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THE DIPPER-DU CONJECTURE REVISITED

EMILY NORTON

Abstract. We consider vertices, a notion originating in local representation
theory of finite groups, for the category O of a rational Cherednik algebra
and prove the analogue of the Dipper-Du Conjecture for Hecke algebras of
symmetric groups in that setting. As a corollary we obtain a new proof of the
Dipper-Du Conjecture over C.

Introduction

Let Hq(Sn) be the Hecke algebra of the symmetric group with q a primitive e-th
root of 1 and let Hq(Sn)−mod be the category of finite-dimensional Hq(Sn)−mod-
ules. If M ∈ Hq(Sn)−mod, a parabolic subgroup Sμ ⊆ Sn is called a vertex of
M if Sμ is minimal with respect to the property that M is isomorphic to a di-
rect summand of a module induced from Hq(Sμ). The Dipper-Du Conjecture in
characteristic 0 states that the parabolics of Sn occurring as vertices of indecom-
posable modules in Hq(Sn)−mod are exactly the parabolics isomorphic to S×k

e ,
0 ≤ k ≤ �n

e � [6]. The conjecture was first proved by Du by demonstrating the
invertibility of a certain norm map on the Hecke algebra [7]. The complete version
of the conjecture over a ground field of characteristic p ≥ 0, where “e-parabolics”
S×k
e are supplemented by additional “e-p-parabolics” when p > 0, was recently

proved by Whitley who defined and computed the vertices of the blocks of Hq(Sn)
as bimodules [24].

When the ground field is C, the quotient functor KZ : Oc(Sn) → Hq(Sn)−mod
from the category Oc(Sn) of the rational Cherednik algebra at parameter c = r/e,
such that q = exp(2πic), outfits these two categories with a means of passing infor-
mation back and forth [12]. A theorem of Wilcox identifies the cuspidal supports
of all simple modules in Oc(Sn) as the parabolics S×k

e for 0 ≤ k ≤ �n
e � – the same

answer as for the vertices of the Hecke algebra [25].1 Motivated by this striking
coincidence, we look at vertices for the category Oc(Sn) of the Cherednik algebra
and establish the analogous statement to Dipper-Du’s conjecture in that setting
(Theorem 2.10). As a corollary, we obtain a new proof of the Dipper-Du Conjec-
ture for the Hecke algebra over C (Theorem 2.11). We identify the vertex of a
block in Oc(Sn) using the simple modules in the block of minimal cuspidal depth;
although the KZ functor kills these modules, it preserves the vertex of the block
via their projective covers.
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We would like to raise the question of what happens if Sn is replaced by an
arbitrary complex reflection group W : does it remain true that the set of vertices
of Hq(W ) coincides with the set of parabolic subgroups W ⊆ W such that Oc(W )
contains a cuspidal simple module? We always have inclusion in one direction:

if L ∈ Oc(W ) is a simple module such that O Res
W
WL is cuspidal, then W is the

vertex of the projective cover P of L [13]. Moreover, the vertex of P is the vertex
of KZ(P ) [13]. Thus projective indecomposable modules in Cherednik category O
provide a wealth of vertices for Hecke algebras. For instance, combined with Shan-
Vasserot’s characterization of cuspidal supports for simple modules in Oc(G(�, 1, n))
using categorical actions [23, Lemma 6.1], this implies the following observation: If

|λ, s〉 ∈ Fe,s is killed by the annihilation operators for the Heisenberg and ŝle crystals

and |λ| ≤ n then for each 0 ≤ k ≤ �n−|λ|
e �, the parabolic subgroup G(�, 1, |λ|)×S×k

e

of G(�, 1, n) is the vertex of a projective indecomposable module P ∈ Oc(G(�, 1, n))
and of KZ(P ) ∈ Hq(G(�, 1, n))−mod. Here λ = (λ1, . . . , λ�) where λj are partitions

and |λ| =
∑�

j=1 |λj |, Fe,s is a level � Fock space of rank e ∈ Z≥2 and charge s ∈ Z�,

and the parameters c and q are determined from e and s; see e.g. [10], [23].

Question 0.1. Let W be a complex reflection group. Is the set of vertices of
projective indecomposable modules in Oc(W ) a complete set of vertices for Oc(W )
and Hq(W )−mod?

