
THE COMPLEXITIES OF NON-PERTURBATIVE COMPUTATIONS

ALI SHOJAEI-FARD

ABSTRACT. The article studies the behavior of equations of motions of Green’s functions
under different running coupling constants in strongly coupled gauge field theories in terms
of the Kolmogorov complexity.
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1. INTRODUCTION

Perturbative methods of calculations for the study of scattering amplitudes in Quan-
tum Field Theory are in terms of formal expansions in powers of weak enough running
coupling constants together with Feynman diagrams as coefficients. The number of loops
in Feynman diagrams in each term of the expansion are associated with the powers of
the running couplings. These running couplings, which have been generated by regular-
ization and renormalization techniques, are taken to be small in perturbative methods to
control the behavior of those perturbative expansions. The computational complexities of
perturbative methods can be evaluated in terms of the number of Feynman diagrams in
expansions. In this setting, the complexity increases factorially in terms of the growing
number of Feynman diagrams and nested loops which contribute to higher orders of the
perturbative expansion. [9, 10, 38, 39]

If the values of the bare or running coupling constants are insufficiently small, then the
perturbative setting is not a useful approach to deal with full scattering amplitudes. In this
situation, one eventually reaches to a quantum phase transition at some critical couplings
such that in the parameter space near this phase transition perturbative methods become
unreliable. The fundamental challenge in strongly coupled gauge field theories is the ap-
pearance of these non-perturbative aspects which have been already encoded by fixed point
equations of Green’s functions known as Dyson–Schwinger equations. The values of β-
functions, which govern the behavior of running couplings, is the original factor to classify
(systems) of Dyson–Schwinger equations under linear and non-linear settings. Numeri-
cal techniques and lattice models can provide some approximations for these equations
[27, 28, 30]. Therefore work on building some new advanced mathematical modelings
for the study of real time dynamics of these non-perturbative situations could improve our
knowledge about the foundations of non-perturbative gauge field theories beyond Standard
Model.
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The Connes–Kreimer renormalization Hopf algebra of Feynman diagrams has been ap-
plied by Kreimer’s school to obtain a new reformulation of Dyson–Schwinger equations
in the language of Hochschild Cohomology Theory and Combinatorics. It is shown that
the unique solution of each Dyson–Schwinger equation DSE in a given gauge field theory
Φ determines a connected graded free commutative Hopf subalgbera HDSE of HFG(Φ)
such that the β-function of the physical theory can determine the cocommutativity or non-
cocommutativity of this Hopf subalgebra [5, 19, 40]. This approach has been applied to
study (systems) of linear and non-linear Dyson–Schwinger equations under a combinato-
rial setting [4, 13, 16, 18, 34, 43]. In addition, a new geometric setting for the study of
Dyson–Schwinger equations has also been formulated where recently, a new Functional
Analysis model for the description of the evolution of solutions of these equations has
been built in terms of some tools in Noncommutative Geometry and Infinite Combina-
torics. These investigations have provided some new knowledge about the geometry of
strongly coupled gauge field theories. [31, 33, 35, 36]

Applications of the Theory of Computation to Quantum Field Theory have been recently
improved by Manin where he applied the Connes–Kreimer approach to the BPHZ pertur-
bative renormalization to analyze the problem about computability. He lifted the minimal
subtraction process of infinities in iterated Feynman integrals onto the level of flowcharts as
decorated graphs in the Theory of Computation. Then he formulated the Halting problem
in the language of the renormalization Hopf algebra [24, 25, 26]. The Manin renormaliza-
tion Hopf algebra of the Halting problem can encode the level of non-computability via
counterterms generated by the BPHZ renormalization treatment at the level of flowcharts
[24, 25]. In this direction, the Manin’s Hopf algebraic approach to the Halting problem
has been applied to show a fundamental relation between Dyson–Schwinger equations and
intermediate algorithms. Each Dyson–Schwinger equation DSE determines the quotient
Hopf algebra HFG(Φ)/HDSE such that its dual can determine a Lie subgroup of the com-
plex Lie group GΦ of homomorphisms on HFG(Φ). This class of Lie subgroups enable us
to study renormalization of Dyson–Schwinger equations ([31, 34, 35]) in terms of interme-
diate algorithms in Galois theory of algorithms ([41, 42]). In this setting, we can observe a
deep relation between the level of complexities in the computation of renormalized values
of Feynman integrals or non-perturbative parameters generated by solutions of (strongly
coupled) Dyson–Schwinger equations and the level of (non-)computability in the Halting
problem in the Theory of Computation. [12, 22, 23, 32]

The basic idea of the Kolmogorov complexity is to describe the concept of randomness.
The Kolmogorov complexity of a finite binary string is the length of the shortest description
of this string. In general, we can define the Kolmogorov complexity with respect to partial
recursive functions. For a given partial recursive function f , it is possible to define a
program which takes an input s and generates an output f(s). The output may not be
defined for some s and the program may not halt on such s or generate any output. For
any binary string s with respect to a given partial recursive function f , this complexity is
defined by

(1.1) Kf (s) := min{|p| : p ∈ {0, 1}∗, f(p) = s},

[21]. The values of complexities are strongly connected with the selected descriptive lan-
guage (i.e. partial recursive function). Thanks to the Invariance Theorem in the The-
ory of Computation ([1, 21]), there exists a universal partial recursive function U such
that for any other partial recursive function f , there is a constant cf > 0 which satis-
fies KU (s) ≤ Kf (s) + cf for all strings. We call a string v Kolmogorov random iff
KU (v) ≥ |v|. For each n, there exist 2n strings of length n where we have 2n − 1 strings
of length less than n. It enables us to show the existence of Kolmogorov random strings
of every length. Deciding the Kolmogorov randomness is as hard as deciding the Halting
problem in programs. [1, 37]
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In the Theory of Computation the algorithm’s flexibility is a fundamental parameter
in dealing with the computation of quantities in a problem. A feasible algorithm has a
polynomial-time asymptotic scaling while an infeasible algorithm has a super-polynomial
scaling. The Halting problem, as an undecidable problem, provides a way to study the
feasibility of a program in the case that whether the program will finish running or continue
to run forever [1, 29]. Manin has reformulated the Halting problem in terms of the BPHZ
perturbative renormalization where he applied a modified version of the Connes–Kreimer
renormalization Hopf algebra on rooted trees decorated by partial recursive functions (i.e.
flowcharts). His setting enables us to measure the flexibility of algorithms in terms of
counterterms generated by perturbative renormalization of flowcharts. [24, 25, 26]

Some new applications of Infinite Combinatorics to Quantum Field Theory have been
discovered recently where solutions of Dyson–Schwinger equations are studied in the lan-
guage of the theory of graphons. In this setting, a particular class of graphons originated
from sequences of sparse graphs has been built to provide a new analytic generalization
for Feynman diagrams and their infinite formal expansions. For this purpose we used the
rooted tree representations of Feynman diagrams to associate an unlabeled graphon class
(i.e. Feynman graphon) [WΓ] to each Feynman diagram Γ. We then lift the topology of
graphons (i.e. cut-distance topology) onto the level of the Connes–Kreimer renormaliza-
tion Hopf algebra to obtain an enrichment of this fundamental Hopf algebra in Quantum
Field Theory. We also applied random graphs and n-adic metric to interpret the unique so-
lution XDSE of each given Dyson–Schwinger equation DSE as the convergent limit of the
sequence {Ym}m≥0 of its partial sums with respect to the cut-distance topology. [34, 35]

Thanks to the Manin renormalization Hopf algebra of the Halting problem, combina-
torial Dyson–Schwinger equations and Feynman graphon models, in this research work
we plan to study non-perturbative aspects of strongly coupled gauge field theories in the
context of the Theory of Computation and the Complexity Theory. We are going to build a
new generalized version of the Kolmogorov complexity which works on Dyson–Schwinger
equations. This new complexity is capable of evaluating the complexities of Dyson–
Schwinger equations under different running coupling constants (derived by changing the
scale of the bare coupling constant) in a given strongly coupled gauge field theory. In
fact our Kolmogorov complexity works on a new constructive world SΦ,g which is the
collection of all Dyson–Schwinger equations of a given gauge field theory Φ with the
bare coupling constant g. We will show that the required properties for SΦ,g to be a suit-
able constructive world can be provided by applying Feynman graphon models of Dyson–
Schwinger equations. For this purpose, we study combinatorial Dyson–Schwinger equa-
tions in the context of graph functions (i.e. Theorem 2.6). Then we lift the notion of graph
complexity onto the level of Feynman diagrams and solutions of Dyson–Schwinger equa-
tions. Thereafter we address the structure of a multi-scale Renormalization Group which
enables us to encode the behavior of all Dyson–Schwinger equations in a given gauge
field theory under changing scales of the bare and running coupling constants (i.e. The-
orem 2.13). This Renormalization Group setting is useful to describe a strongly coupled
Dyson–Schwinger equations via a cut-distance convergent sequence of Dyson–Schwinger
equations under weaker running coupling constants (i.e. Corollary 2.15). In addition, we
applied this multi-scale Renormalization Group to formulate a new generalized version of
the Kolmogorov complexity on SΦ,g (i.e. Definitions 3.3, 3.4). This complexity enables us
to compare Dyson–Schwinger equations in SΦ,g with respect to their complexities under
different rescaling of the bare and running coupling constants. At the final step, we will
show how this complexity is related to the Manin renormalization of the Halting problem
(i.e. Corollaries 3.10, 3.11).
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2. DYSON–SCHWINGER EQUATIONS UNDER RUNNING COUPLING CONSTANTS

