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Abstract. The Poisson--Boltzmann equation (PBE) is an implicit solvent continuum model for
calculating the electrostatic potential and energies of charged biomolecules in ionic solutions. How-
ever, its numerical solution poses significant challenges due to strong singularities in the solution
caused by the singular source terms, while in case of the nonlinear PBE (NLPBE) the additional
problems arise owing to the exponential nonlinear terms. An efficient method for the treatment of
singularities in the linear PBE was introduced in [P. Benner, V. Khoromskaia, B. Khoromskij, C.
Kweyu, and M. Stein, SIAM J. Sci. Comput., 43 (2021), pp. A415--A445], that is based on the range-
separated (RS) tensor decomposition [P. Benner, V. Khoromskaia, and B. N. Khoromskij, SIAM J.
Sci. Comput., 40 (2018), pp. A1034--A1062] for both the electrostatic potential of the biomolecule
of interest and the discretized Dirac delta distributions on the right-hand side [B. N. Khoromskij,
J. Comput. Phys., 401 (2020), 108998]. In this paper, we introduce the new regularization method
to the NLPBE. We apply the NLPBE only to the regular part of the solution corresponding to the
modified right-hand side via extraction of the long-range part in the sum of discretized Dirac delta
distributions based on the method in [B. N. Khoromskij, J. Comput. Phys., 401 (2020), 108998].
The total electrostatic potential is obtained by adding the long-range solution to the directly pre-
computed short-range potential, obtained by simple tensor operations without solving PDE. One
of the computational benefits of the approach is the automatic preservation of the continuity in
the Cauchy data on the solute-solvent interface. The boundary conditions remain verbatim as for
the initial nonregularized formulation. In the numerical experiments, we demonstrate the numerical
performance of the tensor-based regularization techniques for the NLPBE.

Key words. Poisson--Boltzmann equation, low-rank tensor decompositions, range-separated
tensor formats
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1. Introduction. Biochemical processes are occurring between macromolecules
such as proteins and nucleic acids in solution at a physiological salt concentration. The
resultant electrostatic interactions are highly relevant for an understanding of biologi-
cal functions and structures of biomolecules, enzyme catalysis, molecular recognition,
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B88 KWEYU, KHOROMSKAIA, KHOROMSKIJ, STEIN, AND BENNER

and biomolecular encounter or association rates [4, 5, 6, 7]. Efficient modeling of
these interactions remains a great challenge in computational biology because of the
complexity of biomolecular systems which are dominated by the effects of solvation
on biomolecular processes and by the long-range intermolecular interactions [8, 9, 10].

There are two main types of models which can be used to model electrostatic
interactions in ionic solutions. The explicit approaches which treat both the solute and
solvent in atomic detail, are generally computationally demanding. This is because
they require substantial sampling and equilibration in order to converge the properties
of interest in an ensemble of solute and solvent [10, 11]. On the other hand, continuum
or implicit approaches treat the solvent molecules as a continuum, by integrating out
nonrelevant degrees of freedom in order to circumvent the need for sampling and
equilibration [12, 10, 11].

There exists a number of implicit solvation approaches for biomolecules [12, 13, 10],
but the most popular is based on the Poisson--Boltzmann equation (PBE), which was
extensively analyzed, for example, in [14]. The PBE is used for calculating the elec-
trostatic potential and energies of charged or partially charged biomolecules in a
physiological environment. We present the PBE model in section 2. The numerical
solution of the arising elliptic boundary value problem with complex geometries and
highly singular charge distributions in the right-hand side is a complicated numerical
task [14, 15].

The numerical solution of the PBE was pioneered by Warwicker and Watson in
1982 [16], where the electrostatic potential was computed at the active site of an
enzyme using the finite difference method (FDM). Besides the FDM [17, 18], other
numerical techniques such as the finite element methods (FEM) [17, 19], domain
decomposition [20, 21, 22, 23] and the boundary element methods (BEM) [24, 25, 26]
have hitherto successfully been used to solve the PBE; see [27] for a thorough review.

However, the numerical solution of the PBE is faced with a number of challenges.
The most significant are the strong charge singularities caused by the singular source
terms (Dirac delta distribution), the nonlinearity caused by the exponential nonlinear
terms, the unbounded domain due to slow polynomial decay of the potential with
respect to distance, and by imposing the correct jump or interface conditions [28, 29].

The presence of a highly singular right-hand side of (2.1) which is described
by a sum of Dirac delta distributions introduces significant errors in the numerical
solution of the PBE. To overcome this problem, the PBE theory has recently received a
major boost by the introduction of solution decomposition (regularization) techniques
which have been developed, for example, in [28, 29, 30, 31]; see the discussion in
section 4. The idea behind these regularization techniques is the avoidance of building
numerical approximations corresponding to the Dirac delta distributions by treating
the biomolecular system (see Figure 2.1) as an interface problem. This is coupled with
the advantage that analytical expansions in the molecular subregion are possible, by
the Newton kernel. Recently, the novel regularization method for solving linear PBE
was introduced in [1], based on range-separated decomposition of the multicentered
Dirac delta function [3] in the right-hand side of the equation.

The electrostatic interactions in the wide class of bio-molecular systems embed-
ded in the solvent containing dissolvent electrolytes are frequently described by the
nonlinear PBE (NLPBE) model. The presence of nonlinearity in the solvent domain
leads to difficult computational problem that also includes all challenges of LPBE. In
this paper, that is the extended version of preprint [32], we introduce the new reg-
ularization techniques for the solution of NLPBE based on FEM discretization and
multigrid type nonlinear iteration.
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REGULARIZATION OF NPBE VIA RS TENSOR FORMAT B89

For resolving the problem of strong singularities for solving NLPBE, we utilize the
novel range-separated canonical tensor format, which was introduced and analyzed in
[2, 33]. We apply the PBE only to the regular part of the solution corresponding to
the modified right-hand side via extraction of the long-range part in the discretized
Dirac delta distribution, as it was introduced in [3] and illustrated for the free-space
potential via the Poisson equation. This approach was recently successfully applied
for computation of the polariszed electrostatic potential of a linear PBE in [1]. Other
numerical methods for the efficient treatment of the long-range part in the multipar-
ticle electrostatic potential have been considered in [34].

The RS tensor formats can be gainfully applied to computational problems which
include functions with multiple local singularities or cusps, Green kernels with intrin-
sic nonlocal behavior, and in various approximation problems which are generated by
radial basis functions. The grid-based canonical tensor representation for the Newton
kernel was developed in [35] and then applied in tensor-based electronic structure
calculations requiring high accuracy [36, 37]. Tensor numerical techniques for super-
fast computation of the collective electrostatic potentials of large finite lattice clusters
have been previously introduced in [38].

