
Efficient Message Passing for 0–1 ILPs with Binary Decision Diagrams

A. Lagrangean decomposition
A.1. Derivation of the dual

We first introduce vectors y ∈ {0, 1}n as well as xj ∈ Xj
for j ∈ [m] and rewrite (BP) redundantly as

min
y,x1,...,xm

c>y s.t. yIj = xj , xj ∈ Xj ∀j ∈ [m].

(13)

Now, let Ji = {j ∈ [m] | i ∈ Ij} denote the set of
variable indices constrained by Xj . For i ∈ [n] and j ∈ Ji
we introduce dual variables λji associated with the equality
constraint yi = xji . For each set of Lagrange variables λ we
obtain a lower bound to the original problem (13) given by

min
y,x1,...,xm

∑
i∈[n]

(
ci −

∑
j∈Ji

λji

)
yi +

∑
j

λj
>
xj (14)

s.t. y ∈ {0, 1}n, xj ∈ Xj ∀j ∈ [m]

Optimization above can be decoupled for each xj , j ∈ [m].
and maximizing over λ gives the Lagrangean dual

max
λ

min
y∈{0,1}n

∑
i∈[n]

(
ci −

∑
j∈Ji

λji

)
yi +

∑
j

min
x∈Xj

x>λj .

(15)

For simplification we can eliminate y from the formulation
by observing that (w.l.o.g.) the maximum is attained for
some λ that satisfies

∑
j∈Ji λ

j
i = ci for all i ∈ [n]. Hence,

the simplified dual problem reads

max
λ

∑
j

min
x∈Xj

x>λj s.t.
∑
j∈Ji

λji = ci ∀i ∈ [n].

(D)

A.2. Min-marginal averaging

Proof of Proposition 1

Proof. Let λ̄ji = λji − (m1
ij −m0

ij). Then

Ej(λ̄j) =

{
Ej(λj)− (m1

ij −m0
ij) if m1

ij −m0
ij < 0

Ej(λj) else.
(16)

Moreover, the min-marginal differences w.r.t. λ̄ vanish.
Now, let ¯̄λji = λ̄ji + 1

|Ji|
∑
k∈Ji m

1
ik −m0

ik. Then

Ej(¯̄λj) = Ej(λ̄j) +
1

|Ji|
∑
k∈Ji

m1
ik −m0

ik (17)

if 1
|Ji|

∑
k∈Ji m

1
ik −m0

ik < 0 and

Ej(¯̄λj) = Ej(λ̄j) (18)

otherwise. Hence, the dual bound increases in total by∑
j∈Ji

Ej(¯̄λj)− Ej(λj) (19)

= −
∑

{k∈Ji|m1
ik−m

0
ik<0}

(m1
ik −m0

ik)

+ min

{
0,
∑
k∈Ji

m1
ik −m0

ik

}
.

A.3. Variable order

The order in which we process the variable indices i ∈ [n]
in Algorithm 1 should facilitate the increase of the dual
bound in each iteration. Therefore, we prefer to process
indices i, i′ ∈ [n] consecutively if their updates influence
the min-marginals of the associated primal variables xi and
xi′ , which is the case if there is a subproblem that contains
both variables. A suitable variable order can be obtained
by searching for a permutation of the constraint matrix with
lowest bandwidth. The bandwidth of a matrix is the width
of the smallest band around the diagonal such that all non-
zero entries are contained in it. Bandwidth-minimization
is NP-hard (Papadimitriou, 1976), but fast heuristics such
as the Cuthill-McKee algorithm (Cuthill & McKee, 1969)
are available. We run the algorithm on the bipartite variable-
constraint adjacency matrix and extract the variable order
from the result.

