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Abstract

Bayesian phylogenetic methods provide a set of tools to efficiently evaluate large linguistic datasets
by reconstructing phylogenies—family trees—that represent the history of language families. These
methods provide a powerful way to test hypotheses about prehistory, regarding the subgrouping, ori-
gins, expansion, and timing of the languages and their speakers. Through phylogenetics, we gain
insights into the process of language evolution in general and into how fast individual features change
in particular. This article introduces Bayesian phylogenetics as applied to languages. We describe
substitution models for cognate evolution, molecular clock models for the evolutionary rate along the
branches of a tree, and tree generating processes suitable for linguistic data. We explain how to find
the best-suited model using path sampling or nested sampling. The theoretical background of these
models is supplemented by a practical tutorial describing how to set up a Bayesian phylogenetic ana-
lysis using the software tool BEAST2.
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1. Introduction

Studying the evolution of language families through
time allows us to reconstruct pieces of the human past,
locally and globally. Bayesian phylogenetic methods en-
able the reconstruction of the evolutionary relationships
among languages and the estimation of the time and
place at which their most recent common ancestor
(MRCA) existed. These methods are powerful tools for
reconstructing evolutionary histories. This power comes

©The Author(s) 2021. Published by Oxford University Press.

from a robust statistical and inferential framework that
can incorporate known information about processes and
patterns. Once these relationships—phylogenies—are
reconstructed there are an array of tools that can use
these phylogenies to test evolutionary hypotheses.
Bayesian ‘phylolinguistic’ studies have become in-
creasingly prevalent in linguistics over the last decade.
The first application by Gray and Atkinson (2003)
controversially inferred the date of origins of the
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Indo-European language family to around 7,800-
9,800 years ago in contrast to the previously proposed
age of about 6,000 years. While the debate about Indo-
European is ongoing (e.g. Bouckaert et al. 2012; Chang
et al. 2015), Bayesian phylogenetic methods have be-
come an integral part of the historical linguistics toolkit,
exploring language families from Austronesian (Gray et
al. 2009)—where the inferred dates match those pre-
dicted by historical linguistics (Greenhill et al. 2010b)—
to Bantu (Grollemund et al. 2015), Chapacuran
(Birchall et al. 2016), Dravidian (Kolipakam et al.
2018), Korean (Lee 2015), Japonic (Lee and Hasegawa
2011), Pama-Nyungan (Bouckaert et al. 2018), Semitic
(Kitchen et al. 2009), Sino-Tibetan (Sagart et al. 2019;
Zhang et al. 2019), Tupi-Guarani (Michael et al. 2015),
and Uralic (Honkola et al. 2013; Lehtinen et al. 2014).
Why has there been such a rapid uptake of Bayesian
phylogenetic linguistics?
linguistics has dabbled with computational methods
before—lexicostatistics and its offshoot glottochronol-
ogy (Swadesh 1950; Lees 1953)—but despite some
initial enthusiasm, these methods were quickly rejected.

methods in Historical

The first major criticism of lexicostatistics was that it
discounted the distinction between shared retentions
and shared innovations. In historical linguistics, since
Brugmann (1884), innovations (usually phonological
innovations) have been used to identify language rela-
tionships, while traits that are just retentions from an
earlier stage are not considered indicative of relation-
ships (Blust 2000). Lexicostatistics builds a tree by sum-
marizing all changes between pairs of languages as a
single distance score, which collapses this fundamental
distinction (Blust 2000). In contrast, phylogenetic meth-
ods model where traits originate and where they are
retained,! a distinction just as fundamental to modern
taxonomy as it is to historical linguistics (Hennig 1996).

The second major criticism of lexicostatistics con-
cerned its fundamental assumption of a constant rate of
change to infer tree topology and timing (Bergsland and
Vogt 1962). Critics noted that language change proceeds
at widely varying rates over time and lineages. One
prominent critique used lexicostatistics to date the diver-
gence of Icelandic and Old Norse to less than 200 years
ago, when historically we know it diverged 1,000 years
ago (Bergsland and Vogt 1962). In contrast, Bayesian
phylogenetic methods implement a range of approaches
to model and account for rate variation between parts of
the data, between lineages, and over time?.

The final major criticism of lexicostatistics is that it
could not account for nontree like processes in language
change, such as borrowing (Moore 1994). Indeed, this
criticism has long been lurking in the background of all

historical linguistic approaches (Heggarty et al. 2010)
and identifying loan words and contact effects is always
a priority. However, although we know that evolution-
ary processes hardly ever follow a pure binary branching
process, this simplified process often approximates the
truth well, such that important scientific questions can
be tackled. Notably, Bayesian phylogenetic methods are
robust to the effects of borrowing as they infer and
quantify the uncertainty in their estimates of parameters
and tree topologies. In addition to inferring language
relationships, they provide probabilistic measures of
support for each given subgrouping. Hence, borrowing
is revealed through high levels of uncertainty in the
affected groupings, while unaffected parts of the tree are
reconstructed accurately (Greenhill et al. 2009).

Here we explain the fundamental concepts of
Bayesian phylolinguistic analysis of lexical data. We
concentrate on the concepts that are relevant for lan-
guage evolution. Setting up a phylolinguistic analysis
requires a sophisticated choice of models and their
parameters. The presentation of the models comes with
an explanation on how and why to use them and a
detailed description of their parameters. We provide
mathematical details to fully understand how these
models interact and contribute to the Bayesian posterior
distribution. The supplement contains a hands-on tutor-
ial on how to set up and run a phylolinguistic analysis in
BEAST?2, which is also part of the community teaching
material resource “Taming the BEAST’ (https://taming-
the-beast.org, last accessed 03/08/2021) (Barido-Sottani
etal. 2017).

