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Abstract. The model of asynchronous programming arises in many con-
texts, from low-level systems software to high-level web programming.
We take a language-theoretic perspective and show general decidability
and undecidability results for asynchronous programs that capture all
known results as well as show decidability of new and important classes.
As a main consequence, we show decidability of safety, termination and
boundedness verification for higher-order asynchronous programs—such
as OCaml programs using Lwt—and undecidability of liveness verifica-
tion already for order-2 asynchronous programs. We show that under
mild assumptions, surprisingly, safety and termination verification of
asynchronous programs with handlers from a language class are decidable
iff emptiness is decidable for the underlying language class. Moreover,
we show that configuration reachability and liveness (fair termination)
verification are equivalent, and decidability of these problems implies de-
cidability of the well-known “equal-letters” problem on languages. Our
results close the decidability frontier for asynchronous programs.

Keywords: Higher-order asynchronous programs - Decidability

1 Introduction

Asynchronous programming is a common way to manage concurrent requests in
a system. In this style of programming, rather than waiting for a time-consuming
operation to complete, the programmer can make asynchronous procedure calls
which are stored in a task buffer pending later execution. Each asynchronous
procedure, or handler, is a sequential program. When run, it can change the
global shared state of the program, make internal synchronous procedure calls,
and post further instances of handlers to the task buffer. A scheduler repeatedly
and non-deterministically picks pending handler instances from the task buffer
and executes their code atomically to completion. Asynchronous programs ap-
pear in many domains, such as operating system kernel code, web programming,
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or user applications on mobile platforms. This style of programming is supported
natively or through libraries for most programming environments. The interleav-
ing of different handlers hides latencies of long-running operations: the program
can process a different handler while waiting for an external operation to finish.
However, asynchronous scheduling of tasks introduces non-determinism in the
system, making it difficult to reason about correctness.

An asynchronous program is finite-data if all program variables range over
finite domains. Finite-data programs are still infinite state transition systems:
the task buffer can contain an unbounded number of pending instances and the
sequential machine implementing an individual handler can have unboundedly
large state (e.g., if the handler is given as a recursive program, the stack can
grow unboundedly). Nevertheless, verification problems for finite-data programs
have been shown to be decidable for several kinds of handlers [12,30,20,6]. Sev-
eral algorithmic approaches have been studied, which tailor to (i) the kinds of
permitted handler programs and (ii) the properties that are checked.

State of the art We briefly survey the existing approaches and what is known
about the decidability frontier. The Parikh approach applies to (first-order) re-
cursive handler programs. Here, the decision problems for asynchronous pro-
grams are reduced to decision problems over Petri nets [12]. The key insight is
that since handlers are executed atomically, the order in which a handler posts
tasks to the buffer is irrelevant. Therefore, instead of considering the sequential
order of posted tasks along an execution, one can equivalently consider its Parikh
image. Thus, when handlers are given pushdown systems, the behaviors of an
asynchronous program can be represented by a (polynomial sized) Petri net.
Using the Parikh approach, safety (formulated as reachability of a global state),
termination (whether all executions terminate), and boundedness (whether there
is an a priori upper bound on the task buffer) are all decidable for asynchronous
programs with recursive handlers, by reduction to corresponding problems on
Petri nets [30,12]. Configuration reachability (reachability of a specific global
state and task buffer configuration), fair termination (termination under a fair
scheduler), and fair non-starvation (every pending handler instance is eventually
executed) are also decidable, by separate ad hoc reductions to Petri net reach-
ability [12]. A “reverse reduction” shows that Petri nets can be simulated by
polynomial-sized asynchronous programs (already with finite-data handlers).

In the downclosure approach, one replaces each handler with a finite-data
program that is equivalent up to “losing” handlers in the task buffer. Of course,
this requires that one can compute equivalent finite-data programs for given
handler programs. This has been applied to checking safety for recursive han-
dler programs [3]. Finally, a bespoke rank-based approach has been applied to
checking safety when handlers can perform restricted higher-order recursion [6].

Contribution Instead of studying individual kinds of handler programs, we
consider asynchronous programs in a general language-theoretic framework. The
class of handler programs is given as a language class C: An asynchronous pro-
gram over a language class C is one where each handler defines a language from
C over the alphabet of handler names, as well as a transformer over the global
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state. This view leads to general results: we can obtain simple characterizations
of which classes of handler programs permit decidability. For example, we do
not need the technical assumptions of computability of equivalent finite-data
programs from the Parikh and the downclosure approach.

Our first result shows that, under a mild language-theoretic assumption,
safety and termination are decidable if and only if the underlying language class
C has decidable emptiness problem.! Similarly, we show that boundedness is
decidable iff finiteness is decidable for the language class C. These results are
the best possible: decidability of emptiness (resp., finiteness) is a requirement
for safety and termination verification already for verifying the safety or termi-
nation (resp., boundedness) of one sequential handler call. As corollaries, we get
new decidability results for all these problems for asynchronous programs over
higher-order recursion schemes, which form the language-theoretic basis for pro-
gramming in higher-order functional languages such as OCaml [21,28], as well
as other language classes (lossy channel languages, Petri net languages, etc.).

Second, we show that configuration reachability, fair termination, and fair
starvation are mutually reducible; thus, decidability of any one of them implies
decidability of all of them. We also show decidability of these problems implies
the decidability of a well-known combinatorial problem on languages: given a
language over the alphabet {a,b}, decide if it contains a word with an equal
number of as and bs. Viewed contrapositively, we conclude that all these deci-
sion problems are undecidable already for asynchronous programs over order-2
pushdown languages, since the equal-letters problem is undecidable for this class.