We notice that our main goal in this paper is the proof of concept for applicability
of the novel RS tensor format to the efficient numerical solution of the challenging
NL-PBE and demonstration of its practical performance on some realistic examples of
bio-molecules. A tensor based regularization scheme paves the way to the construction
of an entirely tensor-based solver realized on low-rank tensor manifolds, providing the
linear complexity scaling in the univariate grid size O(n), instead of O(n3) for the
conventional algorithms for three-dimensional (3D) problems.

Furthermore, in the presented approach the choice of rather standard multigrid-
FEM iterative method combined with the commonly used construction of approxi-
mate boundary conditions on the external boundary leads to relatively simple, fast
and accurate solution scheme for the regularized equation. Moreover, the possible
application of hybrid FEM-BEM scheme becomes extremely elaborated in the case
of multiple solution of PBE with variable right-hand side and geometry which is the
case in many applications in biomolecular modeling.

The other favorable aspect in our approach is related to the robust and simple
error control of the RS tensor decomposition via the appropriate choice of the rank
parameter and grid size as well as the adaptive control of the effective support for the
short-range part on the right-hand side of the NL-PBE depending on the given Van
der Waals radius.

The splitting technique employed in this paper is based on the RS tensor de-
composition of the discretized Dirac delta distribution [3], which allows avoiding the
nontrivial matrix reconstruction as in (4.6) and in [28]. The only requirement in this
approach is a simple modification of the singular charge density of the PBE in the
molecular region \Omega m (see Figure 2.1), which does not change the FEM/FDM sys-
tem matrix. The singular component in the total potential is recovered explicitly
by the short-range component in the RS tensor splitting of the Newton potential.
The beneficial feature of this approach is due to localization of the modified singular
charge density in the right-hand side within the molecular region while automatically
maintaining the continuity in the Cauchy data on the interface. Furthermore, this
computational scheme only includes solving a single system of FEM/FDM equations
for the regularized (or long-range) component of the decomposed potential.

The remainder of this paper is structured as follows. Section 3 describes the basic
rank-structured tensor formats and the short description of the range-separated tensor
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B90 KWEYU, KHOROMSKAIA, KHOROMSKIJ, STEIN, AND BENNER

Fig. 2.1. Representation of a biomolecule with partial charges and an internal dielectric con-
stant \epsilon m in a solvent with dielectric constant \epsilon s of mobile ions. Figure courtesy with the permission
of [39].

format [2, 33] for representation of the electrostatic potential of multiparticle systems.
Section 4 provides insights into the existing solution decomposition techniques for the
PBE model. Section 5 explains how the application of the RS tensor format leads
to the new regularization scheme for solving the PBE. Section 6 presents the numer-
ical approach of solving the NRPBE. Finally, section 7 presents the numerical tests
illustrating the benefits of the proposed method and comparisons with the solutions
obtained by the standard FEM/FDM-based PBE solvers.

2. The Poisson-Boltzmann equation theory. The PBE is a nonlinear ellip-
tic PDE which computes a global solution for the electrostatic potential within the
biomolecule region \Omega m and in the surrounding domain of ionic solution \Omega s; see Figure
2.1 for a schematic illustration of the computational geometry. The bounding domain
\Omega s has the parallelepiped like geometry such that the molecular region is completely
embedded in \Omega s. For a monovalent electrolyte (i.e., 1 : 1 ion ratio), the dimensionless
nonlinear NLPBE for the rescaled electrostatic potential is given by

 - \nabla \cdot (\epsilon (\=x)\nabla u(\=x)) + \=\kappa 2(\=x) sinh(u(\=x)) =

Nm\sum 
i=1

qi\delta (\=x - \=xi), \Omega s \in \BbbR 3,(2.1)

subject to the boundary conditions on \partial \Omega s,

u(\=x) =

Nm\sum 
i=1

qie
 - \kappa (d - ai)

4\pi \epsilon s(1 + \kappa ai)d
on \partial \Omega s, d= \| \=x - \=xi\| , \=x= (x, y, z).(2.2)

The boundary condition (2.2) approximates the exact asymptotic behavior of the
solution | u(\=x)| \mapsto \rightarrow 0 as | \=x| \mapsto \rightarrow 0; see, for example, [14] for more details. The expression
on the right-hand side of (2.2) is an approximation of the solution in unbounded
domain based on the exact solution of LPBE in \BbbR 3 for the case of special geometry

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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REGULARIZATION OF NPBE VIA RS TENSOR FORMAT B91

for \Omega m, i.e., the ball like region; see [40, 14]. This boundary condition was also used
in the linear case PBE, considered in [1].

Here u(\=x) = ec\psi (\=x)/\kappa BT represents the dimensionless potential, \psi (\=x) is the orig-
inal electrostatic potential in centimeter-gram-second (cgs) units scaled to the ther-

mal voltage (\kappa BT )/ec, qi =
4\pi e2c
\kappa BT zi, Nm is the total number of partial point charges

in the biomolecule, \epsilon s is the bulk solvent dielectric coefficient, and ai is the atomic
radius of the mobile ions. Here, \kappa BT , \kappa B , T , ec, and zi are the thermal energy, the
Boltzmann constant, the absolute temperature, the electron charge, and the nondi-
mensional partial charge of each atom, respectively. The Debye-H\"uckel screening
parameter, \kappa 2 = 8\pi e2cI/1000\epsilon s\kappa BT , describes the ion concentration and accessibil-
ity, and is a function of the ionic strength I = 1/2

\sum Nions

j=1 cjz
2
j , where zj and cj are

charge and concentration of each ion. The sum of Dirac delta distributions, located
at atomic centers \=xi, represents the molecular charge density. See [14, 1] for more
details concerning the problem setting for PBE theory.

The dielectric coefficient \epsilon (\=x) and kappa function \=\kappa 2(\=x) are piecewise constant
functions given by

\epsilon (\=x) =

\Biggl\{ 
\epsilon m = 2 if \=x\in \Omega m,

\epsilon s = 78.54 if \=x\in \Omega s,
\=\kappa (\=x) =

\Biggl\{ 
0 if \=x\in \Omega m,\surd 
\epsilon s\kappa if \=x\in \Omega s,

(2.3)

where \Omega m and \Omega s are the molecular and solvent regions, respectively, as shown in Fig-
ure 2.1. Details regarding the PBE theory and the significance of (2.1) in biomolecular
modeling can be found in [41, 14, 42].

The PBE in (2.1) can be linearized for small electrostatic potentials relative to
the thermal energy (i.e., \psi (\=x) \ll \kappa BT ). Nevertheless, even when the linearization
condition does not hold, the solution obtained from the linearized PBE (LPBE) may
be close to that of the NLPBE [43]. The onset of substantial differences between the
two models is attributed to the magnitude of the electric field, hence of the charge
density at the interface between the solute and the solvent [43]. The LPBE is given by

 - \nabla \cdot (\epsilon (\=x)\nabla u(\=x)) + \=k2(\=x)u(\=x) =

Nm\sum 
i=1

qi\delta (\=x - \=xi).(2.4)

The electrostatic potential can be used in a variety of applications, a few of which
we highlight here. First, the surface potential (i.e., the electrostatic potential on the
biomolecular surface) can be used to obtain insights into possible binding sites for
other molecules. Second, it can be used to compare the interaction properties of
related proteins by calculating similarity indices [44]. Finally, the electric field, which
is the derivative of the potential around the solute, may be essential for obtaining
the rates of molecular recognition and encounter [4, 11]. Another important aspect
is related to the force calculation in solvent domain; see the recent paper [23] and
references therein.