A.4. Averaging strategy

The min-marginal averaging update w.r.t. i ∈ [n] defined
in (2) subtracts the min-marginal difference from each cor-
responding dual variable and distributes the sum of min-
marginal differences evenly to all dual variables associated
with i. In the case of higher-order graphical models an alter-
native averaging strategy called Sequential Reweighted Mes-
sage Passing (SRMP) (Kolmogorov, 2014) was shown to
improve the convergence behavior of the associated DBCA
algorithm. In close analogy to SRMP we suggest the follow-
ing averaging scheme as an alternative to the default update.
For i ∈ [n] let

J>i = {j ∈ Ji | ∃i′ > i such that i′ ∈ Ij} (20)

denote the subproblem indices that contain any variable with
index greater than i, and define J<i similarly. The sets J>i
andJ>i are defined here w.r.t. the default order on [n] for the
sake of simplicity, but can be defined for any other variable
order in an analogous way. The SRMP averaging update
distributes the sum of min-marginal differences evenly to all
λji for j ∈ J>i in the forward pass. If J>i = ∅, we fall back
to the default averaging scheme by setting J>i = Ji. More
precisely, if J>i 6= ∅ during the forward pass, the update (2)

Efficient Message Passing for 0–1 ILPs with Binary Decision Diagrams

is replaced by

λji ← λji − (m1
ij −m0

ij) +
1

|J>i |
∑
k∈Ji

m1
ik −m0

ik (21)

for i ∈ J>i and

λji ← λji − (m1
ij −m0

ij) (22)

for i ∈ Ji \ J>i . The backward pass is performed similarly
with J<i instead of J>i .

A.5. Smoothing

It is well-known that, except in special cases (Dlask &
Werner, 2020), DBCA can fail to reach the optimum of
the relaxation. Suboptimal stationary points of DBCA al-
gorithms are analyzed in (Werner et al., 2020). One way to
attain optima of Lagrangean relaxations with DBCA algo-
rithms is to replace the original non-smooth dual objective
with a smooth approximation on which DBCA is guaranteed
to find the optimum. We propose such a smooth approxi-
mation below for our Lagrangean decomposition (D) and
detail according update rules. Analogous techniques were
used in (Meltzer et al., 2012) to smooth the TRWS algo-
rithm (Kolmogorov, 2006).

First, we replace the original energy Ej(λj) through a log-
sum-exp based approximation. For any smoothing parame-
ter α > 0 we define

Ejα(λj) = −α · log
(∑
x∈Xj

exp
(−x>λj

α

))
. (23)

This results in the smooth Lagrangean dual
maxλ

∑
j∈[m]E

j
α(λj). Further, instead of min-

marginals mβ
ij we define marginal log-sum-exp values as

mα,β
ij = −α · log

(∑
x∈Xj :xi=β

exp
(−x>λj

α

))
. (24)

Finally, the min-marginal averaging operation (2) is replaced
by

λji ← λji −(mα,1
ij −m

α,0
ij)+

1

|Ji|
∑
k∈Ji

mα,1
ik −m

α,0
ik . (25)

With this change of operations, Algorithm 1 becomes a
DBCA method for the smooth approximation.

Proposition 5 (Approximation guarantees). For any α > 0
and j ∈ [m] it holds that

Ej(λj) > Ejα(λj) ≥ Ej(λj)− α log |Xj |. (26)

Proof. It holds that

Ej(λj) = min
x∈Xj

x>λj (27)

≥ −α log

(
exp

(
− min
x∈Xj

x>λj

α

))
(28)

≥ −α log

∑
x∈Xj

exp
(
− x>λj

α

) = Ejα(λj)

(29)

≥ −α log

(
|Xj | · exp

(
− min
x∈Xj

x>λj

α

))
(30)

= Ej(λj)− α log(|Xj |).

B. Primal heuristic
B.1. Search strategies

Another indicator of how suitable a variable/value pair is for
fixation is the reduction of the number of feasible solutions
when a given variable is fixed to some value.

Definition 10 (Search space reduction coefficient). For i ∈
[n] we define the search space reduction coefficient as

Ri =
∑
j∈Ji

|{x ∈ Xj | xi = 1}| − |{x ∈ Xj | xi = 0}| .

