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 95 

Abstract 96 

The distribution of the black rat (Rattus rattus) has been heavily influenced by its association with 97 

humans. The dispersal history of this non-native commensal rodent across Europe, however, remains 98 

poorly understood, and different introductions may have occurred during the Roman and medieval 99 

periods. Here, in order to reconstruct the population history of European black rats, we generated a de 100 

novo genome assembly of the black rat, 67 ancient black rat mitogenomes and 36 ancient nuclear 101 

genomes from sites spanning the 1st-17th centuries CE in Europe and North Africa. Analyses of 102 

mitochondrial DNA confirm that black rats were introduced into the Mediterranean and Europe from 103 

Southwest Asia. Genomic analyses of the ancient rats reveal a population turnover in temperate 104 

Europe between the 6th and 10th centuries CE, coincident with an archaeologically attested decline in 105 

the black rat population. The near disappearance and re-emergence of black rats in Europe may have 106 

been the result of the breakdown of the Roman Empire, the First Plague Pandemic, and/or post-107 

Roman climatic cooling.  108 

 109 
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Introduction 110 

The black rat (Rattus rattus) is one of three rodent species, along with the house mouse (Mus 111 

musculus) and brown rat (Rattus norvegicus), to have become globally distributed thanks to a close 112 

commensal relationship with humans 1. Collectively, these taxa are highly significant to human 113 

societies both as pests responsible for billions of euros of damage to food stores annually 2, and as 114 

vectors and/or reservoirs that have contributed to the spread of numerous diseases, most infamously 115 

bubonic plague 3,4. 116 

 117 

Despite the significance of this rodent, our knowledge of the black rat’s evolutionary history and 118 

taxonomy remains limited. Previous genetic studies have described a R. rattus complex involving 119 

multiple recognized species with potential introgression among different lineages 5–7. Mitochondrial 120 

DNA studies have helped to resolve the taxonomic controversies by linking a monophyletic 121 

mitochondrial lineage to specific South Asian (now globally distributed) R. rattus populations that 122 

possess a 2n=38 karyotype (previously referred to as lineage I) 8–10. The Asian house rat (Rattus 123 

tanezumi), endemic to Southeast Asia, has been identified as the closest sister group of the black rat 124 

(previously designated as lineages II through IV). The divergence between the two species has been 125 

dated to ~0.4 Mya 11, and the two have been suggested to hybridise 6,7,12. 126 

 127 

The ability of rats to colonise, and become dependent upon, anthropogenic niches 13 makes them ideal 128 

bioproxies to track historical processes 1,14,15. Archaeological specimens of rats and mice have thus 129 

been used to track human migrations, trade, and settlement types in a wide range of contexts 16–22. 130 

Previous archaeological and genetic evidence suggests that the pre-commensal distribution of the 131 

Eurasian black rat (based on the taxonomic definition proposed by mitochondrial DNA studies 8,9 and 132 

hereafter referred to as black rat, see SI for discussion) was largely limited to South Asia 10,23,24. Black 133 

rat finds from cave sediments in the Levant spanning the late Pleistocene to early Holocene indicate a 134 

possible western distribution 25,26. These remains require direct dating to confirm their age, and there 135 

is a subsequent absence of rats from settlement sites in this region until at least the 2nd millennium 136 

BCE 26.   137 

 138 

The earliest large concentrations of presumed commensal rat remains reported thus far derive from 139 

late third, or early second millennium BCE settlements in both the Indus Valley and Mesopotamia 26. 140 

Commensal black rats may also have reached the Levant and eastern Mediterranean region by the 141 

start of the first millennium BCE 26. Based on archaeological evidence from Corsica, the Balearics, 142 

Italy and Morocco 27–29, black rats likely first appeared in the western Mediterranean basin towards the 143 

end of that same millennium. 144 

 145 
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The colonisation of Europe by the black rat has been linked to the historical development of urbanism 146 

and trade networks, and their arrival is important for understanding historical plague pandemics 147 

including the 6th C Justinianic Plague and the 14th C Black Death 4,30–32. The central role traditionally 148 

attributed to black rats and their fleas in the spread of the plague bacterium (Yersinia pestis) during 149 

these pandemics has been challenged on various grounds, however, including the historical 150 

distribution and abundance of rats, and this correlation continues to be debated 33–37. 151 

 152 

Although surveys of zooarchaeological rat finds from archaeological sites across Europe suffer from 153 

considerable regional variation in coverage, the available data indicates successive episodes of 154 

dispersal north of the Mediterranean associated first with Roman expansion (first century BCE to 155 

second century CE), and then with the emergence of medieval economies from the 9th century CE, 156 

punctuated by a decline and possible range contraction 32. Black rat remains are found throughout the 157 

Roman Empire in the 1st to 5th centuries CE, but rarely beyond its northern borders suggesting that 158 

these rats were dependent on a Roman economic system characterised by a network of dense 159 

settlements connected by bulk transport via efficient road, river, and maritime routes 4,31. 160 

 161 

With the breakdown of the Roman Empire from the 5th century onwards, evidence for the existence of 162 

black rats becomes scarcer. They may have been extirpated entirely from the northern provinces 163 

including Britain 32,38,39, and the percentage of archaeological sites with black rat remains declined 164 

even in the Western Empire’s Italian core 40. By contrast, black rats remained common in the Balkans 165 

and Anatolia until at least the 6th century CE, presumably reflecting continued stability in the Eastern 166 

Roman Empire 41–44. Since 5th-8th century zooarchaeological data is limited in many regions, the 167 

pattern of post-Roman absence may partly represent research bias 45, though early medieval black rats 168 

are rare even where other small mammals are reported 38. 169 

 170 

Black rats reappear at northern European trading settlements during the 9th and 10th centuries CE, 171 

including sites well beyond their Roman range, including Hedeby in northern Germany and Birka in 172 

Sweden, as well as former Roman towns and high-status early medieval settlements such as York and 173 

Flixborough in England and Sulzbach in Bavaria 46–50. The subsequent expansion of urbanism and 174 

large-scale trade of bulk goods in medieval Europe appears to have favoured rats, just as in the 175 

Roman period. By the 13th century CE, black rats were present throughout most of Europe 4 and they 176 

reached southern Finland by the late 14th century 51. Rats remained widespread across Europe until at 177 

least the 18th century, before their population declined, most likely as a result of competition with the 178 

newly arrived brown rat, the now dominant rat species in temperate Europe 52–54.  179 

 180 

It remains unclear whether the black rat was actually extirpated from post-Roman northern and 181 

western Europe; and whether medieval rat populations in temperate Europe derived from the remnant 182 
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population in southern Europe, or from another wave of rats that were introduced from beyond the 183 

Mediterranean (e.g. via Rus’ river trade 32,55). These questions are relevant to several key debates in 184 

European economic and environmental history including: 1) the extent to which the end of the 185 