2. Bayesian phylogenetics

The advantage of Bayesian methods is the use of prob-
ability distributions for model parameters. This use of
distributions is in stark contrast to other phylogenetic
approaches like maximum parsimony or maximum like-
lihood, where a single ‘best’ value for each parameter is
estimated (Greenhill and Gray 2009). In Bayesian statis-
tics, we aim to incorporate the full uncertainty around
each estimate. This means that all possible values of the
parameters, for example, the diversification rate, are
allowed with a corresponding probability. The possible
values are expressed as our prior belief in the form of a
probability distribution. Priors can be ‘neutral’ (i.e.
without a strong claim that the age of a language group
is between 2,000 and 20,000 years) or highly inform-
ative (e.g. a specific group is between 1,000 and
1,200 years old with more weight toward 1,100 years).
The Bayesian approach is extremely powerful for lin-
guistic analyses for several reasons. First, diverse
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scenarios can be included in the calculations, weighted
by how likely we believe they are. For example, we often
have documented evidence from early historical sources
that a group of people spoke a particular language, for
example, the Chapacuran language Tor. Tor is first
mentioned in a letter by a Jesuit priest in 1,714
(Menéndez 1981), so we know that the language existed
around 300 years ago, but do not know when it origi-
nated. Birchall et al. (2016) used this information to re-
construct the Chapacuran language family tree with a
prior probability distribution for Tor’s emergence
stretching from 300 to 780 years ago. Combining several
such partial calibrations allowed them to infer the origin
of the Chapacuran languages to an average of
1,039 years ago, with a 95% probability between 525
and 1,619 years. Their results suggest that many of the
Chapacuran language splits occurred around the time
the Spaniards entered lowland Bolivia.

Second, the output is not a single tree with the claim
to be the true tree, but a sample of trees from the poster-
ior. This posterior probability distribution of trees is im-
portant as it tells us which parts of the tree are well
supported by the data, and which are more weakly
attested. This enables us to make careful and nuanced
statements of hypotheses that take into account uncer-
tainty in the tree topology or parameters—and we can
still make inferences even when there are moderate lev-
els of uncertainty. For example, there is substantial de-
bate about the first subgroup within Sino-Tibetan. One
hypothesis proposes a primary split between Sinitic and
Tibeto-Burman (Benedict 1972; Matisoff 2003), another
places Sinitic and Tibetan in a lower-level subgroup (van
Driem 2003; Blench and Post 2014), and a third hypoth-
esis proposes that the deep structure of Sino-Tibetan is a
rake with multiple branches (Peiros 1998). Sagart et al.
(2019) aimed to identify the origins of Sino-Tibetan
using Bayesian Phylogenetic methods. Rather than sup-
porting a single hypothesis, they found that 33% of the
trees placed the Sinitic languages as the first group,
while 15% of the trees placed a West-Himalayish group
first. Given this posterior distribution, Sagart et al. were
able to rule out the ‘rake’ hypothesis and provide histor-
ical and archaeological evidence favoring the ‘Sinitic
first’ hypothesis as twice as likely as the ‘West-
Himalayish’ hypothesis.

2.1 Data structure

When speaking of language phylogenies, the complexity
of a language is usually collapsed into a set of variables.
Although the variables can theoretically be of any kind,
they are in most cases binary and represent a feature

that is present (and thus coded as 1) or absent (coded as
0) in the language. Throughout this article, a language is
then always considered as a specific combination of
these features. Variables could be grammatical features
or lexical features in the form of cognates (Greenhill et
al. 2017), or any other aspect of language that might
show inheritance through descent with modification. In
the lexical cognate case, the data are typically based on
a list of basic vocabulary items (such as a Swadesh list)
containing, for instance, simple verbs, kinship terms, or
body parts. For each meaning in this list, lexemes from
all languages are collected and classified into cognate
classes. These are sets of homologous lexemes with simi-
lar meanings (Table 1). In the next step, every cognate
class defines a feature. Either a language has or lacks a
lexeme in that cognate class.

The whole dataset can be written as a matrix, where
each row stands for a language and each column for a
feature (Table 2). Following the terminology of genetic
phylogenetics, the matrix is called an alignment and
each column is a site.

Table 1. Example wordlist with two concepts (‘to laugh’
and ‘wing’) for five Oceanic languages. The lexemes are
classified in cognate sets, where lexemes with shared
(Oceanic) ancestry and meaning are summarized in the
same class.

Language “To laugh’ ‘Wing’

Lexeme Cognate set  Lexeme Cognate set
Fijian dredre tolaugh-A taba-na  wing-A
Marquesan  kata tolaugh-B peheu wing-B
Hawaiian >aka tolaugh-B *heu wing-B
Maori kata tolaugh-B parirau  wing-C
Tahitian ’ata tolaugh-B pererau  wing-C

Table 2. The cognate class assignment from Table 1 is
coded into a matrix of binary traits representing the pres-
ence or absence of a cognate class in the respective
language.

Language “To laugh’ ‘Wing’

A B A B C
Fijian 1 0 1 0 0
Marquesan 0 1 0 1 0
Hawaiian 0 1 0 1 0
Maori 0 1 0 0 1
Tahitian 0 1 0 0 1
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Figure 1. Phylogeny of the example data from Tables 1 and 2. Each tip relates to a language that is represented by a binary string
of cognate codings. In this (most parsimonious) tree, the formation of the cognate classes tolaugh-A and wing-A only happened in
the Fijian branch. The class tolaugh-B emerged in its sister branch that is ancestral to the four remaining languages. This branch
splits up into two daughter lineages, where in the upper case (ancestral to Marquesan and Hawaiian) the feature tolaugh-B is
gained and in the lower case (ancestral to Maori and Tahitian) the feature tolaugh-C is gained.

Note that it is not mandatory to have definite cod-
ings for all features and languages. Languages with miss-
ing data are omitted in the likelihood calculation for the
sites without data. This is unproblematic as long as
missing features are sparse.

A phylogeny is represented in a binary tree (Fig. 1).
Its starting point is the root node corresponding to the
MRCA of all the languages present. From there, lineages
either branch into exactly two daughter lineages or end
in a leaf node. The branch lengths correlate to the num-
ber of changes (i.e. loss or gain of a feature) from their
starting point to their end (branching point or tip).
Multifurcations into more than two lineages can be
expressed by subsequent binary branching points with
very short branches between them. The leaf nodes (or
tips) represent the extinct or extant languages from the
dataset. Internal branches are protolanguages of their
children and a split is the point in time, where two lan-
guages start to accumulate changes independent of each
other (Maurits et al. 2019).