(31)

The quantity Ri indicates the difference in search space
reduction between the fixation xi = 1 and xi = 0 across
all associated subproblems. As an alternative choice for
the variable scores Si that determine the order of variable
fixations, we propose Si = sign(Ri)Mi. The resulting
strategy prefers those variables for which the signs of Ri
and Mi agree, thus aligning search space reduction in the
individual subproblems with the min-marginal evidence.

C. Implementation with BDDs
Proof of Proposition 2

Proof. See (Bryant, 1986).The required changes due to in-
sertion of BDD nodes with equal outgoing edges do not
change the proofs.

Proof of Proposition 3

Proof. First, we note that (6) returns correct marginals for
variable i` if we have performed Algorithm 8 for variables
i1, . . . , i`−1 in that order and Algorithm 8 for variables
ik, . . . , i`+1 in that order. The reason is that Algorithms 7
and 8 are performing dynamic programming steps for the
respective problem, i.e. for shortest path with the (+,min)-
algebra. When processing variable i in the forward pass of

Efficient Message Passing for 0–1 ILPs with Binary Decision Diagrams

Algorithm 5: Primal-Heuristic(I, (Xj , Ij)j∈[m], (Si)i∈[n])

Input: Open variable indices I ⊂ [n], restricted subproblems and indices (Xj , Ij), j ∈ [m], scores (Si)i∈I
1 Find variable i ∈ I with maximum score Si
2 (feasible, I ′, (X ′j , I ′j)j∈[m]) = Restriction-Propagation((Xj , Ij)j∈[m], (i, β))
3 if feasible and I ′ = ∅ then
4 return solution
5 else if feasible then
6 feasible = Primal-Heuristic(I ′, (Xj , Ij)j∈[m], (Si)i∈I′)
7 else if not feasible then
8 (feasible, I ′, (X ′j , I ′j)j∈[m]) = Restriction-Propagation((Xj , Ij)j∈[m], (i, 1− β))
9 if feasible then

10 return Primal-Heuristic(I ′, (Xj , Ij)j∈[m], (Si)i∈I′)
11 else
12 return infeasible
13 output Partial solution to current subproblem or infeasible

Algorithm 6:
Restriction-Propagation((Xj , Ij)j∈[m], (i, β))

Input: Subproblems Xj , indices Ij ⊂ [n], j ∈ [m],
index/value pair to fix (i, β).

1 for j ∈ Ji do
2 X βj = {x ∈ Xj | xi = β}
3 F = {(i′, β′) ∈ Ij × {0, 1} | x ∈ X βj ⇒ xi′ =

β′}
4 Ij = {i′ ∈ Ij | @β′ s.t. (i′, β′) ∈ F}
5 for (i′, β′) ∈ F\{(x, β)} do
6 Restriction-

Propagation((Xj , Ij)j∈[m], (i
′, β′))

7 Set feasible = true⇔ ∀j ∈ [m] : Xj 6= ∅
Output: feasible, restricted subproblems/indices

(Xj , Ij)j∈[m]

Algorithm 1, forward messages −→m for variables i′, i′ < i
remain valid, and the same holds true for backward mes-
sages←−m for variables i′ > i. Hence, we only have to update
the forward messages for variable i + 1 to obtain correct
marginals for variable i+1 via (6). An analogous reasoning
holds true for the backward pass.

C.1. Abstract BDD update steps

Algorithm 7: Abstract forward BDD update step
Input: variable index i ∈ I

1 for v ∈ V with idx(v) = i do
2 −→mv =(⊗

u:uv∈A0

−→mu⊕ θuv
)
⊗
(⊗
u:uv∈A1

(−→mu⊕ θuv)
)

Algorithm 8: Abstract backward BDD update step
Input: variable index i ∈ I

1 for v ∈ V with idx(v) = i do

2 ←−mv =
(←−mvv+0

⊕ θvv+0
)
⊗
(←−mvv+1

⊕ θvv+1
)

Similar to the min-marginals (1), we can compute marginal
log-sum-exp (24) and solution counts (and thus Ri in (31))
efficiently with incremental BDD update steps. To this
end, one can employ Algorithms 7–8 that are completely
analogous to Algorithms 2–3 by substitution of the symbols
(⊕, ⊗, 0, 1, θ0, θ1

)
with those listed in Table 2.

