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Brain-inspired computing—often termed neuromorphic com-
puting—based on artificial neural networks and their hard-
ware implementations could be used to solve a broad range 

of computationally intensive tasks. Neuromorphic computing can 
be traced back to the 1980s (refs. 1,2), but the field gained consid-
erable momentum after the development of memristive devices3 
and the proposal of convolutional layers in deep neural networks 
at the algorithmic level4,5. Since then, several resistive neuromor-
phic systems and devices have been implemented using oxide 
materials6–8, phase-change memory9, spintronic devices10,11 and fer-
roelectric devices (tunnel junctions12,13 and ferroelectric field-effect 
transistors (FeFETs)14,15), and such systems—namely, ferroelectric 
tunnel junctions13 and SONOS (that is, silicon–oxide–nitride–
oxide–silicon) transistors16—have exhibited energy efficiencies of 
up to 100 tera-operations per second per watt (TOPS W–1). All these 
approaches rely on the analogue storage of synaptic weights, which 
can be used in multiplication operations, and use Kirchhoff ’s cur-
rent law for the summation of currents implemented via crossbar 
arrays17.

Memcapacitive devices18 are similar to memristive devices but 
are based on a capacitive principle, and could potentially offer a 
lower static power consumption than memristive devices. There 
have been theoretical proposals for memcapacitor devices18–22, but 
few practical implementations23–26. Memcapacitor devices can be 
realized through the implementation of a variable plate distance 
concept, as demonstrated in micro-electromechanical systems27, 
a metal-to-insulator transition material in series with a dielectric 
layer22, changing the oxygen vacancy front in a classical memris-
tor20, and a simple metal–oxide–semiconductor capacitor with a 
memory effect24,25. To obtain a high dynamic range, these devices 
either have a large parasitic resistive component20 at small plate 
distances or limited lateral scalability due to large plate distances. 
Similar problems occur with memcapacitors having varying surface 
areas23 or varying dielectric constants26.

In this Article, we report memcapacitor devices based on charge 
shielding that can offer high dynamic range and low power opera-
tion. We fabricate devices on the scale of tens of micrometres and 
use them to create a crossbar array architecture that we use to run an 

image recognition algorithm. We also assess the potential scalability 
of our devices for use in large-scale energy-efficient neuromorphic 
systems using simulations.

Memcapacitive device based on charge shielding
Our memcapacitive device consists of a top gate electrode, a shield-
ing layer with contacts and a back-side readout electrode (Fig. 1a). 
These layers are separated by dielectric layers. The top dielectric 
layer can have a memory effect, for example, charge trapping or fer-
roelectric, which may influence the shielding layer, or the shielding 
layer itself can exhibit a memory effect (in this paper, only the first 
principle is investigated). A very high on/off ratio of electric field 
coupling and therefore the capacitance between the gate electrode 
and readout electrode can be obtained with either total shielding or 
transmission. The lateral scalability is substantially better compared 
with the previously mentioned concepts, since the thickness of each 
layer can be readily optimized, while the dynamic ratio is mainly 
dependent on the shielding efficiency of the shielding layer.

Generally, charge screening depends on the Debye screening 
length LD:

LD =

√

ε0εrUT
n2e , (1)

where UT is the thermal voltage, n is the charge carrier concentra-
tion, ε0 is the electric field constant, εr is the relative electric field 
constant and e is the elementary charge. The electric field drops 
exponentially within the shielding layer and drops to 37% within 
the screening length LD under the condition Ψ ≪ UT. In practice, in 
semiconductors, the relationship is highly nonlinear depending on 
potential ψ at depth x, as follows:
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where p0 and n0 are the charge carrier concentrations of holes and 
electrons in thermal equilibrium, respectively. Therefore, the Debye 
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screening length (equation (1))—given the exponential spatial 
dependence of the field in the material—is only a linear approxi-
mation of nonlinear differential equation (2). Especially for strong 
inversion and accumulation within the shielding layer, the length 
scales of screening become much smaller than the Debye length. 
This nonlinearity with respect to the applied gate voltage or charge 
stored in the memory dielectric leads to either strong shielding or 
fairly good transmission.

