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Gravitational-wave signals from coalescing compact binaries carry enormous information about the source
dynamics and are an excellent tool to probe unknown astrophysics and fundamental physics. Though the updated
catalog of compact binary signals reports evidence for slowly spinning systems and unequal mass binaries, the
data so far cannot provide convincing proof of strongly precessing binaries. Here, we use the gravitational-wave
inference library parallel Bilby to compare the performance of two waveform models for measuring spin-induced
orbital precession in simulated binary black hole (BBH) signals. One of the waveform models incorporates both
spin-precession effects and sub-dominant harmonics. The other model accounts for precession but only includes
the leading harmonic at quadrupolar order. By simulating signals with varying mass ratios and spins, we find
that the waveform model with sub-dominant harmonics enables us to infer the presence of precession in most
cases accurately. On the other hand, the dominant harmonic model often fails to extract enough information
to measure precession. In particular, it cannot distinguish a face-on highly precessing binary from a slowly
precessing binary system irrespective of the binary’s mass ratio. As expected, we see a significant improvement in
measuring precession for edge-on binaries. Other intrinsic parameters also become better constrained, indicating
that precession effects help break the correlations between mass and spin parameters. In contrast, spin-precession
measurements are prior dominated for equal-mass binaries with face-on orientation, even if we employ waveform
model including subdominant harmonics. In this case, doubling the signal-to-noise ratio does not help to reduce
these prior induced biases. As we expect detections of highly spinning binary signals with misaligned spin
orientations in the future, simulation studies like ours are crucial for understanding the prospects and limitations
of gravitational-wave parameter inferences.

I. INTRODUCTION

The LIGO Scientific Collaboration and the Virgo Sci-
entific Collaboration have released an updated catalog of
gravitational-wave (GW) detections, GWTC-2, containing
about fifty GW events [1–15]. This new set of events in-
clude many exceptional candidates such as GW190814 [10],
GW190412 [9], GW190521 [11] and permits to perform qual-
itatively new studies of astrophysical populations and funda-
mental physics [14, 16, 17]. In the future more such detections
are predicted [18] follwing upgrades of the detector sensitivi-
ties. The upcoming decade is going to provide us a wide-variety
of GWs from compact binary mergers. Future third-generation
detectors [19–23] and space-based detectors [24–27] may also
be operational by then.

Once we have detected GW signals, we must analyze them to
infer the source properties. Individual masses, spin magnitudes,
angles specifying the orientation of spins, the location, and
orientation of the source, etc. characterize a generic binary
system. One of the main challenges here is making correct and
accurate measurements of these binary parameters, employing
faithful waveform models and efficient algorithms.

The observed GW data to date provide ample evidence for
un-equal mass binary systems and hence opportunities to probe
higher signal harmonics beyond the dominant quadrupole.
During the third observing run (O3) of LIGO and Virgo,
a binary system was detected with the primary black hole
(BH) being ∼3.75 times more massive than the secondary:
GW1901412 [9]. Only a few months later, LIGO and Virgo
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announced the observation of GW190814 [10], in which the
mass-asymmetry is even larger (∼8.9) and the nature of sec-
ondary is widely debated in the literature [28–33].

The confident detections of higher harmonics in these sys-
tems provide more information about the source properties,
mainly through breaking the degeneracy between the luminos-
ity distance and inclination angle [34]. Further, they enable
us to perform tests of general relativity on a completely dif-
ferent source population and expand our knowledge about the
astrophysics of such binaries [34–41].

Though the present data is insufficient to provide strong
constraints on the individual spin magnitudes and their re-
spective orientations in most binaries, it is possible to make
statements about the statistical evidence for the binary sys-
tem’s aligned-spin and in-plane spin components. The up-
dated catalog of compact binary signals reports evidence for
aligned-spin components and moderate spin-induced orbital
precession. Noticeably, the two candidates GW190412 [9] and
GW190521 [11, 42, 43] show intriguing hints for a non-zero
value of spin-induced orbital precession.

Knowing whether the source is precessing or not is very im-
portant from an astrophysical and fundamental physics point
of view [34, 55–76]. However, spin precession is inherently
difficult to measure, especially as most sources are detected
with small inclination angles [44–54]. In addition, several stud-
ies have suggested that inferring the precession spin parameter
is difficult as it is often prior dominated, and systematic wave-
form differences might be significant enough to bias the result
in many cases [77–84].

Here we investigate how including sub-dominant harmonics
may alleviate some of the problems. Focusing on precess-
ing binary BH systems with and without mass asymmetries,
we explore the possibility of measuring spin-induced orbital
precession varying the source inclination angle to the detec-
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tor. We compare the performance of two different waveform
models highlighting the importance of using higher harmon-
ics for accurately measuring the spin-precession effects. We
also investigate the impact of two different signal-to-noise ra-
tios to quantify the possible improvements to perform such
measurements once we have the future GW detector facilities
operational.

