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Abstract

Egocentric 3D human pose estimation with a single fish-
eye camera has drawn a significant amount of attention re-
cently. However, existing methods struggle with pose esti-
mation from in-the-wild images, because they can only be
trained on synthetic data due to the unavailability of large-
scale in-the-wild egocentric datasets. Furthermore, these
methods easily fail when the body parts are occluded by
or interacting with the surrounding scene. To address the
shortage of in-the-wild data, we collect a large-scale in-the-
wild egocentric dataset called Egocentric Poses in the Wild
(EgoPW). This dataset is captured by a head-mounted fish-
eye camera and an auxiliary external camera, which pro-
vides an additional observation of the human body from a
third-person perspective during training. We present a new
egocentric pose estimation method, which can be trained
on the new dataset with weak external supervision. Specifi-
cally, we first generate pseudo labels for the EgoPW dataset
with a spatio-temporal optimization method by incorporat-
ing the external-view supervision. The pseudo labels are
then used to train an egocentric pose estimation network.
To facilitate the network training, we propose a novel learn-
ing strategy to supervise the egocentric features with the
high-quality features extracted by a pretrained external-
view pose estimation model. The experiments show that
our method predicts accurate 3D poses from a single in-the-
wild egocentric image and outperforms the state-of-the-art
methods both quantitatively and qualitatively.

1. Introduction

Egocentric motion capture using head- or body-mounted
cameras has recently become popular because traditional
motion capture systems with outside-in cameras have limi-
tations when the person is moving around in a large space
and thus restrict the scope of applications. Different from
traditional systems, the egocentric motion capture system
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Figure 1. Compared with Mo?Cap?, our method gets a more ac-
curate egocentric pose from a single in-the-wild image, especially
when the body parts are occluded. Note that the external images
are only used for visualization, not the inputs to our method.

is mobile, flexible, and has no requirements on recording
space, which enables capturing a wide range of human ac-
tivities for many applications, such as wearable medical
monitoring, sports analysis, and zR.

In this work, we focus on estimating the full 3D body
pose from a single head-mounted fisheye camera. The
most related works are Mo?Cap? [44] and zR-egopose [35].
While these methods have produced compelling results,
they are only trained on synthetic images as limited real data
exists and, therefore, suffer from significant performance
drop on real-world scenarios. Furthermore, these methods
often struggle with the cases when parts of the human body
are occluded by or interacting with the surrounding scene
(see the Mo2Cap? results in Fig. 1). This is due to the do-
main gap between synthetic and real data, but also due to
their limited capability of handling occlusions.

To address the issue of the limited real egocentric data,
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we capture a large-scale in-the-wild egocentric dataset
called Egocentric Poses in the Wild (EgoPW). This is cur-
rently the largest egocentric in-the-wild dataset, containing
more than 312k frames and covering 20 different daily ac-
tivities in 8 everyday scenes. To obtain the supervision for
the network training, one possibility is using a multi-view
camera setup to capture training data with ground truth 3D
body poses or apply multi-view weak supervision. How-
ever, this setup is impractical for recording in an environ-
ment with limited space (e.g. in the small kitchen shown in
Fig. 3), which is a common recording scenario. Therefore,
considering a trade-off between flexibility and 3D accuracy,
we use a new device setup consisting of an egocentric cam-
era and a single auxiliary external camera. We demonstrate
that the external view can provide additional supervision
during training, especially for the highly occluded regions
in the egocentric view (e.g. the lower body part).

To handle occlusions and estimate accurate poses, we
propose a new egocentric pose estimation method for train-
ing on the EgoPW dataset in a weakly supervised way.
Specifically, we propose a spatio-temporal optimization
method to generate accurate 3D poses for each frame in
the EgoPW dataset. The generated poses are further used
as pseudo labels for training an egocentric pose estimation
network [44]. To improve the network performance, we fa-
cilitate the training of the egocentric pose estimation net-
work with the extracted features from the external pose es-
timation network which has been trained on a large in-the-
wild body pose dataset. Specifically, we enforce the feature
extracted from these two views to be similar by fooling a
discriminator not being able to detect which view the fea-
tures are from. To further improve the performance of the
pose estimation network, besides the EgoPW dataset, we
also use a synthetic dataset [44] to train the network and
adopt a domain adaptation strategy to minimize the domain
gap between synthetic and real data.