1. Adjunctions

We refer to [20] for all category-theoretic notions. Let A and B be finite-
dimensional algebras over a field k, and let C = A−mod and D = B−mod be
the categories of finitely generated left A− and B− modules, respectively. For this
section, we suppose we are given exact, biadjoint functors E : C → D and F : D → C.
The biadjunction yields a natural transformation of the identity functor on C:

ζ : �C
η−→ FE

ε−→ �C

where η is the unit of the adjunction (E,F) and ε is the counit of the adjunction
(F,E). Write ηM , εM , ζM for the components of η, ε, ζ = εη at the object M ∈ C.

Recall that C has a direct sum decomposition into blocks, which are the module
categories of the indecomposable direct factors of A as a k-algebra.

Lemma 1.1. Suppose L and L′ are simple modules in the same block B of C. Then
ζL is an isomorphism if and only if ζL′ is an isomorphism.

Proof. Simples L and L′ are in the same block B if and only if there exist simples
L1 := L, L2, . . . , Lr−1, Lr := L′ such that Ext1(Li, Li+1) 
= 0 for all i =
1, . . . , r− 1 [1, Proposition 13.3]. It therefore suffices to show that given a nonsplit
short exact sequence

0 −→ L′ ι−→ M
π−→ L −→ 0

with L,L′ simple, ζL is an isomorphism if and only if ζL′ is an isomorphism. We
have the following commutative diagram whose top and bottom rows are exact:

(1)

0 L′ M L 0

0 L′ M L 0

ι

ζL′ ζM

π

ζL

ι π
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By assumption M is indecomposable, so End(M) is a local ring, and therefore every
element of End(M) is either nilpotent or invertible. If ζM is nilpotent, then taking
n such that ζnM = 0, the diagram

(2)

M L

M L

π

ζn
M=0 ζn

L

π

must commute. But ζnL is an isomorphism since ζL is, and so (ζnL)π is surjective,
while πζnM = 0. This is a contradiction, so ζM is an invertible element of End(M),
that is, ζM : M → M is an isomorphism. It then follows from the Five Lemma that
ζL′ is also an isomorphism. The converse implication, that ζL is an isomorphism if
ζL′ is proved similarly. �

Notation 1.2. As in [4, Section 6.B], if M,X ∈ C and there exist morphisms ι :
M → X and π : X → M such that πι = IdM , then we say that M is isomorphic to
a direct summand of X and we write M | X.

When C = kG−mod for a finite group G, D = kH−mod for H ≤ G, and F
and E are induction and restriction respectively, there are several equivalent ways
to detect when M | FE(M) which go by the name of Higman’s criterion. Broué
recognized that Higman’s criterion is simply a statement about exact, biadjoint
functors valid in a much more general setting (Theorem 1.3 allows C and D to be
any R-linear abelian or triangulated categories where R is a commutative ring with
1). The trace map TrFE(M) : End(E(M)) → End(M) is defined as [4, Definition
6.6]:

TrFE(M)(β) = εMF(β)ηM .

In particular, ζM = TrFE(M)(IdE(M)).

Theorem 1.3 ([4, Theorem 6.8]). For an object M ∈ C, the following are equiva-
lent.

(1) M | FE(M);
(2) M | F(N) for some N ∈ D;

(3) The morphism IdM is in the image of TrFE(M);
(4) The morphism ηM : M → FE(M) has a left inverse;
(5) The morphism εM : FE(M) → M has a right inverse.

There are two more conditions in Broué’s theorem generalizing the notion of
relative projectivity and injectivity of maps, but we omit these here. Note that the
criteria in Theorem 1.3 do not imply that ζM has an inverse.

Corollary 1.4. Let M ∈ C. If ζM is an isomorphism then M | FE(M).

Lemma 1.5. Let B be a block of C. Suppose there exists a simple module L ∈ B
such that ζL 
= 0. Then M | FE(M) for every M ∈ B.

Proof. It suffices to consider the case that M is indecomposable. Consider diagram
(2) with L taken to be any simple module in the head of M , then make the same
argument as in the proof of Lemma 1.1 to conclude that ζM is an isomorphism. By
Corollary 1.4, then M | FE(M). �
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Given what conditions on M does M | FE(M) imply that ζM is an isomorphism?
A condition is given in the proof of [13, Corollary 3.3] which is concerned with
certain 1-dimensional modules over Hecke algebras but is more generally valid.
Here is the statement and an alternative proof in our more general set-up.