2.2 Bayes' theorem

In the present context, Bayes’ theorem states that the
probability of a phylogenetic tree is based on an evolu-
tionary model, the visible data and a set of prior beliefs
about the unknown model parameters. This probability
is called posterior probability. The prior beliefs are

expressed as a set of probability distributions, which are
called priors. If we knew the exact model of evolution
together with its parameters, we could compute the like-
libood that the data emerged from a given tree. In real-
ity, however, the parameter values are unknown. The
idea of Bayes’ theorem is to multiply this likelihood with
the prior probabilities of these parameters.

Explicitly for a tree T given the data D and an evolu-
tionary model characterized by its model parameters 0,
it is by Bayes’ theorem that

P(T|D, 0) o< P(D|T, 0)P(T, 0), (1)

where P(D|T,0) is the likelihood of observing the data
given the model and the tree and P(T,6) is the prior
probability of the tree T and the set of model parameters
0. The left-hand side of this relation is the posterior
probability, which is proportional to () the right-hand
side. The absolute value of the posterior is often difficult
to compute. But the relation implies that it is neverthe-
less possible to compare different outcomes of the
parameters 0 and trees T and by that produce samples
according to the posterior probability.

2.3 Computing the likelihood

A phylogenetic tree is comprised of a set of leaf nodes
connected to a series of internal nodes. Each language is
associated with a leaf node. At the leaf nodes, we know
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the exact configuration of traits (with the exception of am-
biguous sites due to missing data), for the internal nodes it
is unknown and we want to infer the most probable trait
assignments. So, for every internal node configuration, a
probability is calculated, which is the probability—given
the evolutionary model—that this specific configuration
leads to the state at the leaf nodes. When computing the
likelihood, we sum over the probabilities of all possible in-
ternal node assignments. However, under the assumption
that each trait of the data evolves independently, the likeli-
hood can be calculated per site.

Let x1,...,x2,_1 be the nodes of the tree with leaf
nodes xi,...,x,, internal nodes x,.1,...,%2, 2, and
root node xy,-1. For i€ {1,...,n} and j € {1,...,k},
let s;; be the (known) data value of the leaf node x; at the
jth column in the alignment. For
ie{n+1,...,2n—1}, let s; be the (unknown) data
value of the node x; at position j. Assuming that the
index of the parent node of x; is m;, the probability of
observing s;; for some j at node x; is as follows:

P(x; = sjj) = P(x;i = sij|x, = 0)P(x,, = 0)

FP(x; = sl%m, = 1)P(x, = 1). 2)

Overall, the tree-likelihood at site j is computed as
the sum over all possible states at the internal nodes:

1 1
P(DIT,0)= > ... >

3)

and we get,

-
=
T
=
=

P(D|T,0) = (4)

This likelihood can be efficiently calculated using
Felsenstein’s pruning algorithm (Felsenstein 2004). The
transition probabilities (2) are determined by the substi-
tution model explained below.

It is worth noting that this method, at every step of
the analysis, models where each trait originated and in
which branches it was retained. The likelihood here is a
direct analogue of the traditional distinction in historical
linguistics between retentions and innovations. It is pos-
sible if cumbersome to log the inferred innovation point
of a set of traits or to identify which particular traits de-
fine a subgroup of languages.

2.4 Ascertainment correction
In linguistic datasets, traits are typically included only if
they are present in at least one of the languages. That is,

linguists tend to exclude cognate sets that do not occur
in the particular set of languages they are studying. This
might seem like a strange thing to worry about, but if
we think of our data as comprised of a set of cognate
sets of varying size—from singletons containing one lan-
guage, to maximal sets containing all languages—then it
becomes clear that we have arbitrarily ignored one end
of this distribution (i.e. cognate sets of size zero). To ac-
count for this bias, we replace P(D;|T,6) from Equation
(3) with the corrected term:
P(Dy|T, 0)

P(D,-|D,-;£O7T70):m (5)
where D; = 0 means that all languages have a zero in
the jth column of the alignment. That is, we ascertain
at least one 1 in each cognate column (Felsenstein
2004). However, if the dataset is divided into parti-
tions (e.g. one for every meaning class when consider-
ing cognate data), it is possible that a language has no
data in a particular partition. In this case, the ascer-
tainment correction described here is not sufficient
(Chang et al. 2015), rather the correction should be
applied on a per-word or meaning slot basis.
Additionally, each zero in the O-vector that corre-
sponds to a language with missing data needs to be
marked as missing. An example of a properly ascer-
tained dataset can be found in the Supplementary tu-
torial in section ‘The data-set’.

3. Models of evolution

The substitution model determines the probability of
going from one state to another over a specific time
period. The substitution process is modeled as a Markov
process with an infinitesimal rate matrix Q = (g;),
where g; is the exponential rate of going from state i to
- Z;’#i qi

are the outgoing rates. So, if state  was 0 and state j was

state j (i #j) and the diagonal elements g; =

1, then gj; is the rate of gaining this particular cognate
while g;; is the loss rate. The time-dependent transition
probabilities between states are the entries of the matrix

P(t) = exp(O2). (6)

To efficiently compute these probabilities, most of
the models (and all of the models explained here with
the exception of the pseudo-Dollo model) are based on
the following assumptions: first that the process is sta-
tionary, which means that there are equilibrium frequen-
cies m = (mp, 71) such that

10 =0, =nP(t)=mn Vi (7)
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Figure 2. Overview of the binary substitution models. (a) The binary CTMC model, where mutations between 0 and 1 can happen
in both directions. The binary covarion model (b) features slow and fast states. Switches between these states happen with rate s
and mutations in the slow state happen with rate . In the pseudo-Dollo model (c), a trait can be gained once with rate 1 and per-

manently lost with rate u.

