and
δ = Arg{tN∆}, where t∆ = 1 − 2β/(1 − 2i∆/Γtot) is the
single-photon transmission coefficient of a single atom.
The atoms also modify the variance 〈∆X̂2

θ (t)〉 and lead to
quadrature squeezing. For squeezed light, the quadrature
variance is smaller than the shot noise level for a certain
value of θ. More precisely, the variance 〈∆X̂2

θ (t)〉 oscil-

lates twice as fast as 〈X̂θ(t)〉 and exhibits a cos(2θ + ϕ)
modulation. For a resonant drive the phase offset ϕ is
zero and the light is amplitude squeezed with maximum
squeezing observed for θ = (0, π).

In our setup, the squeezing is induced by the nonlinear
optical response of atoms which behave as effective two-
level systems. In the following, we limit our discussion
to powers well below saturation s/8 � 1 such that we
can neglect events where three or more photons arrive
simultaneously at any atom. The transmitted part of the
two-photon wavefunction can be expressed in terms of
separable and entangled photons. In the frame rotating
with ω0, the two-photon wave function is,

ψ2(x1, x2) = t2N∆ − φN (x1 − x2). (2)

The first term denotes separable photons which are
monochromatic traveling waves extended in space. Upon
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interaction with each emitter, each of the separable pho-
tons acquires a transmission coefficient t∆. The entan-
gled part of the wavefunction is not separable and is a
localized function of the relative coordinate x1 − x2. On
resonance (∆ = 0) and for a single emitter it is a decaying
exponential

φN=1(x = x1 − x2) = 4β2e−|x|Γtot/(2vg), (3)

where vg is the group velocity of the photons. For N
emitters the entangled part of the wavefunction φN (x)
was computed in Ref. [17].

Introducing the normally ordered squeezing spectrum

Sθ(ω) =

∫ ∞
−∞
〈:∆X̂θ(τ)∆X̂θ(0):〉 eiωτ dτ, (4)

allows relating the entangled part of the two-photon
wavefunction with the variance of the field quadra-
ture [41]. Here, : . . . : denotes normal ordering and
the normally ordered squeezing spectrum of a coher-
ent state yields Sθ(ω) = 0, while squeezed light yields
Sθ(ω) < 0. For the states generated in our experiment
and in the case of weak saturation, the squeezing spec-
trum Sθ(ω) and the spectrum of the entangled photons
φN (ω) =

∫
φN (x)e−iωx/vgdx are linked by

Sθ(ω) = −Γtot

16β
|φN (ω)| cos [2θ + ϕN (ω)] s+O

(
s2
)
, (5)

where we introduced the phase and the magnitude of
the spectrum of the entangled two-photon wavefunction
as φN (ω) = |φN (ω)|eiϕN (ω). In the following, we will
first focus on a resonant probe field for which φN (ω)
is a real quantity (ϕN (ω) = 0). For a single emit-
ter φN=1(ω) is the Fourier Transform of Eq. (3) which
gives a Lorentzian. Consequently, also the squeezing
spectrum has a Lorentzian shape [42]. For N emitters
with Nβ � 1, re-absorption can be neglected and the
scattered components constructively interfere since the
process relies on forward scattering. A coherent build
up of the squeezed photons takes place, and the squeez-
ing spectrum is coherently enhanced, i.e. its amplitude
is N times larger than the single atom squeezing spec-
trum [43]. For large optical depth (OD), the probabil-
ity that the squeezed photons are scattered again and
thereby most likely removed from the fiber cannot be ne-
glected anymore, and the problem becomes a quantum
many-body problem. Recently, it has been shown that
this problem can be solved exactly up to two-photon in-
put states for chiral coupling where atoms couple only to
one propagation direction of the mode [17]. Applying this
formalism [41] allows calculating the squeezing spectrum
for arbitrary N . The results from those calculations can
be understood in the following manner: Photon losses oc-
cur predominantly close to the emitters resonance which
reduces the observed squeezing close to resonance. For
many emitters this leads to a squeezing spectrum which
develops sidebands due to the loss of squeezed photons

that are resonant with the atoms as we will experimen-
tally show later below.