We evaluate our method on the test data provided by
Wang et al. [42] and Xu et al. [44]. Our method signifi-
cantly outperforms the state-of-the-art methods both quan-
titatively and qualitatively. We also show qualitative re-
sults on various in-the-wild images, demonstrating that our
method can predict accurate 3D poses on very challenging
scenes, especially when the body joints are seriously oc-
cluded (see our results in Fig. 1). To summarize, our contri-
butions are presented as follows:

* A new method to estimate egocentric human pose with
weak supervision from an external view, which sig-
nificantly outperforms existing methods on in-the-wild
data, especially when severe occlusions exist;

* A large in-the-wild egocentric dataset (EgoPW) cap-
tured with a head-mounted fisheye camera and an ex-
ternal camera. It is publicly available in https:

/ /people . .mpi—-inf .mpg.de/~jianwang/
projects/egopw;

* A new optimization method to generating pseudo la-
bels for the in-the-wild egocentric dataset by incorpo-
rating the supervision from an external view;

e An adversarial method for training the network by
learning the feature representation of egocentric im-
ages with external feature representation.

2. Related Work

Egocentric 3D full body pose estimation. Rhodin et
al. [30] developed the first method to estimate the full-
body pose from a helmet-mounted stereo fisheye camera.
Cha et al. [4] presented an RNN-based method to estimate
body pose with two pinhole cameras mounted on the head.
Xu et al. [44] introduced a single wide-view fisheye cam-
era setup and proposed a single-frame based egocentric mo-
tion capture system. With the same setup, Tome et al. [35]
captured the egocentric pose with an auto-encoder network
which captures the uncertainty in the predicted heatmaps.
In order to further mitigate the effect of image distortions,
Zhang et al. [46] proposed an automatic calibration mod-
ule. Hwang et al. [14] put an ultra-wide fisheye camera on
the user’s chest and estimate body pose, camera rotation and
head pose simultaneously. Jiang ef al. [16] mounted a front-
looking fisheye camera on the user’s head and estimated the
body and head pose by leveraging the motion of the envi-
ronment and extremity of the human body. Wang et al. [42]
proposed an optimization algorithm to obtain temporally
stable egocentric poses with motion prior learned from Mo-
cap datasets. However, these methods are all trained on syn-
thetic datasets, thus suffering from the performance drop on
the real images due to the domain gap and lack of external
supervision. Our method, on the contrary, achieves better
performance on the in-the-wild scenes.

Pseudo label generation. The task of pseudo-
labeling [20,34,45] is a semi-supervised learning technique
that generates pseudo labels for unlabeled data and uses
the generated labels to train a new model. This has been
applied in the areas of segmentation [8, 22, 47, 48], pose
estimation [2,21,23,25] and image classification [, 13,29].
Since the pseudo labels may be inaccurate, some methods
have been proposed to filter inaccurate labels to increase
the labeling stability. Shi et al. [34] set confidence levels
on unlabeled samples by measuring the sample density.
Chen et al. [5] enforced the stability of pseudo labels
by adopting an easy-to-hard transfer strategy. Wang and
Wu [41] introduced a repetitive re-prediction strategy to
update the pseudo labels, while Rizve et al. [32] proposed
an uncertainty-aware pseudo-label selection framework that
selects pseudo labels. Morerio et al. [24] used a conditional
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Figure 2. Overview of our method. We first collected the new EgoPW dataset (Sec. 3.1), where pseudo labels are generated by a multi-
view based optimization method (Sec. 3.2). We then train our model with the proposed framework (Sec. 3.3), where the network is
simultaneously trained with EgoPW datasets and synthetic data from Mo?Cap?. We enforce the egocentric network to learn a better feature
representation from the external view (Sec. 3.3.2) and bridge the gap between synthetic and real data with a domain classifier (Sec. 3.3.1).