Western Roman Empire represented a crisis in urbanism and trade — particularly in bulk goods such 186 

as grain — as well as political collapse 56–58; 2) the role of easterly vs. westerly connections in the rise 187 

of northern European medieval urban networks 59,60; and 3) the model of the spread of the Justinianic 188 

Plague and the subsequent First Pandemic. This pandemic started in the eastern Mediterranean in 541 189 

CE, spread quickly across Europe and England, and continued for approximately two centuries 61–63, a 190 

period that coincides with the gap in archaeological evidence for rats in northwest Europe. Given the 191 

limitations of both zooarchaeology and genetic studies of modern rat populations to address 192 

successive waves of contact after a species is established, ancient DNA may help to resolve these 193 

questions by directly revealing the presence or lack of genetic continuity through time.  194 

 195 

We employed a nested three-stage approach to address these questions. First, we assembled a de novo 196 

reference genome of the black rat. This genome allowed us to investigate the long-term demographic 197 

history of Rattus rattus in relation to other rat species, and to lay the foundation for genome-wide 198 

analyses of ancient remains. Second, we explored the dispersal of black rats into the Mediterranean 199 

and Europe by analysing 70 new mitochondrial genomes from European and North African 200 

archaeological specimens spanning the Roman to early post-medieval periods (1st-17th century CE), 201 

alongside 132 mtDNA sequences generated from modern and museum black rat specimens from 202 

across western Eurasia, the Indian Ocean, and Africa. Lastly, we generated 39 nuclear genomes from 203 

our archaeological black rats and used these to explore the species’ population history in Europe and 204 

the Mediterranean from the 1st to 17th centuries CE, focusing particularly on the hypothesis of dual 205 

dispersals in the Roman and medieval periods. We then interpreted the black rat’s dispersal history 206 

within the context of major historical processes. 207 

 208 

Results and Discussion 209 

The demographic history of Rattus rattus and its closely related species 210 

To facilitate the study of the demographic history of the black rat, both before and after the 211 

establishment of its commensal relationship with humans, we first generated a de novo genome 212 

assembly of R. rattus using a wild-caught black rat from California, USA. Combining shotgun, 213 

Chicago and Hi-C sequencing data with the Dovetail HiRise assembler pipeline 64, we obtained a 214 

genome assembly with a total length of 2.25 Gb and a scaffold N50 reaching 145.8 Mb 215 

(Supplementary Table 1, 2). The 22 scaffolds with over 10 Mb covering 98.9% of the entire assembly 216 

(Table 1), with each of the 18 autosomes of R. rattus corresponding to one large scaffold each and 217 

over 90% of the X chromosome represented by four scaffolds (Supplementary Figure 11, 12, Note 2). 218 

The average GC content is 42.1%, similar to the R. norvegicus reference genome Rnor_6.0 (42.3%), 219 
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and 38.4% of the assembly was identified as repetitive elements (Supplementary Table 3). 220 

Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis 65 also revealed a high 221 

completeness of this genome assembly, with 90.1% complete BUSCOs identified using eukaryotic 222 

dataset, comparable with Rnor_6.0 (91.4%) (Supplementary Table 4). Because R. tanezumi and R. 223 

rattus are both present in California, we also assessed potential introgression from R. tanezumi into 224 

our R. rattus individual. A signature of introgression would limit the value of our de novo genome as 225 

a reference genome onto which reads derived from ancient black rats could be mapped. Our analyses 226 

suggested no significant introgression signature in the Californian black rat (Supplementary Note 5).  227 

 228 

Table 1. Assembly statistics of the de novo R. rattus reference genome 229 

Scaffold Number 6805 

Scaffold N50 (Mb) 145.8 

Largest Scaffold (Mb) 260.8 

Assembly size (Gb) 2.25 

Scaffold length >10 Mb (Gb) 2.23 

GC content (%) 42.1 

Repetitive region (%) 38.4 

 230 
To address the demographic history of black rat, we applied the Pairwise Sequentially 231 

Markovian Coalescent (PSMC) 66 analysis to estimate its population size dynamics alongside the 232 

brown rat and Asian house rat. When calibrated with a mutation rate of 2.96*10-9 per generation and 233 

generation time of 0.5 years 67, the analyses revealed different dynamic patterns of population size 234 

changes amongst these rat species (Figure 1A). The brown rat experienced a population decline 235 

beginning ~1 Mya, as described previously 67, while both the black rat and Asian house rat 236 

populations expanded until 300-400 thousand years ago (kya). The black rat population then 237 

experienced a bottleneck with an 8-fold drop in effective population size until 100 kya, and a re-238 

expansion from 100 kya to 40 kya. The Asian house rat, however, did not experience a population 239 

decline until ~40 kya, when both black rat and Asian house rat populations experienced declines that 240 

have continued to the present. 241 

 242 

To investigate the population sizes, split times, and migrations among these rat lineages, we applied 243 

Generalized Phylogenetic Coalescent Sampler (G-PhoCS) 68 . The result revealed a similar population 244 

size dynamism, with the effective population size (Ne) of black rat/Asian house rat ancestral lineage 245 

estimated to be 1.25*106, about tenfold the Ne of black rat/Asian house rat/brown rat lineages (Figure 246 

1B, Supplementary Table 5, 6). The split time between brown rat and black rat/Asian house rat 247 

lineages was estimated to be 1.94 Mya (within the 95% Highest Posterior Density (HPD) range 248 

estimated using mitochondrial genomes in a previous study 11), while the split of Asian house rat and 249 
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black rat lineages took place ~120 kya. This recent split time relative to the coalescent time estimate 250 

based on mitochondrial genomes between these two lineages could be explained by the large ancestral 251 

population size of the black rat/Asian house rat lineage 68. Among these lineages, we only detected 252 

one instance of gene flow from the black rat/Asian house rat ancestral lineage into brown rat lineage, 253 

with an introgression proportion of 9.8%. 254 

 255 

Taken together, we observed population expansions and bottlenecks in the black rat during the last 256 

million years, and a smaller Ne relative to the Asian house rat. This could be explained by the 257 

relatively limited geographic distribution of the black rat in southern Asia before the initiation of its 258 

commensal relationship with people, and the fact that the Asian house rat is endemic to a much 259 

greater area in southeastern Asia 10. We did not detect any genomic introgression between the lineages 260 

leading to the black and Asian house rat, suggesting these two species were geographically isolated 261 

after their split from a common ancestor for a sufficiently long period to facilitate their reproductive 262 

incompatibility.  263 

 264 
Figure 1. The demographic history of the black rat and its closely related species. 265 

(A) Population dynamics of the black rat (R. rattus), Asian house rat (R. tanezumi) and brown rat (R. 266 

norvegicus) estimated by PSMC, with 100 bootstrap replicates. 267 
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(B) Demographic modelling of the divergence and migration among the black rat, Asian house rat and 268 

brown rat estimated by G-PhoCS. The values represent the average estimates of effective population 269 

sizes (in thousands), population divergence times (Mya) and the total migration rate through time. The 270 

