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Abstract

Bayesian phylogenetic methods provide a set of tools to efficiently evaluate large linguistic datasets

by reconstructing phylogenies—family trees—that represent the history of language families. These

methods provide a powerful way to test hypotheses about prehistory, regarding the subgrouping, ori-

gins, expansion, and timing of the languages and their speakers. Through phylogenetics, we gain

insights into the process of language evolution in general and into how fast individual features change

in particular. This article introduces Bayesian phylogenetics as applied to languages. We describe

substitution models for cognate evolution, molecular clock models for the evolutionary rate along the

branches of a tree, and tree generating processes suitable for linguistic data. We explain how to find

the best-suited model using path sampling or nested sampling. The theoretical background of these

models is supplemented by a practical tutorial describing how to set up a Bayesian phylogenetic ana-

lysis using the software tool BEAST2.
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1. Introduction

Studying the evolution of language families through

time allows us to reconstruct pieces of the human past,

locally and globally. Bayesian phylogenetic methods en-

able the reconstruction of the evolutionary relationships

among languages and the estimation of the time and

place at which their most recent common ancestor

(MRCA) existed. These methods are powerful tools for

reconstructing evolutionary histories. This power comes

from a robust statistical and inferential framework that

can incorporate known information about processes and

patterns. Once these relationships—phylogenies—are

reconstructed there are an array of tools that can use

these phylogenies to test evolutionary hypotheses.

Bayesian ‘phylolinguistic’ studies have become in-

creasingly prevalent in linguistics over the last decade.

The first application by Gray and Atkinson (2003)

controversially inferred the date of origins of the
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Indo-European language family to around 7,800–

9,800 years ago in contrast to the previously proposed

age of about 6,000 years. While the debate about Indo-

European is ongoing (e.g. Bouckaert et al. 2012; Chang

et al. 2015), Bayesian phylogenetic methods have be-

come an integral part of the historical linguistics toolkit,

exploring language families from Austronesian (Gray et

al. 2009)—where the inferred dates match those pre-

dicted by historical linguistics (Greenhill et al. 2010b)—

to Bantu (Grollemund et al. 2015), Chapacuran

(Birchall et al. 2016), Dravidian (Kolipakam et al.

2018), Korean (Lee 2015), Japonic (Lee and Hasegawa

2011), Pama-Nyungan (Bouckaert et al. 2018), Semitic

(Kitchen et al. 2009), Sino-Tibetan (Sagart et al. 2019;

Zhang et al. 2019), Tupi-Guarani (Michael et al. 2015),

and Uralic (Honkola et al. 2013; Lehtinen et al. 2014).

Why has there been such a rapid uptake of Bayesian

phylogenetic methods in linguistics? Historical

linguistics has dabbled with computational methods

before—lexicostatistics and its offshoot glottochronol-

ogy (Swadesh 1950; Lees 1953)—but despite some

initial enthusiasm, these methods were quickly rejected.

The first major criticism of lexicostatistics was that it

discounted the distinction between shared retentions

and shared innovations. In historical linguistics, since

Brugmann (1884), innovations (usually phonological

innovations) have been used to identify language rela-

tionships, while traits that are just retentions from an

earlier stage are not considered indicative of relation-

ships (Blust 2000). Lexicostatistics builds a tree by sum-

marizing all changes between pairs of languages as a

single distance score, which collapses this fundamental

distinction (Blust 2000). In contrast, phylogenetic meth-

ods model where traits originate and where they are

retained,1 a distinction just as fundamental to modern

taxonomy as it is to historical linguistics (Hennig 1996).

The second major criticism of lexicostatistics con-

cerned its fundamental assumption of a constant rate of

change to infer tree topology and timing (Bergsland and

Vogt 1962). Critics noted that language change proceeds

at widely varying rates over time and lineages. One

prominent critique used lexicostatistics to date the diver-

gence of Icelandic and Old Norse to less than 200 years

ago, when historically we know it diverged 1,000 years

ago (Bergsland and Vogt 1962). In contrast, Bayesian

phylogenetic methods implement a range of approaches

to model and account for rate variation between parts of

the data, between lineages, and over time2.

The final major criticism of lexicostatistics is that it

could not account for nontree like processes in language

change, such as borrowing (Moore 1994). Indeed, this

criticism has long been lurking in the background of all

historical linguistic approaches (Heggarty et al. 2010)

and identifying loan words and contact effects is always

a priority. However, although we know that evolution-

ary processes hardly ever follow a pure binary branching

process, this simplified process often approximates the

truth well, such that important scientific questions can

be tackled. Notably, Bayesian phylogenetic methods are

robust to the effects of borrowing as they infer and

quantify the uncertainty in their estimates of parameters

and tree topologies. In addition to inferring language

relationships, they provide probabilistic measures of

support for each given subgrouping. Hence, borrowing

is revealed through high levels of uncertainty in the

affected groupings, while unaffected parts of the tree are

reconstructed accurately (Greenhill et al. 2009).

Here we explain the fundamental concepts of

Bayesian phylolinguistic analysis of lexical data. We

concentrate on the concepts that are relevant for lan-

guage evolution. Setting up a phylolinguistic analysis

requires a sophisticated choice of models and their

parameters. The presentation of the models comes with

an explanation on how and why to use them and a

detailed description of their parameters. We provide

mathematical details to fully understand how these

models interact and contribute to the Bayesian posterior

distribution. The supplement contains a hands-on tutor-

ial on how to set up and run a phylolinguistic analysis in

BEAST2, which is also part of the community teaching

material resource ‘Taming the BEAST’ (https://taming-

the-beast.org, last accessed 03/08/2021) (Barido-Sottani

et al. 2017).

2. Bayesian phylogenetics

The advantage of Bayesian methods is the use of prob-

ability distributions for model parameters. This use of

distributions is in stark contrast to other phylogenetic

approaches like maximum parsimony or maximum like-

lihood, where a single ‘best’ value for each parameter is

estimated (Greenhill and Gray 2009). In Bayesian statis-

tics, we aim to incorporate the full uncertainty around

each estimate. This means that all possible values of the

parameters, for example, the diversification rate, are

allowed with a corresponding probability. The possible

values are expressed as our prior belief in the form of a

probability distribution. Priors can be ‘neutral’ (i.e.

without a strong claim that the age of a language group

is between 2,000 and 20,000 years) or highly inform-

ative (e.g. a specific group is between 1,000 and

1,200 years old with more weight toward 1,100 years).