This means that the evolutionary process has reached
a state, where the overall amount of acquired traits is in
balance. The second assumption is time-reversibility,
thatis

mP(t), = mP(t),, Vijt. (8)

j jio

This implies that evolution is not directional and that

the probability of starting with 0 at one end of a branch

and ending with 1 at the other is the same as the prob-

ability of starting with 1 and evolving to 0 (Felsenstein

2004). In the following, we describe the most commonly
used models of linguistic evolution (Fig. 2).

3.1 Continuous time Markov chain model model
The continuous time Markov chain model (CTMC)
(Gray and Atkinson 2003; Bouckaert et al. 2012) is the
simplest substitution model presented here. It assumes
that the data are generated by a time-reversible Markov
process with two states (Fig. 2a) and that the distribu-
tion of zeroes and ones observed in the data follows the
stationary distribution of this Markov chain. Each zero
in the dataset can evolve into a one and vice versa. In
terms of cognate evolution, this means that every lan-
guage can gain or lose a cognate set with a state-specific
rate and these rates are fixed according to the currently
observed data. Given the stationary distribution
7 = (mo,m1), the only possible infinitesimal rate matrix
fulfilling these conditions is as follows:

o-s(, ™) ©)

. .. 1
with normalizing constant f§ = s

Note that the off-diagonal entries are positive and
represent rates of flow from i to j. The diagonal entries
represent the total flow out of state i. The latter is the
negative of the sum of off-diagonal other entries in each
row and are left blank by convention.

3.2 Covarion model

The binary covarion model (Tuffley and Steel 1998;
Penny et al. 2001) is widely used for cognate data (Gray
et al. 2009; Bouckaert et al. 2012). The covarion model
provides a powerful way of handling variation in rates
of change. For example, many cognates are relatively
stable over a long period of time but occasionally change
in bursts. Bursts of change may be due to external events
like language contact. The covarion model can account
for that by letting states evolve at a slow ‘background’
rate during periods of stability and shifting into a faster
rate category when bursts happen. In our experience,
the covarion model is often the best performing model
for lexical cognate data.

The covarion model contains two layers of states.
The first and visible layer is the observable state of the
site, 0, or 1. The second and hidden layer contains the
additional information if the site is in a slow or fast
state. In total, there are four hidden states, slow-0, fast-
0, slow-1, and fast-1. Transitions can happen both be-
tween the fast and slow states and between the 0- and 1-
states as it is shown in Fig. 2b. This is parameterized
through several parameters: The stationary frequencies
(fo, f1) of the observed states (0 resembles slow-0 and
fast-0, and 1 resembles slow-1 and fast-1). The frequen-
cies of the fast and slow states are set to (0.5 -/, 0.5 -
f0,0.5-f1,0.5-f1) to ensure time-reversibility. The
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switch rate s of changing between slow and fast states,
and finally, the substitution rate o in the slow state. The
substitution rate in the fast state is 1 making o practical-
ly to a relative value.

The rate matrix Q is then defined as follows:

0: /- A sfo O
fast{1: f i OO ofi

SlOW{O: sfo 0 — afy =Q
1: 0 Sfl O(f() —

(10)

3.3 Pseudo-Dollo model

The Dollo principle states that a feature can be gained
only once, but can be lost several times (Dollo 1893).
Once it is lost, it cannot be regained. This assumption
appears suitable for language data as it is commonly
believed that cognate sets are gained rarely but can be
lost frequently (Nicholls and Gray 2008). However, in
practice, this assumption is very restrictive as borrow-
ings and semantic shifts may lead to multiple gains of a
cognate. A variant accounting for this is the pseudo-
Dollo model (Bouckaert and Robbeets 2017). It assumes
that each language can gain a feature with an infinitesi-
mal rate 1 and lose it forever with rate p (Fig. 2¢). This
model is neither time-reversible nor in an equilibrium
state as the evolution is directional. There are three cate-
gories, a zero for not-yet-acquired, a one and a zero for
feature-lost. The infinitesimal rate matrix is as follows:

- 2 0
o={(0 - u (11)
0 0 O

A covarion variant that can deal with rate variation
through two slow states (similar to the binary covarion
model) is available as well.

3.4 Markov model for multiple states

Nonbinary data with more than one state can be mod-
eled using the Mj-model (Lewis 2001). This model is
often useful for typological data or other characters
with a small number of states that cannot be easily or
sensibly converted to binary presence/absence coding.
Under the Mj-model each trait can have one of the k
states, and transitions are allowed between any pair of
states at equal probabilities. The corresponding rate ma-
trix is as follows:

11 ... -

and the equilibrium frequencies are (%,‘...,@. Note

that for k=2, this is the CTMC-model with frequencies
7= (0.5,0.5).

4. Rate variation and calibration

The rate matrix Q is normalized to yield on average one
substitution per time unit of z. However, languages vary
substantially in their rates of change across lineages,
across different subsets of data, and over time
(Bergsland and Vogt 1962; Greenhill et al. 2017).
Bayesian phylogenetic methods provide several ways of
varying the pace at which changes happen across sites
and branches of the tree. This rate variation is usually
accomplished by multiplying the matrix Q by several
factors, which are summarized as the mutation rate p.

4.1 Rate variation across sites
In order to allow rate variation across sites one must
consider the characteristics of linguistic meaning classes.
Empirically, sites in a meaning class with very few cog-
nates evolve at a slower pace than sites in a meaning
class with many members (Pagel and Meade 2006; Pagel
et al. 2007). Hence, a simple model in which all meaning
classes share a single mutation rate is unrealistic.
Alternatively, one may allow one mutation rate for each
meaning class. However, as there is often a large number
of meaning classes in the data (i.e. 100 or 200 words or
more) this bears a high risk of overfitting the data. An
intermediate solution is to distribute the meaning-classes
to several bins which share a mutation rate (e.g. one bin
for meaning classes of size 1-10, 11-20, and so forth).
This approach may capture the abovementioned vari-
ation without overfitting the model. The Supplementary
tutorial explains how this is facilitated in BEAST2.?
Another possibility is to allow site variation governed
by an approximated gamma distribution (Yang 1994).
In contrast to the model above, where all sites in a
meaning class share the same evolutionary rate, but rates
may differ across meaning classes, in this approach all
sites are allowed to vary in the same way. We assume
that the distribution of mutation rates follows a gamma
distribution with mean 1 and a shape parameter o. This
distribution has the following properties: for o > 1, it is
bell-shaped centered around 1 with little variance, and
for o < 1, it is L-shaped, where values lower than 1
have a high density and high values have a low density
(compare Fig. 3). So a dataset containing highly varying
mutation rates, where most of the sites are fairly con-
stant but some sites change at a fast pace, is best
described by a gamma distribution with a low shape
parameter. However, if all sites change at more or less
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Figure 3. Densities of the Gamma function for varying shape parameters «. For higher «-values, most of its weight is centered
around 1 meaning a low variation of rates. Low a-values lead to L-shaped distributions with higher probabilities of rate factors far-

ther away from 1.

