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Cooper’s problem. The wavefunction of the
Cooper pair has the form [S1]

|Φ〉 =
∑

0<ξk<εD

g(k)c†k↑c
†
−k↓ |FS〉 , (S1)

where |FS〉 represents the Fermi sea at T = 0K. By sub-
stituting this into the full system Hamiltonian (Hmat +
Hlong) and taking the q0 → 0 limit, we find that g(k)
satisfies

Eg(k) = 2ξkg(k)−
∑
k′

(Ṽ + 2Ũδk,k′)g(k′), (S2)

where E is the two-electron state energy and Ṽ = V/S.
We rearrange the terms to get(

E − 2ξk + 2Ũ
)
g(k) = Ṽ

∑
k′

g(k′), (S3)

where the RHS is independent from k. For the s-wave
two-electron state, the RHS is nonzero. We follow the
usual procedure of cancelling out common factors from
both sides and perform the integration in k-space [S1] to
obtain the s-wave binding energy

E − 2ξk ≈ −2Ũ − 2εDe
−2

N(0)V . (S4)

For the two-electron states with higher angular momenta,
the RHS is zero as the intrinsic attraction has no compo-
nent in any higher angular momentum channels. There-
fore, the binding energy in a higher momentum channel
is −2Ũ . These results are as shown in Fig. 2(c) of the
main text.

Anderson’s pseudospin formalism. We study
the BCS reduced Hamiltonian and investigate the col-
lective modes in BCS superconductors at T = 0K. This
problem is more conveniently represented by mapping
the electron operators to pseudospin operators [S2, S3],

Szk =(c†k,↑ck,↑ + c†−k,↓c−k,↓ − 1)/2 (S5)

S+
k =c†k,↑c

†
−k,↓ (S6)

S−k =c−k,↓ck,↑. (S7)
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The BCS MF Hamiltonian in this representation is

HMF =−
∑
k

Bk · Sk, where (S8)

Bk =− 2ξkez + 2
∑
k′

(Ṽ + 2Ũδk,k′)〈S⊥k′〉, (S9)

and S⊥k refers to the component of Sk in the xy-plane.
For the ground state,

B0
k = −2ξkez + 2∆kex. (S10)

Here, we have assumed that B0
k lies in the xz-plane with-

out loss of generality. We then go beyond the ground
state and consider perturbations δSk = Sk − S0

k on top
of the MF ground state. Here, S0

k is the expectation value
of Sk in the MF ground state. From Eq. (S8), we obtain
the equation of motion for Sk,

dSk

dt
= Sk ×Bk. (S11)

We linearise it to get the equation of motion for δSk,

dδSk

dt
= δSk ×B0

k + Sk × δBk, (S12)

where δBk = Bk−B0
k. We re-formulate this as an eigen-

value problem:

ω2φk

=
∑
k′

Mkk′φk′

=
(
B0

k

)2
φk −B0

k

∑
k′

(Ṽ + 2Ũδk,k′)φk′

− cos θk
∑
k′

(Ṽ + 2Ũδk,k′)B
0
k′ cos θk′φk′

+ cos θk
∑
k′,k′′

(Ṽ + 2Ũδk,k′)(Ṽ + 2Ũδk′,k′′) cos θk′φk′′ ,

(S13)

where Syk ∝ φk, tan θk = −∆k/ξk and B0
k = |B0

k|.
For excitonic modes the perturbations Φexc

k =
(..., φexck , ...) are local in each energy shell. Φexc

k satis-
fies φexck = 0 ∀|k| 6= k and

∑
|k|=k φ

exc
k = 0. The energy

of the excitonic modes index by k is

εexck =

√
(B0

k)
2 − 2B0

kŨ (1 + cos2 θk) + 4Ũ2 cos2 θk.

(S14)
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S2

The energy is lowest on the Fermi surface, εexckF
=

2
√

∆2
kF
− Ũ∆kF . We emphasise that this energy is still

higher than twice the superconducting gap without the
long-range interactions.

The rest of the eigen-modes are rotationally symmet-
ric in k-space. The Nambu-Goldstone mode appears as
a zero-energy mode that is symmetric about the Fermi
surface and satisfies φNG

k ∝ ∆k. This condition confirms
that the Nambu-Goldstone mode indeed corresponds to
the phase fluctuation of the order parameter. Through
the Anderson-Higgs mechanism, this mode is absorbed
into the longitudinal component of the gauge field and
appears as plasmon oscillations [S2].

The next lowest energy-mode is the zero-momentum
Higgs mode of amplitude fluctuations. The mode func-
tion, ΦH, is antisymmetric about the Fermi surface. We
obtain its excitation energy numerically, using the anti-
symmetry of the mode function. We show analytically
that this Higgs excitation energy is lower than the ex-
citonic excitation energy by plugging an approximate

mode function (inspired by the Higgs mode function
in superconductors with only local electron attractions),

φapk ∝ ∆k/[(Ek − Ũ)ξk] into Eq. (S13),

∑
k′

Mkk′φ
ap
k′ =

(
4∆2

k − 4Ũ
∆2

k

Ek

)
φapk ≤ (εexckF )2φapk .

(S15)
This shows that the true zero-momentum Higgs mode
function results in an energy lower than εexckF

for finite
attractive long-range interactions.

In Fig. 2(b) of the main text, we showed that εH is
very close to εexckF

. Here, we note that this difference
grows with the strength of the long-range interactions.
In addition, we note that the range of the induced inter-
actions is, though long, still finite in reality. The finite
range slightly weakens the pairing in higher angular mo-
mentum channels relative to the s-wave channel [S4], thus
we should expect the separation between the Higgs mode
and the excitonic modes to be marginally larger.
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