For a free field with mass m the interaction part of the Lagrangian must be quadratic at
most such as 1

2m
2φ2. In this case the Klein–Gordon equation

(2.1) −∂2φ+m2φ = 0

is the equation of motion. For an interacting field with massm the interaction part can have
cubic or greater dependence on the field such as 1

2m
2φ2 + λg

4 φ
4 where λg is the (running)

coupling constant and the equation of motion is determined by solving the corresponding
Euler–Lagrange equation. It is given by

(2.2) −∂2φ+m2φ+ λgφ3 = 0.

Therefore we can consider the total Lagrangian in terms of the combination of its free part
and its interaction part. [9, 10]

Suppose Φ is an interacting (strongly coupled) gauge field theory with the Lagrangian
LΦ ∈ R[[g]] with respect to the bare coupling constant g which is invariant under the
change φ 7−→ −φ. The interaction part of this Lagrangian (with the action functional
S[φ]) has the general form IΦ(φ) :=

∑
k≥2 Ik(φ) such that for all k, Ik = O(g). This

interaction part contributes to fixed point equations of Green’s functions where we can
generate equations of motion.

The N -point Green’s functions, as the building blocks of the path integral formalism,
encode all possible interactions between N particles. These correlation functions are de-
fined by the functional expectational values with the general form

(2.3) GN (x1, ..., xN ) =

∫ ∏
j DφjeiS[φj ]φj(x1)...φj(xN )∫ ∏

j DφjeiS[φj ]
,

Dφj =

N∏
i=1

dφj(xi),

such that the path integral measure is over all possible values of the fields φj at all space-
time points. The functional integral

∏
j Dφj is the product of integrals over different fields

φj at each space-time point. In addition, we need to add new terms±iε in the denominators
of the propagators to address in and out vacuum in the action functional setting. Then we
will have a well-defined path integral and related propagators. The partition functions
Z[J ], given by

(2.4) Z[J ] =

∫ ∏
j

DφjeiS[φj ]ei
∫
d4xφj(x)J(x),

as the result of adding external source terms J(x) to the action functional, can generate all
N -point Green’s functions as functional derivatives of Z[J ]. In other words,

(2.5) GN (x1, ..., xN ) =
(−i)N

Z[0]

δNZ[J ]

δJ(x1)...δJ(xN )
|J=0,

[9, 10, 11]. This machinery is useful for perturbative calculations where the action func-
tional can be divided into interacting and non-interacting parts, S[φ] = S0[φ] + gSint[φ].
We can consider this formalism for any running coupling constants λg generated by reg-
ularization and renormalization techniques. For small enough coupling constants, we can
expand eiλgSint[φ] in the powers of λg to obtain a perturbative formulation for Green’s
functions. In general, the coupling constant is an effective constant which depends on the
squared-momentum-transfer Q2. This dependence is very strong in gauge field theories
such as low energy QCD, which study strong interactions, where gluons carry color and
simultaneously they can couple to other gluons. In very small distances and high values
of Q2 the inter-quark couplings is vanishing asymptotically such that quarks can be free.
However at large distances, where the inter-quark couplings increase, non-perturbative
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situations could happen which make impossible to separate quarks from hadrons. For
strong running couplings where β-functions are non-zero, Green’s functions can not be
handled in terms of perturbative methods where we need to deal with non-linear Dyson–
Schwinger equations and their non-perturbative behavior. In physical theories with vanish-
ing β-function, it is possible to study Dyson–Schwinger equations under a linear setting.
[10, 27, 28, 30]

Feynman diagrams are the original tools for the study of Green’s functions. A Feynman
diagram is a collection of oriented decorated edges and vertices such that vertices present
interactions and edges present elementary particles or virtual particles. Edges which have
only beginning or ending vertex (i.e. external edges) are symbols for elementary particles
while edges which have beginning and ending vertices (i.e. internal edges) are symbols for
virtual particles. The whole diagram obeys the law about the conservation of momenta.
Feynman rules allow us to associate an iterated integral to each Feynman diagram where
these integrals suffer from sub-divergences. Usually loops in Feynman diagrams are sym-
bols for these sub-divergences. For a given physical theory, a class of Feynman diagrams,
namely One Particle Irreducible (1PI) diagrams, play a fundamental role for the construc-
tion of more complicated diagrams. A Feynman diagram is called 1PI if the graph remains
connected after removing any arbitrary internal edge (or cutting a single propagator line)
from it. [9, 10, 11]

The gauge invariance of the classical Lagrangian determines Ward identities between
Green’s functions of the quantized theory. In general the gauge invariance of the parti-
tion function can be applied to provide some identities among Green’s functions such as
Slavnov–Taylor identity in QCD and Ward–Takahashi identity in QED. It is possible to
describe Dyson–Schwinger equations as the result of these equations with translational in-
variance. Thanks to Feynman rules of the physical theory, the 1PI Green’s functions can
be presented in terms of formal expansions of Feynman diagrams with respect to the types
of particles and interactions. In other words,

(2.6) Gei = 1−
∑

res(Γ)=ei

(λg)|Γ|
Γ

Sym(Γ)
,

Gvj = 1 +
∑

res(Γ)=vj

(λg)|Γ|
Γ

Sym(Γ)
,

such that the inverse of these formal expansions can also be defined as geometric series.
In these relations, Sym(Γ) is the symmetry factor of Γ determined by the cardinal of the
automorphism group Aut(Γ) and res(Γ) is a graph as the result of shrinking all internal
edges of Γ into one decorated vertex. [18, 19, 30, 43]

Combinatorial Dyson–Schwinger equations are the result of the formulation of the
Connes–Kreimer renormalization Hopf algebra of Feynman diagrams HFG(Φ) [5, 18].
This fundamental Hopf algebra, derived from the Bogoliubov–Zimmermann’s forest for-
mula in perturbative renormalization process ([6, 44]), has led us to study non-perturbative
aspects of gauge field theories in the context of Hochschild Cohomology Theory, combi-
natorial methods and Noncommutative Geometry [4, 19, 34, 36].

Thanks to the Kreimer’s renormalization coproduct ([6]), the grafting operator B+
γ , as

the linear operator which performs any possible insertion of Feynman diagrams Γ into the
arbitrary primitive (1PI) Feynman diagram γ with respect to types of external edges in Γ
and vertices in γ, is the Hochschild one cocyle corresponding to γ.

Definition 2.1. For a family of Hochschild one cocyles generated by a given family {γn}n≥1

of primitive (1PI) Feynman diagrams, the recursive equation

(2.7) DSE(λg) : X = I +
∑
n≥1

(λg)nwnB
+
γn(Xn+1)
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is a combinatorial reformulation for a class of analytic Dyson–Schwinger equations. In
this equation λg is the running coupling constant for 0 < λ ≤ 1 and for each n ≥ 1, wn is
a constant. [5, 18, 19, 40]

The unique solution of the equation (2.7) can be presented in terms of the (infinite)
formal expansion X =

∑
n≥0(λg)nXn of finite Feynman diagrams such that X0 = I and

for each n ≥ 1, we have

(2.8) Xn =

n∑
j=1

wjB
+
γj

( ∑
k1+···+kj+1=n−j, ki≥0

Xk1 ...Xkj+1

)
,

[4, 19]. The non-linear version of these equations, derived from non-zero β-functions,
generate graded commutative non-cocommutative Hopf subalgebras of the renormaliza-
tion Hopf algebra while the linear version of these equations, derived from vanishing β-
functions, generate graded commutative cocommutative Hopf subalgebras. Higher order
perturbation method and lattice models have provided powerful tools for the study of lin-
ear Dyson–Schwinger equations [27, 28, 30]. In addition, systems of Dyson–Schwinger
equations have also been studied under this Hopf algebraic setting [4, 12, 13, 18, 19, 32].