3. Rank-structured tensor representation of electrostatic potentials.

3.1. Sketch of basic tensor formats. Here, we recall the rank-structured
tensor formats and briefly describe the range-separated tensor format introduced in
[2, 33] for tensor-based representation of multiparticle long-range potentials. Rank-
structured tensor techniques have recently gained popularity in scientific computing
due to their inherent property of reducing the grid-based solution of multidimen-
sional problems arising in large-scale electronic and molecular structure calculations to
essentially one-dimensional (1D) computations [36, 45]. In this concern, the so-called

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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B92 KWEYU, KHOROMSKAIA, KHOROMSKIJ, STEIN, AND BENNER

reduced higher order singular value decomposition (RHOSVD) introduced in [36] is
one of the salient ingredients in the development of tensor methods in quantum chem-
istry; see details in [37] and references therein.

A tensor of order d is defined as a real multidimensional array over a d-tuple
index set

A= [ai1,...,id ]\equiv [a(i1, . . . , id)]\in \BbbR n1\times \cdot \cdot \cdot \times nd ,(3.1)

with multi-index notation i = (i1, . . . , id), i\ell \in I\ell := \{ 1, . . . , n\ell \} . It is considered as
an element of a linear vector space \BbbR n1\times \cdot \cdot \cdot \times nd equipped with the Euclidean scalar
product \langle \cdot , \cdot \rangle :\BbbV n \times \BbbV n\rightarrow \BbbR , defined as

\langle A,B\rangle :=
\sum 

(i1,...,id)\in I

ai1,...,idbi1,...,id for A, B \in \BbbV n.(3.2)

The storage size scales exponentially in the dimension d, i.e., nd, resulting in the so-
called ``curse of dimensionality"". To get rid of the exponential scaling in storage and
the consequent drawbacks, one can apply the rank-structured separable approxima-
tions of multidimensional tensors. The simplest separable tensor is given by a rank-1
canonical tensor (i.e., tensor/outer product of vectors in d dimensions)

U= u(1) \otimes \cdot \cdot \cdot \otimes u(d) \in \BbbR n1\times \cdot \cdot \cdot \times nd ,(3.3)

with entries computed as ui1,...,id = u
(1)
i1
\cdot \cdot \cdot u(d)i1

, which requires only (n1 + \cdot \cdot \cdot + nd)\ll 
nd numbers to store it. If n\ell = n, then the storage cost is dn\ll nd.

Definition 3.1. The \bfitR -term canonical tensor format is defined by a finite sum
of rank-1 tensors

UR =

R\sum 
k=1

\xi ku
(1)
k \otimes \cdot \cdot \cdot \otimes u

(d)
k , \xi k \in \BbbR ,(3.4)

where u
(\ell )
k \in \BbbR n\ell are normalized vectors, and R \in \BbbR + is the canonical rank.

The storage cost for this tensor format is bounded by dRn. For k= 3, for exam-
ple, the entries of the canonical tensor (3.4) are computed as the sums of elementwise
products,

ui1,i2,i3 =

R\sum 
k=1

\xi ku
(1)
i1,k
\cdot u(2)i2,k

\cdot u(3)i3,k
.(3.5)

Definition 3.2. The rank-r orthogonal Tucker format for a tensor V is

V=

r1\sum 
\nu 1=1

\cdot \cdot \cdot 
rd\sum 

\nu d=1

\beta \nu 1,...,\nu d
v(1)
\nu 1
\otimes \cdot \cdot \cdot \otimes v(d)

\nu d
\equiv \bfitbeta \times 1 V

(1) \times 2 V
(2) \cdot \cdot \cdot \times d V

(d),(3.6)

where \{ v(\ell )
\nu \ell \} r\ell \nu \ell =1 \in \BbbR n\ell is the set of orthonormal vectors for \ell = 1, . . . , d. \times \ell denotes

the contraction along the mode \ell with the orthogonal matrices V (\ell ) = [v
(\ell )
1 , . . . ,v

(\ell )
r\ell ]\in 

\BbbR n\ell \times r\ell . \bfitbeta = \beta \nu 1,...,\nu d
\in \BbbR r1\times \cdot \cdot \cdot rd is the Tucker core tensor.

The storage cost is bounded by drn+ rd with r= | r| :=max\ell r\ell .
Rank-structured tensor approximations provide fast multilinear algebra with lin-

ear complexity scaling in the dimension d [2]. For instance, for the given canonical
tensor representation (3.4), Hadamard products, the Euclidean scalar product, and
d-dimensional convolution can be computed by univariate tensor operations in 1D
complexity [46].
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REGULARIZATION OF NPBE VIA RS TENSOR FORMAT B93

3.2. Outline on the RS tensor format for numerical modeling of mul-
tiparticle systems. In what follows, first recall the canonical tensor representation
of the nonlocal Newton kernel 1/\| \=x\| , \=x \in \BbbR 3, by using sinc-quadratures and Laplace
transform introduced in [35]. The corresponding theoretical basis was developed in
seminal papers [47, 48] on low-rank tensor product approximation of multidimen-
sional functions and operators. According to the above papers, the Newton kernel is
approximated in a computational domain \Omega = [ - b, b]3, using the uniform n\times n\times n
3D Cartesian grid. Then, using the Laplace transform and sinc-quadrature approxi-
mation, this discretized potential is approximated by a canonical rank R tensor,

PR \approx 
R\sum 

k=1

p
(1)
k \otimes p

(2)
k \otimes p

(3)
k \in \BbbR 

n\otimes 3

,(3.7)

with vectors p
(\ell )
k \in \BbbR n, and the accuracy of this approximation decays exponentially

fast in the rank parameter R. That is, for the given approximation error (\varepsilon =O(1/n\alpha ))
with some \alpha > 0, the rank is of the order of R = O(log2 \varepsilon ) [37]. Notice that here
we assume the mesh size to be of the order of h = O(1/n), such that the tensor
approximation error should be chosen of the order of \varepsilon =O(h\alpha ), say, for \alpha = 1,2.

The canonical tensor representation of the Newton kernel was first applied in
rank-structured grid-based calculations of the multidimensional operators in electronic
structure calculations [36, 49], where it manifested its high accuracy compared with
analytical based computational methods.

In [38], the canonical tensor representation was applied in modeling of the electro-
static potentials in finite rectangular 3D lattices, where it was proven that the rank of
the collective long-range electrostatic potentials of large 3D lattices remains as small
as that of a canonical tensor for a single Newton kernel. For lattices with defects and
impurities it is higher by a small constant [37].