C.2. Variable fixations

1

3

7

⊥

>

Figure 4. The BDD obtained from the one depicted in Figure 1 by
fixing x3 = 1. Nodes that are no longer reachable from the root or
no longer lie on a path to > have been removed.

We implement the variable fixations xi = β in the primal
heuristic as manipulations to all BDDs that involve vari-
able xi. The manipulations are specified in Algorithms 9
– 11. In order to fix xi = β in some BDD, Algorithm 9
redirects all outgoing (1 − β)-arcs from the nodes v ∈ V
with idx(v) = i to ⊥. If that leaves any node unreachable
from the root, we recursively remove them with their outgo-
ing arcs by Algorithm 10. If > becomes unreachable, the
algorithm detects that the fixation renders the subproblem
infeasible. Similarly, if some node no longer lies on any

Efficient Message Passing for 0–1 ILPs with Binary Decision Diagrams

Abstract Min-marginal (1) Marginal log-sum-exp (24) Solution counts(
⊕, ⊗, 0, 1, θ)

(
+, min, 0, ∞, [λj , 0]

) (
·, +, 1, 0, [exp(−λji/α), 1]

)
(·, +, 1, 0, [1, 1])

Table 2. Symbols in Algorithms 7 and 8 to compute min-marginal (1), marginal log-sum-exp (24) and solution counts.

path towards >, then we recursively remove it and redirect
its incoming arcs by Algorithm 11. The variable fixation
leads to a smaller BDD that represents the restricted feasible
set. See Figure 4 for an example.
Remark. The complexity of any sequence of ≤ |I| variable
fixations for a BDD is bounded by the number of BDD
nodes |V |.

Algorithm 9: Variable Fixation
Input: variable index i ∈ [n], β ∈ {0, 1}

1 for v ∈ V with idx(v) = i do
2 Change β-arc (v, v+

β) to (v,⊥)

3 if v+
β has no incoming arcs left then

4 if Remove-Forward(v+
β) = false then

5 return false
6 if both outgoing arcs of v point to ⊥ then
7 Remove-Backward(v)
8 return true

Algorithm 10: Remove-Forward
Input: BDD node v ∈ V

1 if v = > then
2 return false
3 Remove v and outgoing arcs (v, v+

0), (v, v+
1)

4 if v+
0 has no incoming arcs left then

5 Remove-Forward(v+
0)

6 if v+
1 has no incoming arcs left then

7 Remove-Forward(v+
1)

Algorithm 11: Remove-Backward
Input: BDD node v ∈ V

1 for (u, v) ∈ A do
2 Replace (u, v) by (u,⊥)
3 if both outgoing arcs of u point to ⊥ then
4 Remove-Backward(u)
5 Remove v

D. Parallelization
Proof of Proposition 4

Proof. We need to show that the updates of the dual variable
δ→ and δ← in lines 9 and 16 of Algorithm 4 results in

(i) feasible dual variables µa + µā ≤ 0 for every copy-
arc pair (ā, a) and (ii) is non-decreasing in the dual lower
bound. We will show the statement for the update in line 9,
the update in line 17 being analoguous.

(i) Note that δ→ and δ← are non-negative. Hence, the first
term−γ ·δ→(ā,a) in line 10 will decrease µā (which does
not affect feasibility), while the second term γ · δ←(ā,a)

offsets the changes made in line 17.

(ii) The subtraction −γ · δ→(ā,a) will not decrease the cost
of the optimal path in the BDD. First, since δ→ is 0
for the arc the optimal solution takes, the cost of the
optimal solution stays the same. For the other arcs ā
that are not in the optimal path, the value δ→(ā,a) is the
difference of costs of the best path taking the arc ā
minus taking the optimal path. Hence, the cost update
cannot result in previously non-optimal arcs to become
optimal ones for γ ≤ 1. Hence, the dual lower bound
does not decrease after the subtraction.