A more detailed device structure is shown in Fig. 1b with lat-
eral p+n–n+ junctions in the shielding layer. The p+- and n+-doped 
regions act as reservoirs for electrons and holes, respectively, and 
can inject each carrier type for the purposes of shielding. This 
enables additional device functionality; however, more importantly, 
it also allows a symmetric device response for positive and nega-
tive gate voltages. This is a crucial feature for neuromorphic devices, 
because the weight update is then undistorted and the training 
accuracy is thus higher17. During readout, the shielding layer is con-
nected to the ground (GND). During writing and training, the volt-
ages applied to the p+ and n+ contacts can differ and can also act as 
a selector, as explained in Supplementary Section 1. As shown in 
Fig. 1c, the single device can be arranged into a crossbar for highly 
parallel multiply–accumulate (MAC) operations. In this case, the 
gate electrode becomes the word line (WL), where input signals are 

applied, and the shielding layer becomes a shielding line (SL) in a 
direction vertical to the WL. The readout electrode functions as the 
bit line (BL), which is parallel to the SL, and the accumulated charge 
out of one BL is the calculated result of accumulated multiplications 
at each crossing point. The multiplication is conducted between the 
input signal of the WL and the state of the shielding layer, which, in 
turn, is adjusted by the memory material. The weights are encoded 
in the capacitance of each crossing point. In contrast to resistive 
devices, capacitive devices only react on dynamic voltage or current 
signals; therefore, an alternating current (a.c.) voltage is applied to 
the WL during readout. Writing of the memory material is achieved 
by a voltage difference between the SL and WL.

cV curves and gradual programming of single devices
Single devices on the micrometre scale were fabricated on a 
silicon-on-insulator wafer, whereas the handle wafer containing a 
highly n-doped epitaxial layer acts as the readout electrode and the 
buried oxide acts as the bottom dielectric layer. As a memory prin-
ciple, ferroelectric-assisted charge trapping (polarization charge 
attracts carriers and thus promotes trapping) was used to combine 
the advantages of both principles28,29, whereas the tunnelling oxide 
was 2.5 nm thick to avoid charge detrapping. Details of the fabrica-
tion can be found in Methods.
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Fig. 1 | Structure of the memcapacitor device. a, General device structure with a gate electrode, shielding layer (SL) and readout electrode (I, current;  
Q, charge). The electric field coupling is indicated by the blue arrow. b, Device structure with a lateral pin junction as well as electron and hole injection. 
c, Crossbar arrangement of the device in b, where a.c. input signals are applied to the word lines (WLs) and the accumulated charge is read out at the bit 
lines (BLs). During readout, the SL is mostly connected to GND.
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The fabricated devices had a gate length ranging from 10 to 
60 µm, and the gate width was enlarged by winding it around 
several highly p+- and n+-doped finger-shaped regions, thus 
forming several parallel pin junctions. The larger area leads to 
a readily detectable capacitance and the minimum capacitance 
of turned-off devices could also be precisely measured (capaci-
tive dynamic range). Figure 2a shows a microscopic image of the 
fabricated device. Capacitance–voltage (CV) measurements were 
carried out by applying an a.c. signal with a direct current (d.c.) 
bias (sweep) to the gate: the resulting a.c. current of the readout 
electrode was measured either by lock-in amplification or by an 
oscilloscope and current pre-amplifier. Data from the resulting 
fundamental CV curves for different d.c. voltages (VAK) on the 
n+ and p+ regions are shown in Fig. 2b (note that a normal sili-
con dioxide dielectric layer was used here instead of a memory 
dielectric). The CV curves get broader or are nearly extinguished 
depending on whether the pin junction is used in the reverse 
or forward bias direction, respectively; this behaviour is further 
explained in Supplementary Section 1. Generally, a capacitive 
coupling window is observed, which is high for depletion (and 
therefore for transmission through the shielding layer) and low 
during inversion or accumulation. The curves are derivatives of 
a sigmoid curve, which play an important role in modelling neu-
rons in artificial neural networks. A direct measurement of the 
sigmoid curve and further uses are explained in Supplementary 
Section 1.