the same speed, we would expect a high a-value. Note
that this method is recommended only if there is no
other method governing mutation rates variation. For
example, it is not advisable to combine a binary cova-
rion substitution model with gamma rate heterogeneity
as both include slow and fast rates.

Typically the continuous gamma distribution is
approximated by a discrete version with a small number
of rate categories. The range of rate multipliers from 0
to oo is split into segments of equal probability accord-
ing to the gamma distribution. The weighted (by the
gamma distribution) mean of each segment is its repre-
sentative rate category. The likelihood is then calculated
once for each category and the average is taken. (Yang,
1994). The amount of rate categories is a tradeoff be-
tween computational effort and the resolution of the
captured variance. Harrison and Larsson (2014) showed
that four rate categories are sufficient to capture most of
the variance. In a Bayesian analysis, the gamma shape
parameter can be estimated. As there is no prior infor-
mation on which site belongs to which category the like-
lihood is calculated once for each category and the
average is taken.

4.2 Clock models

To estimate the age of subgroups on a phylogeny, we
need an evolutionary clock to convert the number of
observed changes to time. The strict clock model
assumes that substitutions happen at the same speed
across the whole tree with a single parameter for the

substitution rate. This ‘clock rate’ represents the average
number of substitutions per site per time unit.

Some lineages in the tree might evolve faster than
others, which can be accounted for through an uncorre-
lated relaxed clock model (Drummond et al. 2006;
Douglas et al. 2021). Additionally to the clock rate, it
samples a rate multiplier for each branch in the tree. The
multipliers are drawn independently from a probability
distribution, most commonly a log-normal distribution
with mean 1 and standard deviation ¢. The clock rate
for a branch is then the product of the average clock rate
¢ and the branch-specific multiplier. If the tree has n
tips, this results in up to 27 clock model parameters:
two from the distribution and up to one rate for each of
the 2n — 2 branches. To avoid overfitting, this model
should be used only when the data show at least a mod-
erate temporal signal with reliable tip and/or internal
node calibrations.

Further variations are possible, such as allowing a
random local clock (Drummond and Suchard 2010) or a
mixture of strict and relaxed clock models for different
parts of the tree (Fourment and Darling 2018).

4.3 Calibrations

If we want to estimate divergence times, we need an in-
formative prior distribution on the clock rate or reliable
calibration points to estimate the ages of all nodes in the
tree. One can either set a prior on the age of the MRCA
of a language subgroup, on the parent of an MRCA, on
the entire tree, or use the ages of ancient languages as
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calibration points. If a set of languages belongs to a sep-
arated geographical unit (e.g. an island), an MRCA cali-
bration could come from archaeological records. For
example, the age of the first settlement of New Zealand
can be securely dated to between 1230 and 1282 AD
(Wilmshurst et al. 2010). Together with the assumption
that after the initial colonization there was a fast spread
across the islands and thus a geographical separation,
this implies that the native languages spoken on these
islands have a common ancestor, which must have
existed around that time. Thanks to the Bayesian frame-
work, such calibrations are not necessarily exact years,
but can be included using prior distributions accounting
for uncertainty and scholarly disagreement.

Although such calibrations can be incorporated for
all clades and subclades in the tree, it is highly recom-
mended to use few good calibrations and to refrain from
nested calibrations as the combined prior distribution
can induce (Heled and
Drummond 2011). To check whether calibrations pro-
vide enough information to estimate the clock rate, one
can perform a Bayesian evaluation of the temporal sig-

unwanted side-effects

nal (Duchene et al. 2020). Date calibrations can also be
used to validate the model and inference procedure, by
reconstructing known dates (Ryder and Nicholls 2010).
A useful discussion of how to best implement calibra-
tions in a Bayesian analysis of languages can be found in
(Maurits et al. 2019). A practical guide explaining how
to set up calibrations can be found in the Supplementary
tutorial (section ‘The priors’).

5. Tree priors

The last factor of Equation (1) is the prior distribution
of the model parameters. A special role is played by the

(a) (b)

tree prior. The tree prior contains information about the
process that gave rise to the phylogeny and itself intro-
duces new parameters governing this tree-generating
process. Consequently, the prior distribution expands to

P(T,0) = P(T|0)P(0), (13)

where 0 is the set of all model parameters, from the evo-
lutionary model and the tree prior.

There is a range of tree priors available; however,
not all are suitable for linguistic analyses. A very popu-
lar tree prior for biological applications is based on the
coalescent process from population genetics. (Kingman
1982). The simple constant population size coalescent
may not always fit language data well (Rama 2018;
Ritchie and Ho 2019), but skyline variants (like the so-
called Bayesian skyline (Drummond et al. 2005)) pro-
vides a flexible variant that requires conveniently little
effort in specifying hyper priors. For languages, the most
suitable models are the Yule and birth—death processes,
but this is an ongoing area of research (Rama 2018;
Ritchie and Ho 2019). It is best practice to test the ro-
bustness of phylogenetic results to different assumptions
regarding the tree generating process.