For strong running coupling constants λg, Dyson–Schwinger equation (2.7) should be
considered under a non-perturbative regime where its unique solutionX is actually an infi-
nite graph. Recently, analytic graphs (i.e. graph functions or graphons) in Infinite Combi-
natorics have been applied to find a new interpretation for solutions of Dyson–Schwinger
equations. In this new approach we have associated a new class of graphs which have a
continuum set of vertices to Dyson–Schwinger equations [33, 34]. The theory of graphons
aims to study graph limits of sequences of finite weighted graphs via measure theoretic,
combinatorial and topological tools [20]. Topology of graphons (known as cut-distance
topology) enables us to obtain a compact Hausdorff topological space of finite (simple)
graphs such that graph limits are in the boundary region of this space [14]. Applications of
graphons have been developed for the study of dense and sparse graphs in various fields of
research [3, 7, 20].

Definition 2.2. For a given σ-finite measure space (Ω, µΩ), a graphon W is a measurable
symmetric bounded real valued function on Ω×Ω. W is called a bigraphon, if we remove
the symmetric condition.

As an example, we can consider the probability space Ω = [0, 1] with the Borel σ-field
and the Lebesgue measure as the base space and define graphons as symmetric Lebesgue
measurable functions W : [0, 1] × [0, 1] → [0, 1]. Invertible measure preserving transfor-
mations ρ on [0, 1] allow us to define a graphon under different relabeling or rearrange-
ments such that they are called labeled graphons. Up to this class of transformations, we
can define an unlabeled graphon as the class

(2.9) [W ] := {W ρ : W ρ(x, y) := W (ρ(x), ρ(y)), ρ}
of labeled graphons associated to W . The cut-distance between labeled graphons W1,W2

is defined by
δ�(W1,W2) :=

(2.10) infρ1,ρ2supA,B([0,1]

∣∣ ∫
A×B

W ρ1
1 (x, y)−W ρ2

2 (x, y)dxdy
∣∣

which is a pseudometric on the space of unlabeled graphons. We can generate a metric
from the cut-distance via the weakly isomorphic equivalence relation which is defined in
the following.

Definition 2.3. We call graphons W1,W2 weakly isomorphic iff there exist measure pre-
serving transformations η1, η2 such that W η1

1 = W η2
2 almost everywhere.
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It is easy to show that W1,W2 are weakly isomorphic iff δ�(W1,W2) = 0.

Example 2.4. (i) The transformations ρn : x 7→ nx, (mod 1) for each natural num-
ber n ≥ 1 are measure preserving which are not invertible with respect to the Lebesgue
measure. However graphons W ρn are weakly isomorphic.

(ii) The continued fractions ηn : x 7→ 1
nx, which are not measure preserving with

respect to the Lebesgue measure, can be seen as measure preserving transformations with
respect to the Gauss measure which is equivalent to the Lebesgue measure.

Now we can update the class (2.9) of labeled graphons to contain also weakly isomor-
phic graphons. Therefore up to the weakly isomorphic equivalence relation, the space of
unlabeled graphons is a compact metric space with respect to the cut-distance (2.10). We
have

(2.11) δ�([W1], [W2]) = infρ1,ρ2‖W
ρ1
1 −W

ρ2
2 ‖�,

such that for each labeled graphon W ,

(2.12) ‖W‖� := supA,B([0,1]|
∫
A×B

W (x, y)dxdy|

[7, 14, 20]. This metric allows us to define the notion of convergence for sequences of
finite weighted graphs. Graph limits of sequences of dense graphs are non-zero graphons
([20]) while graph limits of sequences of sparse graphs are graphons which are weakly
isomorphic to the 0-graphon with respect to the Lebesgue measure. In this case, the theory
of graphons for sparse graphs has been developed where by changing the base measure
space, rescaling the canonical graphons or other measure theoretic techniques, we can ob-
tain non-zero graphons as the cut-distance convergent limit of sequences of sparse graphs.
[3, 7]

The renormalization Hopf algebra of Feynman diagrams has a universal toy model in
terms of non-planar rooted trees. Using a suitable collection of decorations allows us
to encode types of interactions and elementary particles in vertices and edges of rooted
trees. Therefore it would be possible to project Feynman diagrams of a given gauge field
theory Φ to some decorated rooted trees in the Connes–Kreimer Hopf algebra HCK(Φ).
There exists an injective Hopf algebraic homomorphism ΨΦ : HFG(Φ) → HCK(Φ) such
that each Feynman diagram Γ can be represented by a decorated non-planar rooted tree
tΓ [5, 6, 17, 43]. We applied these decorated rooted trees (as simple weighted graphs)
to associate an unlabeled graphon class [WΓ] (named it as Feynman graphon) to each
Feynman diagram Γ in terms of the pixel picture presentation of tΓ. Then we defined
the cut-distance convergence for sequences of Feynman diagrams where we need to apply
some rescaling methods to obtain non-zero Feynman graphons from the graph limits of
these sequences of sparse type of graphs. [33, 34]

For a fixed probability measure space (Ω, µΩ), set SΦ
graphon as the vector space gen-

erated by unlabeled Feynman graphons. Linear combinations of Feynman graphons can
be defined via renormalization of the canonical graphons in terms of rescaled or stretched
procedures.

Theorem 2.5. Thanks to the Kreimer’s renormalization coproduct, for a given gauge field
theory Φ, there exists a graded Hopf algebraic structure on SΦ

graphon.

Proof. The structure of this Hopf algebra is discussed in [34, 35] and here we address only
the general information. We can lift loop numbers or number of internal edges as the grad-
uation parameter on Feynman diagrams onto the level of Feynman graphons to graduate
this class of graphons with respect to the number of sub-intervals in their corresponding
partitions of the unital interval. For each n ≥ 1, SΦ,(n)

graphon contains all Feynman graphons

WΓ corresponding to Feynman diagrams Γ ∈ H
(n)
FG (Φ). For each unlabeled Feynman
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graphon class [WΓ] define

(2.13) ∆graphon([WΓ]) =
∑

[Wγ ]⊗ [WΓ/γ ],

such that the sum is taken over Feynman graphons associated to all disjoint unions of
1PI Feynman sub-diagrams (i.e. superficially divergent subdiagrams) γ in Γ. Therefore
SΦ

graphon is a graded connected free commutative non-cocommutative bialgebra which can
be equipped by an antipode derived from the coproduct (2.13) and the graduation parame-
ter. �

The enrichment of this Hopf algebra with respect to the cut-distance topology gives
us a new powerful tool for the study of solutions of Dyson–Schwinger equations and the
renormalization program for these expansions whenever the running couplings are strong
[34, 35, 36].

Random graphs are determined by some random processes where for example we have a
collection of probabilities for the existence of edges among vertices. Random graph models
can be generated by graphon processes where changing the base measure space or rescaling
methods will lead us to different random graph models [3, 20]. One immediate application
of our Feynman graphon model (i.e. Theorem 2.5) is to study Dyson–Schwinger equations
in terms of cut-distance convergent sequences of random graphs. The one interesting ran-
dom graph model for our purpose is derived from Feynman graphons which contribute to
solutions of Dyson–Schwinger equations.

Theorem 2.6. The unique solutionXDSE =
∑
n≥0(λg)nXn of each combinatorial Dyson–

Schwinger equation DSE in a given (strongly coupled) gauge field theory Φ can be de-
scribed as the cut-distance convergent limit of a sequence of random graphs corresponding
to some Feynman graphons in SΦ

graphon.

Proof. We work on Feynman graphon models built on the probability space Ω = [0, 1]
with the Borel σ-field and the Lebesgue measure as the base measure space. The proof is
valid for Feynman graphons on any other σ-finite measure spaces.

Consider the sequence {Ym}m≥1 of partial sums of the formal expansion XDSE :=∑
n≥0(λg)nXn such that Ym := (λg)1X1 + · · ·+ (λg)mXm. Thanks to Theorem 2.5, fi-

nite expansions Ym and the infinite graph XDSE ∈ HFG(Φ)[[λg]] have their own Feynman
graphon models presented by [WYm ] and [WXDSE

]. We first build the non-zero Feynman
graphon WXDSE and then we explain the structures of random graphs RYm generated by
WYm . At the final step, thanks to Proposition 4.6 in [34], we will see that the sequence
{RYm}m≥0 is cut-distance convergent to the Feynman graphon WXDSE

.
Thanks to the graduation parameter on Feynman diagrams in terms of the number of

independent loops or the number of internal edges, the n-adic metric on Feynman diagrams
in HFG(Φ) (given in [13]) is defined by

(2.14) dadic(Γ1,Γ2) := 2−val(Γ1−Γ2),

val(Γ) := Max{n ∈ N : Γ ∈
⊕
k≥n

H
(k)
FG(Φ)}.

