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I. PHOTON OBSERVABLES IN
THE TRUNCATED PHEG BASIS

The Bogoliubov and coherent shift transformations of
âα, â

†
α mentioned in Sec. 3 (main text) can be combined

as

ĉα =

√
ω̃α
4ωα

(
â†α + âα

)
−
√

ωα
4ω̃α

(
â†α − âα

)
+ β̂α ,

with the back transformation

âα =
1

2

(√
ωα
ω̃α

(
ĉ†α + ĉα

)
−
√
ω̃α
ωα

(
ĉ†α − ĉα

))
−
√
ωα
ω̃α

β̂α .

In a photon-free approach that ignores excited states of
ĉ†αĉα the photon number operator for mode α is thus

found to be â†αâα = ωα
ω̃α
β̂2
α. In the limits ωα → 0 and

ωα → ∞ this operator goes to zero as expected. The
expectation value of the photon number operator for the
pHEG ground state with βα(K) = 0 and nα = 0 is found
to be 〈â†αâα〉 = (ω̃α−ωα)2/(4ω̃αωα) [1] (the factor two in
the reference comes from taking two different polarization
directions into account).

A benchmark calculation is displayed in Fig. 1 and
shows a rapid increase in accuracy including just a few
excitation numbers in a truncated pHEG basis. This spe-
cial feature of the pHEG approximation is further high-
lighted by plotting the excitation-number distribution,
i.e., the probability to find the system in each excitation-
number sector, see Fig. 2. For small excitation numbers
the pHEG basis shows a much quicker decrease, meaning
a higher accuracy if the basis is truncated at low excita-
tion numbers.
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Figure 1: Absolute deviation of the photon number in the
ground state compared to a Pauli-Fierz reference solu-
tion for a tunable one-dimensional soft-Coulomb hydrogen
v(x) = −1/

√
x2 + ξ2 coupled to a single cavity mode. (a)

Pauli-Fierz Hamiltonian with maxnα = 4 excitations, (b)
pHEG basis with maxnα = 0 and the original potential v,
(c) pHEG basis with maxnα = 0 but mollified potential
v ∗ m0,0

α , (d) pHEG basis with maxnα = 4. The result is
similar to Fig. 4 (main text), just with a lesser benefit from
the mollified potential. The electronic dimension has 41
k-points on a periodic grid. The reference solution was ob-
tained using the Pauli-Fierz Hamiltonian with 100 photonic
excitations. The displayed parameter area is smaller than
in Fig. 4 (main text) in order to limit it to values where the
reference solution has converged.

II. BENCHMARK FOR A
DOUBLE-WELL POTENTIAL

The soft-Coulomb potential represents the simplest
imaginable realization of an atomic/molecular system.
Potentials with a single charge-center, e.g., periodic co-
sine and harmonic potentials, provided similar bench-
mark results. A double-well potential, a common model
to describe phase-transitions [2] and molecular reactivity
[3], provides an alternative point-of-view for the bench-
mark as two separate charge centers are present. Using
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Figure 2: Excitation-number distribution for the ground
state with a pHEG basis compared to a Pauli-Fierz refer-
ence solution for a one-dimensional soft-Coulomb potential
with ξ = 1 coupled to a single cavity mode with λα = 1.
The electronic dimension has 41 k-points on a periodic grid.
The photon filling in the low-number sectors in considerably
reduced in the pHEG basis which makes the truncation at
low excitation numbers numerically accurate.

the potential vext(x) = 1
20 [−x2 + 1

25x
4], Fig. 3-5 illus-

trates the performance of the various developed approx-
imations. All approximations capture the overall ten-
dency to localize charge in the individual wells, similar
to previous investigations [2, 4, 5]. The photon-free
construction and the photon-coupled HEG basis provide
therefore still very good predictions for this model. While
the LDA has the right tendency, it underestimates the
influence of the field and stays too strongly delocalized.
This is well in line with the failures of ordinary DFT,
where also there it is common for the LDA to delocalize
density too strongly. The latter aspect is why LDA+U,
i.e., adding local strong correlation to specific orbitals,
obtained over the past years increasing interest as it tar-
gets specifically this short-coming. A similar local corre-
lation could be considered in the presented framework.