95% HPD range of all estimates are listed in Supplementary Table 6. 271 

 272 

A global phylogeography of the black rat based on mitochondrial DNA 273 

We collected 191 ancient black rat individuals from 33 archaeological sites across Europe, North and 274 

East Africa, and southern Asia dating from the 2nd millennium BCE to the 17th century CE 275 

(Supplementary Table 7), plus eight modern individuals from North Africa. After shotgun screening, 276 

we retrieved 70 mitochondrial genomes (with coverage spanning 3.5x-300.0x) from samples from 18 277 

sites in Europe and the Mediterranean (Supplementary Table 8), and identified 40 haplotypes. The 278 

phylogenetic tree based on mitochondrial genomes revealed two clades: a major clade with 32 279 

haplotypes, and a minor clade consisting of eight haplotypes and 23 ancient samples from the 6th-280 

century site of Caričin Grad, Serbia (Supplementary Figure 3). The phylogenetic resolution within 281 

each major clade was relatively poor, though samples from the same or closely related sites 282 

occasionally formed sub-clades including the samples from modern-day Zembra (Tunisia) and 283 

medieval central Europe. 284 

 285 

In order to establish the relationship between the ancient rats and modern black rats from across their 286 

range, we analysed the cytochrome b (CYTB) region from our ancient samples alongside 132 287 

previously unpublished modern CYTB sequences from across the Indian Ocean basin (Supplementary 288 

Table 9), and sequences published in previous studies 10,24,69,70. The maximum likelihood tree of the 289 

CYTB region revealed that all the ancient rats from this study belong to the previously described 290 

black rat lineage I (Figure 2 , Supplementary Figure 4, 5 and Table 10). None of the ancient rats from 291 

this study fell into Rattus lineages II-VI. Within lineage I, we recapitulated the unnamed substructure 292 

and assigned the terms A to E to the five major haplogroups10. In addition to these five, we confirmed 293 

a sixth lineage I haplogroup, F, consisting of modern samples from Sri Lanka and the Andaman 294 

Islands, which is basal relative to all other lineage I black rats and has previously been reported as the 295 

Sri Lankan unique sub-lineage, RrC LIb 71 (Figure 2, Supplementary Figure 4b, Table 10). 296 

 297 

Haplogroup A within lineage I (previously described as the European ship rat 24) was the most 298 

common among the analysed samples (179/354). Members of this haplogroup include ancient and 299 

modern black rats from Europe and regions of the world with a history of colonisation by, and/or 300 

trade with European powers. The only additional haplogroup found in Europe was Haplogroup C 301 

(previously described as the Arab ship rat24 ) at Caričin Grad, Serbia, which included 24 302 

archaeological individuals. Haplogroup C is found in modern rats from India, Egypt, East, South and 303 

West Africa and South America. None of the other haplogroups were present in Europe or the 304 
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Mediterranean region. Haplogroups B and E only included modern samples from India and countries 305 

bordering the Indian Ocean. Haplogroup D (previously described as the Madagascar and Indian Ocean 306 

islands group24) included primarily samples from Madagascar and East Africa, and Haplogroup F 307 

consisted of samples from Sri Lanka and the Andaman Islands (Figure 2, Supplementary Table 10). 308 

 309 

 310 
Figure 2. Sampling sites and mitochondrial phylogeographic patterns.  311 

A - Map of sampling locations. The ancient sample SMI only has mitochondrial data, the rest have 312 

both nuclear and mitochondrial results. SMI (Villa Franca de Campo) MEP (Mertola) KLT (Kilton 313 

Castle) TRU (Tanner Row, York) GAU (Gatehampton Villa) VOB (Voorburg-Forum Hadriani) SNE 314 

(Deventer-Stadhuiskwartier) MDT (Monte di Tuda) SML (Santa Maria Lavezzi) ATU (Althiburos) 315 

Sulz (Castle Sulzbach) PRA (Prague Castle) PZA (Petronell-Carnuntum Zivilstadt) KAF 316 

(Kastelholm) BUD (Buda Castle-Teleki Palace) Car (Caričin Grad) Ass (Assos). B - The 317 

phylogeographic pattern of black rat revealed by CYTB mitochondrial haplogroups (see 318 

Supplementary Figure 4 for detailed phylogeny). We derived modern nuclear genomes from the 319 

reference genome rat from California and individuals trapped on the island of Zembra (ZMB) in the 320 

1980s that were prepared for a zooarchaeological reference collection.  321 
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 322 

To investigate the introduction route of black rats into Europe, we analyzed mitochondrial 323 

cytochrome B sequences derived from globally distributed modern and ancient black rats. Previous 324 

studies indicated that the black rat originated in the Indian Peninsula 10,24,69,72. Leaving aside the 325 

putative late Pleistocene to early Holocene records from the eastern Levant, the earliest finds of 326 

presumed commensal rats derive from the Indus Valley and Mesopotamia in the 3rd/2nd millennium 327 

BCE, coincident with the emergence of urbanism and establishment of trade links between these 328 

regions 26,73, though a more westerly limit to the black rat’s natal range cannot be excluded. The 329 

source for dispersal to the Mediterranean and ultimately Europe remains unclear. Suggestions include 330 

maritime trade from India and/or the Arabian peninsula into the Red Sea and subsequently through 331 

Egypt (perhaps via the canal built under Darius 74) in the mid/late first-millennium BCE 4,32, or more 332 

likely earlier overland communication routes between Mesopotamia and the Levant 26,73.    333 

 334 

While a maritime route is clearly implicated in the black rat’s dispersal to East Africa 75,76, our results 335 

tentatively favour an overland hypothesis for its dispersal from South Asia to the Mediterranean to 336 

Europe, since both ancient and modern black rats from Europe and the eastern Mediterranean share 337 

haplogroups with sampled populations from Iran and the Persian Gulf, but not with Indian Ocean 338 

samples from southern India to Madagascar (Figure 2). The results also suggest a secondary dispersal 339 

route via Egypt, given the appearance of Haplogroup C at the 6th century CE Byzantine site of Caričin 340 

Grad, Serbia and in modern samples from the Nile valley. While tentative, this may reflect Egypt’s 341 

central roles both in direct Indo-Roman trade, following its annexation in 30 BCE, and in grain 342 

production for the Roman and early Byzantine Empires 4,77. To test these hypotheses, further 343 

investigations into ancient and modern black rat populations from the Levant, Mesopotamia, Egypt 344 

and the Indus Valley are necessary. 345 

 346 

Ancient genomes reveal the relationships of European black rats over space and time 347 

To explore the black rat’s European population history in greater detail, we shotgun sequenced 36 348 

ancient and 3 modern black rats from 17 sites to 0.2x-16x coverage for whole genome analysis, 349 

including 18 females and 21 males determined by the coverage on sex chromosomes (Supplementary 350 