5.1 The Yule model

The Yule model (Yule 1925) is a pure birth process with
a single parameter /, called the birth rate, determining
the exponential rate of diversification in the tree. The
probability that a branch splits into two at time ¢ is given
by the following equation:

p(t) = e ™. (14)

(C) past

present

time

Figure 4. (a) Full tree, (b) reconstructed tree under a birth-death model with y-sampling through time, and (c) with contemporan-
eous p-sampling only. All dots refer to a sampling event. At present day, all extant lineages are sampled with probability p. All ex-

tinct and unsampled languages are pruned.
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Condition on the tree having 7 tips and root age 4,
the prior distribution of a tree T depends on its branch-
ing times f,, . ..,t,—1 (Gernhard 2008):

n—1 X
P(T,7) =nli" ' [[ e P() (15)
=1

Yule’s simplicity is both its strength and its weak-
ness. First, the Yule model assumes that the dataset
includes all the languages in the family—that is, full
sampling—which is unlikely. Second, the Yule model
does not allow lineages to die. Therefore, while the Yule
is the simplest tree prior model and commonly used in
linguistic phylogenies, any dataset that includes docu-
lects of extinct languages is invalid under the Yule model
and may generate biased estimates of diversification
rates and node ages.

5.2 Birth—death processes

Birth—death models are widely used in phylogenetics and
come in different varieties (Gernhard 2008; Stadler et al.
2013; Gavryushkina et al. 2014). Like the Yule model,
they all specify diversification events governed by a birth
rate A. In addition, each lineage can go extinct with an
exponential rate u, called the death rate. Furthermore,
these models can account for an incomplete sampling of
languages to give better estimates of the tree topology
and timing.

In a perfect data set, we would have sampled all lan-
guages—both extinct and extant—of a language family.
In this case, we would be able to reconstruct the full lan-
guage family tree (Fig. 4a). Unfortunately, we often only
observe extant languages such that the reconstructed
language phylogeny represents a subset of the full lan-
guage tree in which unobserved lineages are invisible
(Fig. 4c¢). In this case, all languages in the dataset would
be sampled at present, which can be modeled through a
sampling probability p.

At least one of the three parameters—birth rate A,
death rate u and the sampling probability p—needs strong
prior information as they are highly correlated to each
other (Stadler et al. 2013). A good candidate for a prior
distribution on the sampling probability is the Beta distri-
bution Beta(a, f) with the amount of sample languages o
and the estimated amount of nonsampled languages f.
The mean of this distribution is the proportion of sampled
languages %7 The attached tutorial contains a guide on
how to specify the birth-death model (section ‘The
priors’).

Datasets that include extinct languages need a sampling
rate Y through time. The sampling rate is an exponential
rate at which lineages in the tree get sampled (Stadler et al.

2013). The reconstructed tree can also include ancient
samples that may or may not have sampled descendants at
present (Gavryushkina et al. 2014), which is illustrated as
a black dot along the branch in Fig. 4b. A simple repara-
metrization of  as a sampling proportion s = ﬁ allows
the use of a Beta prior distribution.

Further extensions of the birth—death model are pos-
sible. For example, another way to include extinct lan-
guages is multi-rho sampling. A set of fixed times is
specified, at each of which one or more samples are
taken. For each of these times, a sampling probability
parameter needs to be set as well, if suitable it can be a
single p for all sampling times.

6. Choosing the best analysis

In this article, we have described a range of models for
analyzing language data in a phylogenetic framework.
The choice of model depends on a range of factors. In
the following, we attempt to summarize them. One
should try the models appropriate for the data at hand
and evaluate which one performs best. If several models
robustly lead to the same results, that is, the key aspects
of the phylogeny are close, a model comparison proced-
ure may not be required. If this is not the case, a model
comparison should be performed and Bayes factors
(BFs) computed.

6.1 Model preselection

The overall phylogenetic model consists of two major
parts: the site model, consisting of a substitution model
and a clock model, and the tree model. The choice of a
site model depends on the data. If the data are nonbi-
nary, that is, a site in the matrix can have more than two
states, the only option currently implemented for lin-
guistic data is an Mj-model (or, if appropriate, the data
can be transformed into a binary form). For binary data
(e.g. presence or absence of cognate sets or structural
features), one should run a model comparison between
the binary CTMC, pseudo-Dollo (covarion) and the bin-
ary covarion model.

If the rate of evolution varies amongst the sites in the
data (i.e. some features evolve significantly quicker than
others), one should additionally check, whether adding
gamma rate categories improves the performance.
However, this only makes sense for the CTMC, My, and
pseudo-Dollo model as the covarion model naturally
introduces two rate categories. Alternatively, the data
can be partitioned into bins with a separate mutation
rate for each bin, as described above.
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Regarding the choice of clock model, a strict clock
may lead to wrong time inferences if there is a signifi-
cant variation in the branch rates. Perhaps unintuitively,
a relaxed clock model performs well even if there is no
variation at all (Drummond et al. 2006). However, an
analysis with a relaxed clock model has a lot more
parameters and thus requires informative data to con-
verge. In an analysis with a relaxed clock model with
log-normal distributed branch rates, the coefficient of
variation can be computed. This is the estimated stand-
ard deviation of the branch rates divided by the mean
clock rate and a measure of how clock-like the data are.
A low coefficient of variation results from clock-like
data, while higher values indicate higher variation in
branch rates.

We suggest the following: first, run an analysis with
a relaxed clock model. If the coefficient of variation is
low (e.g. less than 0.1), there may not be any variation.
In this case, the data may be better described by a strict
clock model. Second, check if the clock rate converges
with a strict clock model. If the parameters converge in
both cases, do a model selection test between the two
models and choose the better performing one.

For the tree prior, the birth-death model is most suit-
able if there are extinct languages in the data. Even if the
data are contemporaneous a birth-death model is
favored over the Yule model as the latter one assumes
complete sampling and no extinction happening in the
tree. As described above, there are several ways sam-
pling can be modeled in a birth-death process. If all the
languages are sampled from the present data (i.e. are
contemporaneous) then the model requires a sampling
probability (p) at the present day (e.g. if the analysis
contains about 80% of the languages in the group, then
p is 0.8). If, however, there are languages sampled at dif-
ferent times throughout (pre)history then this sequential-
ly sampled data can be modeled using a sampling rate
through time (Stadler et al. 2013). Combinations of
both contemporaneous and sequential sampling are pos-
sible, for example, when a larger number of sampled
languages is acquired at a few different points in time
(‘multi-p sampling’), or when extinct (sequentially
sampled) languages are combined with modern (contem-
poraneously sampled) languages (Stadler et al. 2013).