Together, our results “close” the decidability frontier for asynchronous pro-
grams, by demonstrating reducibilities between decision problems heretofore
studied separately and connecting decision problems on asynchronous programs
with decision problems on the underlying language classes of their handlers.

While our algorithms do not assume that downclosures are effectively com-
putable, we use downclosures to prove their correctness. We show that safety,
termination, and boundedness problems are invariant under taking downclosures
of runs; this corresponds to taking downclosures of the languages of handlers.

The observation that safety, termination, and boundedness depend only on
the downclosure suggests a possible route to implementation. If there is an effec-
tive procedure to compute the downclosure for class C, then a direct verification
algorithm would replace all handlers by their (regular) downclosures, and in-
voke existing decision procedures for this case. Thus, we get a direct algorithm
based on downclosure constructions for higher order recursion schemes, using
the string of celebrated recent results on effectively computing the downclosure
of word schemes [33,15,7].

We find our general decidability result for asynchronous programs to be sur-
prising. Already for regular languages, the complexity of safety verification jumps

L The “mild language-theoretic assumption” is that the class of languages forms an
effective full trio: it is closed under intersections with regular languages, homomor-
phisms, and inverse homomorphisms. Many language classes studied in formal lan-
guage theory and verification satisfy these conditions.
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from NL (NFA emptiness) to EXPSPACE (Petri net coverability): asynchronous
programs are far more expressive than individual handler languages. It is there-
fore surprising that safety and termination verification remains decidable when-
ever it is decidable for individual handler languages.

Full proofs of our results are available here [25].

2 Preliminaries

Basic Definitions We assume familiarity with basic definitions of automata the-
ory (see, e.g., [18,31]). The projection of word w onto some alphabet X', written
Proj s (w), is the word obtained by erasing from w each symbol which does not
belong to X’. For a language L, define Projy, (L) = {Projy,(w) | w € L}. The
subword order C on X* is defined as w C w’ for w,w’ € X* if w can be ob-
tained from w’ by deleting some letters from w’. For example, abba = bababa
but abba £ baaba. The downclosure Jw with respect to the subword order of a
word w € X* is defined as Jw := {w’ € ¥* | w’ C w}. The downclosure |L of
a language L C X* is given by |L := {w’ € X* | Jw € L: w' C w}. Recall that
the downclosure | L of any language L is a regular language [17].

A multiset m: X — N over X maps each symbol of X' to a natural number.
Let M[X] be the set of all multisets over X. We treat sets as a special case
of multisets where each element is mapped onto 0 or 1. As an example, we
write m = [a,a,c] for the multiset m € M[{a,b, c,d}] such that m(a) = 2,
m(b) = m(d) = 0, and m(c) = 1. We also write jm| =} __.m(0).

Given two multisets m, m’ € M[X] we define the multiset m & m’ € M[X]
for which, for all a € ¥, we have (m @& m’)(a) = m(a) + m’(a). We also define
the natural order < on M[X] as follows: m < m’ iff there exists m? € M[X]
such that m ®m? = m’. We also define m’ ©m for m < m’ analogously: for all
a€ X, we have ( mom’)(a) =m(a) —m’(a). For ¥ C X we regard m € M| Y
as a multiset of M[X’] where undefined values are sent to 0.

Language Classes and Full Trios A language class is a collection of languages,
together with some finite representation. Examples are the regular (e.g. rep-
resented by finite automata) or the context-free languages (e.g. represented by
pushdown automata or PDA). A relatively weak and reasonable assumption on a
language class is that it is a full trio, that is, it is closed under each of the follow-
ing operations: taking intersection with a regular language, taking homomorphic
images, and taking inverse homomorphic images. Equivalently, a language class
is a full trio iff it is closed under rational transductions [5].

We assume that all full trios C considered in this paper are effective: Given
a language L from C, a regular language R, and a homomorphism h, we can
compute a representation of the languages L N R, h(L), and h~1(L) in C.

Many classes of languages studied in formal language theory form effective
full trios. Examples include the regular and the context-free languages [18], the
indexed languages [2,10], the languages of higher-order pushdown automata [26],
higher-order recursion schemes (HORS) [16,9], Petri nets [14,19], and lossy chan-
nel systems (see Section 4.1). (While HORS are usually viewed as representing
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a tree or collection of trees, one can also view them as representing a word
language, as we explain in Section 5.)

Informally, a language class defined by non-deterministic devices with a finite-
state control that allows e-transitions and imposes no restriction between input
letter and performed configuration changes (such as non-deterministic pushdown
automata) is always a full trio: The three operations above can be realized by
simple modifications of the finite-state control. The deterministic context-free
languages are a class that is not a full trio.

Asynchronous Programs: A Language-Theoretic View We use a language-
theoretic model for asynchronous shared-memory programs.

Definition 1. Let C be an (effective) full trio. An asynchronous program (AP)
over C is a tuple B = (D, X, (L) cee, do, mg), where D is a finite set of global
states, X is an alphabet of handler names, (L.).ce¢ is a family of languages from
C, one for each c € € where € = D x X x D is the set of contexts, dy € D is the
initial state, and my € M[X] is a multiset of initial pending handler instances.