Lemma 1.6. Suppose dimEnd(E(M)) = 1. Then M | FE(M) if and only if ζM is
a nonzero multiple of IdM .

Proof. Since dimEnd(E(M)) = 1, for any β ∈ End(E(M)) we have β = b · IdE(M)

for some b ∈ k. Then:

TrFE(M)(β) = εM (F(b · IdE(M))ηM = εM (b · IdFE(M))ηM = bεMηM = bζM

Therefore IdM is in the image of TrFE(M) if and only if ζM is a nonzero multiple of

IdM . By Theorem 1.3, M | FE(M) if and only if IdM is in the image of TrFE(M). �

The image of the trace map is a two-sided ideal in End(M) [4, Proposition 6.7],
so in the event the conditions in Lemma 1.6 all hold then dimEnd(M) = 1 as well.

2. Vertices for Cherednik and Hecke algebras of symmetric groups

The ground field for the rest of the paper is C.

2.1. Vertices for category O of the Cherednik algebra. The material in this
section is mostly a copy-paste of the definition and basic properties of vertices from
categories such as kG−mod for G a finite group together with group induction
and restriction, or unipotent representations of a finite group of Lie type in cross
characteristic together with Harish-Chandra induction and restriction. We include
detailed proofs for completeness.

Let W be a complex reflection group, let c : {Reflections in W} → C be a
conjugation-invariant function, and let Oc(W ) be the category O of the rational
Cherednik algebra defined in [12]. This is a highest weight category [12], so it
occurs as the category of finitely generated modules for a quasi-hereditary algebra
[5]; it has simple, Verma, and projective indecomposable modules in bijection with
IrrC(W ) [12].

Let W ⊆ W be a parabolic subgroup. Parabolic induction and restriction func-
tors

O Ind
W

W : Oc(W ) −→ Oc(W ) and O Res
W

W : Oc(W ) −→ Oc(W )

were defined by Bezrukavnikov and Etingof [3]. The functors O Ind
W
W and O Res

W
W

are exact and biadjoint [3],[22],[17]. Therefore:

Lemma 2.1. For any parabolic subgroup W ⊆ W , Theorem 1.3 applies to C =

Oc(W ) and D = Oc(W ) with E = O Res
W
W and F = O Ind

W
W , giving equivalent

conditions for when M | O Ind
W
W

O Res
W
WM .

Definition 2.2. A vertex of M ∈ Oc(W ) is a minimal parabolic subgroup W ⊆ W

such that M | O Ind
W
WN for some N ∈ Oc(W ).

In the classical setting of kG-mod where G is a finite group and k has charac-
teristic p, it is the Mackey formula that implies the uniqueness of the vertices of
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indecomposable kG-modules up to conjugacy. Recall that ifH andK are subgroups
of a finite group G and V is a kH-module, then the Mackey formula states:

ResGK IndGH(V ) =
⊕

u∈K\G/H

IndKuHu−1∩K ResuHu−1

uHu−1∩K(uV )

where uV := u⊗V , a natural uHu−1-module; see e.g. [1, Lemma 8.7]. In the Hecke
and Cherednik algebra versions of the Mackey formula, one takes W in place of G
and two parabolic subgroups W1 and W2 in place of H and K; the group induction
and restriction functors are replaced by the appropriate parabolic induction and
restriction functors. Kuwabara-Miyachi-Wada prove the Mackey formula for Hecke
and Cherednik algebras when W = G(�, 1, n) (for Hq(W )−mod, see [15, Theorem
3.12] and for Oc(W ), see [15, Theorem 5.6]), and they conjecture that the Mackey
formula holds in Oc(W ) for arbitrary complex reflection groups W [15, Conjecture
0.1]. Losev and Shelley-Abrahamson prove that when W is a finite Coxeter group,
the Mackey formula holds for Oc(W ) [19, Proposition 2.7.2] by lifting it using
the KZ functor from the formula for the Hecke algebra known in this case by
[11, Proposition 9.1.8]. The precise formulas read [11],[15],[19]:

Res
Hq(W )

Hq(W2)
Ind

Hq(W )

Hq(W1)
∼=

⊕
u∈W2\W/W1

Ind
Hq(W2)

Hq(W2∩uW1u−1) ◦ u(−) ◦ ResHq(W1)

Hq(u−1W2u∩W1)

O Res
W

W2

O Ind
W

W1
∼=

⊕
u∈W2\W/W1

O Ind
W2

W2∩uW1u−1 ◦ u(−) ◦ O Res
W1

u−1W2u∩W1

The functor u(−) is an equivalence induced by conjugation by u. From now on,
we will always assume the Mackey formula holds for Oc(W ) and Hq(W )−mod. In
particular, it holds for W = Sn since Sn is a Coxeter group and Sn = G(1, 1, n).