III. MINIMAL-COUPLING PHOTON-
EXCHANGE APPROXIMATION

The static Pauli-Fierz Hamiltonian in full minimal cou-
pling in SI units takes the form [6, 7]

Ĥ(t) =

Ne∑
i=1

1

2m

(
−i~∇i −

q

c
Â(ri)

)2
+

Ne∑
i=1

qa0(ri)︸ ︷︷ ︸
=v(ri)

−
Ne∑
i=1

q

2mc
σi ·

(
∇i × Â(ri)

)
+

1

4πε0

Ne∑
i<j

q2

|ri − rj |

+

2∑
s=1

∫
~ω(k)â†(k, s)â(k, s)dk ,

where additionally an external current can be coupled to
the photon subsystem to establish the basic mapping the-
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Figure 3: To Fig. 5 (main text) equivalent benchmark using
a double-well potential. The ground-state variance and en-
ergy difference shows that the photon-free construction pro-
vides a qualitatively good description of the accumulation
of the charge in each well. We limited the investigation here
to a reasonable range up to λ = 1.038 a.u.. For extreme
couplings values and depending on the chosen potential,
the renormalization can be so drastic, that the electronic
density is localized on top of the barrier at x = 0 in order
to minimize the dipole-fluctuations. This configuration is
clearly unstable against any numerical perturbation which
impairs the numerical solvers.
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Figure 4: Real-space electronic density for the double-well
potential. The local-density approximation is compared to
the photon-free and exact solution at λ = 1.038 a.u. and
λ = 0 a.u.. While the LDA has the right tendency, it un-
derestimates the influence of the field and stays too strongly
delocalized.



3

Figure 5: Momentum-space density deviation from the exact
result for the double-well potential using different levels of
approximation. Already for a cutoff at a single excitation in
the pHEG basis we see perfect agreement. Parameters are
as before.

orem of ground-state QEDFT [7, 8]. The vector potential
operator in Coulomb gauge is given by

Â(r) =

√
~c2

ε0(2π)3

∫
dk√
2ωk

2∑
s=1

ε(k, s)
[
â(k, s)eik·r

+ â†(k, s)e−ik·r
]
.

We use the usual definitions for the frequency ω(k) =
c|k|, the bosonic creation and annihilation field opera-
tors â†(k, s) and â(k, s), as well as for the polarization
unit vectors ε(k, s) for the continuum of free-space modes
indicated by their wave vector k and the two physical
polarization directions s. Further, a0(r) is a scalar exter-
nal vector potential and σ denotes a vector of the 2× 2
Pauli matrices in the Stern-Gerlach term. The Pauli-
Fierz Hamiltonian can be derived either by taking the
non-relativistic limit of the Dirac Hamiltonian [7], where
the Stern-Gerlach term appears naturally, or by quantiz-
ing the Abraham model of classical radiation-reactions
with an ad hoc inclusion of the Stern-Gerlach term [6]. In
order for the Pauli-Fierz Hamiltonian to be well-defined
we need to include an ultra-violet cutoff and we further
note that m is the bare mass of the electrons. The main
reason for working in SI units in this appendix is to keep
track of the difference between bare and physical mass.

Following the discussion in the main text we will use
two basic equations of motion to establish the minimal-
coupling px approximation. The first one is the operator
form of the Maxwell’s equation in the Heisenberg pic-
ture [7, 8](

1

c2
d

dt
−∇2

)
ÂH(r, t) = µ0cq ĵ⊥,H(r, t), (1)

where the physical-current-density operator in the
Schrödinger picture is

ĵ(r) = ĵp(r) + ĵd(r) + ĵm(r).