Replacing the normal silicon dioxide dielectric with a memory 
dielectric and with a CV sweep from −5 to 5 V, one can observe 
a shifting of the capacitive coupling window with a memory win-
dow of 2.7 V (Fig. 2d), while the pin junction was grounded. Due 
to the shifting direction, one can conclude that charge trapping 
is the memory principle (for purely ferroelectric switching, the 
curves would shift in the opposite direction). By contrast, capacitive 
devices can only be read out by a.c. voltages or current signals. For 
this reason, an alternating voltage (0.5 V) is applied to the gate for 
readout, together with a bias voltage (1.0 V) to adjust the readout 
window, as indicated by the shaded area in Fig. 2d (note that the pin 
junction is grounded during readout). In Supplementary Fig. 11a,b, 
the readout current of a written and erased cell is shown, and a 
capacitive dynamic range of ~1:1,478 was experimentally achieved.

To store analogue values, one can apply short pulses with the 
same amplitude (Fig. 2d,g), apply pulses with increasing height 
(Fig. 2e) or change the pulse length (Fig. 2f) applied to the gate. The 
resulting curves exhibit some similarities to those obtained from 
pure ferroelectric switching14, indicating the ferroelectric assistance 
in the memory storage process. The curve in Fig. 2d shows a typical 
nonlinear long-term potentiation (LTP) curve with an exponential 
dependence.

CLTP = Cmin + ΔC
(

1− exp
(

−Npgr
βpgr

))

(3)
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Fig. 2 | Measurement setup and cV curves of single devices. a, Microscopy image of the measured single device and measurement setup. b, Measured 
CV curves for a device without memory at different VAK values; VAK is applied antisymmetrically, the d.c. voltage of the gate was swept between −7 and 
7 V, and the small a.c. voltage had an amplitude of 100 mV with a frequency of 1 kHz. c, CV curve shifting due to the injection of charges. The device had 
a memory in this case. d–f, Analogue value writing with pulse number modulation (constant write height) (d), pulse height modulation (the voltage is 
increased/decreased from ±4.0 to ±6.1 V) (e) and pulse length modulation (f). In d–f, the shielding layer was grounded, and readout was performed 
between each pulse with an a.c. signal, as shown in c. g, Pulse number modulation for different write pulse heights.
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The same applies for the long-term depression (LTD)

CLTD = Cmax − ΔC
(

1− exp
(

−Ner
βer

))

, (4)

where Npgr and Ner denote the number of programming or erase 
pulses, respectively; βpgr and βer are the stretching factors; and Cmin 
and Cmax denote the minimum and maximum capacitance, respec-
tively. Here ΔC describes the maximum change in capacitance. 
Changing the write pulse height of the pulse number modulation 
leads to more flattened or steepened curves (Fig. 2g). Write/erase 
pulse height modulation (Fig. 2e) can lead to relatively symmetric 
and—in certain regions, linear—behaviour with respect to the pulse 
height steps. This is highly beneficial for implementing neuromor-
phic algorithms17. Pulse length modulation shows similar behaviour 
to pulse number modulation (Fig. 2f). In Supplementary Fig. 11c, 
the measured readout current is illustrated for LTP and LTD for 
different pulse numbers of pulse height modulation (Fig. 2e) and 
reveals the pinch-off and increase.

Other memory parameters, like device-to-device variation, 
endurance and retention can be found in Supplementary Section 9.

crossbar array and implementation of training algorithm
Crossbar devices—used to execute an image recognition algo-
rithm—were fabricated and wire bonded onto a chip carrier. A 
printed circuit board (PCB) was designed and controlled by a data 
acquisition system. An image of the fabricated chip with the bond-
ing pads, a zoomed-in microscopy image of the crossbar and a scan-
ning electron microscopy image are shown in Fig. 3a. Each memory 
cell had a size of 50 × 50 µm2.

A schematic of the device cross section is shown in Fig. 3b. The 
BLs of the memory array were separated by refilled deep trenches. 
Details of the fabrication process can be found in Methods.

The matrix comprised 26 WLs and 6 BLs (Fig. 3c). A differential 
weight topology17 was used with the positive and negative value of 
each weight separated in two memory cells. The values of these two 
BLs were subtracted from each other.