A configuration (d,m) € D x M[X] of B consists of a global state d and a
multiset m of pending handler instances. For a configuration ¢, we write c.d and
c.m for the global state and the multiset in the configuration respectively. The
initial configuration cqo of Y is given by co.d = dy and co.m = mg. The semantics
of B is given as a labeled transition system over the set of configurations, with
the transition relation =C (D x M[X]) x (D x M[X]) given by

(dme[o]) 5 (d,mem') iff 3w € Liyq: Parikh(w) = m’

We use —* for the reflexive transitive closure of the transition relation. A con-
figuration ¢ is said to be reachable in B if (dog, mg) —=* c.

Intuitively, the set Y of handler names specifies a finite set of procedures
that can be invoked asynchronously. The shared state takes values in D. When
a handler is called asynchronously, it gets added to a bag of pending handler
calls (the multiset m in a configuration). The language Lj,q captures the effect
of executing an instance of o starting from the global state d, such that on
termination, the global state is d’. Each word w € Lg,q captures a possible
sequence of handlers posted during the execution.

Suppose the current configuration is (d,m). A non-deterministic scheduler
picks one of the outstanding handlers ¢ € m and executes it. Executing o
corresponds to picking one of the languages Lg,q and some word w € Lgsq.
Upon execution of o, the new configuration has global state d’ and the new bag
of pending calls is obtained by taking m, removing an instance of o from it,
and adding the Parikh image of w to it. This reflects the current set of pending
handler calls—the old ones (minus an instance of o) together with the new ones
added by executing o. Note that a handler is executed atomically; thus, we
atomically update the global state and the effect of executing the handler.

Let us see some examples of asynchronous programs. It is convenient to
present these examples in a programming language syntax, and to allow each
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1 global var turn = ref 0 and x = ref O;

2 let rec s1 () = if * then begin post a; s1(); post b end

3 let rec s2 () = if * then begin post a; s2(); post b end else post b

4 let a () = if !turn = O then begin turn := 1; x := !x + 1 end else post a
5 let b () = if !turn = 1 then begin turn := 0; x := !x - 1 end else post b
6

7 let s3 () = post s3; post s3

8

9 global var t = ref 0;

10 let ¢ () = if 't = 0 then t := 1 else post c

11 let d () = if !t = 1 then t := 2 else post d

12 let f () = if !t = 2 then t := O else post f

13

14 let cc x = post c; x
15 let dd x = post d; x
16 let ff x = post f; x
17 let id x = x

18 let h gy = cc (g (dd y))
19 let rec produce g x = if * then produce (h g) (ff x) else g x
20 let s4 () = produce id ()

Fig. 1. Examples of asynchronous programs

handler to have internal actions that perform local tests and updates to the
global state. As we describe informally below, and formally in the full version,
when C is a full trio, internal actions can be “compiled away” by taking an in-
tersection with a regular language of internal actions and projecting the internal
actions away. Thus, we use our simpler model throughout.

Ezxamples Figure 1 shows some simple examples of asynchronous programs in an
OCaml-like syntax. Consider first the asynchronous program in lines 1-5. The
alphabet of handlers is s1, s2, a, and b. The global states correspond to possible
valuations to the global variables turn and x; assuming turn is a Boolean and
x takes values in N, we have that D = {0,1} x {0,1,w}, where w abstracts
all values other than {0,1}. Since s1 and s2 do not touch any variables, for
d,d € D, we have Lyg1q4 = {a"0" | n >0}, Lysoa = {2"d""! | n > 0}, and
Ld,sl,d’ = Ld,s2,d’ =0ifd 7é d.

For the languages corresponding to a and b, we use syntactic sugar in the
form of internal actions; these are local tests and updates to the global state. For
our example, we have, e.g., L 0),a,(1,1) = 1€}, L(1,2),a,(1,0) = 12} for all values
of x, and similarly for b. The meaning is that, starting from a global state (0, 0),
executing the handler will lead to the global state (1,1) and no handlers will be
posted, whereas starting from a global state in which turn is 1, executing the
handler will keep the global state unchanged but post an instance of a. Note
that all the languages are context-free.

Consider an execution of the program from the initial configuration
((0,0),[s1]). The execution of s1 puts n as and n bs into the bag, for some
n > 0. The global variable turn is used to ensure that the handlers a and b
alternately update x. When turn is 0, the handler for a increments x and sets
turn to 1, otherwise it re-posts itself for a future execution. Likewise, when turn
is 1, the handler for b decrements x and sets turn back to 0, otherwise it re-posts
itself for a future execution. As a result, the variable x never grows beyond 1.
Thus, the program satisfies the safety property that no execution sets x to w.



General Decidability Results for Asynchronous Programs 455

It is possible that the execution goes on forever: for example, if s1 posts
an a and a b, and thereafter only b is chosen by the scheduler. This is not an
“interesting” infinite execution as it is not fair to the pending a. In the case
of a fair scheduler, which eventually always picks an instance of every pending
task, the program terminates: eventually all the as and bs are consumed when
they are scheduled in alternation. However, if instead we started with [s2], the
program will not terminate even under a fair scheduler: the last remaining b will
not be paired and will keep executing and re-posting itself forever.

Now consider the execution of s3. It has an infinite fair run, where the
scheduler picks an instance of s3 at each step. However, the number of pend-
ing instances grows without bound. We shall study the boundedness problem,
which checks if the bag can become unbounded along some run. We also study
a stronger notion of fair termination, called fair non-starvation, which asks that
every instance of a posted handler is executed under any fair scheduler. The
execution of s3 is indeed fair, but there can be a specific instance of s3 that is
never picked: we say s3 can starve an instance.