We typically load a few hundred atoms into the evanes-
cent field trap and determine the number of atoms N in
a separate transmission measurement. We then probe
the atoms on the cycling transition of the D2-line. The
probing lasts for 10 − 100µs, such that heating due to
resonant scattering of the probe is small, and the num-
ber of trapped atoms does not change significantly dur-
ing probing. After the homodyne measurement, we eject
the atoms from the trap, shift the LO field frequency
by 1 MHz and increase its power in order to observe a
beat note between the probe field and the LO. From the
beat note, we extract the relative phase θ between the
probe field and the local oscillator at the moment of the
homodyne measurement. After this heterodyning stage,
we switch off the probe field and record a vacuum refer-
ence where only the LO field is incident on the homodyne
detector. We repeat the measurement 10 000 − 100 000
times depending on the dataset and record I(t) in each
run. From each experiment cycle, we extract the power
spectrum of I(t) during atom probing, the vacuum refer-
ence, and the relative phase θ.

In a first step, we extract the noise 〈∆I2(θ)〉 and nor-
malize it to the vacuum reference as shown in Fig. 2. We
average the noise within the relevant frequency range of
fmin = 1.5 MHz and fmax = 23 MHz. The lower bound-
ary is chosen to exclude technical noise and the upper
boundary to capture the physically relevant frequency
range on the order of a few Γtot. The mean atom num-
ber during probing consists of N = 169 ± 12 trapped
atoms. In all measurements, the number of atoms de-
creases by less than 20% during probing, which we in-
fer in a separate transmission measurement. The inci-
dent field is resonant and has a saturation parameter of
s = 0.51 ± 0.04. In Fig. 2 data points with atoms show
the expected − cos(2θ) modulation of the noise. Values
smaller than 1 show that the light is quadrature squeezed.
The maximum observed squeezing within the bandwidth
∆f = fmax − fmin is 0.65± 0.12 %. We fit the data with
the function −A cos(2θ + ϕ) + c, where A is the ampli-
tude of the squeezing, and c accounts for additional noise
sources in the experiment. We obtain a small value for
the squeezing angle ϕ/π = 0.1 ± 0.03. This shows that
the light is almost purely amplitude squeezed, i.e. the
strongest squeezing is observed for θ close to 0 and π.

In the next step, we make use of the homodyne detec-
tion scheme to access the spectrum of the entangled pho-
tons. From the experimental power spectrum normalized
to the vacuum spectrum, we deduce the normally ordered
squeezing spectrum Sθ(ω) [41]. Fig. 3 (a) – (c) show the
normally ordered squeezing spectrum for different N for
the most squeezed (θ = 0, π) in orange (bright) and the
most anti-squeezed (θ = π/2, 3π/2) in blue (dark). Here,
we average over a θ-range of ±18◦ around both maxima
and minima of the noise 〈∆I2(θ)〉. At θ = (0, π), for all
atom numbers, the squeezing spectrum Sθ(ω) exhibits
fluctuations below zero which confirms that the spec-
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FIG. 3. The first row of panels, (a) – (c), shows the squeezing spectrum Sθ(ω) for three different atom numbers at input powers
s = (0.15± 0.01, 0.67± 0.05, 0.29± 0.02) (from left to right) at the angle of largest squeezing, θ = (0, π) in orange (bright) and
largest anti-squeezing, θ = (π/2, 3π/2) in blue (dark). The corresponding theoretical predictions are shown as solid lines. The
second row of panels, (d) – (f), shows the entangled photon spectrum |φN (ω)| which is deduced from the upper row with the
corresponding theoretical prediction (solid line). All theoretical curves are predictions based on the independently measured
parameters β and N , without any free fit-parameter taking into account the effect of independently estimated photon loss and
detection efficiency in our setup [38–40].

tral components created by the two-photon scattering
are energy-time entangled [25]. We attribute the devia-
tions at low frequencies mainly to technical low-frequency
noise.