Gravitational waveform templates play an important role
in GW searches [85–89] as well as for inferring the correct
binary source properties [90–95]. The effect of sub-dominant
harmonics in the GW parameter estimation is studied in [91]
using a complete Bayesian analysis for a three-detector net-
work. This study considered non-precessing binaries of total
mass ∼120M� (source frame) and different mass ratios using
the NR-surrogate model NRHybSur3dq8 [96]. The main find-
ing of that study is that the exclusion of higher harmonics in
the parameter estimation analysis induces systematic biases for
non-precessing BH binaries. Binaries with spins anti-aligned
to the orbital angular momentum tend to provide more biased
results than those with aligned spins, especially for signals with
moderate signal-to-noise ratios. This inference is insufficient
to conclude the possible systematic biases for binaries with
spin-induced orbital precession.

Similarly, the GW parameter estimation study performed
in Ref. [97] focuses on the importance of higher harmonics
in analyzing non-precessing binary BHs. For binaries with a
total mass of ∼100M� and varying mass ratios q = m2/m1 =

0.5, 0.25, 0.12, it is found that the estimates are largely biased
for edge-on systems with significant mass asymmetry.

In Ref. [90], the measurability of spin-precession effects for
GW190814-like and GW190412-like systems was explored
in detail. The authors found that the spin-precession effects
are measurable with reasonably good accuracy for asymmetric
systems with moderate precession. Also, they demonstrated
that a relatively small amount of precession can lead to a sys-
tematic offset in the inferred binary parameters. This offset in
the parameter recovery may arise either from the difference
in the signal model (SEOBNRv4PHM [98] ) and the templates
(IMRPhenomPv2 [99] and IMRPhenomD [100, 101]) used to an-
alyze the simulated injections, or it can arise from other effects
such as prior/orientation induced biases that propagate from
extrinsic to intrinsic parameters.

In our analysis, we focus on the spin-induced orbital preces-
sion parameter measurements for generic binary systems using
waveform models that account for both spin-induced orbital
precession effects as well as higher harmonics using a com-
plete Bayesian analysis. For most of our study, we consider
the same waveform model for describing the signal and the
template manifold. This aids us to disentangle the true system-
atics mainly coming from the un-modeled effects present in
the template manifold and the prior induced biases.

This paper is organized in the following way. Section II
describes the theoretical foundations of decomposing the GW
signal into harmonics and the relation to measuring spin pre-
cession. Section III introduces our method. The main findings
of this analysis are given in Sec. IV. We conclude in Sec. V.
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FIG. 1. Binary system whose total angular moment vector (Ĵ) points
to the z-axis and the orbital angular momentum and line-of-sight
directions described by (β, α) and (θJN, φ) respectively.

II. WAVEFORM DECOMPOSITIONS

Before presenting our main analysis of injected signals using
complex parameter-estimation techniques, we first introduce
the basic structure of GW signals. In particular, we summarize
three signal decompositions below: 1. The angular dependency
of the signal in the inertial frame can be described efficiently in
terms of spin-weighted spherical harmonics. 2. Spin-induced
orbital precession introduces amplitude and phase modulations
in the inertial spherical harmonics that arise through a time-
dependent rotation of the co-precessing spherical harmonics.
3. Precessing signals can be expanded in terms of the angle
between the total and orbital angular momentum. Unambigu-
ously identifying precession requires measuring at least two
terms in this expansion. The relation between these decom-
positions helps to build an expectation for how subdominant
harmonics affect measuring precession.

For a generic binary system, the total angular momentum
~J is the vector sum of its orbital (~L) and the individual spin-
angular momenta (~S 1 and ~S 2),

~J = ~L + ~S 1 + ~S 2. (2.1)

We choose a frame in which ~J is along the z-axis. In the case
of simple precession, the direction of ~J changes much less
than the directions of ~L and ~S i, and one can treat ~J/‖ ~J‖ to a
good approximation as constant [102]. See Fig. 1 for a visual
representation of the coordinate system and for the angles that
we define in it.

In this frame, we decompose the complex gravitational wave-
form h = h+ − i h× in terms of the spin weight-2 spherical
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harmonics,

h(t, ~λ, θJN, φ) =
∑
`≥2

∑
−`≤m≤`

h`,m(t, ~λ) −2Y`m(θJN, φ). (2.2)

Here, ~λ represents the set of intrinsic parameters, and (θJN, φ)
are the spherical angles that define the direction of the line-of-
sight. −2Y`m are the spherical harmonic functions and h`,m are
the spherical harmonic modes, which we refer to as inertial
spherical harmonics to stress the frame of decomposition.