The additional ⊥ indicates that we only consider the
divergence-free part due to the Coulomb gauge [7, 8] and
the first term in the total current density is the param-
agnetic current density

ĵp(r) =
~

2mi

Ne∑
i=1

(
δ(r− ri)

−→
∇i −

←−
∇iδ(r− ri)

)
,

the second term is the diamagnetic current density

ĵd(r) = − q

mc

Ne∑
i=1

δ(r− ri)Â(r) ,

and the last one is the magnetization current due to the
Stern-Gerlach term

ĵm(r) =

Ne∑
i=1

~
2m

(
δ(r− ri)

−→
∇i × σi +

←−
∇i × σiδ(r− ri)

)
.

The second equation of motion, which will be enough
to investigate the static case in analogy to the main text,
is the (component wise) paramagnetic equation of mo-
tion [7, 8]

d

dt
ĵkp,H(r, t) = F̂ kT,H(r, t) + F̂ kW,H(r, t) (2)

+
q

mc

3∑
l=1

[
ÂlH(r, t)∂lĵ

k
p,H(r, t) +

(
∂kÂ

l
H(r, t)

)
ĵlp,H(r, t)

]
− 1

m

[
∂k

(
q2

2mc2
ÂH(r, t)2 + v(r)

)]
ρ̂H(r, t)

+
q

mc

3∑
l,m,n=1

(
∂k∂lÂ

m
H (r, t)

)
εlmnµ̂nH(r, t) ,

where εlmn is the anti-symmetric Levi-Civita symbol and

F̂T (r) =
i~2

2m

[
ĵp(r),

∑
i

∇2
i

]
,

F̂W (r) = − i

4πε0

ĵp(r),

Ne∑
i<j

q2

|ri − rj |

 ,

µ̂(r) =
~

2m

∑
i

σiδ(r− ri) .

Using now a Pauli-Kohn-Sham system with the exact
A(r) = 〈Â(r)〉 from the Maxwell-Kohn-Sham equa-

tion [8] we get the same Eq. (2), where instead of Â(r) we
just use the expectation value (mean-field) A(r) and re-
place v(r) by vs(r). Using now that vMxc(r) = vs(r)−v(r)
we find (suppressing the r dependency)
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∇2vMxc = m

3∑
k=1

∂k
1

ρ

[
F kT [Φ]− F kT [Ψ]− F kW [Ψ]− q

mc

3∑
l=1

(
〈Âl∂lĵkp〉 −Al∂ljkp [Φ] +

〈(
∂kÂ

l
)
ĵlp

〉
−
(
∂kA

l
)
jlp[Φ]

)
+

1

m

(〈(
∂k

q2

2mc2
Â2

)
ρ̂

〉
−
(
∂k

q2

2mc2
A2

)
ρ

)
− q

mc

3∑
l,m,n=1

(〈(
∂k∂lÂ

m
)
εlmnµ̂n

〉
− (∂k∂lA

m) εlmnµn[Φ]
)]

.

(3)

Again, the major issue is to find a reasonable approxi-
mation for the explicit light-matter coupling terms. Fol-
lowing the discussion in the main text we solve Eq. (1)
formally, consider the fluctuations about the mean-field
∆Â(r) and replace

∆Â(r)→ q

4πε0c

∫
∆ĵ⊥(r′)

|r− r′|
dr′ (4)

in Eq. (3) (in a symmetrized manner as discussed in the
main text) and use Ψ → Φ throughout. In this way,
we have defined the corresponding minimal-coupling px
approximation, where the usual quantum-mechanical Hx
part is defined by Eq. (14) (main text).

Assuming now that the induced fields have wave-
lengths that are much larger than the extension of the
matter subsystem of interest, we can make the long-
wavelength approximation for the px potential. Consid-
ering Eq. (3), the only term that is not strongly sup-
pressed in this case is

q

mc

3∑
l=1

(〈
Âl∂lĵ

k
p

〉
−Al∂ljkp [Φ]

)
−→ q

mc

(〈(
Â · ∇

)̂
jp

〉
− (A · ∇)jp[Φ]

)
.