In order to determine the spectrum of the entangled
two-photon components |φN (ω)| we make use of the fact
that Sθ(ω) is proportional to |φN (ω)| and for a resonant
probe can be best extracted at the extrema of the cosine
modulation (θ = 0, π/2, π, 3π/2). We obtain |φN (ω)| di-
rectly from the squeezing spectra shown in Fig. 3 (a) –
(c) by using Eq. (5) and averaging over the absolute value
of Sθ(ω) at the four different values of θ. Panels (d) –
(f) in Fig. 3 show the spectrum of the entangled photons
|φN (ω)| for different N from small to large atom num-
bers. For a small atom number, i.e., a small OD of the
atomic ensemble, the spectrum is mainly dominated by
a coherent built-up of entangled photons, and the shape
of φN (ω) is close to the lineshape of the atomic transi-
tion as shown in Fig. 3 (d). As N is increased, as in (e)
and (f), the probability that squeezed photons are scat-
tered a second time and thereby lost from the waveguide
mode increases. These events are more likely close to
the atomic resonance. Consequently, one observes two
sidebands, to the left and to the right of the atomic tran-
sition. Already for N = 194 ± 14 the spectrum strongly
deviates from a Lorentzian. For N = 262 ± 19, the en-
tangled photons with frequency components close to res-
onance have almost vanished and the entangled photon
pairs are concentrated in the sidebands.

So far, we considered a resonant probe field which
leads to zero phase of the entangled part of the two-
photon wavefunction (ϕN (ω) = 0). In the following, we

measure the detuning dependence of ϕN (ω). We probe
N = 140 atoms with s = 0.37 ± 0.03 for different de-
tunings ∆. First, we focus on the phase of the squeez-
ing, i.e. the phase of the entangled two-photon wave-
function ϕN (τ) = Arg{φN (τ)} averaged over ∆f . As
in Fig. 2, we fit the averaged noise and extract the off-
set angle ϕ. Since the bandwidth ∆f contains the rele-
vant frequencies, this method is equivalent to an inte-
gration over all frequencies and we introduce the fre-
quency integrated entangled two-photon wavefunction
2πφN (τ = 0) =

∫∞
−∞ φN (ω)dω. Figure 4 (a) shows the

experimental values for ϕN (τ = 0) together with its the-
oretical prediction.

In order to reconstruct the complex-valued function
φN (ω) = |φN (ω)|eiϕN (ω), we access ϕN (ω) by fitting the
phase in each frequency range individually. Figure. 4
(b) shows the phase of φN (ω) as a function of ω together
with its theoretical prediction for different laser-atom de-
tunings ∆. From the phase and the magnitude in fre-
quency space, one can equivalently obtain the complex
time-domain wavefunction φN (τ) by an inverse Fourier
transform. Using this method, we obtain the experimen-
tal φN (τ), and Fig. 4 (c) shows three examples together
with the corresponding theoretical prediction which does
not contain any fit-parameter.

In conclusion, we observed the generation of squeezed
light by sending weak coherent laser light through an
ensemble of atoms weakly coupled to a nanofiber. The
squeezing spectrum obtained via homodyne measure-
ment gives direct access to the relative phase and mag-
nitude of the two-photon wavefunction at the fiber out-
put, allowing us to reconstruct the time-dependent two-
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FIG. 4. The phase of the entangled part of the two-photon
wavefunction ϕN for N = 140 together with the correspond-
ing theoretical predictions in solid lines. (a) The integrated
phase ϕN (τ = 0) = Arg{φN (τ = 0)} for different detunings
∆. (b) The phase ϕ(ω) as a function of frequency. The detun-
ings from top to bottom are ∆/Γtot = 1.9, 0.8, 0,−1,−1.9 and
share the same color code as in (a). (c) The reconstructed real
and imaginary part of the entangled two-photon time-domain
wavefunction φN (τ). The solid lines show the corresponding
theoretical predictions based on the independently measured
values of β and N , without any free fit-parameter.

photon wave function of the transmitted light. These

measurements reveal the change in phase and magnitude
of the entangled photons for different detunings and re-
late these to the squeezing spectrum.