Now as in [16, Theorem 5.1.2] the Mackey formula implies uniqueness of vertices
up to conjugacy; the proof for kG-modules also works for Hecke and Cherednik
algebras. We give the proof anyway:

Lemma 2.3. Let M ∈ Oc(W ) or Hq(W )−mod. Then a vertex of M is unique up
to W -conjugacy.

Proof. Let C(W ) be Oc(W ) or Hq(W )−mod and let M ∈ C(W ). Write Ind and
Res for the appropriate parabolic induction and restriction functors for the chosen
category. Let W ′ be a vertex of M . By Theorem 1.3, M | IndWW ′ ResWW ′ M . Let

D ∈ C(W ′) be a direct summand of ResWW ′ M such that M | IndWW ′ D. Suppose W ′′

is another vertex of M and let E ∈ C(W ′′) such that M | IndWW ′′ E. Then

D | ResWW ′ IndWW ′′ E =
⊕

u∈W ′\W/W ′′

IndW
′

W ′∩uW ′′u−1 ◦ u(−) ◦ ResW
′′

u−1W ′u∩W ′′ E

The minimality of W ′ implies that D is not a direct summand of IndW
′

W ′∩uW ′′u−1 X

whenever
(
W ′ ∩ uW ′′u−1

)
� W ′, since otherwise M | IndWW ′∩uW ′′u−1 X by transi-

tivity. This forces W ′ ≤ uW ′′u−1 for some u. Repeating the argument with the
roles of W ′ and W ′′ switched, we conclude that W ′ and W ′′ are conjugate. �

The vertices of projective indecomposable modules are closely related to the
branching rules for simple modules.
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Definition 2.4 ([3]). A module M ∈ Oc(W ) is called cuspidal if O Res
W
WM = 0

for all parabolics W � W .

Definition 2.5 ([19]). Let L ∈ Oc(W ) be a simple module. A cuspidal support of
L is a pair (W ′, L′), where W ′ ⊆ W is a parabolic subgroup and L′ ∈ Oc(W

′) is a

simple cuspidal module, such that O Ind
W
W ′L′ � L.

The Mackey formula implies that cuspidal supports of simple modules are unique
up to W -conjugacy [19, Proposition 3.1.2].

Lemma 2.6 is well-known for unipotent representations of a finite reductive group
in cross-characteristic endowed with Harish-Chandra induction and restriction, see
e.g. [8, Proposition 10.6], and the proof for Cherednik algebras works exactly the
same way. Part of the statement was shown in [13, Lemma 3.2].

Lemma 2.6. Let L ∈ Oc(W ) be a simple module and P its projective cover, and
let (W ′, L′) be a cuspidal support of L. Let P ′ be the projective cover of L′. Then

P | O Ind
W
W ′P ′ and W ′ is a vertex of P .

Proof. Since O Ind
W
W ′ and O Res

W
W ′ are exact and biadjoint, they take projectives to

projectives. Since P ′ � L′ and O Ind
W
W ′ is exact, O Ind

W
W ′P ′ � O Ind

W
W ′L′ � L is a

surjection onto L. The universal property of projectives then yields O Ind
W
W ′P ′ �

P , and since P is projective, this implies P | O Ind
W
W ′P ′. Now, suppose W ⊆ W ′

and M ∈ Oc(W ) such that P | O Ind
W
WM . Then O Ind

W
WM � L, so by adjointness

0 
= Hom(O Ind
W
WM,L) ∼= Hom(M,O Res

W
WL), implying that W ′ = W . �

As in [8, Proposition 10.6] we then recover the statement that all cuspidal sup-
ports (W ′, L′) of a simple module L ∈ Oc(W ) are W -conjugate. If rank(W ′) =
rank(W )− j then we will refer to j as the cuspidal depth of L. Since vertices and
cuspidal supports are unique up to conjugacy, we will speak from now on of the
vertex of a module M and the cuspidal support of a simple module L.