GAN to filter the noise in the pseudo labels. Different
from previous pseudo-labeling works which generate the
labels from network predictions or clustering, we design an
optimization framework to generate labels with supervision
from egocentric and external views simultaneously.

Weakly Supervised 3D Human Pose Estimation. Re-
cently, there is a growing interest in developing weakly-
supervised 3D pose estimation methods. Weakly-
supervised methods do not require datasets with paired
images and 3D annotations. Some works [27, 40] lever-
ages the non-rigid SFM to get 3D joint positions from
2D keypoint annotations in unconstrained images. Some
works [6,7, 10, ] present an unsupervised learning ap-
proach to train the 3D pose estimation network with the su-
pervision from 2D reprojections. The closest to our work
are the approaches of [15, ] in that they lever-
age the weak supervision from multi-view images for train-
ing. Igbal et al. [15] and Rhodin ef al. [31] supervise the
network training process by calculating the differences be-
tween Procrustes-aligned 3D poses from different views.
Wandt et al. [39] predict the camera poses and 3D body
poses in a canonical form, and then supervise the training
with the multi-view consistency. Kocabas et al. [19] obtain
the pseudo labels with epipolar geometry between different
views and use the pseudo labels to train the 3D pose lift-
ing network. Different from previous works [ 1,
our method uses spatio-temporal optimization framework
that takes egocentric and external view as input to obtain
robust 3D pseudo labels for training the network. This opti-
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mization method ensures the stability of the network train-
ing process when the 2D pose estimations are inaccurate.

3. Method

We propose a new approach to train a neural network
on the in-the-wild dataset with weak supervision from ego-
centric and external views. The overview of our approach is
illustrated in Fig. 2. We first capture a large-scale egocentric
in-the-wild dataset, called EgoPW, which contains synchro-
nized egocentric and external image sequences (Sec. 3.1).
Next, we generate pseudo labels for the EgoPW dataset with
an optimization-based framework. This framework takes
as input a sequence in a time window with B frames of
egocentric images Z¢9° = {Z7%°,...,Z;°} and external

images I;gg = {Z¢*t,...,Z%"} and outputs egocentric
3D poses Pgg0 = {P?,..., P’} as the pseudo labels

(Sec. 3.2). Next, we train the egocentric pose estimation
network on the synthetic data from Mo?Cap? [44] and on
the EgoPW dataset with pseudo labels PgZ7. In the training
process, we leverage the feature representation from an on-
the-shelf external pose estimation network [43] to enforce
our egocentric network to learn a better feature representa-
tion in an adversarial way (Sec. 3.3.2). We also use an ad-
versarial domain adaptation strategy to mitigate the domain
gap between synthetic and real datasets (Sec. 3.3.1).

3.1. EgoPW Dataset

We first describe the newly collected EgoPW dataset,
which is the first large-scale in-the-wild human perfor-
mance dataset captured by an egocentric camera and an
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external camera (Sony RX0), both synchronized. EgoPW
contains a total of 318k frames, which are divided into 97
sequences of 10 actors in 20 clothing styles performing 20
different actions. All personal data is collected with an IRB
approval. We generate 3D poses as pseudo labels using
the egocentric and external images, which will be elabo-
rated later. In terms of size, our EgoPW dataset is larger
than existing in-the-wild 3D pose estimation datasets, like
3DPW [37], and has similar scale to the existing synthetic
egocentric datasets, including the Mo?Cap? [44] and the
xR-egopose [35] datasets.

3.2. Optimization for Generating Pseudo Labels

In this section, we present an optimization method based
on [42] to generate pseudo labels for EgoPW. Given a se-
quence, we split it into segments containing B consecu-
tive frames. For the egocentric frames /77, we estimate
the 3D poses represented by 15 joint locations in the coor-
dinate system of the egocentric camera (called “egocentric
poses”) PIe = {P{9, ..., Py}, P{° € R1*3, and 2D
heatmaps HSJ) = {Hego, ey Hego} using the M02Cap
method [44]. Aside from egocentric poses, we also estimate
the transformation matrix between the egocentric camera
poses of two adjacent frames [RSEAM | ¢5EAM] — {[R? |

t2],...,[RE_, | tB_,]} using ORB-SLAM2 [26]. For the
external frames I ff;, we estimate the 3D poses (called “ex-
ternal poses™) PEil = {P{et, ... Py}, Pert € RISX3
using VIBE [18] and 2D joints Jfé’ff = {J§ e“ co JE,
J£rt € RY5*2 ysing openpose [3].