It defines a new function Fadic,XDSE
on the set V (XDSE) of all vertices ofXDSE as follows

(2.15) Fadic,XDSE : V (XDSE)× V (XDSE)→ R,

(vi, vj) 7−→ dadic(Yi0 , Yj0)

such that

(2.16) i0 := Min{s : vi ∈ Ys}, j0 := Min{t : vj ∈ Yt}.
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The value Fadic,XDSE
(vi, vj) can be seen as the weight of the edge vivj in XDSE. In

addition, for every vertex vi ∈ V (XDSE) define

(2.17) wi := dadic(Xi0 , I) ∈ [0, 1]

as the weight of vi. Finite expansions an :=
∑

1≤k≤n wk determine subintervals in the
set of real numbers which can be projected onto the unital interval to determine a partition
{In := [an−1, an), ∀n} for [0, 1).

Now the non-zero Feynman graphonWXDSE
can be defined by graph functions with the

general form

(2.18) WXDSE
: [0, 1]× [0, 1]→ [0, 1],

WXDSE
(x, y) := dadic(Yi0 , Yj0)

whenever (x, y) ∈ Ii0 × Ij0 and otherwise it has the zero value.
Thanks to the injective Hopf algebra homomorphism ΨΦ : HFG(Φ) → HCK(Φ), for

each m ≥ 1, set

(2.19) tYm := I + tX1
+ ...+ tXm

as the decorated tree representation of the partial sum Ym. For each m ≥ 1, it is a disjoint
union of decorated rooted trees which has nm = |tYm | vertices. We can embed these
vertices into the unital closed interval to determine points v1, ..., vnm in [0, 1] by using a
chosen poset embedding θm. Thanks to the n-adic metric (2.14), we can build a random
graph RYm such that with the probability dadic(Γki ,Γkj ), there exists an edge between vi
and vj whenever Ψ−1

Φ ◦ θ−1
m (vi) ∈ Xki and Ψ−1

Φ ◦ θ−1
m (vj) ∈ Xkj in the partial sum Ym.

On the one hand, we can see that random graphs RYm are built in terms of the Feyn-
man graphon (2.18). On the second hand, it is shown in Proposition 4.6 in [34] that the
sequence {Ym}m≥0 is cut-distant convergent to the infinite graph XDSE. This means that
the sequence {WYm}m≥0 of the Feynman graphons corresponding to the partial sums is
cut-distance convergent to the Feynman graphon WXDSE given by (2.18). On the third
hand, when m tends to infinity random graphs RYm allows us to define an infinite ran-
dom graph RXDSE

for the infinite graph XDSE. Now it is enough to modify discussions
in Appendix D, part D.1 (page 59) in [14] for our built random graphs to observe that the
sequence {RYm}m≥0 is cut-distance convergent to the Feynman graphon WXDSE

. �

Remark 2.7. (i) We call XDSE as the large Feynman diagram corresponding to the non-
zero Feynman graphon WXDSE .

(ii) Different choices of the base measure space or rescaling methods enable us to study
non-perturbative expansions under different random graph models.

(iii) Dyson–Schwinger equations DSE1,DSE2 are called weakly isomorphic iff their
corresponding Feynman graphons WXDSE1

and WXDSE2
are weakly isomorphic.

Theorem 2.6 informs us that passing from the perturbative part of a given (strongly
coupled) gauge field theory to its non-perturbative part can be studied via a class of analytic
graphs with have continuum sets of vertices.

Example 2.8. Consider the combinatorial Dyson–Schwinger equation

(2.20) DSE : X = I +B+(X2)

in the Connes–Kreimer Hopf algebra of non-planar rooted trees. Thanks to (2.8), its unique
solution X =

∑
n≥0Xn is given by the recursive relations

(2.21) Xn+1 =

n∑
k=0

B+(XkXn−k), X0 = I.
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We have

(2.22) I , • , 2 •
•
, •?

????• �����
•
+ 4 •
•
•

, 4 •
9999
•
•

����
•

+ 2 •
•

9999
• ����

•

+ 8 •
•
•
•

, · · ·

It is possible to define an order relation on the set of any forest or disjoint union of
non-planar rooted trees to see it as a poset. The sequence {Ym}m≥1 of partial sums gives
an order on all vertices. Set V (X) := {viji}i,j as the set of all vertices in the formal
expansion X such that viji ∈ Yi are vertices in the partial sum Yi. Thanks to the method
explained in the proof of Theorem 2.6, the weight wviji for any vertex viji which is in Yj
and not in Yj−1 is dadic(Yj , I) = 1/2j . Therefore we have

a1 = 1/2, a2 = 1/2 + 4(1/22), a3 = 1/2 + 4(1/22) + 15(1/23),

(2.23) a4 = 1/2 + 4(1/22) + 15(1/23) + 56(1/24), · · · .

Project real subintervals [an−1, an) into the unital interval to determine a partition {In :
n} for [0, 1). Now apply (2.18) to define the corresponding non-zero Feynman graphon.

Example 2.9. Consider the combinatorial Dyson–Schwinger equation

(2.24) DSE : X = I +
∑
n≥0

B+(Xn+1).

Thanks to (2.8), its unique solution X =
∑
n≥0Xn is given by

(2.25) I , • , 2 •
•

+ • ,

(2.26) 4 •
•
•

+ •
9999
• ����

•
+ 5 •
•

+ • , 8 •
•
•
•

+ 2 •
•

?????
• �����

•

+ 4 •?
????• �����
•

•

(2.27) + 16 •
•
•

+ 5 •
?????
• �����

•
+ 9 •
•

+ • , · · ·

Set V (X) := {viji}i,j as the set of all vertices in the formal expansion X such that
viji ∈ Yi are vertices in the partial sum Yi. Thanks to the method explained in the proof
of Theorem 2.6, the weight wviji for any vertex viji which is in Yj and not in Yj−1 is
determined by the n-adic distance between I and each partial sum. The beginning terms of
the above sequence shows us that dadic(Yi, I) = 1/2 at least for i = 1, 2, 3, 4. Therefore
we have

a1 = 1/2, a2 = 1/2 + 5(1/2), a3 = 1/2 + 5(1/2) + 26(1/2),

(2.28) a4 = 1/2 + 5(1/2) + 26(1/2) + 138(1/2), · · · .

Project real subintervals [an−1, an) into the unital interval to obtain a partition {In}n for
[0, 1). Now apply (2.18) to define the corresponding non-zero Feynman graphon.
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Thanks to the details given in the proof of Theorem 2.6 and the above examples, we
can observe that the numbers of vertices in the partial sums of the unique solution of a
given Dyson–Schwinger equation determine the required partition of [0, 1] for defining the
corresponding Feynman graphon and also, the random graph models. Dyson–Schwinger
equations with more vertices in their solutions have more graph complexities where the
process for determining their corresponding random graph models requires more initial
data. In this setting, since vertices in decorated rooted trees are symbols for nested loops
in their corresponding Feynman diagrams, therefore random graph models RYm built in
terms of rooted tree representations tYm are actually useful to compare complexities of
disjoint unions of Feynman diagrams in terms of the scattering of their nested loops.

In Complexity Theory, the number of spanning trees in a finite graph determines the
complexity of the graph. There are different methods to approximate some upper bounds
for this fundamental parameter in graphs via the theory of random graphs, normalized
Laplacian eigenvalues and other computational algorithms. According to one of these
methods, it is possible to evaluate the complexity of an (extremely large) finite graph under
a recursive algorithm in terms of cyclic edges. For a given graph G with the set SG of all
its spanning trees, each cyclic edge e defines a partition S(1)

G t S(2)
G such that S(1)

G is the
collection of spanning trees of G which do not contain e and S

(2)
G is the collection of

spanning trees of G which have e. In addition, the graph G − {e} is connected while
sets S(1)

G and SG−{e} are equivalent. This model of partitions can be formulated via an
algorithm which starts with a given graph and produces two graphs at the end of the first
stage. At each stage, the algorithm chooses only an edge belonging to a proper cycle (i.e.
a non-trivial trail with only first and last vertices as repeated vertices). The elementary
contraction on a multiple graph generates a graph which can have a (self-)loop where the
algorithm can decide to continue. The algorithm chooses one proper cyclic edge (if it
exists) from each graph in each subsequent stage to apply for the recurrence process. At
the final step of the algorithm, a collection of graphs can be produced which have no proper
cycle. The complexity of the initial input graph can be evaluated in terms of the number of
the output graphs and their complexities. [1, 2, 8, 37]

On the one hand, this recursive algorithm terminates in a set of graphs with no proper
loops. Therefore we can use it to determine spanning trees in an extremely large Feynman
diagram together with many nested loops. We can also modify this algorithm to deter-
mine spanning trees (or forests) of each component of linear combinations of Feynman
diagrams. On the other hand, the complexity of a given Feynman diagram in perturbative
Quantum Field Theory can be measured in terms of the number of nested or overlapping
sub-divergences which appear as loops in the graph. The Bogoliubov–Zimmermann’s for-
est formula ([44]) encodes renormalization under an inductive machinery in terms of the
step by step removal of subdivergences in Feynman diagrams. In each step of this renor-
malization machinery, some nested loops in the original graph can be shrunk to a point.
Therefore we can observe a similarity between these two different machineries.