2.2. The KZ functor. For any complex reflection group W there is a functor

KZ : Oc(W ) → Hq(W )−mod

(where Hq(W )−mod denotes the category of finite-dimensional Hq(W )-modules)

which is exact and represented by the object PKZ = O Ind
W
1 C [12]. This functor has

very strong properties: KZ is fully faithful on projectives [12], and KZ is essentially
surjective [18]. The Double Centralizer Theorem [12, Theorem 5.16] shows that
blocks of Oc(W ) are in bijection with blocks of Hq(W )−mod [12, Corollary 5.18].

Shan showed that for any parabolic W ⊆ W there are functor isomorphisms [22]:

KZ O Ind
W

W
∼= Ind

Hq(W )

Hq(W ) KZ and KZ O Res
W

W
∼= Res

Hq(W )

Hq(W ) KZ

where KZ denotes the KZ functor Oc(W ) → Hq(W )−mod. Since KZ respects direct
sums, this has an immediate consequence for vertices:

Lemma 2.7. If M | O Ind
W
W

O Res
W
WM then KZ(M) | IndHq(W )

Hq(W ) Res
Hq(W )

Hq(W ) KZ(M)

for any M ∈ Oc(W ).

Lemma 2.8 ([13, Lemma 3.2]). Let P ∈ Oc(W ) be a projective indecomposable
module. The vertex of P is equal to the vertex of KZ(P ).
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Proof. As observed in [13, Lemma 3.2], it is basically immediate that

P | O Ind
W

W
O Res

W

WP ⇐⇒ KZ(P ) | IndHq(W )

Hq(W ) Res
Hq(W )

Hq(W ) KZ(P )

but we give full details here. The direction “ =⇒ ” is Lemma 2.7. For “ ⇐= :”

suppose that KZ(P ) | IndHq(W )

Hq(W )Res
Hq(W )

Hq(W ) KZ(P ). Then there are maps

KZ(P )
ι−→ Ind

Hq(W )

Hq(W ) Res
Hq(W )

Hq(W ) KZ(P )
π−→ KZ(P )

such that πι=IdKZ(P ). We have Ind
Hq(W )

Hq(W ) Res
Hq(W )

Hq(W ) KZ(P )=KZ
(
O Ind

W
W

O Res
W
WP

)
by [22]. Moreover, O Ind

W
W

O Res
W
WP is projective since parabolic restriction and in-

duction take projectives to projectives [22]. Since End(P ) ∼= End(KZ(P )) [12], the
maps ι and π lift to maps

P
ι̃−→ O Ind

W

W
O Res

W

WP
π̃−→ P

such that KZ(π̃) = π and KZ(ι̃) = ι. The composition π̃ι̃ = IdP because KZ(π̃ι̃) =

πι = IdKZ(P ) and KZ is injective on End(P ). This shows P | O Ind
W
W

O Res
W
WP . �

2.3. Blocks and cuspidal supports for Oc(Sn). We recall some facts about
Oc(Sn). Fix e ∈ N≥2, set c =

r
e > 0 with gcd(r, e) = 1, and set q = exp(2πic).

We use the convention that (n) is the trivial representation of Sn. The cate-
gory Oc(Sn) has a unique simple module Lλ, Verma module Δλ, and projective
indecomposable module Pλ for each partition λ of n. The KZ functor sends Δλ

to the Specht module labeled by λ, and sends Lλ to the simple module Dλ if λ
is e-restricted and otherwise to 0 [12]. (Recall that an e-restricted partition is a
partition λ = (λ1, λ2, . . . ) satisfying λi−λi+1 < e, and such partitions parametrize
the simple Hq(Sn)-modules). The blocks of Hq(Sn), and therefore Oc(Sn), are
parametrized by e-cores: the partitions λ labeling simple, standard, and projective
indecomposable modules in the block Bρ,w of Oc(Sn) are exactly the partitions of
size n = |ρ| + ew with e-core ρ and e-weight w, the latter being defined as the
number of e-hooks removed successively from the rim of λ to obtain ρ (see e.g.
[14]) [9, Theorem 4.13]. If σ = (σ1, σ2, . . . ) is a partition of w we write eσ for the
partition (eσ1, eσ2, . . . ), and given partitions μ = (μ1, μ2, . . . ) and ν = (ν1, ν2, . . . )
we write μ+ ν for the partition (μ1 + ν1, μ2 + ν2, . . . ).