Next, following [42], we learn a latent space to encode
an egocentric motion prior with a sequential VAE which
consists of a CNN-based encoder f.,. and decoder fgj.c.
We then optimize the egocentric pose by finding a latent
vector z such that the corresponding pose sequence P29 =

seq
fdec(z) minimizes the objective function:

E(PE?} Rseq, tseq) = )\egoEego )\ethemt )\f}goE;go
AeztEezt + ATET 4 ABEB

+AcEc + AuEy.

1

In this objective function, E5°, E’°,Er, and Ep are
egocentric reprojection term, egocentric pose regulariza-
tion term, motion smoothness regularization term and bone
length regularization term, which are the same as those de-
fined in [42]. B, ES*', E¢, and E)y are the external re-
projection term, external 3D body pose regularization term,
camera pose consistency term, and camera matrix regular-
ization term, which will be described later. Please see the
supplemental material for a detailed definition of each term.
Note that since the relative pose between external cam-
era and egocentric camera is unknown, we also need to op-
timize the relative egocentric camera pose with respect to

the external camera pose for each frame, i.e. the rotations
Rgeq = Ry, ..., Rp and translations tscq = t1,...,tB.

External Reprojection Term. In order to supervise the
optimization process with the external 2D pose, we de-
signed the external reprojection term which minimizes the
difference between the projected 3D pose with the external
2D joints. The energy term is defined as:

-

Z HJewt
()

where K is the intrinsic matrix of the external camera;
[R; | t;] is the pose of the egocentric camera in the ¢ th
frame w.r.t the external camera position. In Eq. 2, we
first project the egocentric body pose P;?° to the 2D body
pose in the external view with the egocentric camera pose
[R; | t;] and the intrinsic matrix K, and then compare the
projected body pose with the 2D joints estimated by the
openpose [3]. Since the relative pose between the external
camera and egocentric camera are unknown at the begin-
ning of the optimization, we optimize the egocentric cam-
era pose [R; | t;] simultaneously while optimizing the ego-
centric body pose Pf’. In order to make the optimization
process converge faster, we initialize the egocentric camera
pose [R; | t;] with the Perspective-n-Point algorithm [11].

Eewt(Psg;a seq» seq R ‘t] ego

Camera Pose Consistency. We cannot get the accurate
3D pose only with the external reprojection term because
the egocentric camera pose and the optimized body pose can
be arbitrarily changed without violating the external repro-
jection constraint. To alleviate this ambiguity, we introduce
the camera consistency term F¢ as follows:

B-1 o i+l it
EC(Rseq,tseq) — Z [Rz)l tlz:| |:R10 til :|
=1 3)
B l:Ri+1 ti+1]
0 Ly’
It enforces the egocentric camera pose at (i + 1) th frame

[Ri+1 | ti+1] to be consistent with the pose obtained by
transforming the egocentric camera pose at the ¢ th frame
[R; | t;] with the relative pose between the ¢ th and (i + 1)
th frame.

External 3D Body Pose Regularization. Besides the ex-
ternal reprojection term, we also use the external 3D body
poses to supervise the optimization of the egocentric 3D
body pose. We define the external 3D pose term which mea-
sures the difference between the external and the egocentric
body poses after a rigid alignment:

B
By (Poe, Pty = 37 |Pet — [RY | ) PEoe )2, @)
=1
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(a) Egocentric Image (b) Only Egocentric  (c) Our Pseudo Label (d) Only External (e) External Image

Figure 3. Our pseudo label generation method combines the infor-
mation from both the egocentric view and external view, therefore
leading to more accurate pseudo labels (c). Only with the ego-
centric camera, the feet cannot be observed and well-tracked (b).
Only with the external camera, the hands are occluded and result
in the wrong result on the hand part (d).