The program in lines 9-20 is higher-order (produce and h take functions as
arguments). The language of s4 is the set {c"d"f" | n > 0}, that is, it posts an
equal number of cs, ds, and fs. It is an indexed language; we shall see (Section 5)
how this and other higher-order programs can be represented using higher-order
recursion schemes (HORS). Note the OCaml types of produce : (0 — 0) — 0 — o
and h: (0 — o) — o — o are higher-order.

The program is similar to the first: the handlers ¢, d, and f execute in “round
robin” fashion using the global state t to find their turns. Again, we use internal
actions to update the global state for readability. We ask the same decision
questions as before: does the program ever reach a specific global state and
does the program have an infinite (fair) run? We shall see later that safety and
termination questions remain decidable, whereas fair termination does not.

3 Decision Problems on Asynchronous Programs
We now describe decision problems on runs of asynchronous programs.

Runs, preruns, and downclosures A prerun of an AP P = (D, X, (L.)cec, do, mp)
is a finite or infinite sequence p = (eg,ng), 01, (€1,1n1),09,... of alternating el-
ements of tuples (e;,n;) € D x M[X] and symbols o; € Y. The set of preruns
of P will be denoted Preruns(3). Note that if two asynchronous programs 8
and P’ have the same D and X, then Preruns() = Preruns(’). The length,
denoted |p|, of a finite prerun p is the number of configurations in p. The *"
configuration of a prerun p will be denoted p(7).

We define an order < on preruns as follows: For preruns p =
(e0,m0),01,(e1,1n1),09,...and p’ = (e}, ng), o}, (eh,n}), 0%, ..., we define p < p/
if |p| = |p'| and e; = €}, 0, = o} and n; < n for each ¢ > 0. The downclosure | R
of a set R of preruns of P is defined as R = {p € Preruns(P) | Ip’ € R. p < p'}.

A run of an AP P = (D, X, (Le)cce,do,mg) is a prerun p =
(do,mg), 01, (d1,my),09,... starting with the initial configuration (dg, mg),
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where for each i > 0, we have (d;, m;) RAEEN (dit1,m;y1). The set of runs of
P is denoted Runs(P) and JRuns(P) is its downclosure with respect to <.

An infinite run cg 2% ¢, =5 ... is fair if for all i > 0, if ¢ € ¢;.m then
there is some j > 4 such that c; Z cj+1- That is, whenever an instance of a
handler is posted, some instance of the handler is executed later. Fairness does
not preclude that a specific instance of a handler is never executed. An infinite
fair run starves handler o if there exists an index .JJ > 0 such that for each j > J,
we have (i) ¢;, m(o) > 1 and (ii) whenever ¢; = ¢;41, we have ¢;.m(c) > 2. In
this case, even if the run is fair, a specific instance of ¢ may never be executed.

Now we give the definitions of the various decision problems.

Definition 2 (Properties of finite runs). The Safety (Global state
reachability) problem asks, given an asynchronous program B and a global
state dy € D, is there a reachable configuration ¢ such that c.d = ds? If so, dy
is said to be reachable (in ) and unreachable otherwise. The Boundedness
(of the task buffer) problem asks, given an asynchronous program 3, is there
an N € N such that for every reachable configuration ¢, we have |c.m| < N?
If so, the asynchronous program P is bounded; otherwise it is unbounded. The
Configuration reachability problem asks, given an asynchronous program 3
and a configuration ¢, is ¢ reachable?

Definition 3 (Properties of infinite runs). All the following problems take
as input an asynchronous program B3. The Termination problem asks if all runs
of B are finite. The Fair Non-termination problem asks if B has some fair
infinite run. The Fair Starvation problem asks if '3 has some fair run that
starves some handler.

Our main result in this section shows that many properties of an asyn-
chronous program ‘B only depend on the downclosure [Runs(3) of the set
Runs(B) of runs of the program 9. The proof is by induction on the length
of runs. For any AP B = (D, X, (L¢)cce,do, mg), we define the AP [P =
(D, X, (LL¢)cee, do, mg), where | L, is the downclosure of the language L. under
the subword order.

Proposition 1. Let B = (D, X, (L¢)cee, do, mg) be an asynchronous program.
Then {Runs(JB) = [Runs(P). In particular, the following holds. (1) For every
d € D, B can reach d if and only if 1B can reach d. (2) P is terminating if and
only if IR is terminating. (3) P is bounded if and only if [P is bounded.

Intuitively, safety, termination, and boundedness is preserved when the mul-
tiset of pending handler instances is “lossy”: posted handlers can get lost. This
corresponds to these handlers never being scheduled by the scheduler. However,
if a run demonstrates reachability of a global state, or non-termination, or un-
boundedness, in the lossy version, it corresponds also to a run in the original
problem (and conversely). In contrast, simple examples show that configura-
tion reachability, fair termination, and fair non-starvation properties are not
preserved under downclosures.
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4 General Decidability Results

In this section, we characterize those full trios C for which particular problems
for asynchronous programs over C are decidable. Our decision procedures will
use the following theorem, summarizing the results from [12], as a subprocedure.

Theorem 1 ([12]). Safety, boundedness, configuration reachability, termi-
nation, fair non-termination, and fair non-starvation are decidable for asyn-
chronous programs over regular languages.

4.1 Safety and termination
Our first main result concerns the problems of safety and termination.
Theorem 2. Let C be a full trio. The following are equivalent:

(i) Safety is decidable for asynchronous programs over C.
(i) Termination is decidable for asynchronous programs over C.
(#i) Emptiness is decidable for C.