Wij = C+
ij − C−

ij (5)

The input values are separated by a sign with a 180° phase shift. 
For the desired ‘four-quadrant multiplication’ (input × weight), 
a global clock signal is used together with the switched capacitor 
approach (Fig. 3c). Further details are explained in Supplementary 
Section 11. The integration capacitance of the amplifier is charged 
up in each period of the input sine signal, and hence, the number 
of periods (Nper) encodes the value of the input signal. This effect 
also leads to an averaging of the noise level and improvement in 
the signal-to-noise ratio, as explained later. This theoretical concept 
of ‘four-quadrant multiplication’ was confirmed with the follow-
ing measurement (Fig. 3d): the input number of periods (Nper) and 
the number of programming pulses (Npgr), which adjust the actual 
weight, were varied in positive and negative values, while the output 
voltage is read. Positive and negative Nper values were encoded by a 
180° phase shift and positive/negative programming pulses (Npgr) 
only changed the positive/negative weights, while the counterpart 
was in an erased state. Supplementary Fig. 12a,b shows the cross 
sections of the 3D plot in Fig. 3d. The curves along the input period 
number behave in a highly linear manner, and this linearity was 
also confirmed for the accumulation operation (Supplementary Fig. 
12c), demonstrating a highly linear MAC operation with the pro-
posed switched capacitor approach.

The first 25 WLs enable a vectorized input feature map for images 
of 5 × 5 pixels; thus, one single fully connected layer is carried out. 
Dark pixels are represented by positive values and bright pixels, by 
negative values. The bias input is mapped to the 26th WL.

Regarding the implemented training algorithm, the Manhattan 
update8,30 rule was chosen, due to its simplified training procedure. 
In conventional backpropagation training, the weight update is cal-
culated as follows:

ΔWij = −αδi (n)Xj (n) , (6)

where α describes the learning rate, δi(n) is the backpropagated 
error and Xj(n) is the current input for the nth input image, which 
is randomly chosen from the training set. The weights are updated 
after each sample (stochastic training). The backpropagated error 
for a one-layer perceptron can be calculated as follows:

δi (n) =
[

fi (n)− fdi (n)
] dfi
dv

∣

∣

∣

∣

v=vi(n)
, (7)

where fdi (n) is the desired output value and fi(n) is the current out-
put. Function fi is related to the voltage output vi(n) of the ith sense 
amplifier and the activation function of the neuron (in this case, 
tanh):

fi (vi) = tanh (κvi (n)) , (8)

where κ is the steepness factor. With the Manhattan update rule, 
the weight update from equation (6) is coarse-grained by using the 
following signing.

ΔWM
ij = sgnΔWij (9)

Therefore, all the weights are updated by the same amount 
based on their sign. Figure 4a illustrates the pulse scheme for 
implementing the algorithm. The term δi (n)Xj (n) in equation 
(6) becomes positive if both error δi(n) and input Xj(n) are posi-
tive or it becomes negative for the opposite sign if both δi(n) and 
Xj(n) are negative . Hence, one can describe this by an XNOR 
combination. To update the weights, the error signal is applied to 
the SL, as shown in Fig. 4a. The corresponding input signals are 
applied to the WL. The differential signal at the crossing points 
follows the XNOR operation, while the specific signals (shown in 
Fig. 4a) ensure that the maximum disturbance level is not higher 
than 1/3 and thus effectively prevents the overwriting of cells in 
the same column or row (the memory cell acts as the selector 
itself; see Supplementary Sections 7 and 8). As a 5 × 5 image rec-
ognition task, the letters M, P and I were chosen, and one pixel 
in each of the samples was flipped, which results in a total set of 
78 samples. These pseudo-images were separated into a test and 
training set; the test images are indicated by a blue frame (Fig. 4b).  
The resulting misclassified images versus training epochs for 
the training and test images are shown in Fig. 4c. Evidently, the 
number rapidly decreases after one training epoch and stays 
almost zero throughout the training epochs. Figure 4d shows the 
obtained mean neuron activations for the three classifications 
over the training epochs. The slightly higher simulated average 
misclassification rate (Fig. 4c) is the consequence of single steep 
climbs of the misclassification rate after an arbitrary number of 
epochs with 100% accuracy in some runs. Misclassifications after 
epoch 1 are caused by the very similar expected value for indi-
vidual presynaptic neurons for letters M and P. Measurements 
also confirm the more stable results for the classification of letter 
I, as shown in Fig. 4d. The results are in accordance with other 
studies7,8.