A recent theoretical proposal has suggested that cor-
relation measurements can be used to reconstruct the
scattering matrix of an arbitrary quantum scatterer [44],
and a first experimental step has been taken for a single
quantum emitter [45]. While we have focused on recon-
structing the two-photon wavefunction, our measurement
could also be extended to reconstruct the entire scatter-
ing matrix of an atomic ensemble. Finally, while in this
work we have focused on squeezing measurements, which
quantify second-order amplitude correlations, studying
higher-order correlations is also possible with our ap-
proach. For example, a non-zero third-order moment can
unveil the expected non-Gaussian nature of the output
photons and can also uncover the existence of three-body
entanglement.
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Supplemental Material: Unraveling two-photon entanglement via the squeezing
spectrum of light traveling through nanofiber-coupled atoms

S1. THEORY CALCULATION FOR THE SQUEEZING SPECTRUM

In this section we calculate the squeezing spectrum Sθ(ω) in the low saturation limit [46] (s/8 � 1). We start by

calculating
〈

: ∆X̂θ(0)∆X̂θ(τ) :
〉

〈
: ∆X̂θ(0)∆X̂θ(τ) :

〉
=

1

4
e2iθ {〈â(τ)â(0)〉 − 〈â(τ)〉 〈â(0)〉}+ c.c.+

1

4

{〈
â†(τ)â(0)

〉
−
〈
â†(τ)

〉
〈â(0)〉

}
+ c.c.. (S1)

We assume a weak drive such that the dynamics of the system are captured by the one- and two-photon Fock states.
We calculate the expectation values for the output state |out〉 which is a combination of the the one- and two-photon
components, |out〉1 and |out〉2, respectively. The respective definitions are given in [17] and from these we calculate
to first order in Pin/Psat

〈out| â(x)â(0) |out〉 = e−|α|
2/2 〈0| â(x)â(0) |out〉2 ' Pinψ2(0, x). (S2)

Here, we assumed a continuous coherent input state with power, in photons per second, Pin = α2vg/L, where α is
the coherent state amplitude and L is a quantization length. We take the limit of α,L → ∞ such that the power of
the coherent state approaches a finite constant. The two photon wave function ψ2(0, x) is defined as in Ref. [17]. To
first order in Pin the term

〈
â†(τ)â(0)

〉
−
〈
â†(τ)

〉
〈â(0)〉 vanishes and the term 〈â〉2 is given by t2N∆ Pin. This leads to

the expression: 〈
: ∆X̂θ(0)∆X̂θ(x) :

〉
=

1

4
Pine

2iθ
[
ψ2(0, x)− t2N∆

]
+ c.c

= −Γtot

16β

Pin

Psat
Re
[
e2iθφN (x)

] (S3)

where again we follow the definitions and notations of [17] for φN (x). Finally, for the squeezing spectrum, we obtain:

Sθ(ω) = −Γtot

16β

Pin

Psat
Re
[
e2iθφN (ω)

]
. (S4)

We note that for a resonant probe field φN (x) becomes entirely real.
The full expression of φN (ω) is given in [17]. In the following we will focus on a resonant probe field where in two

limits simple analytic results can be obtained. Furthermore, the two different shapes of the squeezing spectrum in
those two limits can be directly seen in Fig. S1.

A. Small optical depth limit

In the low optical depth limit βN � 1 the squeezing is dominated by a coherent enhancement with the number of
emitters. The entangled part of the two-photon wavefunction can be calculated as:

φN (x) = 4Nβ2e−
Γtot

2 |x|, (S5)

which leads together with Eq. (S4) to:

Sθ(ω) = −Nβ cos(2θ)
Pin

Psat

Γ2
tot

Γ2
tot + 4ω2

. (S6)

This is a Lorentzian and equivalent to the squeezing from N single emitters. The squeezing peaks at ω = 0, i.e.
maximum squeezing is expected on resonance. The spectrum described by Eq. (S6) is shown in Fig. S1 (a) and (d)
as dashed lines.
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FIG. S1. Same as Fig. 3 together with the corresponding asymptotic expressions in dashed lines: (a) & (d) with N = 51 ± 4
is close to the small optical depth limit in which the squeezing/two-photon spectrum is close to a Lorentzian. (b) & (e), (c) &
(f) with N = 194± 14 and N = 262± 19 respectively are close to the large optical depth limit where sidebands develop. The
maximum squeezing as expected in the asymptotic limit and given by Eq. (S9) is shown by the red cross.