We begin with “(i)=-(iii)”. Let K C X* be given. We construct P =
(D, X, (L¢)cee, do, mg) such that mg = [o], D = {do,d1}, Lay,0.a, = K and
L. =0 for ¢ # (dy,0,d;). We see that P8 can reach dy iff K is non-empty. Next
we show “(ii)=-(iii)”. Consider the alphabet I' = (X' U {e}) x {0,1} and the ho-
momorphisms g: I'* — X* and h: I'* — {o}*, where for z € X' U {e}, we have
g((x,i)) = x for i € {0,1}, h((z,1)) = o, and h((z,0)) = e. If R C I'* is the
regular set of words in which exactly one position belongs to the subalphabet
(X U {e}) x {1}, then the language K’ := h(g~*(K) N R) belongs to C. Note
that K’ is @ or {0}, depending on whether K is empty or not. We construct
B = (D, X, (Le)eee, do, mg) with D = {do}, mg = [o], Lgy,0.a, = K’ and all
languages L. = ) for ¢ # (do, 0,dy). Then R is terminating iff K is empty.

To prove “(iii)=-(i)”, we design an algorithm deciding safety assuming decid-
ability of emptiness. Given asynchronous program P8 and state d as input, the
algorithm consists of two semi-decision procedures: one which searches for a run
of P reaching the state d, and the second which enumerates regular overapprox-
imations B’ of P and checks the safety of P8’ using Theorem 1. Each B’ consists
of a regular language A. overapproximating L. for each context ¢ of . We use
decidability of emptiness to check that L. N (X* \ A.) = () to ensure that 9’ is
indeed an overapproximation.

The algorithm clearly gives a correct answer if it terminates. Hence, we only
have to argue that it always does terminate. Of course, if d is reachable, the first
semi-decision procedure will terminate. In the other case, termination is due to
the regularity of downclosures: if d is not reachable in B, then Proposition 1
tells us that [P cannot reach d either. But [*J3 is an asynchronous program over
regular languages; this means there exists a safe regular overapproximation and
the second semi-decision procedure terminates.

Like the algorithm for safety, the algorithm for termination consists of two
semi-decision procedures. By standard well-quasi-ordering arguments, an infinite
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run of an asynchronous program ‘33 is witnessed by a finite self-covering run.
The first semi-decision procedure enumerates finite self-covering runs (trying to
show non-termination). The second procedure enumerates regular asynchronous
programs ‘B’ that overapproximate 3. As before, to check termination of §3’, it
applies the procedure from Theorem 1. Clearly, the algorithm’s answer is always
correct. Moreover, it gives an answer for every input. If 8 does not terminate, it
will find a self-covering sequence. If 3 does terminate, then Proposition 1 tells
us that [ is a terminating finite-state overapproximation. This implies that the
second procedure will terminate in that case.

Let us point out a particular example. The class £ of languages of lossy chan-
nel systems is defined like the class of languages of WST'S with upward-closed sets
of accepting configurations as in [13], except that we only consider lossy channel
systems [1] instead of arbitrary Well-Structured Transition Systems (WSTS).
Then £ forms a full trio with decidable emptiness. Although downclosures of
lossy channel languages are not effectively computable (an easy consequence of
[27]), our algorithm employs Theorem 2 to decide safety and termination.

4.2 Boundedness
Theorem 3. Let C be a full trio. The following are equivalent:

(i) Boundedness is decidable for asynchronous programs over C.
(i) Finiteness is decidable for C.

Clearly, the construction for “(i)=-(iii)” of Theorem 2 also works for “(i)=-(ii)”:
B is unbounded iff K is infinite.

For the converse, we first note that if finiteness is decidable for C then so is
emptiness. Given L C X* from C, consider the homomorphism h: (X U{A})* —
X* with h(a) = a for every a € X and h()\) = &. Then h~!(L) belongs to C and
h=1(L) is finite if and only if L is empty: in the inverse homomorphism, \ can
be arbitrarily inserted in any word. By Theorem 2, this implies that we can also
decide safety. As a consequence of considering only full trios, it is easy to see that
the problem of context reachability reduces to safety: a context ¢ = (ci, 6,d yece
is reachable in B if there is a reachable configuration (d, m) in 9 with m(5) > 1.

We now explain our algorithm for deciding boundedness of a given
aysnchronous program B = (D, X, (L.)cce,do, mp). For every context ¢, we
first check if L. is infinite (feasible by assumption). This paritions the set of con-
texts of B into sets I and F' which are the contexts for which the corresponding
language L. is infinite and finite respectively. If any context in I is reachable,
then B is unbounded. Otherwise, all the reachable contexts have a finite lan-
guage. For every finite language L. for some ¢ € F, we explicitly find all the
members of L.. This is possible because any finite set A can be checked with L.
for equality. L. € A can be checked by testing whether L. N (X*\ A) = () and
L.N(XZ*\ A) effectively belongs to C. On the other hand, checking A C L, just
means checking whether L. N {w} # 0 for each w € A, which can be done the
same way. We can now construct asynchronous program 93’ which replaces all
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languages for contexts in I by () and replaces those corresponding to F' by the
explicit description. Clearly P’ is bounded iff 3 is bounded (since no contexts
from I are reachable) and the former can be decided by Theorem 1.