where [RP* | t7] is the transformation matrix calculated
with Procrustes analysis, which rigidly aligns the external
3D pose estimation P£** and the egocentric 3D pose P;7°.
By combining the body poses estimated from the ego-
centric view and external view, we can reconstruct more ac-
curate pseudo labels. As shown in Fig. 3, the hands of the
person are occluded in the external view, resulting in the
tracking of the hands failing in the external view (Fig. 3, b),
however, the hands can be clearly seen and tracked in the
egocentric view (Fig. 3, d); on the other hand, the feet can-
not be observed in the egocentric view and thus fail to be
tracked in this view (Fig. 3, b), but can be easily viewed and
tracked in the external view (Fig. 3, d). By joining the infor-
mation from both views, we can successfully predict accu-
rate 3D poses as the pseudo labels (Fig. 3, ¢). We note that
the external camera is only used for generating the pseudo
labels but at test time, only the egocentric camera is used.

Camera Matrix Regularization. We constrain the cam-
era rotation matrix R; to be orthogonal:

B
Ey(Rueq) = Y | R R =15 (5)
i=1

Different from previous single-view pose estimation
methods which leverages the weak supervision from multi-
ple views [15,19,31,39], our spatio-temporal optimization
method generates the pseudo labels under the guidance of
learned motion prior, making it robust to noisy and inaccu-
rate 2D pose estimations which is common for the 2D pose
estimation results from the egocentric view.

3.3. Training Egocentric Pose Estimation Network

Through the optimization framework in Sec. 3.2, we can
get accurate 3D pose pseudo labels P¢g7 for each egocentric
frame in the EgoPW dataset, which is further processed into
the 2D heatmap Hg and the distance between joints and
egocentric camera D with the fisheye camera model [33]
described in supplementary materials.

Afterward, we train a single-image based egocentric

pose estimation network on both the synthetic dataset from

Mo?Cap? and the EgoPW dataset, as shown in the right part
of Fig. 2. The pose estimation network contains a feature
extractor © which encodes an image into a feature vector
and a pose estimator W which decodes the feature vector
to 2D heatmaps and a distance vector. The 3D pose can
be reconstructed from them with the fisheye camera model.
Here, we note the synthetic dataset S = {Ig, Hs, Dg} in-
cluding synthetic images Ig along with their correspond-
ing heatmaps Hg and distance labels Dg from Mo?Cap?
dataset, and the EgoPW dataset £ = {I;Y°, Hp, D, I&"*
including egocentric in-the-wild images I3/’ along with
pseudo heatmaps Hp, distance labels D and correspond-
ing external images I%"*. During the training process, we
train the egocentric pose estimation network with two re-
construction loss terms and two adversarial loss terms. The
reconstruction losses are defined as the mean squared er-
ror (MSE) between the predicted heatmaps/distances and
heatmaps/distances from labels:

Lg = mse(ﬁg, Hg) + mse(f)S,DS)

. R (6)
Ly =mse(Hg,Hg) + mse(Dg, Dg),

where

Hg,ﬁs = \I/(FS),FS = @(Is);

N (N

Hp,Dp = Y(F°),F7° = ©(I°).

Two adversarial losses are separately designed for learn-

ing egocentric feature representation and bridging the do-

main gap between synthetic and real datasets. These two
losses are described as follows.

3.3.1 Adversarial Domain Adaptation

To bridge the domain gap between the synthetic and real
data domains, following Tzeng et al. [36], we introduce an
adversarial discriminator I' which takes as input the feature
vectors extracted from a synthetic image and an in-the-wild
image, and determines if the feature is extracted from an in-
the-wild image. The adversarial discriminator I" is trained
with a cross-entropy loss:

£p = —Ellog(T(Fs))] - Ellog(1 — T(EZ”)).  (®)

Once the discriminator I' has been trained, the feature
extractor © maps the images from different domains to the
same feature space such that the classifier I' cannot tell if the
features are extracted from synthetic images or real images.
Therefore, the pose estimator ¥ can predict more accurate
poses for the in-the-wild data.
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3.3.2 Supervising Egocentric Feature Representation
with External View