Previous research found that spin precession introduces
phase and amplitude modulations in the h`m [102]. However,
if the decomposition is carried out in a co-precessing frame
that follows the instantaneous movement of the orbital plane,
those modulations disappear [103]. In fact, Schmidt et al. [104]
identified the co-precessing harmonics as the ones of a non-
precessing binary with the same masses and spins defined by
the projection of the fully precessing spins onto ~L. Reference
[99] used this to construct the inertial harmonics of precessing
systems via the rotation

h`,m =
∑
−`≤m′≤`

hnp
`,m′D

`
m′,m(α, β, ε), (2.3)

where D`
m′,m(α, β, ε) is the Wigner-D matrix that depends on

the angles (α, β, ε) describing the instantaneous orientation of
the orbital plane [105].1 See Fig. 1 for details about the various
angles. The superscript “np” denotes the harmonics of the
associated non-precessing system. The Wigner-D matrix can
be further expanded as,

D`
m′,m(α, β, ε) = eimα d`m′,m(−β) e−im′ε , (2.4)

where d`m′,m is the small Wigner matrix that only depends on
the opening angle β between the total and angular momentum.
The relation in Eq. (2.3) is only approximately valid. It ne-
glects modifications to the remnant black-hole ringdown and
asymmetries between the (`,m) and (`,−m) modes that are
present in precessing systems [125].

We stress that this rotation mixes simple co-precessing har-
monics (hnp

`,m) into all inertial harmonics (h`,m) of a precessing
system that have the same `. Some of the the first precessing
waveform models only employed the dominant (` = 2, |m| = 2)
non-precessing harmonics [98, 99, 106]. Therefore, the pre-
cessing signals included only the inertial (` = 2, |m| ∈ {1, 2})
harmonics. h2,0 is typically neglected because both the co-
precessing hnp

2,0 is very small, and d`2,0 ∼ sin2(β/2) is small for
moderate opening angles β.

This angle β characterizes the amount of precession. The
precession time scale is equivalent to the time-variation of the
three precession angles and is much longer than the orbital time
scale of the binary, but much shorter than the radiation reaction
time scale during the inspiral. Hence, precession manifests
itself as overall modifications of the h`,m. However, for a
single mode, these modifications could be mimicked by biassed
intrinsic parameters and cannot be identified unambiguously
as the effect of precession.

1 ε is defined in terms of α and β as ε̇ = α̇ cos β, where over dot represents
the time derivative.

To address the problem of detecting precession effects in
GW signals, a harmonic decomposition for spin-precession
signals has been proposed in Refs. [107–109]. They found
that the leading-order signal (containing only harmonics with
` = 2) can be decomposed into five precession harmonics using
the expansion parameter b = tan β/2. The authors then con-
clude that, in order to identify precession effects in the signal
unambiguously, one requires simultaneous measurements of
two precession harmonics.

The precession harmonics are not identical to the mode
decomposition shown in Eq. (2.2) but are a linear combination
of a subset of the spherical harmonics provided at specific
orientations (fixed values of θJN and φ). Hence, the argument
in Refs. [107, 108] about spin-precession measurements may
be translated to a more general notion of mode decompositions.
I.e., one needs two harmonics with different β dependencies
to accurately identify precession effects. As we shall illustrate
next, those two terms could come from two harmonics in the
inertial frame or two co-precessing harmonics that get mixed
into one inertial-frame harmonic.

Let us consider two examples to understand the preces-
sion effects on waveform models either including higher co-
precessing harmonics or only including dominant harmonics.
First, for a waveform model that only includes the (` = |m| = 2)
co-precessing harmonics, we can use Eq. (2.3) to express the
inertial harmonics of the precessing model as,

h2,2 =
∑

m′=±2

hnp
2,m′e

i2αd2
m′,2(−β)e−im′ε (2.5)

and

h2,1 =
∑

m′=±2

hnp
2,m′e

iαd2
m′,1(−β)e−im′ε . (2.6)

Even though there are no contributions from higher co-
precessing harmonics, the contributions from h2,1 can become
significant for highly precessing binaries, where d2

m′,1(−β) is
non-zero. In order to measure h2,1, we require −2Y21(θJN, φ) , 0
as evident from Eq. (2.2). If the binary is oriented face-on
(θJN = 0) or face-off (θJN = π), −2Y21(θJN, φ) vanishes [110] de-
spite a significant h2,1 that results from the precession-induced
mode mixing.

Therefore, in order to unambiguous measure precession with
a dominant harmonic model, strong precession and an inclined
system are required.