The Bayesian approach is extremely powerful for lin-

guistic analyses for several reasons. First, diverse

2 Journal of Language Evolution, 2021, Vol. 00, No. 0

D
ow

nloaded from
 https://academ

ic.oup.com
/jole/advance-article/doi/10.1093/jole/lzab005/6374521 by M

PI Science of H
um

an H
istory user on 12 O

ctober 2021

https://taming-the-beast.org
https://taming-the-beast.org


scenarios can be included in the calculations, weighted

by how likely we believe they are. For example, we often

have documented evidence from early historical sources

that a group of people spoke a particular language, for

example, the Chapacuran language Tor. Tor is first

mentioned in a letter by a Jesuit priest in 1,714

(Menéndez 1981), so we know that the language existed

around 300 years ago, but do not know when it origi-

nated. Birchall et al. (2016) used this information to re-

construct the Chapacuran language family tree with a

prior probability distribution for Tor’s emergence

stretching from 300 to 780 years ago. Combining several

such partial calibrations allowed them to infer the origin

of the Chapacuran languages to an average of

1,039 years ago, with a 95% probability between 525

and 1,619 years. Their results suggest that many of the

Chapacuran language splits occurred around the time

the Spaniards entered lowland Bolivia.

Second, the output is not a single tree with the claim

to be the true tree, but a sample of trees from the poster-

ior. This posterior probability distribution of trees is im-

portant as it tells us which parts of the tree are well

supported by the data, and which are more weakly

attested. This enables us to make careful and nuanced

statements of hypotheses that take into account uncer-

tainty in the tree topology or parameters—and we can

still make inferences even when there are moderate lev-

els of uncertainty. For example, there is substantial de-

bate about the first subgroup within Sino-Tibetan. One

hypothesis proposes a primary split between Sinitic and

Tibeto-Burman (Benedict 1972; Matisoff 2003), another

places Sinitic and Tibetan in a lower-level subgroup (van

Driem 2003; Blench and Post 2014), and a third hypoth-

esis proposes that the deep structure of Sino-Tibetan is a

rake with multiple branches (Peiros 1998). Sagart et al.

(2019) aimed to identify the origins of Sino-Tibetan

using Bayesian Phylogenetic methods. Rather than sup-

porting a single hypothesis, they found that 33% of the

trees placed the Sinitic languages as the first group,

while 15% of the trees placed a West-Himalayish group

first. Given this posterior distribution, Sagart et al. were

able to rule out the ‘rake’ hypothesis and provide histor-

ical and archaeological evidence favoring the ‘Sinitic

first’ hypothesis as twice as likely as the ‘West-

Himalayish’ hypothesis.

2.1 Data structure

When speaking of language phylogenies, the complexity

of a language is usually collapsed into a set of variables.

Although the variables can theoretically be of any kind,

they are in most cases binary and represent a feature

that is present (and thus coded as 1) or absent (coded as

0) in the language. Throughout this article, a language is

then always considered as a specific combination of

these features. Variables could be grammatical features

or lexical features in the form of cognates (Greenhill et

al. 2017), or any other aspect of language that might

show inheritance through descent with modification. In

the lexical cognate case, the data are typically based on

a list of basic vocabulary items (such as a Swadesh list)

containing, for instance, simple verbs, kinship terms, or

body parts. For each meaning in this list, lexemes from

all languages are collected and classified into cognate

classes. These are sets of homologous lexemes with simi-

lar meanings (Table 1). In the next step, every cognate

class defines a feature. Either a language has or lacks a

lexeme in that cognate class.

The whole dataset can be written as a matrix, where

each row stands for a language and each column for a

feature (Table 2). Following the terminology of genetic

phylogenetics, the matrix is called an alignment and

each column is a site.

Table 1. Example wordlist with two concepts (‘to laugh’

and ‘wing’) for five Oceanic languages. The lexemes are

classified in cognate sets, where lexemes with shared

(Oceanic) ancestry and meaning are summarized in the

same class.

Language ‘To laugh’ ‘Wing’

Lexeme Cognate set Lexeme Cognate set

Fijian dredre tolaugh-A taba-na wing-A

Marquesan kata tolaugh-B peheu wing-B

Hawaiian ’aka tolaugh-B ’heu wing-B

Maori kata tolaugh-B parirau wing-C

Tahitian ’ata tolaugh-B pererau wing-C

Table 2. The cognate class assignment from Table 1 is

coded into a matrix of binary traits representing the pres-

ence or absence of a cognate class in the respective

language.

Language ‘To laugh’ ‘Wing’

A B A B C

Fijian 1 0 1 0 0

Marquesan 0 1 0 1 0

Hawaiian 0 1 0 1 0

Maori 0 1 0 0 1

Tahitian 0 1 0 0 1
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Note that it is not mandatory to have definite cod-

ings for all features and languages. Languages with miss-

ing data are omitted in the likelihood calculation for the

sites without data. This is unproblematic as long as

missing features are sparse.

A phylogeny is represented in a binary tree (Fig. 1).

Its starting point is the root node corresponding to the

MRCA of all the languages present. From there, lineages

either branch into exactly two daughter lineages or end

in a leaf node. The branch lengths correlate to the num-

ber of changes (i.e. loss or gain of a feature) from their

starting point to their end (branching point or tip).

Multifurcations into more than two lineages can be

expressed by subsequent binary branching points with

very short branches between them. The leaf nodes (or

tips) represent the extinct or extant languages from the

dataset. Internal branches are protolanguages of their

children and a split is the point in time, where two lan-

guages start to accumulate changes independent of each

other (Maurits et al. 2019).

2.2 Bayes’ theorem

In the present context, Bayes’ theorem states that the

probability of a phylogenetic tree is based on an evolu-

tionary model, the visible data and a set of prior beliefs

about the unknown model parameters. This probability

is called posterior probability. The prior beliefs are

expressed as a set of probability distributions, which are

called priors. If we knew the exact model of evolution

together with its parameters, we could compute the like-

lihood that the data emerged from a given tree. In real-

ity, however, the parameter values are unknown. The

idea of Bayes’ theorem is to multiply this likelihood with

the prior probabilities of these parameters.