Although our new training dataset is large, the variation of
identities in the dataset is still relatively limited (20 iden-
tities) compared with the existing large-scale external-view
human datasets (thousands of identities). Generally speak-
ing, the representations learned with these external-view
datasets are of higher quality due to the large diversity of
the datasets. To further improve the generalizability of
our network and prevent overfitting to the training identi-
ties, we propose to supervise our egocentric representation
by leveraging the high-quality third-person-view features.
From a transfer learning perspective, although following
Mo?Cap? [44], our egocentric network is pretrained on the
third-person-view datasets, it can easily “forget” the learned
knowledge while being finetuned on the synthetic dataset.
The supervision from third-person-view features can pre-
vent the egocentric features from deviating too much from
those learned from large-scale real human images.

However, directly minimizing the distance between ego-
centric features F'7?° and external features Fi5** will not en-
hance the performance since the intermediate features of the
egocentric and external view should be different from each
other due to significant difference on the view direction and
camera distortions. To tackle this issue, we use the adversar-
ial training strategy to align the feature representation from
egocentric and external networks. Specifically, we use an
adversarial discriminator A which takes the feature vectors
extracted from an egocentric image and the corresponding
in-the-wild images and predicts if the feature is from ego-
centric or external images. The adversarial discriminator A
is trained with a cross-entropy loss:

Ly = —E[log(A(F5))] — Ellog(1 — A(FF™))],  (9)

where Fg't = ©°“'(I5") and ©°*" is the feature extrac-
tor of external pose estimation network that shares exactly
the same architecture as the egocentric pose estimation net-
work. The parameters of the features extractor ©°** and
the pose estimator ¥** of the external pose estimation net-
work are obtained from the pretrained model in Xiao et al.’s
work [43] and keep fixed during the training process.

Note that the deep layers of the pose estimation network
usually represent the global semantic information of the hu-
man body [9], we use the output feature of the 4th res-block
of ResNet-50 network [12] as the input to the discriminator
A. Furthermore, the spatial position of the joints is quite dif-
ferent in the egocentric view and the external view, which
will make the discriminator A easily learn the difference
between egocentric and external features. To solve this, we
use an average pooling layer in the discriminator A to spa-
tially aggregate features, thus further eliminating the influ-
ence of spatial distribution between egocentric and external
images. Please refer to the suppl. mat. for further details.

a) Input b) With external feature supervision  c) Without external feature supervision

Figure 4. The visualization of features with (b) or without (c) the
adversarial supervision from external features. By supervising the
training of the egocentric network with the feature representation
from an external view, the egocentric network is able to focus on
extracting the semantic features of the human body.

During the training process, the egocentric pose esti-
mation network is trained to produce the features Fz7° to
fool the domain classifier A such that it cannot distinguish
whether the feature is from an egocentric or external image.
To achieve this, the egocentric network learns to pay more
attention to the relevant parts of the input image, i.e., the
human body, which is demonstrated in Fig. 4.

4. Experiments
4.1. Datasets

We quantitatively evaluate our finetuned network on
the real-world dataset from Mo?Cap? [44] and Wang et
al. [42]. The real-world dataset in Mo2Cap? [44] contains
2.7k frames of two people captured in indoor and outdoor
scenes, and that in Wang et al. [42] contains 12k frames of
two people captured in the studio. To measure the accuracy
of our pseudo labels, we evaluate our optimization method
(Sec. 3.2) only on the dataset from Wang et al. [42] since
the Mo?Cap? dataset does not include the external view.

To evaluate our method on the in-the-wild data, we also
conduct a qualitative evaluation on the test set of the EgoPW
dataset. The EgoPW dataset will be made publicly avail-
able, and more details and comparisons to other datasets
are included in the supplementary materials.

4.2. Evaluation Metrics

We measure the results of our method as well as other
baseline methods with two metrics, PA-MPJPE and BA-
MPIJPE, which estimate the accuracy of a single body pose.
For PA-MPJPE, we rigidly align the estimated pose P of
each frame to the ground truth pose P using Procrustes
analysis [17]. In order to eliminate the influence of the body
scale, we also report the BA-MPJPE scores. In this metric,
we first resize the bone length of each predicted body pose
P and ground truth body pose P to the bone length of a
standard skeleton. Then, we calculate the PA-MPJPE be-
tween the two resulting poses.