Thus, experimental results on micrometre-sized devices dem-
onstrate the working principle. For demonstrating scalability to 
the nanometre regime and superior energy efficiency, detailed and 
extensive simulations were performed, which are explained in the 
upcoming sections.
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tcAD simulations on single devices
A device with 90 nm gate length (Fig. 5a) was simulated by Synopsys. 
Figure 5b (where no memory dielectric was integrated for the first 
simulations) shows the CV curves of the coupling capacitances 
between the gate and readout electrode with respect to the applied 
gate voltage (VG), which are consistent with the observed experi-
mental behaviour (Fig. 2b).

The ratio between the maximum capacitance and lower-state 
capacitance obtained by shifting the gate voltage by 3 V is 1:90 in 
this device, and this ratio can be further enlarged by using thin-
ner gate oxides or larger gate lengths, as shown in Fig. 5c. In gen-
eral, the capacitive ratio decreases with a smaller gate length due 
to the fact that the influence of the space charge region becomes 
more pronounced for smaller gate lengths (short channel effect) 
and sufficient shielding is hard to achieve in this region (Fig. 5c, 
inset). By using high-κ dielectrics for the top and bottom oxides, a 
ratio of 1:60 was obtained for a 45 nm device with the same capac-
itance as the 90 nm device, as shown in Supplementary Section 2. 

A dynamic range of 1:60–1:90 is sufficient to achieve a precision 
of 6–8 bits31.

Including a memory window (~3 V for charge-trapping memo-
ries and ~1–2 V for ferroelectric memories depending on the thick-
ness and coercive field) leads to shifted CV curves (Fig. 5d). The a.c. 
readout voltage is indicated in Fig. 5d; for the positive shifted curve, 
the resulting readout current and therefore the accumulated charge 
will be very large. The total readout charge over one-half period 
of the applied sinusoidal signal versus memory shift is shown in  
Fig. 5e. Most of the negative memory window is used for turning 
off the device.

Scalability to 45 nm
With regard to lateral scalability, it is necessary to distinguish three 
aspects: (1) the scalability of the memory technology in the top 
dielectric itself with regard to how many levels can be stored; (2) the 
sensitivity of the sense amplifier at the end of each BL for detecting 
the accumulated charge; (3) the noise level of one single device during 
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readout. Fairly common resolutions for input, weight and output sig-
nals for neural networks are in the range of 4–8 bits (16–256 levels)31.  
This analogue-like resolution has a significant influence on scalabil-
ity. Typically, lower precision is needed for inference tasks.

With respect to the memory material, one can generally con-
clude that charge-trapping memories (for example, SONOS) have 
shown up to 31 levels down to 40 nm (ref. 16). The disadvantage of 
this memory technology is the relatively high write energy and slow-
ness during writing (millisecond regime). However, SONOS might 
be an alternative for inference-only applications. On the other hand, 
hafnium oxide (a ferroelectric) has very low write energies and is 
fast (nanosecond to microsecond regime). Ongoing research is still 
underway on the scalability of ferroelectric memories with regard to 
analogue storage. From FeFETs, it is known that they tend to show 
abrupt switching events below 500 nm, which is attributed to the 
limited grain size15.

Regarding capacitive measurement resolutions, some work was 
done in the context of DNA sensing and chip interconnect measure-
ments with resolutions down to <10 aF (charge-based capacitive 
measurements, capacitance-to-frequency conversion and lock-in 
detection)32–36. These are similar to a conventional sense ampli-
fier37,38 and contain an integration capacitor that is charged either 
by an operational amplifier circuit or a current mirror. Details on 
the sensitivity calculation can be found in Supplementary Section 3;  
generally, however, one has to consider that in neuromorphic 
devices, the accumulated charge from many memory cells (several 
hundreds to thousands) is read out at once and used for further 
information processing, which gives rise to much larger charges 
compared with only one cell. Furthermore, several pulse/period 
numbers are used for encoding the input value and leads to step-

wise charge integration over many periods. For the device shown 
in Fig. 5, Nper = 142 periods is necessary, which fits well into a range 
of 7–8 bits of the input signal (Supplementary Section 3). Note that 
128 periods are sufficient for an 8-bit signed integer due to the use 
of the 180° phase shift for negative values of the switched capacitor 
approach.