Explicitly for a tree T given the data D and an evolu-

tionary model characterized by its model parameters h,

it is by Bayes’ theorem that

PðTjD; hÞ / PðDjT; hÞPðT; hÞ; (1)

where PðDjT; hÞ is the likelihood of observing the data

given the model and the tree and PðT; hÞ is the prior

probability of the tree T and the set of model parameters

h. The left-hand side of this relation is the posterior

probability, which is proportional to ð/Þ the right-hand

side. The absolute value of the posterior is often difficult

to compute. But the relation implies that it is neverthe-

less possible to compare different outcomes of the

parameters h and trees T and by that produce samples

according to the posterior probability.

2.3 Computing the likelihood

A phylogenetic tree is comprised of a set of leaf nodes

connected to a series of internal nodes. Each language is

associated with a leaf node. At the leaf nodes, we know

Figure 1. Phylogeny of the example data from Tables 1 and 2. Each tip relates to a language that is represented by a binary string

of cognate codings. In this (most parsimonious) tree, the formation of the cognate classes tolaugh-A and wing-A only happened in

the Fijian branch. The class tolaugh-B emerged in its sister branch that is ancestral to the four remaining languages. This branch

splits up into two daughter lineages, where in the upper case (ancestral to Marquesan and Hawaiian) the feature tolaugh-B is

gained and in the lower case (ancestral to Maori and Tahitian) the feature tolaugh-C is gained.
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the exact configuration of traits (with the exception of am-

biguous sites due to missing data), for the internal nodes it

is unknown and we want to infer the most probable trait

assignments. So, for every internal node configuration, a

probability is calculated, which is the probability—given

the evolutionary model—that this specific configuration

leads to the state at the leaf nodes. When computing the

likelihood, we sum over the probabilities of all possible in-

ternal node assignments. However, under the assumption

that each trait of the data evolves independently, the likeli-

hood can be calculated per site.

Let x1; :::; x2n�1 be the nodes of the tree with leaf

nodes x1; . . . ; xn, internal nodes xnþ1; . . . ; x2n�2, and

root node x2n�1. For i 2 f1; . . . ;ng and j 2 f1; . . . ; kg,
let sij be the (known) data value of the leaf node xi at the

jth column in the alignment. For

i 2 fnþ 1; . . . ; 2n� 1g, let sij be the (unknown) data

value of the node xi at position j. Assuming that the

index of the parent node of xi is mi, the probability of

observing sij for some j at node xi is as follows:

Pðxi ¼ sijÞ ¼ Pðxi ¼ sijjxmi
¼ 0ÞPðxmi

¼ 0Þ
þPðxi ¼ sijjxmi

¼ 1ÞPðxmi
¼ 1Þ: (2)

Overall, the tree-likelihood at site j is computed as

the sum over all possible states at the internal nodes:

PðDjjT; hÞ ¼
X1

snþ1¼0

. . .
X1

s2n�1¼0

Y2n�2

i¼1

Pðxi ¼ sijjxmi
¼ smi

; hÞ

�Pðx2n�1 ¼ s2n�1jhÞ
(3)

and we get,

PðDjT; hÞ ¼
Yk
j¼1

PðDjjT; hÞ: (4)

This likelihood can be efficiently calculated using

Felsenstein’s pruning algorithm (Felsenstein 2004). The

transition probabilities (2) are determined by the substi-

tution model explained below.

It is worth noting that this method, at every step of

the analysis, models where each trait originated and in

which branches it was retained. The likelihood here is a

direct analogue of the traditional distinction in historical

linguistics between retentions and innovations. It is pos-

sible if cumbersome to log the inferred innovation point

of a set of traits or to identify which particular traits de-

fine a subgroup of languages.

2.4 Ascertainment correction

In linguistic datasets, traits are typically included only if

they are present in at least one of the languages. That is,

linguists tend to exclude cognate sets that do not occur

in the particular set of languages they are studying. This

might seem like a strange thing to worry about, but if

we think of our data as comprised of a set of cognate

sets of varying size—from singletons containing one lan-

guage, to maximal sets containing all languages—then it

becomes clear that we have arbitrarily ignored one end

of this distribution (i.e. cognate sets of size zero). To ac-

count for this bias, we replace PðDjjT; hÞ from Equation

(3) with the corrected term:

PðDjjDj 6¼ 0;T; hÞ ¼ PðDjjT; hÞ
1� PðDj ¼ 0jT; hÞ (5)

where Dj ¼ 0 means that all languages have a zero in

the jth column of the alignment. That is, we ascertain

at least one 1 in each cognate column (Felsenstein

2004). However, if the dataset is divided into parti-

tions (e.g. one for every meaning class when consider-

ing cognate data), it is possible that a language has no

data in a particular partition. In this case, the ascer-

tainment correction described here is not sufficient

(Chang et al. 2015), rather the correction should be

applied on a per-word or meaning slot basis.

Additionally, each zero in the 0-vector that corre-

sponds to a language with missing data needs to be

marked as missing. An example of a properly ascer-

tained dataset can be found in the Supplementary tu-

torial in section ‘The data-set’.

3. Models of evolution

The substitution model determines the probability of

going from one state to another over a specific time

period. The substitution process is modeled as a Markov

process with an infinitesimal rate matrix Q ¼ ðqijÞ,
where qij is the exponential rate of going from state i to

state j (i 6¼ j) and the diagonal elements qii ¼ �
P

j6¼i qij

are the outgoing rates. So, if state i was 0 and state j was

1, then qij is the rate of gaining this particular cognate

while qji is the loss rate. The time-dependent transition

probabilities between states are the entries of the matrix

PðtÞ ¼ expðQtÞ: (6)

To efficiently compute these probabilities, most of

the models (and all of the models explained here with

the exception of the pseudo-Dollo model) are based on

the following assumptions: first that the process is sta-

tionary, which means that there are equilibrium frequen-

cies p ¼ ðp0;p1Þ such that

pQ ¼ 0; pPðtÞ ¼ p; 8t: (7)
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This means that the evolutionary process has reached

a state, where the overall amount of acquired traits is in

balance. The second assumption is time-reversibility,

that is

piPðtÞij ¼ pjPðtÞji; 8i; j; t: (8)

This implies that evolution is not directional and that

the probability of starting with 0 at one end of a branch

and ending with 1 at the other is the same as the prob-

ability of starting with 1 and evolving to 0 (Felsenstein

2004). In the following, we describe the most commonly

used models of linguistic evolution (Fig. 2).