4.3. Pseudo Label Generation

In this paper, we first generate the pseudo labels with the
optimization framework (Sec. 3.2) and use them to train our
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Figure 5. Qualitative comparison between our method and the state-of-the-art methods. From left to right: input image, Mo?Cap? result,
zR-egopose result, our result, and external image. The ground truth pose is shown in red. Note that the external images are not used during
inference. The input images in the left part are from the test dataset in [42], while those in the right part come from EgoPW test sequences.

Method PA-MPJPE BA-MPJPE Method PA-MPJPE BA-MPJPE
Mo?Cap? 102.3 74.46 Wang et al.’s test dataset
zR-egopose 112.0 87.20 Rhodin et al. [31] 89.67 73.56
Wang et al. [42] 83.40 63.88 Mo?Cap? [44] 102.3 74.46
VIBE [18] 68.13 52.99 zR-egopose [35] 112.0 87.20
Our Optimizer 57.19 46.14 Ours 81.71 64.87
Mo-“Cap” test dataset
Rhodin et al. [31] 97.69 76.92
Table 1. The accuracy of pseudo labels on Wang er al.’s dataset. M02Cap2 [44] 91.16 70.75
Utilizing both egocentric and external view, the body poses from zR-egopose [35] 86.85 66.54
our optimization method (Sec. 3.2) are more accurate and can Ours 83.17 64.33

serve as better pseudo labels.

network (Sec. 3.3). Thus, pseudo labels with higher accu-
racy generally lead to better network performance. In this
experiment, we evaluate the accuracy of pseudo labels on
Wang et al.’s dataset and show the results in Table 1. This
table shows that our method outperforms all the baseline
methods by leveraging both the egocentric view and exter-
nal view during optimization. Note that though compared in
Table 1, we cannot use any external-view based pose esti-
mation method, e.g. VIBE [18] and 3DPW [37], for training
the egocentric pose estimation network. This is because the
relative pose between the external and egocentric camera
is unknown, making it impossible to obtain the egocentric
body pose only from the external view. Compared with our
optimization approach, the method in [42] performs worse
due to the lack of external-view supervision.

4.4. Comparisons on 3D Pose Estimation

In this section, we compare the egocentric pose esti-
mation network trained in Sec. 3.3 with previous single-
frame-based methods on the test dataset from [42] under
the “Wang et al.’s test dataset” in Table 2. Since the code or
the predictions of xR-egopose are not publicly available, we
use our reimplementation of xR-egopose instead. On this

Table 2. Performance of our egocentric pose estimation net-
work (Sec. 3.3) on Wang ef al.’s test dataset and Mo2Cap? test
dataset [44]. Our method outperforms the state-of-the-art meth-
ods, M02C3p2 [44] and xR-egopose [35], on both metrics.

dataset, our method outperforms Mo?Cap? by 20.1% and
xR-egopose by 27.0% respectively. We also compared with
previous methods on the Mo?Cap? test dataset and show
the results under the “Mo?Cap? test dataset” in Table 2. On
the Mo?Cap? test dataset, our method performs better than
Mo?Cap? and xR-egopose by 8.8% and 4.2%, respectively.

From the results in Table 2, we can see that our approach
outperforms all previous methods on the single-frame ego-
centric pose estimation task. More quantitative results on
each type of motion are available in the supplementary ma-
terial. For the qualitative comparison, we show the results
of our method on the studio dataset and in-the-wild dataset
in Fig. 5. Our method performs much better compared with
Mo?Cap? and xR-egopose, especially for the in-the-wild
cases where the body parts are occluded. Please refer to
the supplementary materials for more qualitative results.