The category Oc(Sn) has a cuspidal simple module L if and only if n = e, in
which case L = L(e) [2]. The category Oc

(
S×k
e

)
= Oc(Se)

⊗k then has a unique

cuspidal simple module L⊗k
(e) . All parabolic subgroups of Sn are of the form Sm1

×
Sm2

× · · · × Sms
with

∑s
j=1 mj = n. Since we work up to conjugacy, when mj = 1

we will omit S1 = {1} from the notation. Thus the parabolics S×k
e are the only

parabolic subgroups of Sn whose category Oc affords a cuspidal. We will abuse
terminology and refer to S×k

e as the cuspidal support when we mean (S×k
e , L⊗k

(e)).

Let λ be a partition of n and write λ = eσ + ν where ν is e-restricted and σ is a
partition of some k ≥ 0. Wilcox showed that the cuspidal support of Lλ is S×k

e

[25, Theorem 1.6]. The simples Lλ ∈ Bρ,w of minimal cuspidal depth in the block
Bρ,w are labeled by partitions of the form λ = eσ + ρ where σ is a partition of w.
For such a simple, we have:

(3) O ResSn

S×w
e

Lλ =
(
L⊗w
(e)

)⊕aλ

and O ResSn

W Lλ = 0 for any W � S×w
e .
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where aλ > 0 is some multiplicity. Wilcox identified the subquotient category
spanned by the simples in Oc(Sn) of a fixed cuspidal depth:

Theorem 2.9 ([25, Theorem 1.8]). The Serre subquotient category of Oc(Sn) con-
sisting of modules with cuspidal support S×w

e is equivalent to the category of finite-
dimensional modules over C[Sw]⊗Hq(Sn−ew) with q = exp(2πic). If τσ is a simple
representation of C[Sw] and Dν is a simple representation of Hq(Sn−ew) then the
simple representation in Oc(Sn) corresponding to τσ ⊗Dν under this equivalence is
Leσ+ν .

2.4. The Dipper-Du Conjecture. We now establish the analogous statement
to Dipper-Du’s conjecture for Oc(Sn), then re-establish Dipper-Du’s conjecture for
Hq(Sn) over C.

Theorem 2.10. Let B = Bρ,w be a block of Oc(Sn) of e-weight w and e-core ρ. The
vertices of all modules in B are contained in S×w

e , and the simple and projective
modules Lλ, Pλ ∈ B such that λ = eσ + ρ, σ a partition of w, have S×w

e as their
vertex. Moreover, {S×k

e | 0 ≤ k ≤ �n
e �} comprises the vertices of Oc(Sn).

Proof. The simple modules Lλ in B of minimal cuspidal depth are those such that
λ = eσ + ρ for σ a partition of w. Since ρ is an e-core, Dρ ∈ Hq(S|ρ|)−mod
is projective and in a block of Hq(S|ρ|)−mod by itself. The block of C[Sw] ⊗
Hq(S|ρ|)−mod corresponding under the equivalence of Theorem 2.9 to the Serre
subcategory spanned by the simple modules in B of minimal cuspidal depth is
therefore equivalent to C[Sw]−mod. If W ⊆ Sn is a parabolic subgroup and L ∈
Oc(W ) is a simple module, then the cuspidal depth of a simple constituent of
O Ind

Sn

W L can never be larger than the cuspidal depth of the head of O Ind
Sn

W L. It
follows that if λ = eσ + ρ with ρ an e-core and σ a partition of w, then:

Lλ | O IndSn

S×w
e

L⊗w
(e) .

Combined with equation (3), this shows that S×w
e is the vertex of Lλ for every Lλ

in Bρ,w of minimal cuspidal depth.
To finish the proof of the theorem it is enough to show that there is a simple

module Lλ ∈ B such that ζLλ

= 0 and then apply Lemma 1.5. To this end, we

now consider Le(w)+ρ. First, let us explain what happens when ρ = ∅, so that
λ = e(w) = (ew) is the trivial representation of Sew. By [23],

O ResSew

S×w
e

L(ew) = L⊗w
(e) .

Applying Lemma 1.6 gives that ζL(ew)
is an isomorphism. Lemma 1.5 then implies

that M | O IndSew

S×w
e

O ResSew

S×w
e

M for all M ∈ B∅,w. Thus if ρ = ∅, we are done.