3.1 Continuous time Markov chain model model

The continuous time Markov chain model (CTMC)

(Gray and Atkinson 2003; Bouckaert et al. 2012) is the

simplest substitution model presented here. It assumes

that the data are generated by a time-reversible Markov

process with two states (Fig. 2a) and that the distribu-

tion of zeroes and ones observed in the data follows the

stationary distribution of this Markov chain. Each zero

in the dataset can evolve into a one and vice versa. In

terms of cognate evolution, this means that every lan-

guage can gain or lose a cognate set with a state-specific

rate and these rates are fixed according to the currently

observed data. Given the stationary distribution

p ¼ ðp0;p1Þ, the only possible infinitesimal rate matrix

fulfilling these conditions is as follows:

Q ¼ b
� p0

p1 �

� �
(9)

with normalizing constant b ¼ 1
p2

0
þp2

1

.

Note that the off-diagonal entries are positive and

represent rates of flow from i to j. The diagonal entries

represent the total flow out of state i. The latter is the

negative of the sum of off-diagonal other entries in each

row and are left blank by convention.

3.2 Covarion model

The binary covarion model (Tuffley and Steel 1998;

Penny et al. 2001) is widely used for cognate data (Gray

et al. 2009; Bouckaert et al. 2012). The covarion model

provides a powerful way of handling variation in rates

of change. For example, many cognates are relatively

stable over a long period of time but occasionally change

in bursts. Bursts of change may be due to external events

like language contact. The covarion model can account

for that by letting states evolve at a slow ‘background’

rate during periods of stability and shifting into a faster

rate category when bursts happen. In our experience,

the covarion model is often the best performing model

for lexical cognate data.

The covarion model contains two layers of states.

The first and visible layer is the observable state of the

site, 0, or 1. The second and hidden layer contains the

additional information if the site is in a slow or fast

state. In total, there are four hidden states, slow-0, fast-

0, slow-1, and fast-1. Transitions can happen both be-

tween the fast and slow states and between the 0- and 1-

states as it is shown in Fig. 2b. This is parameterized

through several parameters: The stationary frequencies

(f0, f1) of the observed states (0 resembles slow-0 and

fast-0, and 1 resembles slow-1 and fast-1). The frequen-

cies of the fast and slow states are set to ð0:5 � f0; 0:5 �
f0; 0:5 � f1;0:5 � f1Þ to ensure time-reversibility. The

10

1

π0

π

10 0

λ μ10

10

f1

f0sf0 sf1
αf1

αf0

(a)
(b)

(c)

Figure 2. Overview of the binary substitution models. (a) The binary CTMC model, where mutations between 0 and 1 can happen

in both directions. The binary covarion model (b) features slow and fast states. Switches between these states happen with rate s

and mutations in the slow state happen with rate a. In the pseudo-Dollo model (c), a trait can be gained once with rate k and per-

manently lost with rate l.
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switch rate s of changing between slow and fast states,

and finally, the substitution rate a in the slow state. The

substitution rate in the fast state is 1 making a practical-

ly to a relative value.

The rate matrix Q is then defined as follows:

fast

�
0 :
1 :

slow

�
0 :
1 :

� f1 sf0 0
f0 � 0 sf1

sf0 0 � af1

0 sf1 af0 �

0
BB@

1
CCA ¼ Q (10)

3.3 Pseudo-Dollo model

The Dollo principle states that a feature can be gained

only once, but can be lost several times (Dollo 1893).

Once it is lost, it cannot be regained. This assumption

appears suitable for language data as it is commonly

believed that cognate sets are gained rarely but can be

lost frequently (Nicholls and Gray 2008). However, in

practice, this assumption is very restrictive as borrow-

ings and semantic shifts may lead to multiple gains of a

cognate. A variant accounting for this is the pseudo-

Dollo model (Bouckaert and Robbeets 2017). It assumes

that each language can gain a feature with an infinitesi-

mal rate k and lose it forever with rate l (Fig. 2c). This

model is neither time-reversible nor in an equilibrium

state as the evolution is directional. There are three cate-

gories, a zero for not-yet-acquired, a one and a zero for

feature-lost. The infinitesimal rate matrix is as follows:

Q ¼
� k 0
0 � l
0 0 0

0
@

1
A (11)

A covarion variant that can deal with rate variation

through two slow states (similar to the binary covarion

model) is available as well.

3.4 Markov model for multiple states

Nonbinary data with more than one state can be mod-

eled using the Mk-model (Lewis 2001). This model is

often useful for typological data or other characters

with a small number of states that cannot be easily or

sensibly converted to binary presence/absence coding.

Under the Mk-model each trait can have one of the k

states, and transitions are allowed between any pair of

states at equal probabilities. The corresponding rate ma-

trix is as follows:

Q ¼

� 1 . . . 1
1 � . . . 1
..
. ..

. . .
. ..

.

1 1 . . . �

0
BBB@

1
CCCA (12)

and the equilibrium frequencies are 1
k ; . . . ; 1

k

� �
. Note

that for k¼ 2, this is the CTMC-model with frequencies

p ¼ ð0:5;0:5Þ.

4. Rate variation and calibration

The rate matrix Q is normalized to yield on average one

substitution per time unit of t. However, languages vary

substantially in their rates of change across lineages,

across different subsets of data, and over time

(Bergsland and Vogt 1962; Greenhill et al. 2017).

Bayesian phylogenetic methods provide several ways of

varying the pace at which changes happen across sites

and branches of the tree. This rate variation is usually

accomplished by multiplying the matrix Q by several

factors, which are summarized as the mutation rate l.

4.1 Rate variation across sites

In order to allow rate variation across sites one must

consider the characteristics of linguistic meaning classes.

Empirically, sites in a meaning class with very few cog-

nates evolve at a slower pace than sites in a meaning

class with many members (Pagel and Meade 2006; Pagel

et al. 2007). Hence, a simple model in which all meaning

classes share a single mutation rate is unrealistic.