Table 11). The deeper sequenced ancient samples spanned two broad time periods, including 15 from 351 

the Roman and Early Byzantine period (1st to 7th century CE), and 21 from medieval and post-352 

medieval contexts (8th to 17th century CE) (Supplementary Table 12). Geographically, all the samples 353 

were divided into two groups: a “northern” group of 25 samples from temperate Europe, and a 354 

“southern” group of 11 samples from the Mediterranean and Portugal (Figure 2). After mapping and 355 

genotyping, we identified 7,869,069 bi-allelic transversion variants in the autosomal non-repetitive 356 

regions for downstream population genetic analysis. 357 

 358 
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The phylogenetic tree constructed from autosomal SNPs revealed complex relationships among 359 

ancient black rats from different regions and time periods (Figure 3A). Except for the late medieval (c. 360 

14th century) to Ottoman (c. 17th century) site of Buda Castle, Hungary, samples from the same site 361 

are clustered together. All the samples from the northern group, together with one southern sample 362 

from the medieval period — from 8th-9th century Althiburos, Tunisia — formed a single clade, while 363 

all the other Byzantine to medieval samples from the southern group formed several separate clades 364 

consistent with their local geographic region. The rats from the southern group also possessed higher 365 

heterozygosity than those from the northern group, within both Roman/Byzantine and medieval/post-366 

medieval periods (Supplementary Figure 7, Table 13). This could be explained by the longer history 367 

of rats in the Mediterranean which date to at least the first millennium BCE 26,27, and the founder 368 

effects of limited introductory waves of rats into the northern region. 369 

 370 

Within the major northern cluster, samples were divided into two smaller clusters representing Roman 371 

/ Byzantine and medieval / post-medieval periods respectively. The only exception was a medieval 372 

Tunisian sample that falls into the Roman cluster. Within each cluster, samples grouped together 373 

based upon their geographic location (central Europe, western/northern Europe, Serbia). These 374 

phylogenetic relationships suggest that the initial black rat population in temperate Europe was 375 

replaced by a genetically distinct population after the 6th century CE. The later population is first 376 

documented in early medieval (8th to early 10th century CE) Sulzbach, Germany. The Roman-like 377 

gene pool was still present during the 8th-9th century in North Africa, though due to the lack of more 378 

recent samples we cannot address whether or when the second wave arrived there. A similar pattern 379 

was also revealed by multidimensional scaling (MDS) based on isolation-by-state (IBS) distance 380 

among the samples (Supplementary Figure 8). 381 

 382 

The phylogenetic tree based on Y-chromosome scpMSY regions (Supplementary Table 14) similarly 383 

demonstrated that the Roman rats formed a single cluster. However, unlike the autosomal phylogeny, 384 

all the post-Roman samples from both the northern and southern groups, including Byzantine Assos 385 

and Caričin grad, formed a separate cluster (Supplementary Figure 9), without well-supported 386 

substructures. Given the male-biased dispersal pattern commonly described in the black rat and other 387 

rodent species 78,79, this might indicate a male-specific replacement that took place in both the 388 

Mediterranean regions and temperate Europe. 389 

 390 

A decline in the European black rat population during the 6th to 9th centuries has previously been 391 

suggested based on zooarchaeological evidence 32,38,39. This has been attributed to several causes 392 

including: (a) the demise of the Western Roman Empire’s economic and urban system from the 5th 393 

century CE, including the cessation of large-scale grain shipments that may have helped to disperse 394 

and support rat populations 4; (b) climatic cooling in the ‘Late Antique Little Ice Age’ 80; and/or (c) 395 
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the Justinianic Plague, which began in 541 CE and is likely to have infected rat populations 396 

previously naive to Yersinia pestis, regardless of their potential role in its spread among humans 4,81,82. 397 

Our finding of a post-6th-century turnover corroborates this apparent decline, though the density of our 398 

samples’ spatiotemporal coverage is not sufficient for us to distinguish between the potential causes. 399 

To understand how the Justinianic Plague influenced the rat population, further studies should focus 400 

on archaeological black rats from contexts post-dating the mid-6th century in areas of the Byzantine 401 

Empire and wider Mediterranean where an urban settlement system persisted. 402 

 403 

The medieval Tunisian (Althiburos) sample indicates a different population history of black rats in 404 

North Africa relative to temperate Europe. Black rats from a wider range of time periods resident in 405 

North Africa and the western Mediterranean would allow us to test whether there was continuity 406 

within the black rat populations from the Roman to early Islamic period (c.8th century). This is 407 

particularly pertinent to debates concerning the degree of continuity between the Roman Empire and 408 

the Early Islamic world, notably in urban settlements and trade networks 83.  409 

 410 

 411 
Figure 3. Relationships of the ancient black rats over time and space. 412 

(A) The ages of the rat samples included in whole genome analyses. The bars represent 95.4% 413 

confidence intervals surrounding the direct radiocarbon dates or stratigraphic dates (Supplementary 414 

Table 11,12). The colors correspond to the Roman/Byzantine (red) and medieval (blue) time periods. 415 
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The symbols represent the sampling sites listed in panel B, and the modern samples are represented by 416 

black symbols. 417 

(B) The phylogenetic relationship among ancient and modern black rats reconstructed using a 418 

neighbor joining phylogeny. The pairwise genetic distances were calculated using autosomal variants. 419 

The support values based upon 100 bootstrap replicates are shown on the nodes. The branches are 420 

colored by sample ages as described in  panel A, and the tip symbols correspond to the sampling site. 421 

* Though the medieval Tunisian (Althiburos) sample clusters geographically in the Southern group, it 422 

falls in with the Roman cluster of the northern group in the phylogeny. 423 

  424 

To investigate the genetic interaction between different rat populations further, we applied a series of 425 

f-statistics. Based on the result of the f4-statistics symmetry test, the ancient samples were divided into 426 

18 groups (Supplementary Table 15). Sixteen of these correspond to samples from 16 different sites, 427 

while the three late/post-medieval samples from Buda Castle (Hungary) fell into two groups 428 

corresponding respectively to late medieval (14th-15th century) and Ottoman (17th century) periods.  429 

(Supplementary Table 12). 430 

 431 

First, we investigated if any Roman population contributed to the Byzantine or medieval groups, with 432 

f4(norvegicus, Byzantine/medieval; Roman1, Roman2). We found that of two Roman geographical 433 

groups (central European represented by Austria, and western Europe represented by Britain and the 434 