6.2 Model comparison

To compare two models M; and M,, Bayesian model se-
lection allows estimation of the so-called BF of M; with
respect to M,, which is calculated as follows:

P(D|M,)

B2 = p(D M) 1o
where P(D|M;) is the marginal likelihood (ML) for
model M; and P(D|M;) the ML for M,. If the BF is
above 1, there is support for model M; and if it is below
1 there is support for M,. The strength of support is
reported using the following classification (Kass and
Raftery 1995): a BF between 1 and 3 is low support, be-
tween 3 and 20 is moderate support, between 20 and
150 is strong support, and over 150 very strong support.
Note that sometimes the log of the BF is reported:

log BF;» = log P(D|M;) — log P(D|M,) (17)

The calculation of the ML is computationally very
expensive but essential. There are several ways to obtain
estimates of the ML for a model, some of which are
implemented as BEAST2 packages (Bouckaert et al.
2014), including path sampling/stepping stone (Baele et
al. 2013) (model-selection package) and nested sampling
(Maturana et al. 2018) (NS package). Nested sampling
provides an estimate of the (log) ML together with its
standard deviation, unlike most other methods. This
additional information allows accounting for uncer-
tainty in the ML estimates when comparing log BF esti-
mates: if the log BF is larger than twice the sum of
standard deviations, the difference is significant.

6.3 Model validation

The aim of model selection is to compare between two
or more models. This comparison does not tell us if the
models in the pool are acceptable or fail to describe key
aspects of the phylogeny. Instead to evaluate if a given
model is a good description of the underlying evolution-
ary process involved in generating the data, we can use
an approach called model validation. In model valid-
ation, the aim is to check whether the chosen model is
capable of producing the empirical data. The fit between
the real empirical data and the data generated under the
model is known as absolute model fit (in contrast to the
relative model fit obtained by the selection methods).
There are several ways to achieve this.

First, one can evaluate known facts that are not used
as prior information. In an appropriate model, these
known facts should be within the inferred 95% highest
posterior density interval (i.e. the interval, in which
95% of the samples are located inside). For example,
one could compare the obtained tree topology to see if
the inferred clades make sense according to the historic-
al linguistics literature (Greenhill et al. 2010b), or com-
pare inferred dates to those known historically (Ryder
and Nicholls 2010).
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More sophisticated methods involve posterior pre-
dictive simulations (PPSs) (Gelman et al. 2013). This ap-
proach simulates a large number of synthetic datasets
under the model of interest. These simulated datasets
are then compared with the empirical dataset using vari-
ous test statistics. In an adequate model, all the statistics
of the real data should be within the respective distribu-
tions of the PPS statistics. There is a broad range of test
statistics suitable for Bayesian phylogenetics assessing
various components of the analysis such as clock model
(Duchéne et al. 2015) or the tree prior (Duchene et al.
2018).

The choice of validation method is linked to the re-
search question. The most significant aspects of the
phylogeny for the topic of interest should be covered by
a model adequacy test.

7. Exploring the space of trees using
BEAST2

Sampling trees from the space of all possible trees is not
trivial. State of art software packages use a Markov
Chain Monte Carlo (MCMC) algorithm to explore the
space of trees and parameters and return a sample of
their posterior distribution. Starting with an initial ran-
dom tree and a set of parameters, the Markov Chain it-
eratively proposes small changes to the tree and
parameters in turn. The algorithm accepts any proposal
that improves the posterior probability. Proposals that
lead to a decrease in posterior likelihood are accepted
with a probability proportional to the likelihood ratio
between the proposed and current state. This ensures ef-
ficient exploration of the state space without the algo-
rithm getting stuck in local maxima. In the initial ‘burn-
in’ phase, the MCMC algorithm needs time to find the
region of the highest posterior probability. After that,
each step is a sample from the space of trees and param-
eters according to the posterior distribution. Since these
are highly correlated, we only periodically log them to a
trace file, and tree file, which can be considered a sample
from the posterior.

Phylogenetic analyses of language evolution in
BEAST2 (Bouckaert et al. 2014) are facilitated by the
Babel package. Furthermore, the birth—-death processes
are part of the bdsky package, and the M,-model is part
of the morph-models package. A step-by-step tutorial on
how to set up and run an analysis with BEAST2 is found
in the supplement and on https://taming-the-beast.org/
tutorials/LanguagePhylogenies/, last accessed 03/08/
2021.

Further prominent examples of software packages
for Bayesian phylogenetics are Mr Bayes (Huelsenbeck

and Ronquist 2001), Bayes Phylogenies (Pagel and
Meade 2004), TraitLab (G. K. Nicholls and Welch
2021), and RevBayes (Hohna et al. 2016).

7.1 Convergence

There are two parameters that can be computed from
the posterior sample to give clues about the quality of
the analysis. The first one is the auto-correlation time
(ACT), which is the average number of steps in the
Markov chain that two samples need to be apart to be
uncorrelated to each other. The second is the effective
sample size (ESS), which is the total amount of samples
divided by the ACT. The ESS is the estimated number of
truly independent samples from the posterior distribu-
tion and a good analysis should have—as a rule of
thumb—an ESS of at least 200 for every estimated
parameter.

A low ESS might have several reasons. First, the mix-
ing may be poor as the MCMC method has not efficient-
ly searched through the tree space. This can be improved
by running the chain for longer, increasing the sampling
frequency or optimizing the operator setup. The chain
length needed to reach convergence can differ largely for
different datasets. Second, the burn-in phase may be too
short. This is a postprocessing issue and can easily be
solved by increasing the fraction of initial samples being
discarded (cf. Fig. 8 in the Supplementary tutorial).