Alternatively, one may allow one mutation rate for each

meaning class. However, as there is often a large number

of meaning classes in the data (i.e. 100 or 200 words or

more) this bears a high risk of overfitting the data. An

intermediate solution is to distribute the meaning-classes

to several bins which share a mutation rate (e.g. one bin

for meaning classes of size 1–10, 11–20, and so forth).

This approach may capture the abovementioned vari-

ation without overfitting the model. The Supplementary

tutorial explains how this is facilitated in BEAST2.3

Another possibility is to allow site variation governed

by an approximated gamma distribution (Yang 1994).

In contrast to the model above, where all sites in a

meaning class share the same evolutionary rate, but rates

may differ across meaning classes, in this approach all

sites are allowed to vary in the same way. We assume

that the distribution of mutation rates follows a gamma

distribution with mean 1 and a shape parameter a. This

distribution has the following properties: for a > 1, it is

bell-shaped centered around 1 with little variance, and

for a � 1, it is L-shaped, where values lower than 1

have a high density and high values have a low density

(compare Fig. 3). So a dataset containing highly varying

mutation rates, where most of the sites are fairly con-

stant but some sites change at a fast pace, is best

described by a gamma distribution with a low shape

parameter. However, if all sites change at more or less
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the same speed, we would expect a high a-value. Note

that this method is recommended only if there is no

other method governing mutation rates variation. For

example, it is not advisable to combine a binary cova-

rion substitution model with gamma rate heterogeneity

as both include slow and fast rates.

Typically the continuous gamma distribution is

approximated by a discrete version with a small number

of rate categories. The range of rate multipliers from 0

to 1 is split into segments of equal probability accord-

ing to the gamma distribution. The weighted (by the

gamma distribution) mean of each segment is its repre-

sentative rate category. The likelihood is then calculated

once for each category and the average is taken. (Yang,

1994). The amount of rate categories is a tradeoff be-

tween computational effort and the resolution of the

captured variance. Harrison and Larsson (2014) showed

that four rate categories are sufficient to capture most of

the variance. In a Bayesian analysis, the gamma shape

parameter can be estimated. As there is no prior infor-

mation on which site belongs to which category the like-

lihood is calculated once for each category and the

average is taken.

4.2 Clock models

To estimate the age of subgroups on a phylogeny, we

need an evolutionary clock to convert the number of

observed changes to time. The strict clock model

assumes that substitutions happen at the same speed

across the whole tree with a single parameter for the

substitution rate. This ‘clock rate’ represents the average

number of substitutions per site per time unit.

Some lineages in the tree might evolve faster than

others, which can be accounted for through an uncorre-

lated relaxed clock model (Drummond et al. 2006;

Douglas et al. 2021). Additionally to the clock rate, it

samples a rate multiplier for each branch in the tree. The

multipliers are drawn independently from a probability

distribution, most commonly a log-normal distribution

with mean 1 and standard deviation r. The clock rate

for a branch is then the product of the average clock rate

c and the branch-specific multiplier. If the tree has n

tips, this results in up to 2n clock model parameters:

two from the distribution and up to one rate for each of

the 2n� 2 branches. To avoid overfitting, this model

should be used only when the data show at least a mod-

erate temporal signal with reliable tip and/or internal

node calibrations.

Further variations are possible, such as allowing a

random local clock (Drummond and Suchard 2010) or a

mixture of strict and relaxed clock models for different

parts of the tree (Fourment and Darling 2018).

4.3 Calibrations

If we want to estimate divergence times, we need an in-

formative prior distribution on the clock rate or reliable

calibration points to estimate the ages of all nodes in the

tree. One can either set a prior on the age of the MRCA

of a language subgroup, on the parent of an MRCA, on

the entire tree, or use the ages of ancient languages as

Figure 3. Densities of the Gamma function for varying shape parameters a. For higher a-values, most of its weight is centered

around 1 meaning a low variation of rates. Low a-values lead to L-shaped distributions with higher probabilities of rate factors far-

ther away from 1.
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calibration points. If a set of languages belongs to a sep-

arated geographical unit (e.g. an island), an MRCA cali-

bration could come from archaeological records. For

example, the age of the first settlement of New Zealand

can be securely dated to between 1230 and 1282 AD

(Wilmshurst et al. 2010). Together with the assumption

that after the initial colonization there was a fast spread

across the islands and thus a geographical separation,

this implies that the native languages spoken on these

islands have a common ancestor, which must have

existed around that time. Thanks to the Bayesian frame-

work, such calibrations are not necessarily exact years,

but can be included using prior distributions accounting

for uncertainty and scholarly disagreement.

Although such calibrations can be incorporated for

all clades and subclades in the tree, it is highly recom-

mended to use few good calibrations and to refrain from

nested calibrations as the combined prior distribution

can induce unwanted side-effects (Heled and

Drummond 2011). To check whether calibrations pro-

vide enough information to estimate the clock rate, one

can perform a Bayesian evaluation of the temporal sig-

nal (Duchene et al. 2020). Date calibrations can also be

used to validate the model and inference procedure, by

reconstructing known dates (Ryder and Nicholls 2010).

A useful discussion of how to best implement calibra-

tions in a Bayesian analysis of languages can be found in

(Maurits et al. 2019). A practical guide explaining how

to set up calibrations can be found in the Supplementary

tutorial (section ‘The priors’).

5. Tree priors

The last factor of Equation (1) is the prior distribution

of the model parameters. A special role is played by the

tree prior. The tree prior contains information about the

process that gave rise to the phylogeny and itself intro-

duces new parameters governing this tree-generating

process. Consequently, the prior distribution expands to

PðT; hÞ ¼ PðTjhÞPðhÞ; (13)

where h is the set of all model parameters, from the evo-

lutionary model and the tree prior.

There is a range of tree priors available; however,

not all are suitable for linguistic analyses. A very popu-

lar tree prior for biological applications is based on the

coalescent process from population genetics. (Kingman

1982). The simple constant population size coalescent

may not always fit language data well (Rama 2018;

Ritchie and Ho 2019), but skyline variants (like the so-

called Bayesian skyline (Drummond et al. 2005)) pro-

vides a flexible variant that requires conveniently little

effort in specifying hyper priors. For languages, the most

suitable models are the Yule and birth–death processes,

but this is an ongoing area of research (Rama 2018;

Ritchie and Ho 2019). It is best practice to test the ro-

bustness of phylogenetic results to different assumptions

regarding the tree generating process.