As a second example, we consider a waveform model that in-
cludes higher order co-precessing harmonics. In this case, even
unfavourable orientations (i.e., face-on/off) allow the measure-
ment of precession, despite the fact that along those directions,
subdominant inertial harmonics [such as (`, |m|) = (2, 1) and
(3, 3)] are suppressed and cannot be measured. However, the
dominant inertial harmonic reads,

h2,2 =
∑

m′∈±{1,2}

hnp
2,m′e

i2αd2
m′,2(−β)e−im′ε , (2.7)

which includes the co-precessing subdominant (` = 2, |m| = 1)
harmonic. Here, measuring two different β terms is already
possible from the dominant inertial harmonic alone. Of course,
hnp

2,1 needs to be sufficiently strong. Because the leading-order
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amplitude of this harmonic is proportional to the mass differ-
ence of the two objects in the binary, sufficiently asymmetric
systems are required.

Our two examples illustrate that in order to measure preces-
sion, two different β terms can either be obtained for inclined
systems that have strong enough subdominant inertial spherical
harmonics. Or, if the signal (model) includes sufficiently strong
subdominant co-precessing harmonics, then even a face-on or
face-off binary can be identified as precessing despite detecting
only the dominant inertial harmonic [46, 110–113].

III. WAVEFORM MODELS AND PARAMETER
ESTIMATION

A. Waveform model

The phenomenological family of waveforms accurately mod-
els the inspiral-merger-ringdown dynamics of a binary BH
system. The Post-Newtonian inspiral coefficients are inter-
polated to the intermediate and merger phases by fitting the
unknown coefficients using numerical data. On the other hand,
the ringdown coefficients are obtained employing the BH per-
turbation theory techniques. Though the early models were
proposed mainly for searching GW signals buried in noisy
data [114–117], we now have access to more accurate phe-
nomenological waveform models for parameter estimation
studies as well [97, 112, 118–121]. The state-of-the-art gravi-
tational waveform models include physical effects such as spin-
induced orbital precession effects and sub-dominant harmonics
other than the leading quadrupolar harmonic [122–127].

For our study, we mainly focus on IMRPhenomPv3HM wave-
form model [120] and use IMRPhenomPv3 waveform model to
separate the effect of sub-dominant harmonics in measuring
spin-induced orbital precession parameter. IMRPhenomPv3HM
waveform model combines inputs from two other mod-
els, IMRPhenomHM [97, 112] and IMRPhenomPv3 [121].
IMRPhenomHM is the first higher harmonic waveform model
for spinning binary BHs with spins aligned/anti-aligned to
the orbital angular momentum axis, which incorporates sub-
dominant harmonics (`, |m|) = (3, 3), (4, 4), (2, 1), (3, 2), (4, 3)
along with the dominant harmonic, (`, |m|) = (2, 2). On the
other hand, IMRPhenomPv3 accurately models the binary BH
merger on a quasi-circular orbit for generic spin orientations
and accounts for the dominant harmonic in the co-precessing
frame. One of the main improvements of IMRPhenomPv3 is
the first phenomenological waveform model that accounts for
two-spin precession [120, 128, 129].

A generic binary system on a quasi-circular orbit is described
mainly by a set of intrinsic parameters like the component
masses, mi and the dimensionless spin vectors ~S i. To better
understand the binary dynamics, one can define combinations
of these parameters. For example, the mass asymmetry is
measured by determining the ratios of component masses, q =

m2/m1. More asymmetric the system as q approaches to zero.
Two quantities capture the dominant spin effects associ-

ated with the orbiting binary system. The mass-weighted spin
combination, known as the effective spin parameter [117], is

defined by

χeff =
m1χ1 + m2χ2

m1 + m2
. (3.1)

It is argued to efficiently capture the dominant spin effects of a
non-precessing binary system where the spin angular momenta
are aligned/anti-aligned to the orbital angular momentum axis.
Here χ1 and χ2 are the dimensionless spin vectors pointing
perpendicular to the orbital plane, χi = ~S i · L̂/m2

i .
It is also possible that the spin angular momenta are not

aligned/anti-aligned with the orbital angular momentum axis
(L̂). A spin misalignment induces orbital precession and is
often quantified by the in-plane spin components and the an-
gle between the spins. For an orbiting binary system, the
magnitudes of in-plane spin components oscillate around the
mean value as time evolves, and the angle between the in-plane
spins changes monotonically for unequal mass systems. It
has been shown that the dominant spin-precession effects can
therefore be absorbed into an effective spin-precession parame-
ter [130–132], χp, which is the average value of the in-plane
spin magnitudes over a large number of GW cycles. It is given
by,

χp :=
1

A1m2
1

max (A1S1⊥,A2S2⊥) , (3.2)

where A1 = (2 + 3q/2) and A2 = (2 + 3/2q) are functions of
component masses and S i⊥ = |L̂ ×

(
~S i × L̂

)
| represents the

in-plane spin component [102].