Again note that δ← is non-negative. Hence, the second
term γ · δ←(ā,a) in line 10 will be non-decreasing in the
dual lower bound, since it can only increase the costs.

E. ILP formulations
Below we detail the ILP formulations of the four problem
types considered in the experiments.

E.1. Markov random fields

For MRFs, we formulate the associated optimization prob-
lem via the local polytope relaxation (Werner, 2007).
Definition 11 (MRF formulation). Given a graph G =
(V,E) with label space Li for all i ∈ V , unary potentials
θi ∈ RLi for i ∈ V and pairwise potentials θij ∈ RLi×Lj

for ij ∈ E we define the feasible set Λ as those vectors

µ ∈
⊗
i∈V
{0, 1}Li ⊗

⊗
ij∈E
{0, 1}Li×Lj (32)

that satisfy∑
xi∈Li µi(xi) = 1 ∀i ∈ V,∑

xi∈Li,xj∈Lj µij(xi, xj) = 1 ∀ij ∈ E,∑
xj∈Lj µij(xi, xj) = µi(xi) ∀ij ∈ E, xi ∈ Li,∑
xi∈Li µij(xi, xj) = µj(xj) ∀ij ∈ E, xj ∈ Lj .

(33)

Efficient Message Passing for 0–1 ILPs with Binary Decision Diagrams

The overall 0–1-optimization problem reads

min
µ∈Λ

∑
i∈V
〈θi, µi〉+

∑
ij∈E
〈θij , µij〉 . (34)

E.2. Graph matching

The graph matching instances are about matching two sets
of points L and R. There are both linear costs c ∈ RL×R

as well as pairwise costs d ∈ RL×L×R×R. We define the
feasible set Γ as those vectors

µ ∈ {0, 1}L×R, ν ∈ {0, 1}L×L×R×R (35)

that satisfy

µ1 ≤ 1,
µ>1 ≤ 1,

µlr =
∑L
l′=1

∑R
r′=1 νll′rr′ ∀1 ≤ l ≤ L, 1 ≤ r ≤ R,

µlr =
∑L
l′=1

∑R
r′=1 νl′lr′r ∀1 ≤ l ≤ L, 1 ≤ r ≤ R.

(36)
The 0–1-optimization problem is

min
(µ,ν)∈Γ

〈c, µ〉+ 〈d, ν〉 . (37)

Whenever we have sparse costs d we sparsify our encoding
accordingly by leaving out the corresponding variables ν.

E.3. Cell tracking

We use the formulation given in (Haller et al., 2020).
Definition 12 (Cell tracking). Given a set of nodes V corre-
sponding to possible cell detections, a set of cell transitions
E ∈

(
V
2

)
and a set of cell divisions E′ ∈

(
V
3

)
, we define

variables xi ∈ {0, 1}, i ∈ V to correspond to cell detections,
yij ∈ {0, 1}, ij ∈ E to cell transitions and y′ijk ∈ {0, 1},
ijk ∈ E′ to cell divisions. Additional conflict sets Cl ⊂ V ,
l ∈ {1, . . . , L} for excluding competing cell detection hy-
potheses are also given. The feasible set C is defined as
those vectors

x ∈ {0, 1}V , y ∈ {0, 1}E , y′ ∈ {0, 1}E
′

(38)

that satisfy

xi =
∑
j:ij∈E

yij +
∑

jk:ijk∈E′

y′ijk ∀i ∈ V,

xj =
∑
i:ij∈E

yij +
∑

ik:ijk∈E′

y′ijk +
∑

ik:ikj∈E′

y′ikj ∀j ∈ V,

∑
i∈Cl

xi ≤ 1 ∀l ∈ {1, . . . , L}.