Netherlands) the western rats were significantly more closely related to all the Byzantine and 435 

medieval groups (Figure 4A, Supplementary Figure 10, Table 16). This result suggests that despite the 436 

population turnover that occurred in temperate Europe after the Roman period, Roman black rats from 437 

western Europe may have contributed to populations that colonized temperate Europe following the 438 

decline of the original population. 439 

 440 

Next, we applied f4(norvegicus, Roman; Byzantine/medieval1, Byzantine/medieval2) to test if there 441 

were any differences in the relative contribution of Roman rat ancestry into the Byzantine or medieval 442 

populations. In agreement with the phylogenetic and MDS analysis, most northern groups were 443 

significantly more closely related to the Roman rat populations compared to the Byzantine or more 444 

recent southern groups (SML, MDT, Ass). The lone exception to this pattern were two post-medieval 445 

samples from Buda Castle (BUD001/4), which were equally related to the Roman groups and the 446 

Assos (Ass) group that consists of two samples from Byzantine Turkey (Supplementary Table 17). 447 

Among the northern groups, the medieval rats from Åland (Finland), the UK and the Netherlands, as 448 

well as Byzantine rats from Serbia, were more closely related to the Roman rat populations than were 449 

medieval rats from central Europe (represented by populations in Germany, Czech Republic and 450 

Hungary). This suggests that the genetic contribution from putatively western European Roman rats, 451 

was also greater in the local western European medieval rats.  452 
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 453 

We also investigated the relationship between the Buda Castle (Hungary) samples from different time 454 

periods by contrasting them with the other medieval rats from temperate Europe (Figure 4A, 455 

Supplementary Figure 10, Table 18). As revealed by the phylogenetic tree, both the German and 456 

Czech rats shared more genetic affinity with the c.14th-15th century Buda Castle (BUD003) sample, 457 

than with the 17th century or later specimens (BUD001/4). Having said that, BUD001/4 still showed 458 

higher affinity to BUD003, when compared with all other populations. This evidence suggests a black 459 

rat population transition in this region between the 14th/15th century and the late 17th century, 460 

potentially related to the 16th-17th century Ottoman occupation of Buda (Hungary), while the local 461 

medieval ancestry was still present in the later population. 462 

 463 

To corroborate the patterns of gene flow suggested by the f4-statistics, we used Treemix 84 to generate 464 

an admixture graph of all ancient rat populations, using the Asian house rat as an outgroup. The 465 

maximum-likelihood population tree without any admixture produced a similar topology to the 466 

neighbor-joining autosomal phylogeny (Supplementary Figure 11). The rats from the northern group 467 

and a medieval Tunisian rat formed a clade, to which all the other Mediterranean rats were an 468 

outgroup, without any significant clustering pattern among the lineages. When admixture events were 469 

allowed, the first two suggested gene flow edges were from the medieval central European population 470 

into the post-medieval Buda Castle population, estimated to 18.2% +/- 3.0%, and from the Roman 471 

western European population into the ancestral lineage of the medieval European populations in the 472 

northern group, estimated to be 8.1% +/- 0.8% (Figure 4D). 473 

 474 

 475 

 476 

 477 
Figure 4. Gene flow among ancient rat populations. 478 
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(A) The f-statistics showing admixture between different ancient rat populations. The dots show all 479 

the combinations of f4-values as described above each cluster, and the error bars show ± 3SE of the 480 

estimates. The three clusters show the affinity between: (top, red) medieval rats (Med) and western 481 

European Roman rats (Roman_WEU);; (middle, blue) Roman rats (Roman) and western European 482 

medieval rats (Med_WEU); and (bottom, green) post-medieval Buda Castle rats (BUD001/4) and the 483 

medieval Buda Castle rat (BUD003), respectively. 484 

(B) Admixture graph with two migration events fitted, estimated by Treemix. The migration edges are 485 

displayed by arrow including the introgression fractions and standard errors. The color of each branch 486 

represents the time period of each group: Roman/Byzantine (red) and medieval / post-medieval (blue). 487 

 488 

The results from both the f-statistics and Treemix analyses revealed a degree of Roman rat ancestry in 489 

the medieval populations. More specifically, medieval rats were more closely related to the Roman rat 490 

populations from the Netherlands and Britain (Figure 4, Supplementary Table 16). This signal 491 

suggests a reservoir of black rat population in western Europe that admixed with the re-introduced 492 

medieval population. The stronger affinity of medieval western European populations to Roman 493 

populations (Supplementary Table 17) also suggested that this relict population was more likely 494 

distributed in western and not central Europe. This result could indicate that rats from the 495 

northernmost Roman provinces were not extirpated, despite their absence in early medieval 496 

zooarchaeological assemblages. Alternatively, and in our view more likely, the inferred relict 497 

population may have been located in an unsampled region of France or southwest Europe. The 498 

observation that medieval rats from temperate Europe fall into the same cluster as Roman rats also 499 

suggests that the second (medieval) wave of introduction to temperate Europe probably originated 500 

from the same source population as the first (Roman) dispersal. Considering the zooarchaeological 501 

evidence that rat populations in southern Europe persisted after the collapse of the Western Roman 502 

Empire, notably in Italy 40, it is likely that southern Europe was the source of reintroduced rats in 503 

temperate Europe. 504 

 505 

Given the presence of rats in 9th century northern emporia (proto-urban trading sites) around the North 506 

and Baltic Seas 46,49,50, a southern European origin would emphasise the importance of the Carolingian 507 

Empire (the Frankish polity which controlled much of western and central Europe as well as northern 508 

Italy in the 9th century CE) and routes such as the Rhône and Rhine corridors in reestablishing large-509 

scale trade links between the Mediterranean and northern Europe 85. This connection remains tentative 510 

until samples from the early emporia themselves in mainland Italy and the Iberian Peninsula can be 511 

investigated. Samples from the early Islamic world derived from the Iberian Peninsula and North 512 

Africa would also help to clarify the population history of black rats.  513 

 514 

Conclusion 515 
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This study explores the historic dispersal of commensal black rats using a de novo genome assembly 516 

for the black rat, ancient and modern mtDNA from across Europe, Africa, and the Indian Ocean, and 517 

ancient nuclear genomes from the Mediterranean and Europe. Our results suggest that the black rat 518 

was most likely introduced to the eastern Mediterranean by an overland route through Southwest 519 

Asia, though a maritime route via the Indian Ocean and Red Sea cannot be excluded. We identify two 520 

waves of rat introduction into temperate Europe. The first likely accompanied the Roman northward 521 

expansion during the first centuries BCE/CE and the second took place during the medieval period 522 

(starting in the 8th-10th centuries). The rats in this second wave were probably derived from the same 523 

ancestral population as the first, and subsequently admixed with a western or southern European relict 524 

population from the first wave.  525 

Considered alongside the paucity of archaeological rat remains from the 6th-8th centuries CE 526 