B. Parameter estimation

Bayesian inference-based methods have been routinely em-
ployed to infer the properties characterizing the GW signal
from binary coalescence. In this framework, the posterior
distributions on each parameter θ is given by [133–138],

p (θ|d,H) =
L (d|θ,H) Π (θ|H)

ZH
, (3.3)

where L (d|θ,H) is the likelihood function, Π (θ|H) is the
prior distribution, andZH is the signal evidence assuming the
hypothesisH being the model for the data. We use evidence
as a normalization constant for this study.

We simulate binary BH signals assuming various source
parameters describing the compact binary system at a fixed
signal-to-noise ratio. For a binary system with total mass of
40M� (detector frame), we consider three different mass ratios,
q = 1 (equal mass system), q = 0.28 (GW190412 like system)
and q = 0.14 (highly asymmetric system). To understand the
measurability of spin-induced orbital-precession effects, we
consider a highly precessing system with injected χp = 0.58
and a slowly precessing system with injected χp = 0.05. This
choice is made by fixing the individual spin magnitudes to be
0.6 and 0.3 and varying the spin vectors’ angles accordingly.
We fix the binary system’s location so that each binary pro-
duces a three detector signal-to-noise ratio of 30. Further, we
reanalyze the same set of signals fixing their locations closer
so that the network signal-to-noise ratio is 60. Simulated bi-
nary signals contain both face-on and edge-on orientations,
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TABLE I. The properties of injected binary systems with total mass
40M�. The binary location is fixed so that it produces a three detector
network signal-to-noise ratio of 30. For comparison, we also consider
another set of injections with a signal-to-noise ratio of 60.

Configuration q χp χeff θJN DL(Mpc)
A1 1.00 0.58 0.11 0 1032
A2 1.00 0.05 0.44 0 1133
B1 0.28 0.58 0.14 0 748
B2 0.28 0.05 0.53 0 908
C1 0.14 0.58 0.15 0 494
C2 0.14 0.05 0.56 0 701
D1 1.00 0.58 0.11 π/2 349
D2 1.00 0.05 0.45 π/2 296
E1 0.28 0.58 0.14 π/2 380
E2 0.28 0.05 0.53 π/2 245
F1 0.14 0.58 0.15 π/2 343
F2 0.14 0.05 0.56 π/2 199
G1 0.14 0.40 0.11 π/2 243
G2 0.14 0.30 0.11 π/2 220

as the higher harmonic content in the signal increases from
face-on to edge-on orientations. These software injections
are made with zero-noise assumption and modeled using the
IMRPhenomPv3HM waveform model for the majority of the
cases. To compare the results, we also consider injections
assuming the IMRPhenomPv3 waveform family. Table I sum-
marises the properties of the injected binary systems.

The prior on component masses is distributed uniformly
over [3, 80] M�. We further choose a uniform prior on the
dimensionless spin magnitude, |χi| ≤ 0.99, and isotropic priors
on the spin orientations. The prior on luminosity distance is
uniform in [50, 10000]Mpc.2 We consider a three detector
network consisting of two LIGO detectors and the VIRGO
detector. All the three detectors are kept at their respective
design sensitivities [139–143].

Two essential quantities determining the strength of higher
harmonics in the signal are the mass ratio and the inclination
angle. See Sec. II for details. Therefore, higher harmonics
in the signal help determining the orientation more accurately
than dominant-harmonic signals could. To distinguish the
effects of sub-dominant harmonics on intrinsic parameters
from improved orientation measures, we analyze the simulated
binary signals twice, once keeping the inclination fixed and
once where it remains a free parameter in the recovery.

The marginalized posterior distributions on individual bi-
nary parameters are estimated using the open-source GW
inference library parallel Bilby (pBilby) [144]3 assuming
IMRPhenomPv3HM and IMRPhenomPv3 waveform models best
describe the data.

2 Reruns with different distance priors including the assumptions of uniform
in comoving volume and uniform comoving four-volume confirm that our
results and hence conclusions do not alter with respect to different distance
prior choices.

3 pBilby is a python based toolkit for GW data analysis where the stochas-
tic sampling is performed using a dynamic nested sampling algorithm,
dynesty [145].

IV. MAIN FINDINGS

A. The importance of including higher harmonics on χp

measurements

We start with discussing the analysis of the injected signals
A1-F2. See Table I for details. Our main interest is the recov-
ered posterior distributions of the spin-precessing parameter,
χp. The results are shown in form of violin plots in Figs. 2. The
top row shows the results for the strongly precessing cases, the
bottom row for weakly precessing cases. The panels on the left-
hand side show the posterior distributions for face-on signals.
The right-hand side panels show edge-on configurations. In
Fig. 2, the IMRPhenomPv3HM waveform model is used for both
injections and recoveries. For each injected signal, we show
three distributions: the standard analysis where all parameters
are unknown à priori is shown in green; if we fix the inclination
angle to the value of the injected signal, we obtain the orange
distribution; the light red distribution in the background is the
prior distribution for χp.