Since in the long-wavelength limit also the Stern-Gerlach

term vanishes, the physical current is just ĵ(r) = ĵp(r) +

ĵd(r). Furthermore, replacing the Green’s function of the
free-space Laplacian by its periodic finite-volume coun-
terpart

1

4π|r− r′|
→
∑
n∈Z3

1

V k2
n

eikn·(r−r′) , (5)

where kn = 2π
L n and V = L3, we can express Eq. (4)

explicitly by

∆Â(r) =
q

ε0c

∑
n,s

εn,s
V k2

n

∫
eikn·(r−r′)εn,s ·∆ĵ(r′)dr′ .

If we now denote α ≡ (n, s), Sα(r) = exp(ikn · r)/
√
V ,

λα(r) = Sα(r)
√

1/ε0 and ω2
d = q2N/(mε0V ) this be-

comes in the long-wavelength limit

∆Â =
c

qN

∑
α

εα
ω2
d

ω2
α

εα ·
(

∆Ĵp −∆Ĵd

)
, (6)

where Ĵp = −i~
∑
i∇i and Ĵd = q

cNeÂ. Eq. 6 can then

be solved for Â by the Bogoliubov transformation in-
troduced in Materials and Methods which leads to the

new frequencies ω̃α and polarization vectors ε̃α. If we
further allow to take into account a cavity in the long-
wavelength limit by changing the λα and εα, only keep a
few effective modes, subsume the rest of the modes in the
physical mass of the electrons m → me and use atomic
units (~ = |e| = me = 1/(4πε0) = 1), we recover exactly
the case of the main text. We note that for the sake of
consistency, if we change the local form of the modes by
hand, also the longitudinal modes will change as can be
seen from Eq. (5). We therefore use a generic w(r, r′) in
the main text to accommodate also this eventuality.

This connection to the long-wavelength limit also di-
rectly shows that if we go beyond the dipole approxima-
tion, in lowest order we can just re-substitute λα → λα(r)
and εα → εα(r).

IV. TIME-DEPENDENT PHOTON-
EXCHANGE APPROXIMATION

In the time-dependent case the simple idea that the
interacting and the auxiliary system have both the same
(zero) paramagnetic currents does no longer hold. Vari-
ous choices for the basic variables of QEDFT are possi-
ble [7, 9]. The one that is most consistent with our static
discussion is to make the physical currents the same in
both systems. This is then a more general setting for the
long-wavelength situation than the usual density-based
QEDFT [7, 9].

We therefore use the orbital equations (here again in
atomic units)

i∂tϕi(r, t) =

[
1

2

(
−i∇+

1

c
As(r, t)

)2

+ vs(r, t)

]
ϕi(r, t) ,

(7)

for the Kohn-Sham system, whereas in the static case we
only had the spatially independent As = A. In the static
case this homogeneous effective field can be discarded
without loss of generality. It corresponds to a trivial
global gauge transformation. For the interacting system
the basic equation of motion for the matter is [7, 8]

d

dt
j(r, t) = FT ([Ψ], r, t) + FW ([Ψ], r, t) (8)

− 1

c

〈(
ÂH(t) · ∇

)̂
jp,H(r, t)

〉
− ρ(r, t)∇v(r, t)

− 1

c

〈
ÂH(t)

(
∇ · ĵH(r, t)

)〉
−
〈
ÊH(t)ρ̂H(r, t)

〉
,
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where the physical current in the Schrödinger picture is

ĵ(r) = ĵp(r) + Ne
c Â and − 1

c∂tÂH(t) = ÊH(t). Here 〈·〉
indicates to evaluate the expectation value with a fixed
initial state of the coupled light-matter system Ψ, which
will usually be the ground state of the Pauli-Fierz Hamil-
tonian Eq. (1) (main text). The corresponding equation
of motion for the Kohn-Sham system is then (see also
discussion in SI Sec. III, while the Stern-Gerlach part is
now omitted in accordance with Eq. (7))

d

dt
jk(r, t) = F kT ([Φ], r, t)