We observe that boundedness is strictly harder than safety or termination:
There are full trios for which emptiness is decidable, but finiteness is undecidable,
such as the languages of reset vector addition systems [11] (see [32] for a definition
of the language class) and languages of lossy channel systems.

4.3 Configuration reachability and liveness properties

Theorems 2 and 3 completely characterize for which full trios safety, termina-
tion, and boundedness are decidable. We turn to configuration reachability, fair
termination, and fair starvation. We suspect that it is unlikely that there is a
simple characterization of those language classes for which the latter problems
are decidable. However, we show that they are decidable for a limited range of
infinite-state systems. To this end, we prove that decidability of any of these
problems implies decidability of the others as well, and also implies the decid-
ability of a simple combinatorial problem that is known to be undecidable for
many expressive classes of languages.

Let Z C {a,b}* be the language Z = {w € {a,b}* | |w|a = |w|p}. The Z-
intersection problem for a language class C asks, given a language K C {a,b}*
from C, whether K N Z # (). Informally, Z is the language of all words with an
equal number of as and bs and the Z-intersection problem asks if there is a word
in K with an equal number of as and bs.

Theorem 4. Let C be a full trio. The following statements are equivalent:

(i) Configuration reachability is decidable for asynchronous programs over C.
(i) Fair termination is decidable for asynchronous programs over C.
(iii) Fair starvation is decidable for asynchronous programs over C.

Moreover, if decidability holds, then Z-intersection is decidable for C.

We prove Theorem 4 by providing reductions among the three problems
and showing that Z-intersection reduces to configuration reachability. We use
diagrams similar to automata to describe asynchronous programs. Here, circles

represent global states of the program and we draw an edge @i in

case we have Lg,q = L in our asynchronous program ‘3. Furthermore, we
have L4, ¢ = ) whenever there is no edge that specifies otherwise. To simplify

. w|L .
notation, we draw an edge d L) d' in an asynchronous program for a word
we X w=o071...0,0 with 01,...,0, € X, to symbolize a sequence of states

O1[\€ o2[1€ on_1l{€ onl|L
@ I{}@ {e} .. |{}@ | @

which removes [oq,...,0,] from the task buffer and posts a multiset of handlers
specified by L.
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Proof of “(ii)=(i)” Given an asynchronous program 3 = (D, X, (L.)cce, do, mg)
and a configuration (dy, my) € D x M[X], we construct asynchronous program
P’ as follows. Let z be a fresh letter and let my = [o1,...,0,]. We obtain P’
from P by adding a new state d} and including the following edges:

S O

Starting from (do, mg @ [z]), the program 3’ has a fair infinite run iff (d;, my)
is reachable in B. The ‘if” direction is obvious. Conversely, z has to be executed
in any fair run p of P’ which implies that d’; is reached by P’ in p. Since only z
can be executed at d’f in p, this means that the multiset is exactly m; when dy
is reached during p. Clearly this initial segment of p corresponds to a run of B3
which reaches the target configuration.

Proof of “(iii)=(ii)” We construct P’ = (D, X', (L.)ccer, do, m()) given P =
(D, X, (L¢)cee, do, mg) over C as follows. Let X = X U {s}, where s is a fresh
handler. Replace each edge

C 0|L by . o|LU Ls . sle

at every state d € D. Moreover, we set m{, = mo® s, s]|. Then 3’ has an infinite
fair run that starves some handler if and only if *J3 has an infinite fair run. From
an infinite fair run p of P, we obtain an infinite fair run of P’ which starves
s, by producing s while simulating p and consuming it in the loop. Conversely,
from an infinite fair run p’ of B’ which starves some 7, we obtain an infinite fair
run p of P by omitting all productions and consumptions of s and removing two
extra instances of s from all configurations.

Proof of “(i)=(ii1)” From P = (D, X, (L.)cee,do, mgp) over C, for each sub-
set I' € X and 7 € Y, we construct an asynchronous program ‘Br, =
(D', 2, (L¢)eeer, dfy, m()) over C such that a particular configuration is reach-
able in B, if and only if P has a fair infinite run pr,, where " is the set of
handlers that is executed infinitely often in pr, and pp, starves 7. Since there
are only finitely many choices for I" and 7, decidability of configuration reach-
ability implies decidability of fair starvation. The idea is that run pr , exists if
and only if there exists a run

(do,mg) 25 - % (d,, my,) = (eg,mp) =5 (eg,m1) 25 - 25 (ep,my), (1)
where Ule{%} =TI, for each 1 <i <k n; € M[I'], m,, < ng, and for each ¢ €
{1,...,k} with v; = 7, we have n;_;(7) > 2. In such a run, we call (dy, mg) ==

- 2% (dyn, my,) its first phase and (eg, ng) = - - %5 (ex, ny) its second phase.