Example 2.10. For example, consider the following Feynman diagram

(2.29) • •
•

•
1

2 3

45

6

in a simplified toy model. We apply the above explained recursive algorithm. The algorithm
might choose the edge 2 as the first cyclic edge. Then the algorithm delivers the following
two graphs

(2.30) • EEEE

•
•

•

3

•
•

rrrr
•LLLL
•

3
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. Then the algorithm chooses the edge 3 in both diagrams in (2.30) as the next cyclic edges.
Then the following four diagrams can be produced

(2.31) •
•?

????
•

�����
• •

?????

•
�����
•

•

•
�����
•

•
•�����

, which do not have any more cyclic edges. At this step the algorithm stops and the graph
complexity of the original Feynman diagram (2.29) would be the sum of the spanning trees
in each diagram of the collection (2.31).

Thanks to Theorem 2.6, we can modify the above algorithm of counting spanning
trees in a connected graph to the unique solution of a given strongly coupled Dyson–
Schwinger equation and its corresponding partial sums to describe the complexity of this
non-perturbative expansion under a recursive machinery.

Lemma 2.11. The graph complexity of each Dyson–Schwinger equation can be described
in terms of the sequence of graph complexities of the partial sums of its solution.

Proof. For each m, the complexity of Ym := I + (λg)X1 + · · · + (λg)mXm can be
determined in terms of the number of different spanning forests (or trees) which live in the
linear combination of Feynman diagrams Xi which contribute to Ym. We can perform the
above recursive algorithm for each Feynman diagram Xi which contribute to Ym (for each
m) such that the complexity of Ym would be bounded by the sum of the complexities of
its components. When m tends to infinity, we can achieve a sequence which presents the
behavior of complexities of Feynman diagrams when the partial sums converge to XDSE

with respect to the cut-distance topology. �

We have plan to lift this notion of complexity of a given (strongly coupled) Dyson–
Schwinger equation DSE(g) via the complexities of its partial sums onto the level of
the collection of all Dyson–Schwinger equations DSE(λg) under different running cou-
pling constants λg for 0 < λ ≤ 1. It will lead us to describe the complexity of the non-
perturbative infinite graphXDSE(g) in terms of the complexity of a sequence {XDSE(λng)}n≥0

of large Feynman diagrams under weaker running couplings. For this purpose we require to
control the dynamics of all Dyson–Schwinger equations under different running coupling
constants in a given strongly coupled gauge field theory where the rescaling of running
couplings are strongly connected to changing the scale of the bare coupling constant. A
general setting for the construction of the Renormalization Group can be found in [9, 11]
and here we address its generalization to a multi-scale version which works on Dyson–
Schwinger equations.

Definition 2.12. Set SΦ,g as the collection of all Dyson–Schwinger equations in different
running couplings λg derived from fixed point equations of Green’s functions in a given
gauge field theory Φ with the bare coupling constant g. A Dyson–Schwinger equation
is called an effective equation under the scale Λ1 of another Dyson–Schwinger equation
under the scale Λ2, if their corresponding Green’s functions are to be the same in the
original Lagrangian LΦ.

It is shown in [36] that each Dyson–Schwinger equation at a fixed initial scale has a
unique effective version at a new scale. These effective equations are the key tools for
us to define our Renormalization Group which is only a semigroup because there is no
identity element.

Theorem 2.13. For a given (strongly coupled) gauge field theory Φ with the Lagrangian
LΦ(g), there exists a multi-scale Renormalization Group which governs changing the
scales of the bare and running coupling constants in the solutions of Dyson–Schwinger
equations in SΦ,g .
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Proof. Set Mr as the set of scales of the running couplings. For scales Λ1,Λ2,Λ3 ∈ Mr

such that Λ1 < Λ2 < Λ3, define the scale map Rr−− on SΦ,g which satisfies the property

(2.32) RrΛ1Λ2
RrΛ2Λ3

= RrΛ1Λ3
.

For each equation DSE, RrΛ1Λ2
DSE is the effective Dyson–Schwinger equation at the

rescaled running coupling Λ2 of the equation DSE at the original scale Λ1 of running
coupling constant. Now define an action of the semigroup R+

≤1 on SΦ,g ×Mr given by

(2.33) s ◦ (DSE,Λ) = (RrΛ,sΛDSE, sΛ)

such that RrΛ,sΛDSE is the Dyson–Schwinger equation obtained by changing the scale
Λ 7→ sΛ of the running coupling constant. The equation

(2.34) RrsΛ ΛDSE := (RrΛ,sΛDSE, sΛ)

is the corresponding unique effective equation in the effective Lagrangian LΦ
sΛ(g). The

resulting Renormalization Group allows us to study the dynamics of Dyson–Schwinger
equations under the rescaling of running coupling constants.

Set Mb as the set of scales of the bare coupling constant g. For scales τ1, τ2, τ3 ∈ Mb

such that τ1 < τ2 < τ3, define the scale map Rb−− on SΦ,g which satisfies the property

(2.35) Rbτ1τ2R
b
τ2τ3 = Rbτ1τ3 .

For a given equation DSE, define a new Dyson–Schwinger equation Rbτ1τ2DSE which is
the effective Dyson–Schwinger equation at the rescaled bare coupling τ2 of the equation
DSE at the initial scale τ1 of the bare coupling constant. Now define an action of the
semigroup R+

≤1 on SΦ,g ×Mb given by

(2.36) t ◦ (DSE, τ) = (Rbτ,tτDSE, tτ)

such thatRbτ,tτDSE is the Dyson–Schwinger equation obtained by changing the scale τ 7→
tτ of the bare coupling constant. The equation

(2.37) Rbtτ τDSE := (Rbτ,tτDSE, tτ)

is the corresponding unique effective equation in the effective Lagrangian LΦ(tτg). The
resulting Renormalization Group allows us to study the dynamics of Dyson–Schwinger
equations under the rescaling of the bare coupling constant g.

The formulas (2.33) and (2.36) enable us to build our multi-scale Renromalization
Group on SΦ,g to control the rescaling of the momentum parameter with respect to the
rescaling of the bare coupling constant and independent of any regularization scheme. In
other words, we can define an action of the semigroup R+

≤1 on SΦ,g ×Mb ×Mr via

(2.38) ν ◦ (DSE, τg,Λτg) = (Rmulti
(τg,Λτg),(ντg,νΛτg)DSE, (ντg, νΛτg))

such thatRmulti
(τg,Λτg),(ντg,νΛτg)DSE is the Dyson–Schwinger equation obtained by changing

the scale τ 7→ ντ of the bare coupling constant g and then changing the scale Λτg 7→ νΛτg
of the running coupling constant. The multi-scale map

(2.39) Rmulti
(ντg,νΛτg) (τg,Λτg)DSE := (Rmulti

(τg,Λτg),(ντg,νΛτg)DSE, (ντg, νΛτg))

on SΦ,g is the corresponding unique effective Dyson–Schwinger equation in the effective
Lagrangian LΦ

νΛτg
(ντg). �

This multi-scale Renormalization Group allows us to study the behavior of Dyson–
Schwinger equations under changing the scales of the bare and running couplings where
the scale of the momentum parameter (i.e. running couplings) should depends naturally on
the scale of the bare coupling.
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Definition 2.14. The triple (DSE, τg,Λτg) in SΦ,g × Mb × Mr presents the Dyson–
Schwinger equation DSE as an infinite polynomial on the re-scaled bare and running cou-
pling constants. Thanks to Feynman rules, its unique solution is an infinite formal expan-
sion of Feynman integrals with increasing powers of the re-scaled bare coupling constant
τg (as coefficients) in the effective Lagrangian LΦ(τg). Each Feynman integral in the
expansion is defined in terms of the momentum parameter at the initial scale Λτg.

Corollary 2.15. For a given strongly coupled gauge field theory Φ with the bare coupling
constant g ≥ 1, the unique non-perturbative solution of a Dyson–Schwinger equation
DSE(g) in SΦ,g can be described as the cut-distance convergent limit of a sequence of
large Feynman diagrams under weaker running coupling constants.