(39)

Given cell detection costs θi ∈ R, i ∈ V , cell transition
costs θij ∈ R, ij ∈ E and cell division costs θijk ∈ R,
ijk ∈ E′, the 0–1-optimization problem is

min
(x,y,y′)∈C

〈θ, (x, y, y′)>〉 . (40)

Dataset N Avg n Avg m

Cell tracking – small 10 22k 44k
Cell tracking – large 5 6.0M 1.3M

GM
Hotel 105 379k 52k
House 105 379k 52k
Worms 30 1.5M 166k

MRF

Color-seg 3 2.1M 8.2M
Color-seg-n4 9 948k 3.2M
Color-seg-n8 9 1.1M 6.4M
Object-seg 5 531k 1.6M

QAPLIB small 105 399k 38k
large 29 25.8M 1.1M

Discrete tomography 2700 15k 11k

Table 3. For each dataset the table shows the number of in-
stances N , average number of variables n, average number of
constraints m.

E.4. Discrete tomography

The discrete tomography problem is encoded as an MRF
with additional tomographic projection constraints.

Definition 13 (Discrete tomography). Given a graph G =
(V,E) with label space Li = {0, 1, . . . , ki} for all i ∈ V ,
unary potentials θi ∈ RLi for i ∈ V , pairwise potentials
θij ∈ RLi×Lj for ij ∈ E and tomographic projection con-
straints

∑
i∈Pl xi = bl for l ∈ {1, . . . , L}, Pl ⊂ V , bl ∈ N,

the constraint can be summarized as{
µ ∈ Λ :

∑
i∈Pl

∑
xi∈Li

xi · µi(xi) = bl ∀l ∈ {1, . . . , L}

}
.

(41)

F. Experiments
F.1. Additional plots

In Figure 5, we show lower bound convergence plots for
Gurobi and BDD-MP on all datasets. In Figure 6, we
plot the convergence time speedup due to parallelization
for the remaining MRF instances. In Figure 7, we show
the convergence behavior of lower bounds in relation to the
number of threads.

Efficient Message Passing for 0–1 ILPs with Binary Decision Diagrams

10 1 100 101

time (s)

1.2
1.0
0.8
0.6
0.4

av
er

ag
e

lo
we

r b
ou

nd
1e7 cell-tracking-small

gurobi
bdd_mp

101 102 103

time (s)

3.0
2.8
2.6
2.4
2.2
2.0
1.8
1.6

av
er

ag
e

lo
we

r b
ou

nd

1e8 cell-tracking-large

gurobi
bdd_mp

100 2 × 100 3 × 100 4 × 100 6 × 100

time (s)

8
6
4
2
0

av
er

ag
e

lo
we

r b
ou

nd

1e4 hotel

gurobi
bdd_mp

100 2 × 100 3 × 100 4 × 100 6 × 100

time (s)

8
6
4
2
0

av
er

ag
e

lo
we

r b
ou

nd

1e4 house

gurobi
bdd_mp

101 102 103

time (s)

1.0
0.8
0.6
0.4
0.2
0.0

av
er

ag
e

lo
we

r b
ou

nd

1e6 worms

gurobi
bdd_mp

100 101 102

time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

av
er

ag
e

lo
we

r b
ou

nd

1e8 color-seg

gurobi
bdd_mp

100 101 102 103

time (s)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

av
er

ag
e

lo
we

r b
ou

nd

1e4 color-seg-n4

gurobi
bdd_mp

101 102 103

time (s)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

av
er

ag
e

lo
we

r b
ou

nd

1e4 color-seg-n8

gurobi
bdd_mp

100 101 102 103

time (s)

0.0
0.5
1.0
1.5
2.0
2.5
3.0

av
er

ag
e

lo
we

r b
ou

nd

1e4 object-seg

gurobi
bdd_mp

10 1 100 101 102

time (s)

1.0
0.5
0.0
0.5
1.0
1.5
2.0
2.5

av
er

ag
e

lo
we

r b
ou

nd

1e2 discrete-tomography

gurobi
bdd_mp_smooth

10 2 10 1 100 101 102 103

time (s)

8
7
6
5
4
3
2
1
0

av
er

ag
e

lo
we

r b
ou

nd

1e11 qaplib-small

gurobi
bdd_mp

100 101 102 103 104

time (s)

6
5
4
3
2
1
0

av
er

ag
e

lo
we

r b
ou

nd

1e12 qaplib-large

gurobi
bdd_mp

Figure 5. Averaged lower bound plots for Gurobi and the basic version of BDD-MP on all datasets.