For modeling the electrostatic interaction potential in large molecular systems of
general type, the range-separated tensor format [2] is based on additive decomposition
of the reference canonical tensor for the Newton kernel PR, into the sum of its short-
and long-range parts, with the rank parameters Rs and Rl, respectively (R=Rs+Rl),

PR =PRs
+PRl

,

with

PRs
=

\sum 
k\in \scrK s

p
(1)
k \otimes p

(2)
k \otimes p

(3)
k , PRl

=
\sum 
k\in \scrK l

p
(1)
k \otimes p

(2)
k \otimes p

(3)
k .(3.8)

Here, \scrK l := \{ k| k= 0,1, . . . ,Rl\} and \scrK s := \{ k| k=Rl+1, . . . ,Rs\} are the sets of indices
for the long- and short-range canonical vectors determined depending on the claimed
size of effective support of the short-range part PRs

: the smaller rank parameter Rs,
the smaller the effective support of the short-range tensor PRs

.
The total electrostatic potential of N -particle system is represented by a canonical

tensor further defined as P0 \in \BbbR n\times n\times n that can be constructed by a direct sum of
shift-and-windowing transforms of the reference tensor \widetilde PR, defined in the twice larger
domain \widetilde \Omega n compared with \widetilde \Omega n (see [38] for more details),

P0 =

N\sum 
\nu =1

z\nu \scrW \nu (\widetilde PR) =

N\sum 
\nu =1

z\nu \scrW \nu (\widetilde PRs +
\widetilde PRl

) =:Ps +Pl,(3.9)
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B94 KWEYU, KHOROMSKAIA, KHOROMSKIJ, STEIN, AND BENNER

where agglomerated tensors Ps and Pl define the short- and long-range parts of
the total electrostatic potential P0. The shift-and-windowing transform \scrW \nu maps a
reference tensor \widetilde PR \in \BbbR 2n\times 2n\times 2n onto its subtensor of smaller size n\times n\times n, obtained
by first shifting the center of the reference tensor \widetilde PR to the grid-point x\nu and then
restricting (windowing) the result onto the computational grid \Omega n.

It was proven in [2] that the Tucker and canonical rank parameters of the ``long-
range part"" in the tensor P0, defined by

Pl =

N\sum 
\nu =1

z\nu \scrW \nu (\widetilde PRl
) =

N\sum 
\nu =1

z\nu \scrW \nu 

\Bigl( \sum 
k\in \scrK l

\widetilde p(1)
k \otimes \widetilde p(2)

k \otimes \widetilde p(3)
k

\Bigr) 
(3.10)

remain almost uniformly bounded in the number of particles,

rank(Pl)\leq C log3/2N.

The rank reduction algorithm is accomplished by the canonical-to-Tucker (C2T) trans-
form through the RHOSVD [36] with a subsequent Tucker-to-canonical (T2C) decom-
position (see [37] and references therein).

In turn, the tensor representation of the sum of short-range parts is considered
as a sum of cumulative tensors of small support characterized by the list of the 3D
potentials coordinates and weights. The total tensor is then represented in the range-
separated tensor format [2]. Here, we recall a slightly simplified definition of the RS
tensor format.

Definition 3.3 (RS-canonical tensors [2]). Given a reference tensor A0 such
that rank(A0) \leq R0, where diam(suppA0) \leq 2\gamma in the index size with the separation
parameter \gamma \in \BbbN , and a set of \gamma -separated points x\nu \in \BbbR d, \nu = 1, . . . ,N , the RS-
canonical tensor format specifies the class of d-tensors A \in \BbbR n1\times \cdot \cdot \cdot \times nd which can be
represented as a sum of a rank-RL canonical tensor

ARL
=
\sum RL

k=1
\xi ka

(1)
k \otimes \cdot \cdot \cdot \otimes a

(d)
k \in \BbbR 

n1\times ...\times nd(3.11)

and a cumulated canonical tensor

\widehat AS =
\sum N

\nu =1
c\nu A\nu ,(3.12)

generated by replication of the reference tensor A0 to the points x\nu . Then the RS
canonical tensor is represented in the form

A=ARL
+ \widehat AS =

\sum RL

k=1
\xi ka

(1)
k \otimes \cdot \cdot \cdot \otimes a

(d)
k +

\sum N

\nu =1
c\nu A\nu .(3.13)

The storage size for the RS-canonical tensor A in (3.13) is estimated by (see [2,
Lemma 3.9]),

stor(A)\leq dRn+ (d+ 1)N + dR0\gamma .

Notice that the RS tensor decomposition of the collective electrostatic potential
P0 can be obtained by setting \widehat AS =Ps and ARL

=Pl, while the tensor A0 is define
as the short-range part of the singe generating kernel, PRs

.
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REGULARIZATION OF NPBE VIA RS TENSOR FORMAT B95

4. Solution decomposition techniques for the PBE. The presence of the
highly singular right-hand side of (2.1) implies that every singular charge zi in (2.1),
the electrostatic potential u(\=x), exhibits degenerate behavior at each atomic position
\=xi in the molecular region \Omega m. To overcome this difficulty, the PBE theory has re-
cently received a major boost by the introduction of solution decomposition techniques
which are served for avoiding the highly singular data on the right-hand side of PBE.
This entail a coupling of two equations for the electrostatic potential in the molecular
(\Omega m) and solvent (\Omega s) regions, through the boundary interface; see [30, 31] for the
particular examples of solution decomposition techniques for numecal solution of PBE.
The equation inside \Omega m is simply the Poisson equation, due to the absence of ions, i.e.,

 - \nabla \cdot (\epsilon m\nabla u) =
Nm\sum 
i=1

qi\delta (\=x - \=xi) in \Omega m.(4.1)

On the other hand, there is an absence of atoms in \Omega s. Therefore, the density is
purely given by the Boltzmann distribution

 - \nabla \cdot (\epsilon s\nabla u) + \=\kappa 2 sinh(u) = 0 in \Omega s.(4.2)

Equations (4.1) and (4.2) are coupled together through the interface boundary con-
ditions

[u]\Gamma = 0 and

\biggl[ 
\epsilon 
\partial u

\partial n\Gamma 

\biggr] 
\Gamma 

= 0,(4.3)

where \Gamma := \partial \Omega m = \partial \Omega s \cap \Omega m and the jump of a function through the interface is
defined by [f ]\Gamma = limt - \rightarrow 0 f(\=x+ tn\Gamma ) - f(\=x - tn\Gamma ). Here, n\Gamma denotes the unit outward
normal vector of the interface \Gamma .