(particularly in northern and western Europe), this population turnover suggests that the black rat 527 

population and range declined during the early medieval period. This may have been associated with 528 

the breakdown of the Roman Empire - from the 5th century CE in western Europe and the early 7th 529 

century CE in the Balkans - and with it, the network of well-connected settlements that had previously 530 

supported black rat populations. Grain shipments may have played a key role in the dispersal and 531 

maintenance of rat populations during the Roman period, and it is notable that weevils (Sitophilus 532 

granarius) and other grain pests show a similar pattern of Roman introduction, apparent post-Roman 533 

extirpation, and a medieval reintroduction in the northern provinces 86. Alternatively, or additionally, 534 

European rat populations may have been negatively impacted by the First Plague Pandemic and/or the 535 

climatic cooling of the Late Antique Little Ice Age, both of which began in the mid-6th century CE. To 536 

disentangle these scenarios, further zooarchaeological and genomic studies of ancient rats are required 537 

that span these centuries across a wider geographic range. 538 

The medieval introduction of rats into Northern Europe is attested (at the latest) by their presence in 539 

Germany in the early 10th century, coincident with an increase in rat bone finds across the continent. 540 

Our results suggest a repopulation of temperate Europe from the south, perhaps linked with the 541 

development of trade routes in Carolingian western Europe, and probably not via early Russian 542 

riverine trade, as has been previously hypothesised 32. Black rats appear to have been a continuous 543 

presence in Europe from this point until the post-medieval period spanning the 14th century Black 544 

Death and extending into the 17th century. This population may also have been supplemented by 545 

localised introductions, including one potentially associated with the Ottoman occupation of Buda 546 

from 1541 CE).  547 

The near extirpation of black rats in modern Europe is likely linked to competition with the brown rat 548 

which arrived from Asia in the early 18th century 52,53. The genetic and demographic impact of this 549 

dispersal on black rats is an important area for future investigations since by the late 18th century, 550 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.14.439553doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.14.439553
http://creativecommons.org/licenses/by/4.0/


18 

naturalists in many European countries had already attributed a marked decline in R. rattus to 551 

competition from R. norvegicus 87–90. The black rat’s significantly reduced, but persistent presence, 552 

particularly in towns, suggests a degree of niche partitioning between the two species 91. 553 

Our results reveal the degree to which human-commensal species can undergo population dispersal 554 

and demographic fluctuations. In fact, because these dynamic evolutionary processes are tightly 555 

correlated with the characteristics of the human niche, commensal species can act as ideal proxies to 556 

interpret the history of human movement and cultural change. 557 

 558 

Methods 559 

Radiocarbon dating and calibration 560 

Fourteen ancient rat bones were radiocarbon dated via accelerator mass spectrometry (AMS) on bone 561 

collagen at Manheim (MAMS), University of Waikato (Wk), and Oxford University (OxA), and these 562 

were analysed alongside two previously published dates from Gatehampton 92 (Supplementary Table 563 

12). One additional sample (SNE002 / Wk-51521) failed due to insufficient collagen. All radiocarbon 564 

dates were calibrated in OxCal 4.4 93, using the IntCal20 calibration curve 94. 565 

 566 

Given the omnivorous diet of black rats, stable isotope values were monitored for evidence of marine 567 

dietary contributions that might result in significant reservoir effects. Where possible, δ13C (‰ vs. 568 

VPDB) and δ15N values (‰ vs. AIR) were obtained by the respective dating laboratories using 569 

Isotope Ratio Mass Spectrometry (IRMS) and their standard protocols; otherwise δ13C values were 570 

used as reported from the AMS. Nitrogen isotope values were available for 10 specimens and fell 571 

between 6.9‰-11.9‰, consistent with published data for commensal brown rats 95 and with an 572 

omnivorous diet. Carbon isotope values ranged from -21.9‰ to -17.4 ‰. In the absence of detailed 573 

local comparative isotope data from terrestrial and marine species, it was not possible confidently to 574 

estimate marine dietary contribution and hence, the magnitude of any required correction. 575 

Nonetheless, we performed indicative corrections for specimens whose δ13C values suggested a 576 

possible non-negligeable marine component in order to test for any possible impact on our 577 

interpretations. The cut-off for this was set as -18.5‰, based on published values for European 578 

terrestrial herbivores and the enrichment expected due to trophic level in an omnivore. 579 

 580 

For six specimens with δ13C > -18.5 ‰, percentage marine contribution was estimated using “formula 581 

1” from 96, with terrestrial and marine endpoints of -21‰ and -12‰ respectively and a trophic 582 

enrichment factor of 1‰. These values were used to recalibrate the dates using mixed IntCal20 and 583 

Marine20 97 curves, and the magnitude of potential offset was assessed. In no cases did the median 584 

calibrated date change by more than 140 years, and in no case would it have moved a specimen into a 585 

different chronological category or altered our interpretations. Given the uncertainty inherent in this 586 
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process, the uncorrected ranges are used in Figure 3, and details of the indicative corrections are given 587 

in Supplementary Table 12. In the majority of cases, the uncorrected date range coincided more 588 

closely with the stratigraphic dating. 589 

 590 

De novo genome assembly 591 

The black rat genome was sequenced and assembled using DNA extracted from the liver of a male 592 

wild-caught individual from California, USA. Shotgun, Chicago and Dovetail Hi-C libraries were 593 

prepared and sequenced on Illumina HiSeq 4000 platform and the genome was assembled using 594 

Meraculous 98 and HiRise scaffolding pipeline 64. The detailed information of genome assembly is 595 

provided in the Supplementary Note 2. 596 

 597 

The repetitive regions were identified using RepeatMasker 4.0.7 99 with Repbase 20170127 and the 598 

query species set as rattus, and TRF 4.09 (Tandem repeats finder) 100, with parameters set as “2 7 7 80 599 

10 50 12”. The completeness of genome assembly was assessed by BUSCO 3.0.2 65, using the 303 600 

orthologs in Eukaryota odb9 dataset. The new genome assembly was aligned to the brown rat 601 

reference genome Rnor_6.0 using nucmer 4.0.0 in MUMmer tool package 101, to investigate the 602 

synteny between R. rattus and R. norvegicus genomes, using both masked assemblies and anchor 603 

matches that are unique in both reference and query (Supplementary Note 2). 604 

 605 

Mitochondrial Cytochrome B fragment sequencing 606 

Overall, 292 tissue samples identified as R. rattus were included for analysis, including 263 museum 607 

specimens (sampled from the collections at: American Museum of Natural History, British National 608 

History Museum, Field Museum Chicago) and 29 modern specimens collected in the field 609 

representing a wide geographic area at the periphery and on islands within the Indian Ocean. 610 

 611 

DNA extraction and sequencing of these modern and museum samples were conducted in the modern 612 

laboratory at the Archaeology Department of Durham University, following standard protocols 613 

(Supplementary Note 4). The cytb region was amplified in 10 overlapping fragments and a variety of 614 

primer combinations was used depending on the nature of the sample (Supplementary Table 19). The 615 

sequencing reaction was carried out by the DNA Sequencing Service at the School of Biological and 616 