− 1

c

3∑
l=1

[
Als(r, t)∂lj

k
p([Φ], r, t) +

(
∂kA

l
s(r, t)

)
jlp([Φ], r, t)

]
−
[
∂k

(
1

2c2
As(r, t)

2 + vs(r, t)

)]
ρ(r, t)

+
1

c

(
∂tA

k
s (r, t)

)
ρ(r, t)− 1

c
Aks (r, t)∇ · j(r, t) ,

where we have already used that it generates the same
density and current density as the interacting reference
system. In general, we would also have contributions
due to an external vector potential in Coulomb gauge
Aext(r, t) in Eq. (8), which is then used to derive the basic
mapping theorems [7, 9]. But since we are only interested
in the case where Aext ≡ 0 here, we have skipped this
possibility from the start for notational simplicity.

We can then define the Mxc potentials via

∂kvMxc −
1

c
∂tA

k
Mxc =

1

ρ

[
F kT [Φ]− F kT [Ψ]− F kW [Ψ]

− 1

c

3∑
l=1

(
AlMxc∂lj

k
p [Φ] +

(
∂kA

l
Mxc

)
jl
)

− 1

c

3∑
l=1

AkMxc∂lj
l +

1

c

3∑
l=1

〈
ÂlH∂lĵ

k
p,H

〉
+

1

c

3∑
l=1

〈
ÂkH∂lĵ

l
H

〉
+
〈
ÊkHρ̂H

〉]
, (9)

where we used vMxc = vs − v and AMxc = As − Aext.
Now, denoting the right-hand side of Eq. (9) by Qk[Φ,Ψ],
we can use the Helmholtz decomposition to find in accor-
dance with the main text the (longitudinal) scalar Mxc
potential

∇2vMxc(r, t) = ∇ ·Q([Φ,Ψ], r, t) (10)

and the (transverse) vector Mxc potential

−∂tAMxc(r, t) = cQ⊥([Φ,Ψ], r, t) .

In the static case, where the paramagnetic and diamag-
netic contributions are individually zero, all the diamag-
netic parts cancel and AMxc ≡ 0 and we are left with
Eq. (10) only.

Again, we need to find an approximation to the pho-
tonic part in terms of Kohn-Sham quantities. As a first
step we rewrite AMxc(r, t) = A(t) + Axc(r, t) such that

we can shift A(t) to form the fluctuation operator ∆Â
in Eq. (9). Then we follow the strategy of the static case
and employ the mode-resolved inhomogeneous Maxwell’s
equation for Âk =

∑
α Âαε̃

k
α, which becomes

(
∂2t + ω̃2

α

)
Âα,H(t) = −

cω2
α,d

N
Ĵp,H(t) · ε̃α .

This can be solved formally by

Âα,H(t) =−
cω2
α,d

N

t∫
0

dt′
sin(ω̃α(t− t′))

ω̃α
Ĵp,H(t′) · ε̃α

+ Âα cos(ω̃αt) +
∂tÂα,H(0)

ω̃α
sin(ω̃αt) .

We then define the px approximation by using Âα,H(t) =

Aα(t) + ∆Âα,H(t) and replacing

∆Âα → −cω2
d,α/(Neω̃

2
α)ε̃α ·∆Ĵp ,

∆∂tÂα,H(0)→ −cω2
d,α/(Neω̃

2
α)ε̃α ·∆∂tĴp,H(0) , and

∆Ĵp,H(t)→ ∆Ĵp,Hs
(t) ,

where Hs indicates that we use now the Kohn-Sham
system Heisenberg picture. Further, we use a sym-
metrized form of the photonic expressions as discussed
in Sec. 4 (main text), evaluate all expectation values
with the auxiliary Kohn-Sham wave function, and de-
note the resulting part of the Mxc vector potential as
Apx(r, t) = A(t) + Ax(r, t). This way we find several
further terms in the non-adiabatic px approximation. In
the static case only the cosine term survives and we re-
cover exactly Eq. (16) of the main text.
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