Let us explain how Br, reflects the existence of a run as in Eq. (1). The
set ' of handlers of 9, includes ¥, £ and ¥, where ¥ = {5 | 0 € ¥} and
Y ={6| 0 € X} are disjoint copies of . This means, a multiset M[X’] contains
multisets m’ = m@é&mem with m € M[X], m € M[Y], and m € M[Y]. A run of
B, simulates the two phases of p. While simulating the first phase, P, keeps
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two copies of the task buffer, m and m. The copying is easily accomplished by a
homomorphism with o +— oo for each o € X. At some point, P, switches into
simulating the second phase. There, m remains unchanged, so that it stores the
value of m,, in Eq. (1) and can be used in the end to make sure that m,, < ny.
Hence, in the second phase, P r - works, like °B, only with . However, when-
ever a handler o € X is executed, it also produces a task &. These handlers are
used at the end to make sure that every v € I" has been executed at least once
in the second phase. Also, whenever 7 is executed, P, checks that at least two
instances of 7 are present in the task buffer, thereby ensuring that 7 is starved.
In the end, a distinguished final state allows B, to execute handlers in I
and I simultaneously to make sure that m,, < ny. In its final state, Pr - can
execute handlers 4 € I and € I (without creating new handlers). In the final
configuration, there can be no ¢ with o € X'\ I', and there has to be exactly one
4 for each y € I'. This guarantees that (i) each handler in I' is executed at least
once during the second phase, (ii) every handler executed in the second phase is
from I', and (iii) m,, contains only handlers from I" (because handlers from X
cannot be executed in the second phase).
Decidability of Z-intersection To complete the proof of Theorem 4, we reduce
Z-intersection to configuration reachability. Given K C {a,b}* from C, we con-
struct the asynchronous program B = (D, X, (L.).cc,do, mg) over C where
D ={dy,0,1}, X = {a,b, c}, by including the following edges:

al{e}

c|K
—@)— @ D
b|{e}

The initial task buffer is mg = [c]]. Then clearly, the configuration (0, []) is
reachable in 9P if and only if K N Z # 0.

Theorem 4 is useful in the contrapositive to show undecidability. For example,
one can show undecidability of Z-intersection for languages of lossy channel
systems (see Section 4.1): One expresses reachability in a non-lossy FIFO system
by making sure that the numbers of enqueue- and dequeue-operations match.
Thus, for asynchronous programs over lossy channel systems, the problems of
Theorem 4 are undecidable. We also use Theorem 4 in Section 5 to conclude
undecidability for higher-order asynchronous programs, already at order 2.

5 Higher-Order Asynchronous Programs

We apply our general decidability results to asynchronous programs over (deter-
ministic) higher-order recursion schemes (HORS). Kobayashi [21] has shown how
higher-order functional programs can be modeled using HORS. In his setting, a
program contains instructions that access certain resources. For Kobayashi, the
path language of the HORS is the set of possible sequences of instructions. For
us, the input program contains post instructions and we translate higher-order
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programs with post instructions into a HORS whose path language is used as
the language of handlers.

We recall some definitions from [21]. The set of types is defined by the grammar
A = o| A — A. The order ord(A) of a type A is inductively defined as
ord(o) = 0 and ord(A — B) := max(ord(A) + 1,ord(B)). The arity of a type
is inductively defined by arity(o) = 0 and arity(A — B) = arity(B) + 1. We
assume a countably infinite set Var of typed variables = : A. For a set © of typed
symbols, the set @ of terms generated from @ is the least set which contains ©
such that whenever s : A — B and t : A belong to O, then also st : B belongs
to ©. By convention the type o — ... (o — (0 — 0)) is written 0 — ... =0 — o
and the term ((¢1t2)ts---)t, is written tyto---t,. We write T for a sequence
(z1,22,...,2,) of variables.

A higher-order recursion scheme (HORS) is a tuple ./ = (X, N, R, S) where
Y is a set of typed terminal symbols of types of order 0 or 1, A is a set of
typed non-terminal symbols (disjoint from terminal symbols), S : o is the start
non-terminal symbol and R is a set of rewrite rules Fxyxo--- 2z, — t where
F:A — .-~ — A, — ois a non-terminal in A, x; : 4; for all ¢ are variables
and ¢ : o is a term generated from X U N U Var. The order of a HORS is the
maximum order of a non-terminal symbol. We define a rewrite relation — on
terms over ¥ UN as follows: Fa — t[z/a] if FT — t € R, and if ¢t — t’ then
ts — t's and st — st’. The reflexive, transitive closure of —» is denoted —*. A
sentential form t of . is a term over X U N such that S —* ¢.

If N is the maximum arity of a symbol in X, then a (possibly infinite) tree over
X is a partial function tr from {0,1,..., N — 1}* to X' that fulfills the following
conditions: € € dom(¢r), dom(¢r) is closed under prefixes, and if ¢r(w) = a and
arity(a) = k then {j | wj € dom(¢r)} = {0,1,...,k —1}.

A deterministic HORS is one where there is exactly one rule of the form
Fxyxg---x, — t for every non-terminal F. Following [21], we show how a de-
terministic HORS can be used to represent a higher-order pushdown language
arising from a higher-order functional program.

Sentential forms can be seen as ranked trees over X UN UVar. A sequence IT
over {0,1,...,n—1} is a path of tr if every finite prefix of IT € dom(¢r). The set
of paths in a tree ¢r will be denoted Paths(t¢r). Note that we are only interested
in finite paths in our context. Associated with any path I = ny,no, ..., ny is the
word wy = tr(ny)tr(ning) - - - tr(ning - --ng). Let 2y := {a € 2| arity(a) = 1}.
The path language L,(7) of a deterministic HORS .7 is defined as {Proj s, (wir) |
IT € Paths(7)}. The tree language Li(.7) associated with a HORS is the set of
finite trees over X' generated by ..