Proof. We require a strictly increasing rational sequence {αn}n≥1 of running coupling
constants which converges to g to build a new sequence of Dyson–Schwinger equations
under different rescaling of the bare coupling constant. For simplicity we work with the se-
quence { n

n+1g}n≥1 such that Theorem 2.13 leads us to make a new sequence {Rbg, n
n+1 g

DSE}n≥1

of Dyson–Schwinger equations in SΦ,g with respect to the rescaled bare coupling constants
n
n+1g for each n ≥ 1.

For each n, the equation Rbg, n
n+1 g

DSE has the unique solution

(2.40) XDSE(
n

n+ 1
g) =

∑
m≥0

(
n

n+ 1
g)mXm

determined by the recursive relations (2.8).
Thanks to the Feynman graphon model approach to Dyson–Schwinger equations (i.e.

Theorem 2.6), we want to show that the sequence {XDSE( n
n+1g)}n≥1 is cut-distance con-

vergent to XDSE. This is equivalent to show that the sequence {[WXDSE( n
n+1 g)

]}n≥1 of
unlabeled Feynman graphons is convergent to [WXDSE

].
We suppose g = 1. For any fixed n,m ≥ 1, set αnm := ( n

n+1g)m < 1. Feynman
graphons WαnmXm can be defined in terms of the Feynman graphon WXm . To show this
fact we only need to consider the Feynman graphon Vnm := αnmWXm +(1−αnm)WXm .
This Feynman graphon can be defined in terms of dividing the unital interval into two parts

(2.41) Inm1 := [0, αnm), Inm2 := [αnm, 1]

such that Vnm = WXm on Inm1 and it is the zero value on Inm2 . As we can observe when-
ever n tends to infinity, the Lebesgue measure of the interval Inm2 goes to zero which means
that Vnm = WXm almost everywhere. In other words, WαnmXm is weakly isomorphic to
WXm whenever n tends to infinity.

For g ≥ 1, real values αnm enable us to define partitions on some closed interval [a, b]
where we need only to renormalize our Feynman graphon models to embed them inside
the unital interval.

In addition, we can change the base measure of our Feynman graphon model from
Lebesgue measure to Gauss measure and apply continued fractions ηnm : x 7→ (n+1

n )mx
as Gauss measure preserving transformations to show that for any fixed n ≥ 1, Feynman
graphons W( n

n+1 )mXm and WXm are weakly isomorphic.
Therefore for each m ≥ 1, the Feynman graphons WαnmYm and WYm corresponding

to the partial sum Ym under different running couplings αnm are weakly isomorphic. In
addition, thanks to Proposition 4.6 in [34] we know that the sequence {Ym}m≥0 is cut-
distant convergent to the infinite graph XDSE. Therefore the sequence {WαnmYm}n≥1

is cut-distance convergent to the Feynman graphon WXDSE
. We can lift this process to

unlabeled classes of Feynman graphons. �

Corollary 2.16. The complexity of each Dyson–Schwinger equation DSE(g) in a given
gauge field theory Φ with strong bare coupling constant g can be described in terms of
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the complexity of a sequence of large Feynman diagrams under weaker running coupling
constants.

Proof. This is a direct result of Lemma 2.11 and Corollary 2.15. �

3. KOLMOGOROV COMPLEXITY

Intermediate algorithms enable us to analyze the construction of anytime algorithms by
computing an initial potentially highly suboptimal solution and then improve the computed
suboptimal solution as time allows [41, 42]. For example, at this level, we can see Dyson–
Schwinger equations in a given (strongly coupled) gauge field theory Φ as generators of
intermediate algorithms derived from Lie subgroups of the complex infinite dimensional
Lie group GΦ. In this setting, the Kolmogorov complexity can be useful to determine the
length of the shortest intermediate algorithm which produces an object as the output.

For a given collection of alphabets and a given partial recursive function f on the col-
lection of all possible strings generated by those alphabets, a description of a string τ1 is
defined via a string τ2 which satisfies f(τ2) = τ1. The Kolmogorov complexity Kf with
respect to f is defined by

(3.1) Kf (τ1) :=
{min{|τ2|:f(τ2)=τ1}
∞, otherwise

.

The initial idea of Turing machines (among other computing models in Theoretical
Computer Science) is to find an abstract model for the computation of any calculable dec-
imal number. Generally speaking, a Turing machine can be defined in terms of a finite
set of states, a finite set of symbols which contains the blanck, an input vocabulary col-
lection built from symbols, an initial state, a transition function and a set of final states.
The standard model of Turing machines can accept an input or reject it or fail into some
loops without any final state. The collection of accepted inputs makes a language for a
given Turing machine. The Church–Turing Thesis discussed that each problem computed
with other computing modelings can be also computed via a model of Turing machines. In
this setting, a system is called Turing complete if it can compute all possible computable
functions. The (un-)decidability of a problem can be considered in terms of the search for
a suitable Turing machine. For example, recognizing prime numbers is decidable while the
Halting problem in Turing machines, which aims to determine whether a machine halt on
a given input or not, is undecidable. Functional reduction is a standard approach to reduce
a problem to another which might leads us to understand its (un-)decidability. However
the Halting problem is unsolvable which means that there is no Turing machine which
determines whether any arbitrary Turing machine halts or not. [1, 29]

In Complexity Theory it is shown the existence of the Turing machine T such that for
all partial computable functions f , we can determine an intermediate algorithm p (as the
collection of all programs that express it) such that for all y, T(p, y) = f(y). The notion of
complexity can be defined in terms of the choice of the universal Turing machine. The dif-
ference in complexities under two universal Turing machines is actually upper bounded in
terms of a constant. This constant depends on the choice of that pair of universal machines.
It is also shown that for all n, there exists some v with |v| = n such that KT(v) ≥ n. Such
v is called the Kolmogorov random. [1, 21, 37]

Each Quantum Field Theory can be encoded by a finite set of different types of elemen-
tary particles which contribute to the physical system and a finite set of different types of
interactions among those particles. For example, in QCD we have three different types of
particles (i.e. quark, gluon, ghost) and five types of interactions among them. For any given
(strongly coupled) gauge field theory, if we change the scale of the bare coupling g 7→ λg,
then we can replace each equation DSE(g) (derived from Green’s functions (2.6)) with
a continuum family of Dyson–Schwinger equations DSE(λg) as rescaled versions of the
original equation DSE(g) such that 0 < λ ≤ 1. This continuum family might be useful
for building a new continuum approach to non-perturbative Quantum Field Theory in the
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context of Feynman graphon models. However the density of rational numbers in R is use-
ful for us to replace the continuous rescaling g 7→ λg with the sequence {g 7→ αng}n≥1

of rational re-scalings with respect to any arbitrary strictly sequence {αn}n≥1 of rational
numbers which converges to λ. As it was shown in the proof of Corollary 2.15, the Feyn-
man graphon classes associated to the solutions XDSE(αng) are weakly isomorphic to the
Feynman graphon WXDSE(g)

whenever n tends to infinity. Therefore up to the weakly iso-
morphic relation on Feynman graphons and Dyson–Schwinger equations (i.e. Definition
2.3 and Remark 2.7), we can consider SΦ,g as a countable infinite collection of classes
of Dyson–Schwinger equations which can encode all Dyson–Schwinger equations under
different running couplings generated by rescaling process of the bare coupling constant g.
These classes of fixed point equations of Green’s functions can encode all infinite number
of interactions which might exist among elementary particles of the physical system under
different rescaling of the bare coupling constant.

Definition 3.1. In Complexity Theory, an infinite constructive world is a countable set
equipped with a class of structural numberings (by sequences of bits) which make it com-
putable. Computable functions provide natural maps between constructive worlds.

For example, programs (i.e. sequences of bits) make a constructive world where the
conditional complexity can be defined as the minimal length of a program p which com-
putes x in terms of the initial information y. In other words,

(3.2) KA(x|y) := MinA(p,y)=x l(p)

such that A is a way of programming. The unconditional complexity can be defined with
respect to the initial information y0, namely,

(3.3) KA(x) = KA(x|y0).

In this setting, the logarithmic Kolmogorov complexity of x is actually the length of the
shortest program which can generate x where the way of programming A is called the op-
timal Kolmogorov numbering. The Kolmogorov complexity, which is not computable, can
be described as the lower bound of a sequence of computable functions. The Kolmogorov
order, which is also non-computable, enables us to arrange objects of the constructive
world in terms of the increasing order of their Kolmogorov complexities. [1, 21, 22, 23, 37]

Thanks to the Feynman graphon models of Dyson–Schwinger equations (given by The-
orem 2.6 and Corollary 2.15), the multi-scale Renormalization Group given by Theorem
2.13, and the graph complexities of solutions of Dyson–Schwinger equations (given by
Lemma 2.11, Corollary 2.16) in terms of the number of spanning trees (or forests) in their
corresponding infinite formal expansions of Feynman diagrams, in this part we plan to
work with SΦ,g as a new constructive world.