Next, we highlight one of the solution decomposition techniques for the PBE in
[30]. The computational inconvenience of such kind of commonly used regularization
schemes provides the motivation for the use of RS tensor format demonstrated in this
paper. It is also implemented as an option for the PBE solution in the well-known
adaptive Poisson--Boltzmann software (APBS) package using the FEM [50]. To deal
with the singular source term represented by the sum of Dirac delta distributions in
the PBE, the unknown solution u(\=x) is decomposed as an unknown smooth function
ur(\=x) and a known singular function G(\=x), i.e.,

u(\=x) =G(\=x) + ur(\=x),(4.4)

where

G(\=x) =

Nm\sum 
i=1

qi
\epsilon m

1

\| \=x - \=xi\| 
(4.5)

is a sum of the Newton kernels (1/\| \=x\| ), which solves the Poisson equation (4.1) in
\BbbR 3. Substitute the decomposition into (2.1) to obtain

 - \nabla \cdot (\epsilon \nabla ur) + \=\kappa 2(\=x) sinh(ur +G) =\nabla \cdot ((\epsilon  - \epsilon m)\nabla G) in \Omega s,

ur = g - G on \partial \Omega s

\Biggr\} 
,(4.6)

where g(\=x) is the boundary condition obtained from (2.2). The PBE in (4.6) is
referred to as the regularized PBE (RPBE) in [30]. Notice that the singularities of the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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B96 KWEYU, KHOROMSKAIA, KHOROMSKIJ, STEIN, AND BENNER

Dirac delta distribution are transferred to G, which is known analytically. Therefore,
building the numerical approximation to G is circumvented. Consequently, the cutoff
coefficients \=\kappa and \epsilon  - \epsilon m are zero in \Omega m, where the degenerate behavior is exhibited at
each \=xi. This allows the RPBE to be a mathematically well-defined equation for the
regularized solution ur. It is important to note that away from the \=xi, the function
G is smooth [30].

The RPBE in (4.6) can further be decomposed into the linear and nonlinear
components ur(\=x) = ul(\=x) + un(\=x), where ul(\=x) satisfies

 - \nabla \cdot (\epsilon \nabla ul) =\nabla \cdot ((\epsilon  - \epsilon m)\nabla G) in \Omega s,

ul = 0 on \partial \Omega s

\Biggr\} 
(4.7)

and un(\=x) satisfies

 - \nabla \cdot (\epsilon \nabla un) + \=\kappa 2(x) sinh(un + ul +G) = 0 in \Omega s,

un = g - G on \partial \Omega s

\Biggr\} 
.(4.8)

However, the following computational challenges are inherent in the aforemen-
tioned techniques. First, due to regularization splitting of the solution by using the
kappa and dielectric coefficients as cutoff functions, discontinuities at the interface
arise. Therefore, interface or jump conditions need to be incorporated to eliminate
the solution discontinuity (e.g., Cauchy data) at the interface of complicated subdo-
main shapes. Consequently, the long-range components of the free space potential
are not completely decoupled from the short-range parts at each atomic radius, in the
``so-called"" singular function G, in the molecular domain \Omega m. Second, the Dirichlet
boundary conditions, for example, in (2.2) have to be specified using some analytical
solution of the LPBE. Third, in solution decomposition techniques (see, for instance,
[28]), multiple algebraic systems for the linear and nonlinear boundary value problems
have to be solved, thereby increasing the computational costs. Fourth, the system
matrix is modified because of incorporating the interface conditions and also, for
instance, the smooth function (G), in the Boltzmann distribution term in (4.6).

In this paper, we present a new approach for the regularization of the PBE by
using the RS canonical tensor decomposition of the singular right-hand side which
allows one to avoid modification of the interface and boundary conditions in the
equation for the regular part of the solution.

5. Regularization scheme for the nonlinear PBE (NLPBE) via RS ten-
sor format. In this section, we extend the approach introduced in [1] for linear PBE
to the nonlinear case. We present a new regularization scheme for the NLPBE which
is based on the range-separated representation of the highly singular charge density,
described by the Dirac delta distribution in the target PBE (2.1) [3]. Similar to [1]
we modify the right-hand side of the NLPBE (2.1) in such a way that the short-range
part in the solution u can be precomputed independently by the direct tensor decom-
position of the free space potential, and the initial elliptic equation (or the nonlinear
RPBE) applies only to the long-range component of the total potential. The lat-
ter is a smooth function, hence the FDM/FEM approximation error can be reduced
dramatically even on relatively coarse grids in three dimensions.

To fix the idea, we first consider the weighted sum of interaction potentials in
a large N -particle system, generated by the Newton kernel, 1/\| \=x\| , at each charge
location \=xi, \=x\in \BbbR 3, i.e.,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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REGULARIZATION OF NPBE VIA RS TENSOR FORMAT B97

G(\=x) =

Nm\sum 
i=1

qi
\epsilon m

1

\| \=x - \=xi\| 
.(5.1)

We recall that the sum of Newton kernels for a multiparticle system discretized by the
R-term sum of Gaussian type functions living on the n\otimes 3 tensor grid \Omega n is represented
by a sum of long-range tensors in (3.10) and a cumulated canonical tensor in (3.12),
respectively.

Since it is well known that (5.1) solves the Poisson equation analytically, i.e.,

 - \nabla \cdot (\epsilon m\nabla G(\=x)) =
Nm\sum 
i=1

qi\delta (\=x - \=xi) in \BbbR 3,(5.2)

we can leverage this property in order to derive a smooth (regularized) representation,
fr, of the Dirac delta distributions in the right-hand side of (5.2). Consider the RS
tensor splitting of the multiparticle Newton potential into a sum of long-range tensors
Pl in (3.10) and a cumulated canonical tensor Ps in (3.12), i.e.,

G(\=x) =Ps(\=x) +Pl(\=x).(5.3)

Substituting each of the components of (5.3) into the discretized Poisson equation,
we derive the respective components of the molecular charge density (or the collective
Dirac delta distributions) as follows:

fs := - A\Delta Ps and f l := - A\Delta Pl,(5.4)

where A\Delta is the 3D finite difference Laplacian matrix defined on the uniform rectan-
gular grid as

A\Delta =\Delta 1 \otimes I2 \otimes I3 + I1 \otimes \Delta 2 \otimes I3 + I1 \otimes I2 \otimes \Delta 3,(5.5)

where  - \Delta \ell = h - 2
\ell tridiag\{ 1, - 2,1\} \in \BbbR n\ell \times n\ell , \ell = 1,2,3, denotes the discrete univariate

Laplacian and I\ell , \ell = 1,2,3, is the identity matrix in each dimension. See [1, 3] for
more details.

Remark 1. Notice that there are the continuous analogies of the canonical tensors
Ps and Pl and of the respective short- and long-range parts of the multiparticle Dirac
delta, fs and fr. They are obtained by substitution of the prototype Gaussian sums
arising in the sinc-approximation of the Newton kernel. The discretizing canonical
skeleton vectors are obtained by collocation to the nodal points of discretization grid.
Without ambiguity we further use the same notations for both discrete and continuous
versions of fs and fr.