The deterministic HORS corresponding to the higher-order function s3 from
Figure 1 is given by . = (¥, N, R, S), where
Y ={br:o0—o0—o0,c,d,f:0—>0,e:0}
N={S:0,F:(0—>0)—0—0,H:(0—>0)—0—0,]:0—0}
R={S—»Flelx—uz,FGz—br(F (HG) (fz)) (G ),
H G x— c(G(dx))}
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The path language £,(.) = {c"d"£™ | n > 0}. To see this, apply the reduction
rules to get the value tree 7o shown on the right:

S —F1le—br (F (HI) (fe)) (Ie) br
—br (F (HI) (fe)) e e br
— br (br (F (H2I) (£%e)) (HI)(fe)) e ?/ /‘br\
— br (br (F (HI) (£%e)) c(I(dfe)) e 4= -
o br (br (F (H2I) (£2e)) cdfe) e f:

A HORS .7 is called a word scheme if it has exactly one nullary terminal
symbol e and all other terminal symbols X are of arity one. The word language
L () C X* defined by .7 is L, () = {a1az---a, | (a1(ag---(an(e))---)) €
L(”)}. We denote by H the class of languages £, (-¥’) that occur as the word
language of a higher-order recursion scheme .. Note that path languages and
languages of word schemes are both word languages over the set X of unary
symbols considered as letters. They are connected by the following proposition.?

Proposition 2. For every order-n HORS . = (X, N,S,R) there exists an
order-n word scheme %" = (X', N, 5", R") such that L,(/) = Ly (7).

A consequence of [21] and Prop. 2 is that the “post” language of higher-order
functional programs can be modeled as the language of a word scheme. Hence,
we define an asynchronous program over HORS as an asynchronous program over
the language class H and we can use the following results on word schemes.

Theorem 5. HORS and word schemes form effective full trios [7]. Emptiness
[23] and finiteness [29] of order-n word schemes are (n — 1)-EXPTIME-complete.

Now Theorems 2 and 3, together with Proposition 2 imply the decidability
results in Corollary 1. The undecidability result is a consequence of Theorem 4
and the undecidability of the Z-intersection problem for indexed languages or
equivalently, order-2 pushdown automata as shown in [33]. Order-2 pushdown
automata can be effectively turned into order-2 OI grammars [10], which in turn
can be translated into order-2 word schemes [9]. See also [22, Theorem 4].

Corollary 1. For asynchronous programs over HORS: (1) Safety, termination,
and boundedness are decidable. (2) Configuration reachability, fair termination,
and fair starvation are undecidable already at order-2.

A Direct Algorithm We say that downclosures are computable for a language
class C if for a given description of a language L in C, one can compute an
automaton for the regular language |L. From Proposition 1 and Theorem 1,

2 The models of HORS (used in model checking higher order programs [21]) and word
schemes (used in language-theoretic exploration of downclosures [15,7]) are some-
what different. Thus, we show an explicit reduction between the two formalisms.
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if one can compute downclosures for a language class, then one can avoid the
enumerative approaches of Section 4 and get a “direct algorithm.” The algorithm
replaces each handler by its downclosure and then invokes the decision procedure
summarized in Theorem 1. The direct algorithm for asynchronous programs over
HORS relies on the recent breakthrough results on computing downclosures.

Theorem 6 ([33,15,7]). Downclosures are effectively computable for H.

Unfortunately, current techniques for computing downclosures do not yet pro-
vide a complexity upper bound as we describe below. In [33], it was shown that in
a full trio, downclosures are computable if and only if the diagonal problem for C
is decidable. The latter asks, given a language L C X*, whether for every k € N,
there is a word w € L with |w|, > k for every o € X. The diagonal problem was
then shown to be decidable for higher-order pushdown automata [15] and then
for word schemes [7]. The algorithm from [33] to compute downclosures using an
oracle for the diagonal problem employs enumeration to compute a downclosure
automaton, thus we have hidden the enumeration into the downclosure compu-
tation. We conjecture that downclosures can be computed in elementary time
for word schemes of fixed order. This would imply an elementary time procedure
for asynchronous programs over HORS of fixed order.

For handlers over context-free languages, given as PDAs, Ganty and Majum-
dar [12] show an EXPSPACE upper bound for safety, termination, and bound-
edness. Their algorithm constructs for each handler a polynomial-size Petri net
with certain guarantees (forming so-called adequate family of Petri nets) that
accepts a Parikh equivalent language. These Petri nets are then used to construct
a larger Petri net, polynomial in the size of the asynchronous program and the
adequate family of Petri nets, in which safety, termination, or boundedness can
be phrased as a query decidable in EXPSPACE.

A natural question is whether a downclosure-based algorithm matches the
same complexity. We can replace the Parikh-equivalent Petri nets of [12] with
Petri nets recognizing the downclosure of a language. It is an easy consequence of
Proposition 1 that the resulting Petri nets can be used in place of the adequate
families of Petri nets in the procedures for safety, termination, and boundedness
of [12]. Unfortunately, a finite automaton for | L may require exponentially many
states in the PDA [4], so a naive approach gives a 2EXPSPACE algorithm.

In the full version of this paper, we show that that for each context-free lan-
guage L, one can construct in polynomial time a 1-bounded Petri net accepting
JL. (Recall that a 1-bounded Petri net if every reachable marking has at most
one token in each place.) When used in the construction of [12], this matches the
EXPSPACE upper bound for safety, termination, and boundedness verification.

As a byproduct, we get a simple direct construction of a finite automaton
for JL when L is given as a PDA. This is of independent interest because ear-
lier constructions of [ L always start from a context-free grammar and produce
(necessarily!) exponentially large NFAs [24,8,4]. The key observation is that the
downclosure of the language of a PDA can be represented, after some simple
modifications, as the language accepted by the PDA with a bounded stack.
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