The posterior probability is the product of the prior
distributions and the likelihood. If this product is domi-
nated by the prior distributions, the data may not con-
tribute to our knowledge. Hence, one should test if the
posterior distribution is significantly different to the
prior distribution. It is best practice to run a prior-only
analysis without data to investigate the (joint) prior dis-
tributions (see Supplementary tutorial section ‘The
MCMC tab’). If the posterior distribution is very close
to the prior distribution, a sensitivity analysis is
required, that is, the analysis needs to be rerun with dif-
ferent prior distributions. As an additional measure of
convergence, one should always run two or more inde-
pendent analyses (with different initial states) and check
that the posterior distributions agree with each other.

7.2 Summarizing posterior distributions

The posterior distribution of trees obtained from an ana-
lysis can be visually displayed using DensiTree
(Bouckaert 2010; Bouckaert and Heled 2014), which
plots each tree from the posterior sample on top of one
another (an example is given in Fig. 12 of the
Supplementary tutorial). This is a good way to visualize
uncertainty in a tree topology. Furthermore, the
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posterior distribution can be summarized into a single
consensus tree—of which a ‘Maximum Clade
Credibility Tree’ (MCC tree) is the most common—by
using the TreeAnnotator application distributed with
BEAST?2. For all trees in the posterior sample, each in-
ternal node (i.e. each clade) gets a posterior credibility.
This is calculated as the amount of topologies in the pos-
terior sample, where this specific clade is presently div-
ided by the sample size. The topology of the MCC tree is
the one that has the highest product of clade credibil-
ities, while the node heights are either kept from the
chosen tree or set to the mean or median of the corre-
sponding node heights in the posterior sample (see also
Fig. 11 of the Supplementary tutorial).

8. Hypothesis testing with trees

In linguistics, Bayesian phylogenies have been used to
test a wide range of hypotheses. First, and most obvious-
ly, are hypotheses about language subgroups and their
timing. For example, Gray et al. (2009) tested two dif-
ferent scenarios of the Austronesian expansion. Their
tree topology strongly indicated that the root of the
Austronesian language family existed in Taiwan around
5,200 years ago in striking concordance with findings
from the comparative method (e.g. Blust 1999). They
found no support for a deeper origin in Island South
East Asia around 15,000 years ago despite this being a
common assumption in genetic studies (e.g. Soares et al.
2011). Sicoli and Holton (2014) used Bayesian phyloge-
nies to test the increasingly accepted Den-Yeniseian hy-
pothesis that connects the Na-Den languages of North
America to the Yeniseian languages in central Asia (Kari
and Potter 2010). This hypothesis suggests a striking mi-
gration across the Bering land bridge. Sicoli and Holton
(2014) employed phylogenetic methods to—guarded-
ly—evaluate this hypothesis and propose that the lin-
guistic data are more consistent with a spread of these
languages from Beringia into both America and Asia (ra-
ther than a back migration from North America to Asia,
or migration from Asia to North America). Robbeets
and Bouckaert (2018) tested hypotheses of Trans-
Eurasian families.

Second, a major application for Bayesian phylogenet-
ic methods in linguistics has been to investigate rates
and patterns of trait evolution. One strand of research
has investigated the stability of grammatical features
over time and space (e.g. Dediu and Levinson 2012;
Greenhill et al. 2010a; Cathcart et al. 2018), or com-
pared rates of change between different aspects of lan-
guage (Greenhill et al. 2017). Another strand has
investigated how rates of change are shaped by external

factors such as their frequency of use in speech commun-
ities (Pagel et al. 2007), or the size of the speech com-
munities themselves (e.g. Greenhill et al. 2018). Yet
another strand has investigated the co-evolution of par-
ticular language subsystems from word-order (Dunn et
al. 2011), to color naming in Pama-Nyungan (Haynie
and Bowern 2016), to the evolution of higher numerals
in Indo-European (Calude and Verkerk 2016), and
noun-phrase recursion (Widmer et al. 2017). Other stud-
ies have used phylogenies as the backbone for making
inferences about phonology, from reconstructing the
proto-forms of proto-languages (Bouchard-Coté et al.
2013), modeling sound changes over time (Hruschka et
al. 2015), and inferring an increase in labiodentals over
time purportedly enabled by a shift in diet to agriculture
(Blasi et al. 2019).

Third, a current area of major growth is phylogeogra-
phy, which can be used to infer the geographical home-
lands of language groups (Lemey et al. 2009; Bouckaert
2016). Given the longstanding interest in linguistic home-
lands (e.g. Sapir 1916), it is unsurprising that these have a
growing home in linguistics too. For example, (Bouckaert
et al. 2012) used these tools to controversially infer the
homeland of the Indo-European languages to Anatolia,
while Walker and Ribeiro (2011) proposed a western
Amazonian origin of Arawakan. Bouckaert et al. (2018)
introduced a founder-dispersal model, which can take
landscape heterogeneity in account, to test various hypoth-
eses on Pama-Nyungan origins. Other studies have used
phylogeographic methods to link language family expan-
sions to climate change, such as Grollemund et al. (2015)
proposing that the Bantu expansion was facilitated as sa-
vannah corridors opened up through the rainforest, or
Lehtinen et al. (2014) suggesting that a warm period be-
tween 7,500 and 5,000 years ago facilitated the spread of
the Uralic language family. Yet another research direction
investigates the effect of geographical barriers on language
spreads (Lee and Hasegawa 2014). Discrete phylogeo-
graphic models (De Maio et al. 2015; Kithnert et al. 2016;
Miiller et al. 2018) may also be useful if language groups
are so isolated that an island model is more appropriate
than a model of continuous geographic dispersal.

9. Conclusion

Due to applications in evolutionary biology, Bayesian
phylogenetics has experienced enormous progress during
the past decade. Sophisticated models are implemented in
relatively easy-to-use software programs making them ac-
cessible to a wide audience of researchers in many fields.
In this article, we are aiming to make these methods more
accessible to scholars of language evolution. By
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explaining the basic concepts of models relevant for lin-
guistic evolution, we hope to enable scholars to under-
stand what the components of a Bayesian analysis
inferring a phylogeny of languages are, such that they can
make informed decisions on which prior distributions to
choose and how to interpret their analyses.

Supplementary data
Supplementary data is available at JOLEV online.
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