Lemma 3.2. There exist structural numberings for the collection SΦ,g .

Proof. Consider the finite ordered family G(Φ) := {Gzt : zt ∈ {ei, vj}} of all differ-
ent types of Green’s functions (i.e. relations (2.6)) in the given physical theory Φ. We
use the notation DSEzt for any Dyson–Schwinger equation generated by fixed point equa-
tions of the Green’s function Gzt . Up to the weakly isomorphic relation between Dyson–
Schwinger equations (i.e. Remark 2.7), each Green’s function Gzt can generate an infinite
countable family of Dyson–Schwinger equations under different running coupling con-
stants. Thanks to Theorem 2.13, for any equation DSEzt of these equations and any given
strictly increasing sequence {αn}n≥1 of rational numbers which converges to g, we can
define the map

(3.4) n 7→ Rb
αng gDSEzt .

Up to the weakly isomorphic relation, this map provides a structural numbering for the
collection SΦ,g

zt of all Dyson–Schwinger equations generated by the Green’s function Gzt
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under different running couplings. Now it is enough to lift this structural numbering onto
the collection SΦ,g := tztSΦ,g

zt . �

Definition 3.3. Consider the constructive world SΦ,g with respect to the bare coupling
constant g. For a given strictly increasing sequence {αn}n≥1 of rational numbers which
converges to g for g ≤ 1 (or converges to g − bgc for g > 1), define

(3.5) ug{αn}n≥1
: Z+ × SΦ,g −→ SΦ,g,

(n,DSE) 7−→ Rmulti
(αng,αnΛg) (g,Λg)DSE.

Thanks to Definition 2.12 and Theorem 2.13, the equation Rmulti
(αng,αnΛg) (g,Λg)DSE is

the unique effective Dyson–Schwinger equation at the new scale αng of the bare coupling
constant in the effective Lagrangian LΦ

αnΛg
(αng) corresponding to the original equation

DSE. For each n, the partial recursive function ug{αn}n≥1
changes the scale g 7→ αng of

the bare coupling constant g where the scale of running couplings automatically will be
changed Λg 7→ αnΛg in terms of the new rescaled bare coupling.

Definition 3.4. The Kolmogorov complexity of an equation DSE(λg) ∈ SΦ,g at the scale
λg (of the bare coupling constant g) with respect to the partial recursive function ug{αn}n≥1

is given by

(3.6) Kug{αn}n≥1

(DSE(λg)) :=

Min{n ∈ Z+ : ug{αn}n≥1
(n,DSE′(Λg)) ⊆ DSE(λg)}.

The inclusion ⊆ in the above relation in Definition 3.4 means that the unique solution
of the effective Dyson–Schwinger equation Rmulti

(αng,αnΛg) (g,Λg)DSE′, which is an infinite
formal expansion of Feynman diagrams, can be embedded as a Feynman subgraph into
the large Feynman diagram XDSE(λg). Therefore it should have less complexity than the
original graph. In addition, it is important to note that the sequence {αn}n≥1 determines
a way of programming in our definition of the Kolmogorov complexity. By changing the
scales of the bare coupling constant via the components αn, the scale of running couplings
will be also changed. Therefore our generalization of the Kolmogorov complexity can
check the complexities of Dyson–Schwinger equations under different scales of running
couplings with respect to the initial rescaling of the bare coupling constant.

Lemma 3.5. The partial recursive functions given by Definition 3.3 determines the Kol-
mogorov total order on SΦ,g .

Proof. Thanks to Definition 3.4, the Kolmogorov total order ≺ is defined in a way to
arrange all Dyson–Schwinger equations in the physical theory Φ under an increasing order
with respect to their graph complexities. In other words,

(3.7) DSE1(λ1g) ≺ DSE2(λ2g)⇐⇒
Kug{αn}n≥1

(DSE1(λ1g)) ≤ Kug{βn}n≥1

(DSE2(λ2g))

such that {αn}n≥1, {βn}n≥1 are strictly increasing sequences of rational numbers which
converge to λ1g, λ2g, respectively. The total order (3.7) can provide the bijection Kug{αn}n≥1

,ug{βn}n≥1

between the constructive world SΦ,g and Z+. �

Thank to Lemma 3.5 now we have a machinery to determine less complicated Dyson–
Schwinger equations in terms of changing the scales of the bare and running couplings.

The Invariance Theorem in the Theory of Computation ([21, 22]) tells us that for every
transducer description v and any word w, the complexity of w does not exceed the sum
of |v| and the complexity of w with respect to the transducer described by v. A general
version of this fundamental fact has been discussed in [15].
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Corollary 3.6. For a given rescaling g 7→ λg of the bare coupling constant g with the
corresponding sequences {αn}n≥1 and {βn}n≥1, the Invariance Theorem guarantees the
existence of some constant c0 > 0 such that for all Dyson–Schwinger equations DSE(λg)
in SΦ,g , we have

c0Kug{αn}n≥1

(DSE(λg)) ≤

(3.8) Kug{αn}n≥1
,ug{βn}n≥1

(DSE(λg)) ≤ Kug{αn}n≥1

(DSE(λg)).

This statement is valid also for the sequence {βn}n≥1.

Lemma 3.5 allows us to study SΦ,g as a poset such that any given partial recursive map
σ : SΦ,g → SΦ,g can generate a permutation on all Dyson–Schwinger equations as objects
of our constructive world. We can define a new map

(3.9) σKu
g
{αn}n≥1

,u
g
{βn}n≥1

:= Kug{αn}n≥1
,ug{βn}n≥1

◦ σ ◦K−1
ug{αn}n≥1

,ug{βn}n≥1

with the corresponding permutation

(3.10) D(σKu
g
{αn}n≥1

,u
g
{βn}n≥1

)

:= Kug{αn}n≥1
,ug{βn}n≥1

(Dom(σ)) ⊆ Z+

with respect to the rescaling g 7→ λ1g via the sequence {αn}n≥1 and the rescaling g 7→
λ2g via the sequence {βn}n≥1.

Remark 3.7. For any rescaling g 7→ λg via the sequences {αn}n≥1 and {βn}n≥1, set

(3.11) Kug{αn}n≥1
,ug{βn}n≥1

(DSE(λg)) := kλDSE.

There exists some constant cλ such that for each m ≥ 1,

(3.12) σmKu
g
{αn}n≥1

,u
g
{βn}n≥1

(kλDSE)

= Kug{αn}n≥1
,ug{βn}n≥1

(σm(DSE(λg)))

≤ cλKug{αn}n≥1
,ug{βn}n≥1

(m).

In Complexity Theory, it is shown that for any partial recursive function f : Z+ −→ Z+

and any x ∈ Dom(f) there exist some constants such that

(3.13) K(f(x)) ≤ cfK(x) ≤ c′fx,

[1, 21].
We can lift this inequality onto the level of the constructive world SΦ,g and the Kol-

mogorov complexity Kug{αn}n≥1
,ug{βn}n≥1

of Dyson–Schwinger equations of the physical

theory under ruunning couplings.

Corollary 3.8. The Kolmogorov complexity

Kug{αn}n≥1
,ug{βn}n≥1

determines some upper and lower boundaries for the permutation σKu
g
{αn}n≥1

,u
g
{βn}n≥1

given by the formula (3.9) with respect to any given partial recursive map σ on SΦ,g .
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Proof. The collection {σn(DSE(λg)) : n ∈ Z+} determines a recursively enumerable
subset of SΦ,g which can be used as the domain for a new partial recursive function A :
SΦ,g → Z+ given by

(3.14) A(DSE(τg)) = n, if σn(DSE(λg)) = DSE(τg).

Thanks to the inequality (3.13), there exists some constant c > 0 such that

K−1
ug{αn}n≥1

,ug{βn}n≥1

(n) = K−1
ug{αn}n≥1

,ug{βn}n≥1

(A(DSE(τg)))

(3.15) ≤ cKug{αn}n≥1
,ug{βn}n≥1

(DSE(τg))

= cKug{αn}n≥1
,ug{βn}n≥1

(σn(DSE(λg))).

Thanks to Corollary 3.6 and the inequality (3.15), for each rescaling g 7→ λg there exist
constants c1(λ), c2(λ) such that

c1(λ) K−1
ug{αn}n≥1

,ug{βn}n≥1

(n)

(3.16) ≤ σnKu
g
{αn}n≥1

,u
g
{βn}n≥1

(kλDSE) ≤ c2(λ) K−1
ug{αn}n≥1

,ug{βn}n≥1

(n).