Regarding the noise level of capacitive devices, one has to con-
sider kTC noise.

vn =

√

kBT
C (10)

where kB defines the Boltzmann constant, T the temperature and C 
the capacitance. For a 6.65 aF device (Fig. 5d), one obtains a noise 
voltage of 25.00 mV (at room temperature), which is 14 times lower 
than the effective readout value of 0.35 V. However, one has to con-
sider that the noise level decreases with the number of repetitive 
measurements, namely, 1/

√

Nper , which results in a noise level of 
2.20 mV (at room temperature) or 169 times lower than the effective 
readout value; this defines a precision of ~7 bits. Based on this mini-
mum amplitude necessary to distinguish between different levels, it 
also becomes possible to assess the theoretical energy efficiency of 
resistive and capacitive devices in general (Supplementary Section 
4): capacitive devices are at least eight times more energy efficient 
than resistive devices.

Simulation of ultrahigh energy efficiency
Much of the energy sourced to ‘memcapacitors’ can be recov-
ered since it is stored in the capacitor; this is an important differ-
ence from resistors in which the readout operation is inherently 
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dissipative due to Joule heating. The energy fed in during charg-
ing can be, in principle, recovered during discharging. This concept 
of energy recovery is also present in adiabatic circuit designs39,40, 
which are at the core of the reversible computing paradigm41,42. The 
limiting factor of energy recovery in adiabatic circuits are resistive 
losses in the circuit, as well as in the inductances used for the power 
clock generators. The inductances have limited quality factors (q 
factor) in the order of dozens to hundreds. In common adiabatic 
realizations, energy recovery of the supply clock generators is of the 
order of 95% for harmonic signals43–45, which means the supplied 
active power is q = 20 times lower than the reactive power.

To estimate the time delay, areal efficiency and energy efficiency 
(Table 1) of a realistic crossbar arrangement (including parasitic ele-
ments), a SPICE model (Supplementary Fig. 4a) for the 90 nm device 
was developed (Supplementary Section 5). One can conclude that 
extremely fast readout transitions can suppress shielding in the SL, 
since charge cannot be supplied any longer (silicide lines are a criti-
cal resistive path). In the table, the energetically worst-case scenario 
was assumed: all the WLs are activated at once and all the weights 
are zero with a resulting shielding effect, which, in turn, would lead 
to charging in the top gate oxide. Table 1 summarizes the minimum 
period of time for different matrix sizes, which is proportional to 
the RC delay, with R being the resistance and C the capacitance. The 
areal efficiency Aη in TOPS mm–2 can be derived from the memory 
footprint (2 × 8 F2), assuming differential weights and the earlier 
mentioned time delay. The active (Wp) and reactive (Wr) energy per 
cell for 142 periods is also summarized in Table 1. With this esti-
mate in mind, we can conclude a minimum energy efficiency ηrec 
of 3,452.6 TOPS W–1 in the worst-case scenario for 0% input signal 
sparsity and 100% weight sparsity and an energy recovery of 95% 
(Supplementary Section 5). Without any charge recovery, the energy 
efficiency η would amount to 198.5 TOPS W–1. In a realistic neu-
ral network scenario, for example, a one-layer perceptron trained 

on the Modified National Institute of Standards and Technology 
(MNIST) database, the energy efficiency is 29,600 TOPS W–1 includ-
ing charge recovery (Supplementary Section 6). Without recovery, 
the efficiency amounts to 1,702 TOPS W–1 for MNIST.

comparison of simulation and experimental results
To verify the functionality of the simulator, we performed simula-
tions of the device with 60 µm gate length (Fig. 2). As shown in Fig. 5f,  
experimental data from Fig. 2d match well with the simulated data.

As shown in Supplementary Fig. 14, we measured the gate charg-
ing current together with the applied readout a.c. voltage for the 
single device (Fig. 2), and a perfect 90° phase shift is visible. From 
the curves, we can calculate the reactive (WR) power consumption 
per period (using equations 31–33, Supplementary Section 5) and 
obtain Wr = 3.22 nJ per period. Furthermore, for 142 periods, as in 
the simulation, we obtain the total reactive energy for one MAC 
operation, namely, Wr,tot = 457 nJ per cell. If we scale this value 
by seven orders of magnitude, we obtain Wr,scaled = 45.7 fJ per cell 
(capacitance shown in Fig. 2d is seven orders of magnitude lower 
compared with the capacitance of the simulated 90 nm device 
shown in Fig. 5b).