5.1 The Yule model

The Yule model (Yule 1925) is a pure birth process with

a single parameter k, called the birth rate, determining

the exponential rate of diversification in the tree. The

probability that a branch splits into two at time t is given

by the following equation:

pðtÞ ¼ ke�kt: (14)

(a) (b) (c)

Figure 4. (a) Full tree, (b) reconstructed tree under a birth–death model with w-sampling through time, and (c) with contemporan-

eous q-sampling only. All dots refer to a sampling event. At present day, all extant lineages are sampled with probability q. All ex-

tinct and unsampled languages are pruned.
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Condition on the tree having n tips and root age t1,

the prior distribution of a tree T depends on its branch-

ing times t2; . . . ; tn�1 (Gernhard 2008):

PðT; kÞ ¼ n!kn�1
Yn�1

i¼1

e�kti PðkÞ (15)

Yule’s simplicity is both its strength and its weak-

ness. First, the Yule model assumes that the dataset

includes all the languages in the family—that is, full

sampling—which is unlikely. Second, the Yule model

does not allow lineages to die. Therefore, while the Yule

is the simplest tree prior model and commonly used in

linguistic phylogenies, any dataset that includes docu-

lects of extinct languages is invalid under the Yule model

and may generate biased estimates of diversification

rates and node ages.

5.2 Birth–death processes

Birth–death models are widely used in phylogenetics and

come in different varieties (Gernhard 2008; Stadler et al.

2013; Gavryushkina et al. 2014). Like the Yule model,

they all specify diversification events governed by a birth

rate k. In addition, each lineage can go extinct with an

exponential rate l, called the death rate. Furthermore,

these models can account for an incomplete sampling of

languages to give better estimates of the tree topology

and timing.

In a perfect data set, we would have sampled all lan-

guages—both extinct and extant—of a language family.

In this case, we would be able to reconstruct the full lan-

guage family tree (Fig. 4a). Unfortunately, we often only

observe extant languages such that the reconstructed

language phylogeny represents a subset of the full lan-

guage tree in which unobserved lineages are invisible

(Fig. 4c). In this case, all languages in the dataset would

be sampled at present, which can be modeled through a

sampling probability q.

At least one of the three parameters—birth rate k,

death rate l and the sampling probability q—needs strong

prior information as they are highly correlated to each

other (Stadler et al. 2013). A good candidate for a prior

distribution on the sampling probability is the Beta distri-

bution Betaða;bÞ with the amount of sample languages a
and the estimated amount of nonsampled languages b.

The mean of this distribution is the proportion of sampled

languages a
aþb. The attached tutorial contains a guide on

how to specify the birth–death model (section ‘The

priors’).

Datasets that include extinct languages need a sampling

rate w through time. The sampling rate is an exponential

rate at which lineages in the tree get sampled (Stadler et al.

2013). The reconstructed tree can also include ancient

samples that may or may not have sampled descendants at

present (Gavryushkina et al. 2014), which is illustrated as

a black dot along the branch in Fig. 4b. A simple repara-

metrization of w as a sampling proportion s ¼ w
wþl allows

the use of a Beta prior distribution.

Further extensions of the birth–death model are pos-

sible. For example, another way to include extinct lan-

guages is multi-rho sampling. A set of fixed times is

specified, at each of which one or more samples are

taken. For each of these times, a sampling probability

parameter needs to be set as well, if suitable it can be a

single q for all sampling times.

6. Choosing the best analysis

In this article, we have described a range of models for

analyzing language data in a phylogenetic framework.

The choice of model depends on a range of factors. In

the following, we attempt to summarize them. One

should try the models appropriate for the data at hand

and evaluate which one performs best. If several models

robustly lead to the same results, that is, the key aspects

of the phylogeny are close, a model comparison proced-

ure may not be required. If this is not the case, a model

comparison should be performed and Bayes factors

(BFs) computed.

6.1 Model preselection

The overall phylogenetic model consists of two major

parts: the site model, consisting of a substitution model

and a clock model, and the tree model. The choice of a

site model depends on the data. If the data are nonbi-

nary, that is, a site in the matrix can have more than two

states, the only option currently implemented for lin-

guistic data is an Mk-model (or, if appropriate, the data

can be transformed into a binary form). For binary data

(e.g. presence or absence of cognate sets or structural

features), one should run a model comparison between

the binary CTMC, pseudo-Dollo (covarion) and the bin-

ary covarion model.

If the rate of evolution varies amongst the sites in the

data (i.e. some features evolve significantly quicker than

others), one should additionally check, whether adding

gamma rate categories improves the performance.

However, this only makes sense for the CTMC, Mk, and

pseudo-Dollo model as the covarion model naturally

introduces two rate categories. Alternatively, the data

can be partitioned into bins with a separate mutation

rate for each bin, as described above.
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Regarding the choice of clock model, a strict clock

may lead to wrong time inferences if there is a signifi-

cant variation in the branch rates. Perhaps unintuitively,

a relaxed clock model performs well even if there is no

variation at all (Drummond et al. 2006). However, an

analysis with a relaxed clock model has a lot more

parameters and thus requires informative data to con-

verge. In an analysis with a relaxed clock model with

log-normal distributed branch rates, the coefficient of

variation can be computed. This is the estimated stand-

ard deviation of the branch rates divided by the mean

clock rate and a measure of how clock-like the data are.

A low coefficient of variation results from clock-like

data, while higher values indicate higher variation in

branch rates.

We suggest the following: first, run an analysis with

a relaxed clock model. If the coefficient of variation is

low (e.g. less than 0.1), there may not be any variation.

In this case, the data may be better described by a strict

clock model. Second, check if the clock rate converges

with a strict clock model. If the parameters converge in

both cases, do a model selection test between the two

models and choose the better performing one.