For an equal mass binary system, the χp distribution is less
informative compared to an asymmetric system, independent
of its orientations. We observe this feature for both highly
precessing and slowly precessing cases. There is a significant
improvement in χp measurements for the edge-on system com-
pared to a face-on system and is more visible for higher mass
ratio cases. According to Eq. (2.3), it is clear that many of the
higher harmonics are non-vanishing for edge-on binaries hence
improving the estimates.

The existence of sub-dominant harmonics most obviously
helps to measure θJN. To understand if the χp posteriors are
affected by sub-dominant harmonics beyond correlations with
a better-constrained θJN, we repeat the analysis by fixing the
inclination angle at the injected value. Comparing the green
and orange violin plots in Fig. 2, we see that the posterior
distributions on χp do not change significantly depending upon
the inclination angle freedom in the analysis. Moreover, this
introduces bias in the estimates and is more significant for
slowly precessing binaries.

Figure 3 shows the χp estimates obtained assuming
IMRPhenomPv3 as the recovery model injecting both
IMRPhenomPv3 (purple) and IMRPhenomPv3HM (blue) approx-
imants. For the majority of the cases, there is a clear offset in
the estimated χp distribution when we inject IMRPhenomPv3HM
and recover using IMRPhenomPv3, pointing to the biases in-
ducing from un-modeled effects such as the absence of higher
harmonics in the approximant. We also see that the correla-
tions between mass ratio and inclination angle improve as we
include sub-dominant harmonics in the waveform but find no
major impact on the χp estimates.

B. Precession measurements with the dominant harmonic
model and the role of prior distribution

We now focus on the possible biases and constraints on χp
when the dominant harmonic model IMRPhenomPv3 is em-
ployed both as the injected signal and as the template model.
While this constitutes a scenario with over-simplified signals,
it allows us to study the fundamental limitations of dominant
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FIG. 2. The posterior distributions on the precessing spin parameter (χp) for binary BHs injected of χp values 0.58 (top panel), and 0.05 (bottom
panel) as indicated by the black dashed lines. Face-on and edge-on orientations for three mass ratios, q = 1, 0.28, 0.14 is considered. We use the
IMRPhenomPv3HM waveform model for both injections and recoveries. Three plots represent the cases where inclination angle kept free in the
recovery (green), inclination angle kept fixed (orange), and the prior distribution (light red).

FIG. 3. The posterior distributions on the precessing spin parameter (χp) for binary BHs of injected χp values 0.58 (top panel) and 0.05 (bottom
panel). We consider three mass ratios for both face-on and edge-on inclinations. Purple violin plots show the estimates when IMRPhenomPv3
is used as both injection and recovery model, whereas the blue compares the performance of IMRPhenomPv3HM over IMRPhenomPv3 as the
recovery model. The black dashed lines indicate the injected value.

harmonic models separately from systematic differences be-
tween signal and template models. The resulting posterior
distributions on χp are shown as violet violin plots in Fig. 3.

For the face-on case (θJN = 0), the dominant harmonic
model fails to distinguish a highly precessing system from a
slowly precessing system. The χp estimates are biased towards

lower values as we increase the mass asymmetry for a highly
precessing system. Whereas, for slowly precessing systems,
we find χp posteriors to be over-estimated.

We use a vanishing noise realization in the data we analyze,
and there is no difference between the injected model and the
template family. So, where does the bias come from? As the
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component spins are comparatively unconstrained, the poste-
rior information on χp must be derived from prior assumptions
and constraints on other parameters. As evident from Eq. (3.2),
χp is correlated with q. Even though we start with uninforma-
tive priors for spins and individual masses, as soon as the mass
ratio is constrained by the data, we will infer probable values
for χp that may incorporate little or no information about the
spins themselves. They are dominated by the χp prior restricted
to the measured mass-ratio range.