This value is approximately ten times higher than the value 
shown in Table 1 (5 fJ per cell). One has to consider that the 
thickness of the buried oxide of the experimental devices is much 
thicker (190 nm) than in the case of the 90 nm device simulation 
(15 nm), leading to a 12.7 times lower readout capacitance/area 
at approximately the same gate oxide capacitance/area. Also con-
sidering the different device silicon thicknesses, one can obtain 
a corrected reactive energy of Wr,scaled,corr = 5.84 fJ cell, which is 
very close to the value shown in Table 1. Other influencing phe-
nomena during scaling, like short channel effects (Fig. 5c), quan-
tum confinement and band-to-band tunnelling, are explained in 
Supplementary Section 10.
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conclusions
We have reported a memcapacitive device with the potential to 
deliver high tera-operations per second per watt when scaled. By 
using a shielding layer between two electrodes, we can achieve high 
dynamic ratios of ~1,480 for microscale devices and ~90 for simulated 
90-nm-sized devices. Furthermore, a 5 × 5 image recognition task was 
implemented using an experimental crossbar array with 156 mem-
ory cells. Circuit-level simulations and noise-level calculations show 
that our memcapacitive devices can potentially offer superior energy 
efficiency compared with conventional resistive devices. Using adia-
batic charging, most of the charging energy of the capacitors can be 
recovered. This allows a combination of reversible computing and 
neuromorphic computing. The energy efficiency of the human brain 
is estimated to be in the range of ~10 fJ per operation (ref. 46) (or 
100 TOPS W–1), which is similar to current memristive-device-based 
approaches13,16. Our approach could potentially offer an energy effi-
ciency of 1,000–10,000 TOPS W–1. The technology is also compatible 
with complementary metal–oxide–semiconductor technology and 
could be fabricated using state-of-the-art processes.

Methods
The technology computer-aided design (TCAD) simulations were performed 
with Synopsys and SPICE-level simulations were performed with LTspice. In 
the TCAD simulations, the drift-diffusion equations (electron + hole continuity 
equation and Poisson equation) were included. Furthermore, Shockley–Read–Hall 
recombination and electric-field-, temperature- and dopant-dependent mobility 
models were included. The influence of quantum confinement and band-to-band 
tunnelling was investigated in Supplementary Section 10.

The devices were fabricated using a silicon-on-insulator wafer with an 
n+-handle, 3.5-µm-thick epitaxial layer; a 190-nm-thick buried oxide layer; and an 
88-nm-thick device layer. First, alignment marks were etched into the device layer, 
followed by boron- and phosphorous-ion implantation and subsequent activation 
annealing. The interface oxide was chemically grown by Standard Clean 1 solution 
and O2 oxidation at 750 °C. The Hf0.5Zr0.5O2 deposition with a TiN capping 
layer was carried out by atomic layer deposition and annealed at 600 °C. The 
Hf0.5Zr0.5O2 was patterned for contact holes and the first aluminium metallization 
was deposited by sputtering. The SLs were etched by ion beam sputtering and 
the BLs were separated by the reactive-ion etching of 7-µm-deep trenches. The 
trenches were refilled by SU-8 resist and the second metallization layer (WLs) were 
insulated from the first metallization layer by another patterned SU-8 layer.

Measurements were carried out with a function generator (Agilent 33500B), a 
lock-in amplifier (Stanford Research Systems SR830) and a current pre-amplifier 
(Stanford Research Systems SR570). A DSO5052A oscilloscope was used for 
visualizing the measured currents.

The PCB for the neuromorphic chip was designed using EAGLE and 
manufactured by Eurocircuits GmbH. A data acquisition system (USB-6363, 
National Instruments) was used for controlling the PCB. The measurement 
routines were written in LabVIEW. Python was used for simulating the Manhattan 
algorithm and Keras for MNIST simulation.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request.

code availability
The code that supports the findings of this study is available from the 
corresponding authors upon reasonable request.
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