B. Large optical depth limit

In the large optical depth limit ξ2
N ≡ βN(1− β)� 1 we have

φN (ω) =
βΓtot

ω2
e−

ξ2NΓtot

ω2 . (S7)

This leads together with Eq. (S4) to:

Sθ(ω) = − 1

16
cos(2θ)

Pin

Psat

Γ2
tot

ω2
e−

ξ2NΓtot

ω2 . (S8)

This yields maximum squeezing at a frequency ωmax = ±ξNΓtot which is shown in Fig. S1 by the red cross. The peak
amplitude is given by

Sθ(±ξNΓtot) = − 1

16
cos(2θ)

Pin

Psat

1

eξ2
N

, (S9)

i.e. the amplitude is proportional to 1/N . This asymptotic prediction is shown in Fig. S1 (b) & (e) and (c) & (f)
where we have ξ2

N = 1.4 and ξ2
N = 1.8.

C. Evolution of the entangled photon pairs along the fiber

The squeezing – or the entangled photon pairs – can be characterized by φN (τ = 0) which is the entangled
wavefunction integrated over all frequencies φN (τ = 0) = 1/(2π)

∫∞
−∞ φN (ω)dω as shown in Fig. S2. For small optical

depths absorption of the entangled pairs can be neglected. The photon pairs at each atom are scattered with the same
phase which leads to a N -times enhanced creation of entangled photon pairs in the wavefunction due to a coherent
build up in forward scattering. For larger ensembles, the absorption of the photon pairs along the chain cannot be
neglected anymore which manifests itself in a reduced amplitude of φN (τ = 0). For large OD, φN (τ = 0) decreases.

S2. THE SETUP

A. Measurement of β

In order to measure the coupling strength β in our experiment we perform a transmission measurement for varying
input power from s = 0.03 to s = 15 and note the corresponding transmission. The transmission T is given by an
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FIG. S2. The evolution of φN (τ = 0) in blue as a function of N with β = 0.007 as in the experiment. The dashed line
corresponds to the small optical depths approximation φN (τ = 0) = 4β2N which neglects absorption and reflects the coherent
build up of the squeezed photons.

extended Lambert-Beer law [47] and one can show that it follows

T =
W
(
e−4βN+

Pin
Psat

Pin

Psat

)
Pin

Psat

(S10)

where W denotes the Lambert W function. The fitted experimental data is shown in Fig. S3 from which we obtain
β = 0.0070(5).
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FIG. S3. Ensemble transmission as function of input power Pin. The orange line is a fit of the data (blue dots). The free fitting
parameters are N and β.

B. Measurement of the efficiency of the detection setup.

In order to measure the efficiency of our homodyne setup, we characterize a well-defined coherent state without
atoms. We measure the power of the coherent state with a single photon detector and compare it to the power
obtained from the homodyne setup. This leads to an overall photon detection efficiency of η = 0.22. This value is in
agreement with the efficiency obtained from the optical losses, mode matching and electronic noise [39, 40, 48].