Figure 5.1 depicts the behavior of the modified representations of both the
smooth and singular components of the Dirac delta distributions using the formula
in (5.4). The charge density data is obtained from protein Fasciculin 1, an anti-
acetylcholinesterase toxin from green mamba snake venom [51]. Notice from the high-
lighted data cursors, that the effective supports of both functions are localized within
the molecular region, with values dropping to zero outside this region. Furthermore,
Figure 5.1a represents the function f l, which we utilize as the modified right-hand
side to derive a regularized PBE (RPBE) model in the next step.

The nonlinear NRPBE can now be derived as follows. First, the unknown solution
(or target electrostatic potential) u to the PBE (2.1) can be decomposed as

u= us + ur,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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B98 KWEYU, KHOROMSKAIA, KHOROMSKIJ, STEIN, AND BENNER

(a) Long-range part of charge density. (b) Short-range part of charge density.

Fig. 5.1. The long- and short-range parts of the charge density for protein Fasciculin 1 on
129\otimes 3 grid.

where us is the known singular function (or short-range component) and ur is the
unknown long-range component to be determined. Therefore, the PBE (2.1) can be
rewritten as

 - \nabla \cdot (\epsilon \nabla (us + ur)) + \=\kappa 2 sinh(us + ur) = fs + f l in \BbbR 3,

ur = g on \partial \Omega s

\Biggr\} 
,(5.6)

where the right-hand side of (2.1) is replaced by fs + f l due to (5.2) and (5.4) and g
is the Dirichlet boundary conditions defined in (2.2).

It was proved in [3] and demonstrated in [1] that the function fs and the corre-
sponding short-range potential us are localized within the molecular region \Omega m and
vanishes on the interface \Gamma . Moreover, from (2.3), the function \=\kappa is piecewise con-
stant and \=\kappa = 0 in \Omega m. Therefore, we can rewrite the Boltzmann distribution term
in (5.6) as

\=\kappa 2 sinh(us + ur) = \=\kappa 2 sinh(ur), because us = 0 in \Omega s\setminus \Omega m.(5.7)

Consequently, following the splitting of the Dirac delta distributions in (5.4), the
short-range component of the potential satisfies the Poisson equation, i.e.,

 - \nabla \cdot (\epsilon m\nabla us) = fs in \BbbR 3.(5.8)

It can be easily shown that

us(\=x) =Ps

is the cumulated canonical tensor in (3.12) which represents the precomputed short-
range potential sum supported within the solute domain \Omega m. On this step we do not
need to solve any boundary value problem, but only use simple multilinear algebra.

Subtracting (5.8) from (5.6) and using (5.7), we obtain the NRPBE as follows:

 - \nabla \cdot (\epsilon \nabla ur(\=x)) + \=\kappa 2(\=x) sinh(ur(\=x)) = f l in \Omega s.(5.9)

Notice that the Dirichlet boundary conditions defined in (2.2) remains verbatim, so
that we have

ur(\=x) = g(x) on \partial \Omega s.(5.10)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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REGULARIZATION OF NPBE VIA RS TENSOR FORMAT B99

We recall that the regularization scheme for linear PBE introduced in [1] reads
as follows:

 - \nabla \cdot (\epsilon \nabla ur(\=x)) + \=\kappa 2(\=x)ur(\=x) = f l(\=x) in \Omega s,(5.11)

subject to the Dirichlet boundary conditions

ur(\=x) = g(x) on \partial \Omega s.(5.12)

In this way, (5.9)--(5.10) generalizes the regularization scheme (5.11)--(5.12) to the
nonlinear case.

Notice that by construction, the short-range potential vanishes on the interface
\Gamma , hence it satisfies the discrete Poisson equation in (4.1) with the respective charge
density fs and zero boundary conditions on \Gamma . Therefore, we recall (see [1] for the
detailed discussion) that this equation can be subtracted from the full linear discrete
PE system, such that the long-range component of the solution, Pl, will satisfy the
same linear system of equations (same interface conditions), but with a modified
charge density corresponding to the weighted sum of the long-range tensors f l only.

6. Numerical approach to solving the NRPBE. Consider the uniform 3D
n\otimes 3 rectangular grid in \Omega = [ - b, b]3 with the mesh parameters dx,dy, dz < 0.5. One
standard way of solving the NRPBE in (5.9) is that it is first discretized in space to
obtain a (regularized) nonlinear system in matrix-vector form

A(ur\scrN ) = br in \BbbR \scrN ,(6.1)

where A(ur\scrN ) \in \BbbR \scrN \times \scrN , br \in \BbbR \scrN is the discretized long range part of the Dirac
delta distributions in the right-hand side f l of (5.9) (see Remark (1)), and ur\scrN is the
discretized solution vector. Here, the problem size \scrN is usually of the order of \scrO (106).

Then system (6.1) can be solved using several existing techniques. For example,
the nonlinear relaxation methods has been implemented in the Delphi software [52],
the nonlinear conjugate gradient (CG) method has been implemented in University
of Houston Brownian Dynamics (UHBD) software [53], the nonlinear multigrid (MG)
method [54], and the inexact Newton method have been implemented in the adaptive
Poisson--Boltzmann solver (APBS) software [55].

In this study, we apply a different approach of solving (5.9) [29, 56, 57]. In
particular, an iterative approach is first applied to the continuous NRPBE in (5.9),
where at the (n+1)st iteration step, the NRPBE is approximated by a linear equation
via the Taylor series truncation. The expansion point of the Taylor series is the
continuous solution (ur)n at the nth iteration step.

Consider (ur)n as the approximate solution at the nth iterative step, then the
nonlinear term sinh((ur)n+1) at the (n+ 1)st step is approximated by its truncated
Taylor series expansion as follows:

sinh((ur)n+1)\approx sinh((ur)n) + ((ur)n+1  - (ur)n) cosh((ur)n).(6.2)

Substituting the approximation (6.2) into (5.9), we obtain

 - \nabla \cdot (\epsilon (\=x)\nabla (ur)n+1) + \=\kappa 2(\=x) cosh((ur)n)(ur)n+1(6.3)

= - \=\kappa 2(\=x) sinh((ur)n) + \=\kappa 2(\=x) cosh((ur)n)(ur)n + br.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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B100 KWEYU, KHOROMSKAIA, KHOROMSKIJ, STEIN, AND BENNER

Equation (6.3) is linear, and can then be numerically solved by first applying spatial
discretization. In this regard, we first define

cosh\odot ur\scrN =:w=

\left[     
w1

w2

...
w\scrN 

\right]     ,(6.4)

where \odot is the elementwise operation on a vector.
Then, we construct the corresponding diagonal matrix from (6.4) of the form

B =diag(w1,w2, . . . ,w\scrN ).

Finally, we obtain the following linear system:

A1(u
r
\scrN )n+1 +A2B

n(ur\scrN )n+1 = - A2 sinh\odot (ur\scrN )n +A2B
n(ur\scrN )n + br1 + b2,(6.5)

where A1 is the Laplacian matrix and A2 is a diagonal matrix containing the \=\kappa 2

function. Note that the diagonal matrix Bn changes at each iteration step; therefore,
it cannot be precomputed. The vectors br1 and b2 are the regularized approximation
of the Dirac delta distributions and the Dirichlet boundary conditions, respectively.

