English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Simulated range of mid-Holocene precipitation changes to extended lakes and wetlands over North Africa. In open review for Climate of the Past

MPS-Authors
/persons/resource/persons37123

Claussen,  Martin
Director’s Research Group LES, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

/persons/resource/persons37205

Kleinen,  Thomas
Climate-Biogeosphere Interaction, The Land in the Earth System, MPI for Meteorology, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Specht, N. F., Claussen, M., & Kleinen, T. (submitted). Simulated range of mid-Holocene precipitation changes to extended lakes and wetlands over North Africa. In open review for Climate of the Past.


Cite as: https://hdl.handle.net/21.11116/0000-0009-63B5-B
Abstract
Enhanced summer insolation over North Africa induced a monsoon precipitation increase during the mid-Holocene, about 6000 years ago, and led to a widespread expansion of lakes and wetlands in the present-day Sahara. This expansion of lakes and wetlands is documented in paleoenvironmental sediment records, but the spatially sparse and often discontinuous sediment records provide only a fragmentary picture. Former simulation studies prescribed either a small lake and wetland extent from reconstructions or focused on documented mega-lakes only to investigate their effect on the mid-Holocene climate. In contrast to these studies, we investigate the possible range of mid-Holocene precipitation changes in response to a small lake extent and a potential maximum lake and wetland extent.

Results show that the maximum lake and wetland extent shift the North African rain belt about 3 ° farther northward than the small lake extent. Vegetated wetlands cause a larger precipitation increase than the equally-large lakes due to their high surface roughness. A moisture budget analysis reveals that both, lakes and wetlands, cause an enhanced inland moisture transport and local moisture recycling to their southern side. In contrast, increased moisture advection by the Harmattan winds causes a drying response to the north of the lakes and wetlands. These results indicate that the latitudinal position of the lakes and wetlands influences the northward extension of the African summer monsoon. In the sensitivity experiments, the northern position of West Saharan lakes and wetlands substantially contributes to the strong monsoon northward shift seen in the maximum lake and wetland simulations.