To illustrate this effect, we derive explicit expressions for
the prior distribution of χp for fixed values of q. As mentioned
previously, our uninformative prior assumes isotropic spin
orientations and uniformly distributed spin magnitudes. These
assumptions imply that each BH’s in-plane spin follows the
prior distribution,

Π⊥(χ⊥) = arccos(χ⊥), (4.1)

as can be seen through straight-forward coordinate tranforma-
tions. According to Eq. (3.2), χp takes the value of either the
more massive BH’s in-plane spin χ1⊥, or the in-plane spin pa-
rameter χ2⊥ multiplied with κ = q2A2 f /A1 — whichever value
is greater. To calculate the prior distribution of the maximum
of these two numbers, we first need the cumulative distribution,

F(X) = P(χ⊥ < X) =

∫ X

0
Π⊥(χ⊥) dχ⊥

= 1 −
√

1 − X2 + X arccos(X). (4.2)

From the product of the two cumulative distributions for χ1⊥
and κχ2⊥, we finally derive an expression for the χp prior,

Π(χp) =
d

dχp

[
P(χ1⊥ < χp) · P(κχ2⊥ < χp)

]
=

{
Π⊥(χp)F(χp/κ) +

F(χp)
κ

Π⊥(χp/κ) , χp < κ
Π⊥(χp) , χp ≥ κ

.

(4.3)

In Fig. 4, we show the result of our analytical calculation
together with a numerical realization of the χp prior for dif-
ferent mass ratios q = 1, 0.2, 0.01. For q = 1, one has κ = 1
and Π(χp) = 2F(χp)Π⊥(χp), which is a curve that peaks at
χp ≈ 0.58 and falls off gradually to either side of the peak.
Conversely, for very small q, the case χp < κ in Eq. (4.3)
becomes negligible, and the χp prior follows the prior of the
primary BH’s spin, Π(χp) = Π⊥(χp) = arccos(χp). For mod-
erate mass ratios, the χp prior distribution has a characteristic
peak at low χp values, caused by the fact that even large in-
plane spins on the secondary BH may only lead to small values
of χp.

We find the same trend in the posteriors of the dominant
harmonic model and face-on orientations: As the mass ratio is
constrained towards small values, the χp probability shifts to-
wards small values following the prior. To visualise the actual
constraints derived from the data, we show the scatter plots
for χeff and q in Fig. 5 for a highly precessing face-on binary
system employing the IMRPhenomPv3 model. The different
colors indicate three different mass ratios as marked by the plus
mark, and the orange scatter plots represent the prior distribu-
tion. While the injected value can be located at the edge of the

FIG. 4. The prior distribution on χp fixing the mass ratios to be
q = 1, 0.2, 0.01. As we increase the inverse mass ratio (1/q) the
prior distribution on χp shifts towards low values. The structure that
appears at low χp values for asymmetric binaries is because in those
systems, even large in-plane spins of the less massive BH may only
lead to a small value of χp. See (4.3) for the analytical expressions.

FIG. 5. Effective spin parameter χeff and mass ratio scatter plots for a
highly precessing face-on binary system for three mass ratios, q = 1
(red), q = 0.28 (blue), and q = 0.14 (grey). The orange scatter plots in
the background are the prior distribution. IMRPhenomPv3 waveform
model is used for both injections and recoveries. The plus mark shows
the injected values for each case.

two-dimensional posterior reagion, we see that the posterior
ranges on χeff and q are tightly clustered around the true value.
Therefore, even though the χp posterior follow the prior dis-
tribution, the χeff-q plane is well constrained compared to the
prior distribution, especially for highly asymmetric binaries.

For edge-on inclinations, the IMRPhenomPv3 waveform
model can measure the spin-precession parameter much more
reliably (see the right panel in Fig. 3), though the estimates
are less tight and accurate than those in Fig. 2. For strongly
inclined sources, the χp posterior is not prior dominated.
The data include significant contributions from the intertial
(`, |m|) = (2, 2) and (2, 1) modes when the system is precessing,
which gives sufficient information to constrain χp.

Overall, when we compare the performances of the two
waveform models for measuring χp, it is clear that both models
can provide evidence for precession, certainly for unequal mass
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FIG. 6. Posterior distributions on χp for binaries with three different mass ratios, q = 1, 0.28, 0.14 considering both face-on and edge-on
orientations. The top and bottom panels respectively show the cases for injected χp values of 0.58 and 0.05, respectively. The green plots with
the SNR=30 assumption are over-plotted with the SNR =60 cases (pink) and the injections as black dash lines.

binaries with edge-on orientations. However, the posterior
distribution tends to shrink more towards the correct value
(injected value) when we apply the IMRPhenomPv3HM model,
indicating the importance of using sub-dominant harmonics in
the waveform, as we discussed in Sec. II.

C. The effect of signal-to-noise ratio on χp measurements

To better understand the possible improvement in measuring
χp for a binary system observed with a larger signal-to-noise ra-
tio in the three detector network, we compare the SNR=30 case
with another set of estimates by doubling the signal-to-noise
ratio, employing IMRPhenomPv3HM as the recovery model. Fig-
ure 6 shows the violin plots on one-dimensional marginalised
posterior distributions on χp by varying the mass ratios from
q = 1, 0.28, 0.14 considering face-on (left panel) and edge-on
(right panel) orientations. The top panel in the figure shows
the case for an injected χp of 0.58 whereas the bottom panel is
that of a slowly precessing system with injected χp of 0.05.