1 2 4 8 16

20

40

60

80

Threads

Ti
m

e
[s

]

color-seg

Gurobi

BDD-MP

1x
2x
3x
4xSpeedup

1 2 4 8 16

100

300

500

Threads

Ti
m

e
[s

]

color-seg-n4

Gurobi

BDD-MP

1x

3x

5x

Speedup

1 2 4 8 16

100

300

500

700

Threads

Ti
m

e
[s

]

color-seg-n8

Gurobi

BDD-MP

1x

3x

5x

7x

Speedup

Figure 6. Running time until convergence (left axes) for Gurobi with dual simplex and our method with variable reordering and 1 to 16
threads. The right axes show the associated speedup factors of our method.

Table 4. The table reports lower bounds and running times for QAPLIB small1 obtained with Gurobi’s dual simplex method (Simplex),
its barrier method with 16 threads (Barrier) and our method BDD-MP. The running times for Barrier do not include any crossover
step. 1We removed 6 instances that the barrier method could not solve within the time limit in order to enable a comparison.

Lower Bound (LB) LB Time [s]

Dataset Simplex Barrier BDD-MP Simplex Barrier BDD-MP

QAPLIB small1 3.086e06 8.499e06 3.554e06 1670.2 374.6 68.6

Efficient Message Passing for 0–1 ILPs with Binary Decision Diagrams

102 103

time (s)
1.60

1.59

1.58

1.57

1.56

1.55

1.54

av
er

ag
e

lo
we

r b
ou

nd

1e8 cell-tracking-large

gurobi
bdd_mp_x1
bdd_mp_x2
bdd_mp_x4
bdd_mp_x8
bdd_mp_x16

101 102 103

time (s)
1.0

0.9

0.8

0.7

0.6

0.5

0.4

av
er

ag
e

lo
we

r b
ou

nd

1e5 worms

gurobi
bdd_mp_x1
bdd_mp_x2
bdd_mp_x4
bdd_mp_x8
bdd_mp_x16

1022 × 101 3 × 101 4 × 101 6 × 101 2 × 102

time (s)
3.00

3.02

3.04

3.06

3.08

3.10

av
er

ag
e

lo
we

r b
ou

nd

1e8 color-seg

gurobi
bdd_mp_x1
bdd_mp_x2
bdd_mp_x4
bdd_mp_x8
bdd_mp_x16

101 102 103

time (s)
1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.97
1.98

av
er

ag
e

lo
we

r b
ou

nd
1e4 color-seg-n4

gurobi
bdd_mp_x1
bdd_mp_x2
bdd_mp_x4
bdd_mp_x8
bdd_mp_x16

101 102 103

time (s)

1.86
1.88
1.90
1.92
1.94
1.96
1.98

av
er

ag
e

lo
we

r b
ou

nd

1e4 color-seg-n8

gurobi
bdd_mp_x1
bdd_mp_x2
bdd_mp_x4
bdd_mp_x8
bdd_mp_x16

101 102 103

time (s)
3.00
3.02
3.04
3.06
3.08
3.10
3.12
3.14

av
er

ag
e

lo
we

r b
ou

nd

1e4 object-seg

gurobi
bdd_mp_x1
bdd_mp_x2
bdd_mp_x4
bdd_mp_x8
bdd_mp_x16

Figure 7. Zoomed-in lower bound convergence plots for Gurobi (dual simplex) and our method with variable reordering and 1 thread
(x1) up to 16 threads (x16). The parallelized versions of our method converge faster after catching up with the initialization overhead.