From now on, assume ρ 
= ∅. We will copy the strategy of [24] by considering
a relevant block of the category Oc(S|ρ| × Sew) as an intermediate step. Consider
the block Bρ,0 ⊗ B∅,w ⊂ Oc(S|ρ|) ⊗ Oc(Sew) = Oc(S|ρ| × Sew). By Lemma 2.6 the
vertex of Lρ = Δρ = Pρ is {1}. Thus the vertex of Lρ ⊗ M for any M ∈ B∅,w is
just the vertex of M (since we ignore copies of {1} in a parabolic).

Next, we pre- and post-compose the induction and restriction functors with the
functors of inclusion and projection from and to the desired blocks. Define functors
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E and F by:

E = PrBρ,0⊗B∅,w
O Res

Sn

S|ρ|×Sew
InclBρ,w

F = PrBρ,w

O Ind
Sn

S|ρ|×Sew
InclBρ,0⊗B∅,w

Here, PrBρ,w
is projection from Oc(Sn) onto the block Bρ,w and InclBρ,w

is inclusion
of the block Bρ,w into Oc(Sn), a biadjoint pair of functors; and similarly with the
functors PrBρ,0⊗B∅,w and InclBρ,0⊗B∅,w for the block Bρ,0 ⊗ B∅,w of Oc(S|ρ| × Sew).
By [20, Theorem IV.8.1], E and F are biadjoint. Moreover E and F are exact as
each functor in the compositions defining them is exact. Let ζ = εη be the natural
transformation of the identity functor on Bρ,w arising from the biadjunction between
E and F.

We claim that E(Le(w)+ρ)=Lρ⊗L(ew). We know that the module F
(
Lρ ⊗ L(ew)

)
is semisimple by semisimplicity of the subcategory of Bρ,w generated by the simples
of minimal cuspidal depth in the block. In the Grothendieck group we can write
[Lλ] = [Δλ]+

∑
μ�λ cμ[Δμ] for some cμ ∈ Z [12]. The induction rule for [OIndSn

W Δχ]

is just the group induction rule for IndSn

W χ [3]. For any partitions λ, μ, ν, the

Littlewood-Richardson coefficient cνλ,μ 
= 0 implies ν1 ≤ λ1 + μ1. It follows that

[Δe(w)+ρ] does not occur in [F(Δρ ⊗ Δτ )] for any τ 
= (ew). Since e(w) + ρ is
the maximal partition in the block in dominance order, then [Le(w)+ρ] does not

occur in [F (Lρ ⊗ Lτ )] for any other τ 
= (ew). Also, we have c
ρ+e(w)
ρ,(ew) = 1, thus

Le(w)+ρ | F(Lρ ⊗ L(ew)) with multiplicity 1. So we have

1 = dimHom(Le(w)+ρ,F(Lρ ⊗ L(ew))) = dimHom(E(Le(w)+ρ), Lρ ⊗ L(ew)),

0 = dimHom(Le(w)+ρ,F(Lρ ⊗ Lτ )) = dimHom(E(Le(w)+ρ), Lρ ⊗ Lτ )

for τ 
= (ew) and so E(Le(w)+ρ) is indecomposable with simple head Lρ ⊗ L(ew).
But its composition factors must have the same cuspidal support as Le(w)+ρ (they
cannot have bigger depth and there is no smaller), therefore by previous remarks
E(Le(w)+ρ) is semisimple. Therefore E(Le(w)+ρ) = Lρ ⊗ L(ew) and we may apply
Lemma 1.6 obtaining that ζLe(w)+ρ

is an isomorphism; Lemma 1.5 then implies that

M | FE (M) for all M ∈ Bρ,w.

Therefore M | O IndSn

S×w
e

O ResSn

S×w
e

M for all M ∈ Bρ,w, and by (3), S×w
e is the

minimal parabolic for which such a statement holds. If a < e then every Lλ in
Oc(Sa) is projective and in a block by itself; for any M ∈ Oc(Se)

⊗w then, the
vertex of M is S×k

e for some k ≤ w. Thus the set of vertices of Oc(Sn) is contained
in the set of parabolics {S×k

e | 0 ≤ k ≤ �n
e �}. By [25, Theorem 1.6], for every

0 ≤ k ≤ �n
e � there exists a partition λ of n such that Lλ has cuspidal support S×k

e .