We see a significant improvement in the estimates as we
double the SNR for asymmetric binaries with face-on or edge-
on orientations. However, for a face-on equal mass binary
system increasing the SNR does not help break correlations
to result in better measurements of χp. That means for a face-
on equal mass binary system, our knowledge on χp does not
improve much regardless of the injected χp value.

The difference in the χp posterior distributions for slowly-
precessing and highly-precessing cases is solely coming from
the fact that we analyze two different injections.

To highlight this, we show the effective spin-parameter (χeff)
and mass ratio (q) scatter plots in Fig. 7, for a face-on binary
system with injected χp values of 0.58 (top panel) and 0.05

(bottom panel). In both the cases, as the red (SNR=60) and
blue (SNR=30) scatter plots indicate, the χeff and q estimates
improve as the SNR doubles but not enough to improve the
χp estimates. Additionally, see that the properties of these
measurements have notable differences from slowly precessing
to highly precessing binaries.

From this SNR comparison study, we emphasize that the
SNR has a visible role in accurate χp measurements for the
majority of the case we analyze here. Despite this, the effect
of SNR is negligible for equal-mass binaries with face-on or
edge-on orientations.

D. Measurement accuracies for highly asymmetric edge-on
binaries with varying spin-precession effects

From our analysis, we see that both waveform models
perform reasonably well for measuring spin-precession in
the case of edge-on asymmetric binaries (see Fig. 2 and
Fig. 3). As predictable from the discussion in Sec. II,
in this case, many sub-dominant harmonics contribute to
IMRPhenomPv3HM. At the same time, the extra harmonic aris-
ing from the precession-induced mode-mixing contributes in
the case of IMRPhenomPv3.

To compare the performance of the two waveform models
beyond the χp measurement, we show the chirp mass, mass
ratio (q), effective spin parameter (χeff), and effective spin-
precession parameter estimations (χp) for a binary system with
mass ratio 0.14 and edge-on orientation in Fig. 8. Notably,
we vary the injected χp values from 0.05, 0.2, 0.3 and 0.5 to
examine the importance of spin-precession in such cases.

Along with χp, estimations of all other parameters improve
when we model the signal using IMRPhenomPv3HM as the green
violin plots indicate. The dominant harmonic model requires
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FIG. 7. Effective spin parameter χeff and mass ratio scatter plots for a highly precessing face-on binary system (top panel) and a slowly
precessing system (bottom panel). Red and blue scatter points correspond to SNR=60 and SNR=30 cases, respectively. IMRPhenomPv3HM
waveform model is employed for both injections and recoveries. The plus mark shows the injected values for each case.

FIG. 8. Posterior distributions on the chirp mass, mass ratio, χp and χeff for different values of injected spin-precession parameter χp =

0.05, 0.2, 0.3, 0.5 for an edge-on binary with component masses (35, 5)M�.

highly precessing systems to provide better measurements of
chirp mass, mass ratio, and the effective spin parameter. This is
because for an edge-on binary with significant mass asymme-
try, the spin-precession helps breaking the degeneracy between
the mass-spin parameters [113] resulting in the most accurate
set of estimates, especially for IMRPhenomPv3. When higher
harmonics are included, additional mass-ratio information is
already present from the strength of the harmonics. Therefore,
the IMRPhenomPv3HM analysis does not require strongly pre-
cessing sources for an accurate measurement of the mass and
spin parameters.

V. SUMMARY

The recent catalog of binary signals released by the LIGO-
VIRGO collaboration contains binary signals with varying
properties. We expect to see many more such events in the

future, including highly precessing binaries with mass asym-
metries and edge-on orientations. By performing parameter
estimation analysis on simulated binary BH signals, we find
that the higher harmonics present in IMRPhenomPv3HM per-
mit us to infer the presence of precession even for face-on
binaries with mass-asymmetry. On the other hand, the dom-
inant harmonic model fails to extract enough information on
the spin-precession for moderate signal-to-noise ratio signals.
With this, we emphasize the importance of using waveform
models with higher harmonics and spin-precession effects for
parameter inference of binaries with face-on or edge-on orien-
tations. However, even with the IMRPhenomPv3HM waveform
model, it is challenging to infer accurate information on the
spin-precession if the binaries are equal mass and have face-
on orientations. Furthermore, the increased network-signal-
to-noise ratio helps improve the measurement accuracy for
un-equal mass face-on systems and all systems with edge-on
orientations, except for face-on equal mass binaries with large
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spin-precession.
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