For the tree prior, the birth–death model is most suit-

able if there are extinct languages in the data. Even if the

data are contemporaneous a birth–death model is

favored over the Yule model as the latter one assumes

complete sampling and no extinction happening in the

tree. As described above, there are several ways sam-

pling can be modeled in a birth–death process. If all the

languages are sampled from the present data (i.e. are

contemporaneous) then the model requires a sampling

probability (q) at the present day (e.g. if the analysis

contains about 80% of the languages in the group, then

q is 0.8). If, however, there are languages sampled at dif-

ferent times throughout (pre)history then this sequential-

ly sampled data can be modeled using a sampling rate w

through time (Stadler et al. 2013). Combinations of

both contemporaneous and sequential sampling are pos-

sible, for example, when a larger number of sampled

languages is acquired at a few different points in time

(‘multi-q sampling’), or when extinct (sequentially

sampled) languages are combined with modern (contem-

poraneously sampled) languages (Stadler et al. 2013).

6.2 Model comparison

To compare two models M1 and M2, Bayesian model se-

lection allows estimation of the so-called BF of M1 with

respect to M2, which is calculated as follows:

BF1;2 ¼
PðDjM1Þ
PðDjM2Þ

(16)

where PðDjM1Þ is the marginal likelihood (ML) for

model M1 and PðDjM2Þ the ML for M2. If the BF is

above 1, there is support for model M1 and if it is below

1 there is support for M2. The strength of support is

reported using the following classification (Kass and

Raftery 1995): a BF between 1 and 3 is low support, be-

tween 3 and 20 is moderate support, between 20 and

150 is strong support, and over 150 very strong support.

Note that sometimes the log of the BF is reported:

log BF1;2 ¼ log PðDjM1Þ � log PðDjM2Þ (17)

The calculation of the ML is computationally very

expensive but essential. There are several ways to obtain

estimates of the ML for a model, some of which are

implemented as BEAST2 packages (Bouckaert et al.

2014), including path sampling/stepping stone (Baele et

al. 2013) (model-selection package) and nested sampling

(Maturana et al. 2018) (NS package). Nested sampling

provides an estimate of the (log) ML together with its

standard deviation, unlike most other methods. This

additional information allows accounting for uncer-

tainty in the ML estimates when comparing log BF esti-

mates: if the log BF is larger than twice the sum of

standard deviations, the difference is significant.

6.3 Model validation

The aim of model selection is to compare between two

or more models. This comparison does not tell us if the

models in the pool are acceptable or fail to describe key

aspects of the phylogeny. Instead to evaluate if a given

model is a good description of the underlying evolution-

ary process involved in generating the data, we can use

an approach called model validation. In model valid-

ation, the aim is to check whether the chosen model is

capable of producing the empirical data. The fit between

the real empirical data and the data generated under the

model is known as absolute model fit (in contrast to the

relative model fit obtained by the selection methods).

There are several ways to achieve this.

First, one can evaluate known facts that are not used

as prior information. In an appropriate model, these

known facts should be within the inferred 95% highest

posterior density interval (i.e. the interval, in which

95% of the samples are located inside). For example,

one could compare the obtained tree topology to see if

the inferred clades make sense according to the historic-

al linguistics literature (Greenhill et al. 2010b), or com-

pare inferred dates to those known historically (Ryder

and Nicholls 2010).
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More sophisticated methods involve posterior pre-

dictive simulations (PPSs) (Gelman et al. 2013). This ap-

proach simulates a large number of synthetic datasets

under the model of interest. These simulated datasets

are then compared with the empirical dataset using vari-

ous test statistics. In an adequate model, all the statistics

of the real data should be within the respective distribu-

tions of the PPS statistics. There is a broad range of test

statistics suitable for Bayesian phylogenetics assessing

various components of the analysis such as clock model

(Duchêne et al. 2015) or the tree prior (Duchene et al.

2018).

The choice of validation method is linked to the re-

search question. The most significant aspects of the

phylogeny for the topic of interest should be covered by

a model adequacy test.

7. Exploring the space of trees using
BEAST2

Sampling trees from the space of all possible trees is not

trivial. State of art software packages use a Markov

Chain Monte Carlo (MCMC) algorithm to explore the

space of trees and parameters and return a sample of

their posterior distribution. Starting with an initial ran-

dom tree and a set of parameters, the Markov Chain it-

eratively proposes small changes to the tree and

parameters in turn. The algorithm accepts any proposal

that improves the posterior probability. Proposals that

lead to a decrease in posterior likelihood are accepted

with a probability proportional to the likelihood ratio

between the proposed and current state. This ensures ef-

ficient exploration of the state space without the algo-

rithm getting stuck in local maxima. In the initial ‘burn-

in’ phase, the MCMC algorithm needs time to find the

region of the highest posterior probability. After that,

each step is a sample from the space of trees and param-

eters according to the posterior distribution. Since these

are highly correlated, we only periodically log them to a

trace file, and tree file, which can be considered a sample

from the posterior.

Phylogenetic analyses of language evolution in

BEAST2 (Bouckaert et al. 2014) are facilitated by the

Babel package. Furthermore, the birth–death processes

are part of the bdsky package, and the Mk-model is part

of the morph-models package. A step-by-step tutorial on

how to set up and run an analysis with BEAST2 is found

in the supplement and on https://taming-the-beast.org/

tutorials/LanguagePhylogenies/, last accessed 03/08/

2021.

Further prominent examples of software packages

for Bayesian phylogenetics are Mr Bayes (Huelsenbeck

and Ronquist 2001), Bayes Phylogenies (Pagel and

Meade 2004), TraitLab (G. K. Nicholls and Welch

2021), and RevBayes (Höhna et al. 2016).

7.1 Convergence

There are two parameters that can be computed from

the posterior sample to give clues about the quality of

the analysis. The first one is the auto-correlation time

(ACT), which is the average number of steps in the

Markov chain that two samples need to be apart to be

uncorrelated to each other. The second is the effective

sample size (ESS), which is the total amount of samples

divided by the ACT. The ESS is the estimated number of

truly independent samples from the posterior distribu-

tion and a good analysis should have—as a rule of

thumb—an ESS of at least 200 for every estimated

parameter.

A low ESS might have several reasons. First, the mix-

ing may be poor as the MCMC method has not efficient-

ly searched through the tree space. This can be improved

by running the chain for longer, increasing the sampling

frequency or optimizing the operator setup. The chain

length needed to reach convergence can differ largely for

different datasets. Second, the burn-in phase may be too

short. This is a postprocessing issue and can easily be

solved by increasing the fraction of initial samples being

discarded (cf. Fig. 8 in the Supplementary tutorial).