C. Measurement of the squeezing spectrum

In order to measure the normally ordered squeezing spectrum S(ω) – the Fourier transform of the auto-correlation

function of ∆X̂(t) – we first compute the Fourier spectrum of the current I(t) via a Fast-Fourier transform. By using
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the Wiener-Khinchin theorem this quantity, normalized to the vacuum reference, is the non-normally order squeezing
spectrum

S̃θ(ω) = 4

∫ ∞
−∞

dτ
〈

∆X̂θ(0)∆X̂θ(τ)
〉
eiωτ =

|
∫∞
−∞ Iθ(t)e

iωtdt|2

|
∫∞
−∞ Ivac(t)eiωtdt|2

. (S11)

The differential detector current measured for a given θ is denoted as Iθ and Ivac(t) is recorded from the vacuum
measurement, i.e. the case where the transmitted light from the nanofiber is blocked. The normalization to the
vacuum reference eliminates the normalization ambiguities of the Fourier Transform. The prefactor 4 in Eq. (S11)

is due to the factor 1
2 in our definition of X̂θ(t). We finally obtain the normally ordered squeezing spectrum via

Sθ(ω) = 1
4

[
S̃θ(ω)− 1

]
. A state of no noise is given by S̃θ(ω) = 0 from which follows that the normally ordered

quantity for no noise is Sθ(ω) = −1/4. For a coherent state we have Sθ(ω) = 0.

A state of no noise is given by S̃θ(ω) = 0 from which follows that the normally ordered quantity for no noise

is Sθ(ω) = −1/4. The integrated normally ordered squeezing of no noise is 〈:X̂2
θ (τ = 0):〉/∆f = −1/2 where

∆f = fmax − fmin.

D. The cycling transition

The measurements were all carried out on the 6S1/2, F = 4 → 6P3/2, F
′ = 5 transition (D2-line). Initially, the

atoms are in a combination of all magnetic quantum states mF states. Before the homodyne measurement, the atoms
are optically pumped for a few microseconds by resonant light in zero magnetic field [49]. This transfers the atoms
to the cycling transition F = 4,mF = 4 → F = 5,mF = 5 of the Cesium D2-line. Then, the system behaves as an
effective two-level system.

S3. PHASE AND AMPLITUDE SQUEEZING

2 0 2
/ tot

0.5

0.0

0.5

/

FIG. S4. The measured squeezing angle χ as a function of input detuning ∆ (blue data points) together with the corresponding
theoretical prediction (solid line) for measured N = 140± 10 atoms.

In the main text, we investigate the relative phase of the entangled two-photon wavefunction ϕN (τ) = Arg{φN (τ)}
with respect to the input light. For off-resonant light, the atoms imprint a phase-shift on the light as given by Eq. (1).
Instead of investigating ϕN (τ), one can equivalently study the squeezing angle with respect to the output light field
〈Xθ(t)〉. For this, we introduce the squeezing angle χ = ϕN (τ = 0)−Arg{tN∆}. For χ = 0, the quadrature fluctuations
〈:∆X2

θ (0):〉 and the output light field 〈Xθ(t)〉 are in phase and the light is amplitude squeezed. For χ = ±π, the
light is phase squeezed. Figure S4 shows the measured angle χ as function of detuning ∆ together with its theoretical
prediction.

We would like to point out, that in contrast to the amplitude of the entangled part of the two-photon wavefunction,
the measurements of the angles χ, as well as ϕN do not depend on the detection efficiency η in our setup.
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S4. SQUEEZING FROM UNTRAPPED ATOMS

It is interesting to note that the underlying physics does not depend on the periodicity of the lattice potential
that is introduced by the standing wave of the red detuned trap fields. As confirmation, we performed a squeezing
measurement without the optical lattice which could potentially introduce a periodicity. Similar to the case where
atoms are trapped we observe a squeezing of 0.31% ± 0.05 within the same bandwidth from fmin = 1.5 MHz to
fmax = 23 MHz. This agrees with our expectations as the lattice does not significantly change the average β-factor
of the atoms. Figure S5 shows the normalized homodyne detector noise 〈∆I2(θ)〉/〈∆I2

vac〉 as a function of θ which
shows that this configuration also exhibits squeezing.
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0.998

1.000

1.002
I2 (
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FIG. S5. The squeezing from untrapped atoms in the bandwidth from fmin = 1.5 MHz to fmax = 23 MHz with an input power
of Pin = 20 pW.