�

Manin formulated a fundamental Hopf algebra of an enriched programming method on
isomorphism classes of certain descriptions in P (Z+,Z+) as an object of the Constructive
Universe Category. The Constructive Universe Category is a (bi)monoidal category closed
with respect to the direct product and disjoint union as monoidal structures. One interest-
ing subject is that some characters of this Hopf algebra can encode the Halting problem.
Manin modified the Connes–Kreimer perturbative renormalization approach to the BPHZ
formalism for the level of this Hopf algebra. The Birkhoff–Hopf factorizations of those
characters of the Manin’s Hopf algebra which correspond to the Halting problem at a point
k ∈ Z+ enable us to measure the amount of computability of partial recursive functions
in P (Z+,Z+). In this setting, whether a positive integer k belongs to the domain of a
given partial recursive function or not can be transformed to whether an analytic complex
function, which depends on k and the chosen partial recursive function, has a singularity
at z = 1. [24, 25]

In the rest of this part, we are going to lift the Manin approach to the Halting problem
onto the level of the constructive world SΦ,g . This study shows the application of the
Kolmogorov complexity Kug{αn}n≥1

,ug{βn}n≥1

in the formulation of those characters on the

Hopf algebra SΦ
graphon of Feynman graphons (i.e. Theorem 2.5) which encode the Halting

problem at each Dyson–Schwinger equation as an object in the constructive world SΦ,g .

Lemma 3.9. The Halting problem for any partial recursive function f : Z+ × SΦ,g −→
SΦ,g can be described via fixed points of a class of permutations on Dyson–Schwinger
equations.

Proof. Thanks to Feynman graphon models of Feynman diagrams and Dyson–Schwinger
equations (i.e. Theorems 2.5, 2.6 and the proof of Corollary 2.15), we can define the linear
combinations of Dyson–Schwinger equations in terms of the linear combinations of their
corresponding Feynman graphons. It is only enough to recognize each Dyson–Schwinger
equation DSE (as an object of SΦ,g) via its corresponding Feynman graphon WXDSE

. It
allows us to equip SΦ,g t{0} with a total recursive structure of the additive group without
torsion with the zero element 0. For Dyson–Schwinger equations DSE1,DSE2, define
DSE1 ⊕ DSE2 := DSE12, such that DSE12 is an object in SΦ,g with the corresponding
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Feynman graphon model WXDSE1+XDSE2
. This Feynman graphon is identified as the cut-

distance convergent limit of the sequence {W
Y

(1)
m +Y

(2)
m
}m≥1 of Feynman graphons of the

combinations of partial sums.
In other words, thanks to Definition 2.1, if the equation DSE1 is generated by the family

{γ(1)
n }n≥1 and the equation DSE2 is generated by the family {γ(2)

n }n≥1, then DSE12 is
the Dyson–Schwinger equation generated by the disjoint union {γ(1)

n }n≥1 t {γ(2)
n }n≥1 of

primitive (1PI) Feynman diagrams.
We extend f to a new function gf : Z+ × (SΦ,g t {0})→ (SΦ,g t {0}) such that

(3.17) gf (n,DSE(λg)) := 0, if (n,DSE(λg)) 6∈ Dom(f).

Now define a new permutation τf from Z+×(SΦ,gt{0})×(SΦ,gt{0}) to Z+×(SΦ,gt
{0})× (SΦ,g t {0}),

(3.18) τf (n,DSE1(λg),DSE2(τg)) :=

(gf (n,0),DSE1(λg) + gf (n,DSE2(τg)),DSE2(τg)).

(SΦ,g t {0},⊕) has no torsion which informs the correspondence between finite orbits
of τf and fixed points of this permutation. Therefore we can build a new partial recursive
permutation σf with the domain

(3.19) Dom(σf ) := (SΦ,g t {0})×Dom(f).

On the one hand, the Halting problem for the partial recursive function f is to recognize
whether a selected pair (k,DSE(λg)) belongs to the domain of f or not. This problem can
be determined in terms of the fixed points of the permutation τf . On the other hand, thanks
to [24, 25] and the definition of gf (i.e. Formula (3.17)), we can show that the complement
to Dom(σf ) in the constructive world (SΦ,g t{0})× (SΦ,g t{0}) covers the fixed points
of the permutation τf . �

Corollary 3.10. - In the constructive world SΦ,g , for any arbitrary rescaling g 7→ λg with
the corresponding sequence {αn}n≥1, if the σ-orbit of the equation DSE(λg) ∈ Dom(σ)
is finite, then

Ψ(kλDSE, σ, u
g
{αn}n≥1

, z) :=

1

(kλDSE)2
+
∑
n≥1

z
Ku

g
{αn}n≥1

,u
g
{αn}n≥1

(DSE(αng))

(σnKu
g
{αn}n≥1

,u
g
{αn}n≥1

(kλDSE))2

is a rational function in the complex variable z. All poles of this formal series, which are
of the first order, live at roots of unity.

- If the σ-orbit of the equation DSE(λg) is infinite, then the function Ψ(kλDSE, σ, u
g
{αn}n≥1

, z)

is the Taylor series of an analytic function on the region |z| < 1 which is continuous at the
boundary of this region.

Proof. It is enough to apply Proposition 4 in [26] to the constructive world SΦ,g , the par-
tial recursive function ug{αn}n≥1

(given by Definition 3.3) and the value kλDSE (defined in
Remark 3.7). �

We can reduce a given partial recursive map f : Z+ × SΦ,g → SΦ,g to the partial
recursive permutation σf : Dom(σf ) ⊂ SΦ,g → Dom(σf ) ⊂ SΦ,g . The Halting problem
for the constructive world SΦ,g can be described as the problem of recognizing whether
a positive integer number k (as the rescaling parameter for the bare coupling constant g)
belongs to the domain Dom(σf ) or not. Now thanks to Lemma 3.9 and Corollary 3.10,
it is possible to deform the Halting problem to the problem of whether the corresponding
analytic function Ψ(k, σf , u

g
{αn}n≥1

, z) of a complex parameter z has a pole at z = 1 or
not.
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Corollary 3.11. The BPHZ renormalization of Feynman graphons encodes the Halting
problem for a given partial recursive map f : Z+ × SΦ,g −→ SΦ,g .

Proof. Feynman graphon models of Dyson–Schwinger equations allow us to embed the
constructive world SΦ,g into the Hopf algebra SΦ

graphon generated by all Feynman graphons
(i.e. Theorem 2.5). The BPHZ renormalization of large Feynman diagrams has been
considered in [34, 35]. Consider the character ϕk : SΦ

graphon → Adr which sends each
Feynman graphon class [WXDSE

] to the value Ψ(kλDSE, σf , u
g
{αn}n≥1

, z). Thanks to the
Birkhoff factorization on the regularization algebra, we have Adr = A+ ⊕ A− such that
A+ is the unital algebra of analytic functions in the region |z| < 1 which are continuous
on the boundary |z| = 1 and A− := (1− z)−1C[(1− z)−1].

Now if we apply Theorem 2.6, Lemma 3.9 and Corollary 3.10, then the question about
the existence of a pole at z = 1 for the analytic function Ψ can be described as the question
of whether kλDSE belongs to Dom(σf ) or not. �

4. CONCLUSION

Our main task in this work is to provide a new theoretical model for the description
of the computational complexities of Dyson–Schwinger equations under different running
coupling constants.

(i) We have shown the existence of a new class of partial recursive functions such as
ug{αn}n≥1

(i.e. Definition 3.3) with respect to rescaling of the strong bare coupling con-
stant g and the multi-scale Renormalization Group given by Theorem 2.13. These partial
recursive functions are applied to build a generalization of the Kolmogorov complexity (i.e.
Definition 3.4). This new complexity is capable to identify an order on the collection of all
Dyson–Schwinger equations under different running coupling constants. The dynamics of
the well-defined map ug{αn}n≥1

can be studied by the multi-scale Renormalization Group

(i.e. Theorem 2.13) on the constructive world SΦ,g .
(ii) We can define the Kolmogorov complexity Kw for Dyson–Schwinger equations

with respect to other functions w of the set of Kolmogorov optimal functions. The concept
of ”optimal” means that for any partial recursive function v : Z+ × SΦ,g → SΦ,g there
exists a constant cv,w > 0 such that for each Dyson–Schwinger equation DSE(λg),

(4.1) Kw((n,DSE(λg))) ≤ cv,wKv((n,DSE(λg))).

(iii) Thanks to Theorem 2.13, Corollary 3.11, which determines the amount of non-
computability via the Halting problem at the level of Feynman graphons, the Kolmogorov
total order given by Lemma 3.5 and Corollary 3.8, those partial recursive functions derived
from Rmulti

−− namely,

(4.2) vg : (n,DSE) 7−→ Rmulti
(λα(n)g,λΛα(n)g) (α(n)g,Λα(n)g)DSE

can be considered as the truth candidates for this optimality such that α is a bijection on
Z+ which can change the scale of the bare coupling constant.
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