We also compared our method with Rhodin et al.’s
method [3 1], which uses the weak supervision from multi-
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ple views to supervise the training of a single view pose es-
timation network. In our EgoPW dataset, we only have one
egocentric and one external view. Thus, we fix the 3D pose
estimation network for the external view and only train the
egocentric pose estimation network. Following Rhodin ef
al. [31], we align the prediction from the egocentric and ex-
ternal view with Procrustes analysis and calculate the loss
proposed by Rhodin et al. Our result in Table 2 shows our
method performs better. This is mainly because our spatio-
temporal optimization method predicts accurate and tempo-
rally stable 3D poses as pseudo labels, while other methods
suffer from inaccurate egocentric pose estimations.

4.5. Ablation Study

Method PA-MPJPE BA-MPJPE
w/o external view 90.05 68.99
w/o learning representation 85.46 67.01
w/o domain adaptation 84.22 66.48
Unsupervised DA 91.56 69.17
Ours 81.71 64.87

Table 3. The quantitative results of ablation study.

Supervision from the external view. In our work, we
introduce the external view as supervision for training the
network. The external view enables generating accurate
pseudo labels, especially when the human body parts are oc-
cluded in the egocentric view but can be observed in the ex-
ternal view. Without the external view, the obtained pseudo
labels are less accurate and will further affect the network
performance. In order to demonstrate this, we firstly gener-
ate the 3D poses as pseudo labels with Wang et al.’s method,
i.e. without any external supervision, and then train the pose
estimation network on these new pseudo labels. The result
is shown in the “w/o external view” row of Table 3. We also
show the qualitative results with and without external-view
supervision in Fig. 6. Both the qualitative and quantitative
results demonstrate that with the external supervision, the
performance of our pose estimation network is significantly
better especially on occluded cases.

Learning egocentric feature representation and bridg-
ing the domain gap with adversarial training. In our
work, we train the pose estimation network with two ad-
versarial components in order to learn the feature repre-
sentation of the egocentric human body (Sec. 3.3.2) and
bridge the domain gap between synthetic and real images
(Sec. 3.3.1). In order to demonstrate the effectiveness of
both modules, we removed the domain classifier A in our
training process and show the results in the row of “w/o
learning representation” in Table 3. We also removed the

(a) Input Image

(b) w/o external view (c) Ours

(d) External Reference

Figure 6. The results of our method with (c) and without external
view (b). The network cannot predict accurate poses for the oc-
cluded cases without the external view supervision. The external
view is only for visualization and not used for predicting the pose.

domain classifier I, train the network without L p and show
the quantitative results in the row of “w/o domain adap-
tation” in Table 3. After moving any of the two compo-
nents, our method suffers from the performance drop, which
demonstrates the effectiveness of both the feature represen-
tation learning module and the domain adaptation module.

Comparison with only using unsupervised domain
adaptation. In this experiment, we compare our ap-
proach with the unsupervised adversarial domain adaptation
method [36] which is commonly used for transfer learning
tasks. We train the network only with the Lg and Lp in
the adversarial domain adaptation module (Sec. 3.3.1) and
show the results in the “Unsupervised DA” of the Table 3.
Our approach outperforms the unsupervised domain adap-
tation method due to our high-quality pseudo labels.

5. Conclusions

In this paper, we have proposed a new approach to ego-
centric human pose estimation with a single head-mounted
fisheye camera. We collected a new in-the-wild egocentric
dataset (EgoPW) and designed a new optimization method
to generate accurate egocentric poses as pseudo labels.
Next, we supervise the egocentric pose estimation network
with the pseudo labels and the features from the external
network. The experiments show that our method outper-
forms all of the state-of-the-art methods both qualitatively
and quantitatively and our method also works well under
severe occlusion. As future work, we would like to develop
a video-based method for estimating temporally-consistent
egocentric poses from an in-the-wild video.

Limitations. The accuracy of pseudo labels in our method
is constrained by our in-the-wild capture system, which
only contains one egocentric view and one external view,
and further constrains the performance of our network. One
future solution is to fuse different sensors, including IMUs
and depth cameras, for capturing the in-the-wild dataset.
Acknowledgments Jian Wang, Kripasindhu Sarkar and
Christian Theobalt have been supported by the ERC Con-
solidator Grant 4DReply (770784) and Lingjie Liu has been
supported by Lise Meitner Postdoctoral Fellowship.
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