Let

A(\cdot ) =A1 +A2B
n,(6.6)

and let

F : right-hand side of (6.5).(6.7)

Then we obtain

A((ur\scrN )n)(ur\scrN )n+1 = F ((ur\scrN )n), n= 0,1, . . . .(6.8)

Then, at each iteration, system (6.8) is a linear system w.r.t. (ur\scrN )n+1, which
can be solved by any linear system solver of choice. In this study, we employ the
aggregation-based algebraic multigrid (AGMG) method1 [58]. Algorithm 1 summa-
rizes the detailed iterative approach of solving (6.8). This approach is of first lin-
earization, then discretization is shown to be more efficient than the standard way of
first discretization and then linearization via, for example, the Newton iteration. The
advantage of the proposed approach is that it avoids computing the Jacobian of a huge
matrix. It is observed that it converges faster than the standard Newton approach.

The benefits of the RS tensor format as a solution decomposition technique over
the existing techniques in the literature are highlighted as follows.

\bullet First, the efficient splitting of the short- and long-range parts in the target
tensor circumvents the need to modify jump conditions at the interface and
the use of \epsilon and \=\kappa as cut-off functions, e.g., in (4.6).

\bullet Second, the long-range part in the RS tensor decomposition of the Dirac delta
distributions [3] vanishes at the interface and, therefore, the modified charge
density in (5.4) generated by this long-range component remains localized in
the solute region.

1AGMG implements an aggregation-based algebraic multigrid method, which solves algebraic
systems of linear equations, and is expected to be efficient for large systems arising from the dis-
cretization of scalar second order elliptic PDEs [58].
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Algorithm 1 Iterative solver for the NRPBE.

Input: Initialize the potential (ur\scrN )0, e.g., (ur\scrN )0 = 0 and the tolerance \delta 0 = 1.
Output: The converged NRPBE solution (ur\scrN )n at \delta n \leq \tau .
1: while \delta n \geq \tau do
2: Solve the linear system (6.8) for (ur\scrN )n+1 using AGMG.
3: \delta n+1\leftarrow \| (ur\scrN )n+1  - (ur\scrN )n\| 2.
4: (ur\scrN )n\leftarrow (ur\scrN )n+1.
5: end while

\bullet Third, the boundary conditions are obtained from Pl, the long-range part
of the free space potential sum, thereby avoiding the computational costs
involved in solving some external analytical function at the boundary.

\bullet Last, only a single system of algebraic equations is solved at each iteration
of the nonlinear iterative scheme for the regularized component of the collec-
tive potential which is then added to the directly precomputed short-range
contribution, us(\=x). This is more efficient than, for instance, in [28], where
the regularized PBE model is subdivided into the linear interface and the
nonlinear interface problems which are solved independently, with respective
boundary and interface conditions.

7. Numerical results. In this section, we consider n\otimes 3 3D uniform Cartesian
grids in a box [ - b, b]3 with equal step size h= 2b/(n - 1) for computing the electrostatic
potentials of the PBE on a modest PC with the following specifications: Intel Core
(TM) i7 - 4790 CPU @ 3.60 GHz with 8 GB RAM. The FDM is used to discretize the
PBE in this work and the numerical computations are implemented in the MATLAB
software, version R2017b.

7.1. Numerical results for LPBE. First, we validate our FDM solver for the
classical LPBE by comparing its solution with that of the APBS software package
(version 1.5-linux64), which uses the multigrid Preconditioned Multi-Grid (PMG)
accelerated FDM [50]. Here, we consider the protein Fasciculin 1, with 1228 atoms.
Figure 7.1 shows the electrostatic potential of the PBE on a n\times n grid surface with
n = 129 at the cross-section of the volume box (60\r A) in the middle of the z-axis
computed by the FDM solver and the corresponding error between the two solutions.
Here, we use the ionic strength of 0.15M and the dielectric coefficients \epsilon m = 2 and
\epsilon s = 78.54, respectively. The numerical results show that the FDM solver provides as
accurate results as those of the APBS with a discrete L2 error of \scrO (10 - 4) in the full
solution.

The corresponding electrostatic potential energy for the aforementioned LPBE
solvers on a sequence of fine grids is given in Table 7.1. The results for solvation free
energy of protein varieties are presented in [42]. To validate the claim in Remark 2,
we provide in Table 7.2, the comparison between the total electrostatic potential
energies \Delta Gelec in kJ/mol, between the LPBE and the NLPBE computations on a
sequence of fine grids using the APBS software package.

Remark 2. We reiterate that the solutions obtained from the LPBE and the
NLPBE are very close to each other, even when the linearization condition does not
hold [4]. This is especially manifested in protein molecules whose charge densities
are small. However, in biomolecules with large charge densities, for example, the
DNA, significant differences might be observed at the solute-solvent interface [43, 4].
Moreover, the solution of the LPBE is usually used as the initial guess for the NLPBE.
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(a) LPBE solution by the FDM solver. (b) APBS vs FDM solution error.

Fig. 7.1. The electrostatic potential for the protein Fasciculin 1 computed by the FDM solver
(left) and the error between the APBS and FDM solutions (right) on 129\otimes 3 grid, at 0.15M ionic
strength.

Table 7.1
Comparison of the total electrostatic potential energies \Delta Gelec in kJ/mol, between FDM and

APBS on a sequence of refined grids.

h \scrN \Delta Gelec, FDM \Delta Gelec, APBS Relative error

0.465 1293 91.2329217 91.2280388 5.3524e-5
0.375 1613 130.6110021 130.6060444 3.7962e-5

0.320 1933 170.1594204 170.1543821 2.9610e-5

Table 7.2
Comparison of the total electrostatic potential energies \Delta Gelec in kJ/mol, between the LPBE

and the NPBE computations on a sequence of refined grids.

h \scrN \Delta Gelec, LPBE \Delta Gelec, NPBE Relative error

0.465 1293 91.2280575 91.2278354 2.4345e-6
0.375 1613 130.6060630 130.6058448 1.6707e-6

0.320 1933 170.1544401 170.1541862 1.4922e-6

Remark 3. Notice from Tables 7.1 and 7.2 that the electrostatic potential energies
\Delta Gelec increase with decreasing grid/mesh size, h. This is caused by the short-range
electrostatic potential behavior in 1/\| \=x\| as \| \=x\| \rightarrow 0.