Biomedical Sciences at Durham University. The sequencing chromatograms were edited manually, 617 

subsequently assembled, and a consensus sequence per individual exported using Geneious R6 618 

version 6.0.6 102. Standard anti-contamination guidelines were followed. We successfully amplified 619 

cytb sequences from 202 of 292 samples. Only those that possessed >90% gene coverage were 620 

included in the analysis, which left 132 sequences.  621 

 622 

Ancient DNA extraction and processing 623 
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We sampled 191 ancient black rats and eight modern black rat individuals from 33 archaeological 624 

sites across Europe and three sites in North Africa (Supplementary Table 7, Note 1). Where multiple 625 

samples were taken from the same or related archaeological contexts, care was taken to ensure that 626 

these represented discrete individuals - either by sampling the same skeletal element and side, or on 627 

the basis of differing size and / or age.   628 

 629 

Ancient DNA extraction was performed in dedicated ancient DNA facilities at the University of 630 

Oxford, the Max Planck Institute for the Science of Human History in Jena and the University of 631 

York. All of the ancient lab facilities followed standard ancient DNA laboratory practices to minimise 632 

contamination, including the use of blanks at each stage from extraction to amplification. All material 633 

analysed at Oxford underwent the following treatment. Due to the small size of black rat bones, the 634 

outer surface of the bones was not removed prior to extraction. Bones that weighed <50 mg were 635 

completely consumed during the extraction process. The bone or tooth was cut using a Dremel drill 636 

with a clean cutting wheel per sample (Dremel no 409) and pulverised in a Micro-dismembrator 637 

(Sartorious-Stedim Biotech). Material analysed at York was subjected to bleach treatment (6% 638 

sodium hypochlorite for 5 minutes, and then rinsed with ultrapure water 3 times) prior to powdering 639 

following the same procedure as Oxford. 640 

 641 

Extractions performed in Jena followed a silica-based protocol 103 using 50mg of bone powder. 642 

Extractions performed at the University of Oxford were conducted using the Dabney protocol with a 643 

modification of the addition of a 30 minute pre-digestion stage 104. Extractions performed at the 644 

University of York were conducted using 105 as modified in 106.  645 

 646 

For each sample processed in Jena, a double-stranded DNA sequencing library was prepared from 20 647 

μL of extract, with partial uracil-DNA-glycosylase (UDG) treatment (hereafter denoted as 648 

ds_halfUDG) or without UDG treatment (ds_nonUDG), following a published protocol 107. Sample-649 

specific index combinations were added to the sequencing libraries 108,109. The indexed libraries were 650 

shotgun sequenced on an Illumina HiSeq 4000 instrument for screening, with 75 single-end-run 651 

cycles for ds_halfUDG libraries and 75 double-end-run cycles for ds_nonUDG libraries. After 652 

screening, one ds_nonUDG library and seven ds_halfUDG libraries were deep sequenced in the 653 

University of Kiel, on an Illumina HiSeq 4000 platform with 75 double-end-run cycles using the 654 

manufacturer’s protocol. 655 

 656 

All extracts generated at the University of Oxford and the University of York were built into Illumina 657 

libraries using double stranded methods using the Blunt-End Single-Tube Illumina library building 658 

(BEST) protocol as described previously 110 at the University of Oxford (ds_nonUDG). An additional 659 

barcode was added to the IS1_adapter.P5 adapter resulting in a double external indexed library. The 660 
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libraries were then amplified on an Applied Biosystems StepOnePlus Real-Time PCR system, to 661 

determine both the success of the library build and the number of optimum cycles to use for the 662 

indexing PCR reactions. These 164 libraries were pooled at equimolar concentrations ready for 663 

sequencing. The pool of libraries was sequenced on an Illumina HiSeq 4000 (paired-end 75 bp) at the 664 

Danish National High-Throughput Sequencing Centre for screening at Novogene, Sacramento.  665 

 666 

Ten extracts from Oxford were built into single-stranded libraries at the Max Planck Institute for 667 

Evolutionary Anthropology in Leipzig, Germany. The libraries were built from 30μl of DNA extract 668 

in the absence of uracil DNA glycosylase (ss_nonUDG) followed by double indexing, using an 669 

automated version of the protocols described in 108,109 on a liquid handling system (Agilent 670 

Technologies Bravo NGS Workstation). From the initial screening run results 31 ds_nonUDG 671 

libraries from Oxford were included for deeper sequencing in Jena, together with the ten ss_nonUDG 672 

libraries, on an Illumina HiSeq 4000 platform with 75 single-end-run cycles (Supplementary Table 673 

11). 674 

 675 

Genotyping and dataset preparation 676 

The shotgun sequencing reads from 39 ancient and modern black rats were cleaned and mapped to the 677 

de novo R. rattus genome assembly using EAGER pipeline 1.92.55 111. Within the pipeline, the 678 

adapters were removed by AdapterRemoval 2.2.0 112, reads were mapped with BWA 0.7.12 aln/samse 679 

algorithm 113, duplications were removed by DeDup 0.12.1 (https://github.com/apeltzer/DeDup) and 680 

damage patterns of each library were checked with mapDamage 2.0.6 114. For the seven ds_halfUDG 681 

libraries, we masked 2bp from both ends of the reads using trimBam in bamUtil 1.0.13 115 to remove 682 

the damaged sites. 683 

 684 

The shotgun sequencing reads from four modern individuals, including the Californian black rat for 685 

de novo genome assembly, two published R. norvegicus individuals (Accession: ERS215789, 686 

ERS215791) 67 and one published R. tanezumi individual (Accession: SRS1581480, HXM4) 116 were 687 

mapped to the genome assembly using the BWA 0.7.12 mem algorithm. After using a mapping 688 

quality filtering of 30 and removing reads with multiple hits, duplications were removed using 689 

DeDup. W then performed indel realignment for cleaned bam files of both ancient and modern 690 

individuals using RealignerTargetCreator and IndelRealigner in The Genome Analysis Toolkit 691 

(GATK) v3.5-0 117. 692 

 693 

For the demographic history analysis, we called diploid genotypes from three modern genomes using 694 

the highest coverage genome of each of the species: R. rattus (CP-5999), R. norvegicus (ERS215791) 695 

and R. tanezumi (HXM4). Each of the bam files was piled up using samtools mpileup, using reads 696 

with mapping quality and base quality over 30, and BAQ disabled. Bi-allelic SNPs were then 697 
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individually called using bcftools call -m mode and filtered for SNPs with phred-scaled quality score 698 

(QUAL) over 30, sequence depth between 0.5-2X mean coverage, and not within 5bp of an indel. 699 

After masking for repetitive regions, the consensus sequences of 18 largest autosomal scaffolds were 700 

generated, with heterozygous sites represented by IUPAC nucleotide code. 701 

 702 

The sequencing reads of ancient and modern black rats after AdapterRemoval were also mapped to R. 703 

rattus reference mitochondrial sequence NC_012374.1 with BWA 0.7.12 aln/samse algorithm and 704 

realigned with CircularMapper 111. The reads of R. norvegicus and R. tanezumi individuals were 705 

mapped to mitochondrial references of R. norvegicus (NC_001665.2) and R. tanezumi 706 