Then S×k
e is the vertex of its projective cover Pλ by Lemma 2.6. This shows the

set of vertices of Oc(Sn) contains the set of parabolics {S×k
e | 0 ≤ k ≤ �n

e �}. We
are done. �

Theorem 2.11 (Dipper-Du Conjecture over C). Let B be a weight w block of
Hq(Sn) − mod. The vertices of all modules in B are contained in S×w

e , and the
modules KZ(Pλ) ∈ B such that λ = eσ + ρ, σ a partition of w, have S×w

e as their
vertex. Moreover, {S×k

e | 0 ≤ k ≤ �n
e �} comprises the vertices of Hq(Sn).

Proof. Let B be the block of Oc(Sn) such that KZ(B) = B. Let Pλ be the projective

cover of Lλ ∈ B where Lλ | IndSn

S×w
e

L⊗w
(e) . Then S×w

e is the vertex of Pλ since



THE DIPPER-DU CONJECTURE REVISITED 757

(S×w
e , L⊗w

e ) is the cuspidal support of Lλ [25]. Then by Lemma 2.8 S×w
e is the

vertex of KZ(Pλ). Moreover, for any N ∈ B there exists M ∈ B such that N ∼=
KZ(M) by essential surjectivity of KZ [18]. By Lemma 2.7 the vertex of KZ(M) is
contained in the vertex of M . It then follows from Theorem 2.10 that the vertex of
KZ(M) is a subgroup of S×k

e , where S×k
e is the vertex of M . Since Hq(Sm)−mod

is semisimple for 1 ≤ m < e, this shows that the set of vertices of Hq(Sn)−mod
is contained in the set {S×k

e | 0 ≤ k ≤ �n
e �}. But (as just used in the proof

of Theorem 2.10) the set of vertices of projective indecomposable modules Pμ of
Oc(Sn) is equal to {S×k

e | 0 ≤ k ≤ �n
e �}, and by Lemma 2.8 the vertex of Pμ is

the same as the vertex of KZ(Pμ). Therefore the set of vertices of Hq(Sn)−mod is
equal to {S×k

e | 0 ≤ k ≤ �n
e �}. �

2.5. The vertices of simple modules in Oc(Sn). The category Oc(W ) has
enough projectives and has finite global dimension [12], so any module M in Oc(W )
has a finite projective resolution P• which is unique up to direct summands of trivial
complexes 0 → Q

∼→ Q → 0. If P• does not contain any such trivial summands then
P• is said to be a minimal projective resolution. By replacing M by its minimal
projective resolution, we can get a lower bound on the vertex of M .

Lemma 2.12. Let P• = · · · → Pn → Pn−1 → · · · → P0 → 0 be a minimal projective

resolution of a module M ∈ Oc(W ). Then M | O Ind
W
W

O Res
W
WM if and only if

P• | O Ind
W
W

O Res
W
WP• as complexes. In particular, if M | O Ind

W
W

O Res
W
WM then

Q | O Ind
W
W

O Res
W
WQ for every projective indecomposable module Q in P•.

Proof. This follows from Theorem 1.3 applied to Db(Oc(W )) and Db(Oc(W )). �

Now let W = Sn, 2 ≤ e ≤ n and c = r
e > 0, gcd(r, e) = 1.

Lemma 2.13. Let Lλ be any simple module in the principal block B∅,1 of Oc(Se).
Then the vertex of Lλ is Se.

Proof. The structure of the block B∅,1 is completely known, see [2],[21]. It is easy
to calculate the minimal projective resolution of any simple Lλ ∈ B∅,1; the final
nonzero term of this resolution is P(e). The simple L(e) is cuspidal by [2], so by
Lemma 2.6 the vertex of P(e) is Se. Now the claim follows from Lemma 2.12. �

Theorem 2.14. Let Lλ be any simple module in a weight w block Bρ,w of Oc(Sn).
Then the vertex of Lλ is S×w

e .

Proof. Lemma 2.13 implies that any simple module L in the principal block B⊗w
∅,1

of Oc(S
×w
e ) � Oc(Se)

⊗w has vertex S×w
e . The proof of Theorem 2.10 showed that

Lλ | O Ind
Sn

S×w
e

M for some M in the principal block of Oc(S
×w
e ). We may always

take M to be some simple module L. Indeed, if M is not simple, then induce a
non-split short exact sequence in which it appears in the middle, Lλ is a direct
summand of the middle term of the exact induced sequence, thus Lλ is a summand
of one of the outer terms, then do downwards induction on the composition length.
The vertex of Lλ is then the vertex of some simple module L ∈ B⊗w

∅,1 , so by Lemma

2.13 it is S×w
e . �
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