7.2. Comparison of electrostatic energies between LRPBE and
NRPBE. The purpose of this section is to numerically investigate the main features
of the proposed regularization method for solving NLPBE. In particular, we analyze
the behavior of the total energy obtained by our NRPBE solver depending on the size
of the biomolecule and the grid-size. We then compare the variation of the energy
differences between our regularized linear and nonlinear models and the respective
variations computed for the classical linear and nonlinear numerical techniques (as in
Table 7.2). We finally observe almost the same behavior of above mentioned quanti-
ties in our scheme as in the classical numerical approaches, thus indicating that our
technique provides the same quantitative behavior as the classical numerical schemes,
having at the same time several remarkable advantages. Finally, we demonstrate the
time-scaling of our NRPBE numerical scheme with respect to the grid size.

We compare the electrostatic energies between the LRPBE and the NRPBE using
the long-range electrostatic potential calculations as developed in [59]. One of the
most significant applications of the PBE's electrostatic potential is the electrostatic
solvation free energy, which is useful in biophysics and biomedicine [60]. It is defined as
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the free energy required to transfer a biomolecule from a uniform dielectric continuum
to an inhomogeneous medium, which is generally divided into nonpolar and polar
terms [15]. The polar contribution to the solvation free energy is given by

\Delta Gpolar
solv =Gsolv

elec  - Gref
elec,(7.1)

where Gref
elec (reference energy) is the total biomolecular electrostatic free energy in the

reference or vacuum state (solute homogeneous dielectric medium) and Gsolv
elec (solvated

energy) is that in the solvated state (inhomogeneous dielectric medium, for instance, a
protein in aqueous medium) [60, 15]. The electrostatic energy by definition, represents
the work required to assemble the biomolecule, and is given by

Gelec =
1

2

Nm\sum 
i=1

qiu(\=xi),(7.2)

where u(\=xi) is the mean electrostatic potential acting on the atom located at \=xi with
charge qi [60]. In [59], it was determined that the electrostatic energy of interaction
is entirely driven by the long-range electrostatic potential. This is because the short-
range components do not communicate with their neighbors due to their localization
(effective local support) in the atomic volumes. The following result was henceforth
proved in [59].

Lemma 1. Let the total free-space (reference) electrostatic potential in (5.1) be
given by the sum utotref (\=x) = usref(\=x)+u

r
ref(\=x) and that of the solvated state of the PBE de-

composition in (5.9) by utotsolv(\=x) = usref(\=x)+u
r
solv(\=x), \=x\in \BbbR 3, using the RS tensor split-

ting scheme. Then the solvation free energy in (7.1) is given by the regularized form

\Delta Gr
solv =

1

2

Nm\sum 
i=1

qiu
r
solv(\=xi) - 

1

2

Nm\sum 
i=1

qiu
r
ref(\=xi).(7.3)

From two selected biomolecules of varying total charges, we notice that first the
energies decrease with increasing solvent dielectric coefficient \epsilon s. Second, the dif-
ference between the electrostatic energies for the LRPBE and NRPBE reduces with
increase in the dielectric coefficient. Last, the biomolecule with a larger total charge
of  - 14.000e has larger electrostatic energies of one order of magnitude as compared to
the biomolecule with overall charge of 4.000e. Tables 7.3 and 7.4 show the comparisons
in electrostatic energies between LRPBE and NRPBE.

Table 7.3
Comparison of the total electrostatic potential energies \Delta Gelec in kJ/mol, between LRPBE and

NRPBE for varying solvent dielectric coefficients \epsilon s for Fasciculin 1 protein with overall charge of
4.0000e.

\epsilon s \Delta Gelec, LRPBE \Delta Gelec, NRPBE Relative error

78.54 2.89088993e-02 2.89088925e-02 2.3522e-07

90 2.80391023e-02 2.80390968e-02 1.9615e-07
100 2.74376346e-02 2.74376298e-02 1.7494e-07
150 2.56052236e-02 2.56052210e-02 1.0154e-07

200 2.46720131e-02 2.46720114e-02 6.8904e-08

300 2.37263454e-02 2.37263445e-02 3.7933e-08
400 2.32485089e-02 2.32485083e-02 2.5808e-08
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Table 7.4
Comparison of the total electrostatic potential energies \Delta Gelec in kJ/mol, between LRPBE and

NRPBE for varying solvent dielectric coefficients \epsilon s for box B RNA hairpin with overall charge of
 - 14.0000e.

\epsilon s \Delta Gelec, LRPBE \Delta Gelec, NRPBE Relative error

78.54 1.83786222e-01 1.83786138e-01 4.5705e-07
90 1.74543911e-01 1.74543843e-01 3.8959e-07

100 1.68225478e-01 1.68225420e-01 3.4478e-07
150 1.49345684e-01 1.49345652e-01 2.1427e-07

200 1.39946590e-01 1.39946569e-01 1.5006e-07

300 1.30572305e-01 1.30572294e-01 8.4245e-08
400 1.25893508e-01 1.25893501e-01 5.5603e-08

Table 7.5
Runtimes and speed-ups for LPBE, LRPBE, NPBE, and NRPBE.

Runtime (seconds) and speed-up

LPBE LRPBE Speed-up

Solve linear system 5.26 6.34 \approx 1

Total runtime 15.25 16.47 \approx 1

NPBE NRPBE Speed-up

Solve nonlinear system 24.23 12.30 1.97

Total runtime 34.40 28.30 1.21

7.3. Runtimes and computational speed-ups. We compare the runtimes of
computing both the classical and regularized PBE models in Table 7.5 for the protein
Fasciculin 1 in an n3 = 1293 domain of 60\r A length at an ionic strength of 0.15M .
Notice that the runtimes for the LPBE and the LRPBE are almost equal because the
linear systems are solved by the same solver (i.e., AGMG). On the other hand, the
runtime for solving the nonlinear system for the NRPBE is half that of the NPBE
due to the absence of the Dirac delta distributions and their corresponding solution
singularities in our scheme, and which increase the computational costs in NPBE.

8. Conclusions. In this paper, we apply the RS tensor format for a solution de-
composition of the nonlinear PBE for computation of electrostatic potential of large
solvated biomolecules. The efficiency of the tensor-based regularization scheme es-
tablished in [1] for the linear PBE is based on the unprecedented properties of the
grid-based RS tensor splitting of the Dirac delta distribution [3]. Similar to the linear
case, the key computational benefits are attributed to the localization of the modified
Dirac delta distributions within the molecular region and the automatic maintaining
of the continuity of the Cauchy data on the solute-solvent interface. Moreover, our
computational scheme entails solving only a single system of algebraic equations for
the regularized component of the collective electrostatic potential discretized by the
FDM. The total potential is obtained by adding this solution to the directly precom-
puted low-rank tensor representation of the short-range contribution.

The main properties of the presented scheme are demonstrated by various numer-
ical tests. For instance, Tables 7.3 and 7.4 vividly demonstrate that the electrostatic
energies of the LRPBE and NRPBE are relatively close to each other just like in the
classical linear and nonlinear PBE models, as indicated in Table 7.2. The only dif-
ference is that in the regularized models, we compute the electrostatic energies using
only the long-range components of the electrostatic potentials because of the same
contributions to the short range parts in both models.
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