(NC_011638.1), respectively. After removing duplication using DeDup, the consensus sequences 707 

were generated by Schmutzi with a quality threshold of 30 118. 708 

 709 

We called the pseudo-haploid genotypes in autosomal regions, from all modern and ancient 710 

individuals using ANGSD 0.931 119, with parameter “-doHaploCall 1” to randomly sample one base. 711 

As the 18 longest autosomal scaffolds covered >99% of the autosomal assembly, we only called 712 

genotypes on the non-repetitive regions of these 18 scaffolds. We applied “-remove_bads 1 -713 

uniqueOnly 1 -minMapQ 30 -minQ 30 -C 50 -baq 1” parameters to filter out reads that had multiple 714 

hits, with mapping quality or base quality less than 30, perform base alignment quality (BAQ) 715 

computation and adjust mapping quality based for excessive mismatches 120. To remove the 716 

deamination-induced damages in ancient DNA molecules, we only kept the transversion variants for 717 

downstream analysis. The genotypes on single-copied male-specific Y-chromosome regions 718 

(scpMSY) were called from all male individuals using ANGSD 0.931, with the same filters as 719 

autosomal genotyping, and -doHaploCall 2 to get the major call. The detailed information of scpMSY 720 

regions identification was provided in Supplementary Note 2. 721 

 722 

To estimate the heterozygosity rates of ancient rat samples, the cleaned reads with base quality and 723 

mapping quality over 30 were piled up with mpileup in SAMtools 1.3 121. We then called pseudo-724 

diploid genotypes with pileupCaller 1.2.2 (https://github.com/stschiff/sequenceTools) under random 725 

diploid calling mode, which randomly sampled two reads at each site, on the transversion variants 726 

identified in ANGSD. The heterozygosity rates calculated from pseudo-diploid genotypes were half of 727 

the real heterozygosity rates of the samples on these variants. 728 

 729 

Demographic history analysis 730 

The population size dynamics was estimated using PSMC 0.6.5 66, with parameter “-N25 -t20 -r5 -p 731 

"4+25*2+4+6"” and 100 bootstrap replicates. The PSMC output was visualized with generation time 732 

of 0.5 years and mutation rate µ = 3*10-9 site/generation, based on an estimate calculated in a previous 733 

study of R. norvegicus 67. 734 
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 735 

G-PhoCS 68 was applied to estimate the population sizes, population divergence times and migration 736 

rates among three rat species, using the three high-coverage diploid genomes. The analysis was 737 

performed on 38,078 loci of 1kb length, identified in non-repetitive, autosomal regions. A preliminary 738 

analysis with all possible migration events was first run for 250,000 generations, then two parallel 739 

runs for 500,000 generations with one migration event were carried out for parameter estimation. 740 

Finally, the estimated parameters were converted to effective population sizes (Ne), divergence times 741 

(T) and total migration rates (m_total) as described in 68: theta = 4*Ne*µ, tau = T*µ/g and 742 

m_total=m*tau, with mutation rate µ=2.96*10-9 site/generation and generation time (g) of 0.5 years. 743 

The detailed information for loci selection and analysis was provided in Supplementary Note 3. 744 

 745 

Phylogenetic analysis 746 

The ancient mitochondrial genomes were analyzed alongside seven modern reference genomes, 747 

including the modern Californian black rat from the reference genome assembly, two published R. 748 

norvegicus individuals 67, one published R. tanezumi individual 116 and the published mitochondrial 749 

genome references of the three species (R. rattus NC_012374.1, R. tanezumi NC_011638.1, R. 750 

norvegicus NC_001665.2). The haplotypes were aligned using MUSCLE v3.8.1551 122 with default 751 

parameters, and the best-fit model was selected based on Akaike Information Criterion (AIC) 752 

calculated by jmodeltest v2.1.10 123. Then Maximum Likelihood (ML) tree was built using RAxML 753 

v8.2.12 124, with GTR+I+G model and 100 bootstrap replicates.  754 

 755 

The cytb region of the mitochondrial genome haplotypes were extracted using MEGA7, and 756 

combined with modern cytb haplotypes from previous publications 10,24,69,70 and this study. We aligned 757 

the data using MAFFT v7.123b 125, then built a ML tree using RAxML v8.2.9 124, with GTR+I+G 758 

model and 1000 bootstrap replicates.  759 

 760 

The autosomal phylogeny was reconstructed using neighbor-joining (NJ) method implemented in 761 

package Ape 5.3 in R 3.5.1. The distance matrix was calculated based on 3,393,710 autosomal 762 

transversion variants, after removing singletons, using the genetic distance described in 68. 763 

Bootstrapping was performed by resampling the variants from 100 kb non-overlapping windows, and 764 

the support on each node was calculated based on 100 bootstrap replicates. The phylogenetic tree 765 

based on Y-chromosome scpMSY regions was built with RaxML 8.2.12 124, using GTR substitution 766 

model, ML estimation of base frequencies and 100 rapid bootstrapping replicates. 767 

 768 

Population genetics analysis 769 

The IBS distance matrix among individuals was calculated using PLINK v1.90b 126 with parameter “--770 

distance 1-ibs”. MDS analysis was performed using PLINK and ten dimensions were calculated on 771 
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both datasets including all studied samples and R. rattus samples only. The f4-statistics were 772 

calculated by qpDstat 755 in ADMIXTOOLS 5.1 package 127, with parameter “f4 mode: YES”, and 773 

the two R. norvegicus individuals were used as outgroup in all the analysis. 774 

 775 

We also applied Treemix 1.13 84 to simultaneously infer the population structure and admixture events 776 

among black rat populations. The black rat samples were grouped based on the geographic location, 777 

time period and phylogenetic pattern identified in previous analysis (Supplementary Table 11). The 778 

allele frequency was calculated by PLINK and 1,145,713 sites covered in at least one sample from 779 

each group were included in the analysis. We built the admixture graph assuming 0 to 10 migration 780 

events, with parameters “-k 500 -global -se -noss -root tanezumi” to group 500 SNPs per block for 781 

covariance matrix estimation. We then performed a global rearrangement after adding all the 782 

populations, calculated standard errors of migration weights, disabled sample size correction and 783 

assigned R. tanezumi as the root of the topology. 784 

 785 

Data availability 786 

The R. rattus genome assembly is available in the NCBI under the accession number 787 

GCA_011800105.1. Aligned reads from the 39 newly reported ancient black rats are available at the 788 

ENA archive under the accession number (provided upon acceptance). The mitochondrial genome 789 

haplotypes are available under the accession number (provided upon acceptance). 790 
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