The posterior probability is the product of the prior

distributions and the likelihood. If this product is domi-

nated by the prior distributions, the data may not con-

tribute to our knowledge. Hence, one should test if the

posterior distribution is significantly different to the

prior distribution. It is best practice to run a prior-only

analysis without data to investigate the (joint) prior dis-

tributions (see Supplementary tutorial section ‘The

MCMC tab’). If the posterior distribution is very close

to the prior distribution, a sensitivity analysis is

required, that is, the analysis needs to be rerun with dif-

ferent prior distributions. As an additional measure of

convergence, one should always run two or more inde-

pendent analyses (with different initial states) and check

that the posterior distributions agree with each other.

7.2 Summarizing posterior distributions

The posterior distribution of trees obtained from an ana-

lysis can be visually displayed using DensiTree

(Bouckaert 2010; Bouckaert and Heled 2014), which

plots each tree from the posterior sample on top of one

another (an example is given in Fig. 12 of the

Supplementary tutorial). This is a good way to visualize

uncertainty in a tree topology. Furthermore, the
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posterior distribution can be summarized into a single

consensus tree—of which a ‘Maximum Clade

Credibility Tree’ (MCC tree) is the most common—by

using the TreeAnnotator application distributed with

BEAST2. For all trees in the posterior sample, each in-

ternal node (i.e. each clade) gets a posterior credibility.

This is calculated as the amount of topologies in the pos-

terior sample, where this specific clade is presently div-

ided by the sample size. The topology of the MCC tree is

the one that has the highest product of clade credibil-

ities, while the node heights are either kept from the

chosen tree or set to the mean or median of the corre-

sponding node heights in the posterior sample (see also

Fig. 11 of the Supplementary tutorial).

8. Hypothesis testing with trees

In linguistics, Bayesian phylogenies have been used to

test a wide range of hypotheses. First, and most obvious-

ly, are hypotheses about language subgroups and their

timing. For example, Gray et al. (2009) tested two dif-

ferent scenarios of the Austronesian expansion. Their

tree topology strongly indicated that the root of the

Austronesian language family existed in Taiwan around

5,200 years ago in striking concordance with findings

from the comparative method (e.g. Blust 1999). They

found no support for a deeper origin in Island South

East Asia around 15,000 years ago despite this being a

common assumption in genetic studies (e.g. Soares et al.

2011). Sicoli and Holton (2014) used Bayesian phyloge-

nies to test the increasingly accepted Den-Yeniseian hy-

pothesis that connects the Na-Den languages of North

America to the Yeniseian languages in central Asia (Kari

and Potter 2010). This hypothesis suggests a striking mi-

gration across the Bering land bridge. Sicoli and Holton

(2014) employed phylogenetic methods to—guarded-

ly—evaluate this hypothesis and propose that the lin-

guistic data are more consistent with a spread of these

languages from Beringia into both America and Asia (ra-

ther than a back migration from North America to Asia,

or migration from Asia to North America). Robbeets

and Bouckaert (2018) tested hypotheses of Trans-

Eurasian families.

Second, a major application for Bayesian phylogenet-

ic methods in linguistics has been to investigate rates

and patterns of trait evolution. One strand of research

has investigated the stability of grammatical features

over time and space (e.g. Dediu and Levinson 2012;

Greenhill et al. 2010a; Cathcart et al. 2018), or com-

pared rates of change between different aspects of lan-

guage (Greenhill et al. 2017). Another strand has

investigated how rates of change are shaped by external

factors such as their frequency of use in speech commun-

ities (Pagel et al. 2007), or the size of the speech com-

munities themselves (e.g. Greenhill et al. 2018). Yet

another strand has investigated the co-evolution of par-

ticular language subsystems from word-order (Dunn et

al. 2011), to color naming in Pama-Nyungan (Haynie

and Bowern 2016), to the evolution of higher numerals

in Indo-European (Calude and Verkerk 2016), and

noun-phrase recursion (Widmer et al. 2017). Other stud-

ies have used phylogenies as the backbone for making

inferences about phonology, from reconstructing the

proto-forms of proto-languages (Bouchard-Côté et al.

2013), modeling sound changes over time (Hruschka et

al. 2015), and inferring an increase in labiodentals over

time purportedly enabled by a shift in diet to agriculture

(Blasi et al. 2019).

Third, a current area of major growth is phylogeogra-

phy, which can be used to infer the geographical home-

lands of language groups (Lemey et al. 2009; Bouckaert

2016). Given the longstanding interest in linguistic home-

lands (e.g. Sapir 1916), it is unsurprising that these have a

growing home in linguistics too. For example, (Bouckaert

et al. 2012) used these tools to controversially infer the

homeland of the Indo-European languages to Anatolia,

while Walker and Ribeiro (2011) proposed a western

Amazonian origin of Arawakan. Bouckaert et al. (2018)

introduced a founder-dispersal model, which can take

landscape heterogeneity in account, to test various hypoth-

eses on Pama-Nyungan origins. Other studies have used

phylogeographic methods to link language family expan-

sions to climate change, such as Grollemund et al. (2015)

proposing that the Bantu expansion was facilitated as sa-

vannah corridors opened up through the rainforest, or

Lehtinen et al. (2014) suggesting that a warm period be-

tween 7,500 and 5,000 years ago facilitated the spread of

the Uralic language family. Yet another research direction

investigates the effect of geographical barriers on language

spreads (Lee and Hasegawa 2014). Discrete phylogeo-

graphic models (De Maio et al. 2015; Kühnert et al. 2016;

Müller et al. 2018) may also be useful if language groups

are so isolated that an island model is more appropriate

than a model of continuous geographic dispersal.

9. Conclusion

Due to applications in evolutionary biology, Bayesian

phylogenetics has experienced enormous progress during

the past decade. Sophisticated models are implemented in

relatively easy-to-use software programs making them ac-

cessible to a wide audience of researchers in many fields.

In this article, we are aiming to make these methods more

accessible to scholars of language evolution. By
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explaining the basic concepts of models relevant for lin-

guistic evolution, we hope to enable scholars to under-

stand what the components of a Bayesian analysis

inferring a phylogeny of languages are, such that they can

make informed decisions on which prior distributions to

choose and how to interpret their analyses.

Supplementary data

Supplementary data is available at JOLEV online.
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