Public Review for

AMP: Authﬁntication of Media via
rovenance

P. England, H. Malvar, E. Horvitz, J. Stokes, C. Fournet, R.
Aguero, A. Chamayou, S. Clebsch, M. Costa, J. Deutscher, S.
Erfani, M. Gaylor, A. Jenks, K. Kane, E. Redmiles, A. Shamis, .
Sharma, J. Simmons, S. Wenker, A. Zaman

Recent significant technical advances in the media manipulation tools cou-
pled with powerful computing environments have led to a proliferation of
manipulated or even fake media. While there are several recent research
efforts that are aimed at detecting fake media, this will continue to be an
arms race with improving manipulation tools. Another approach gaining
traction to combat fake media both in industry and academia has been to
authenticate the source and integrity of the multimedia content being pub-
lished. In this paper, Paul England et al. present the Authentication of
Media via provenance (AMP) framework for authenticating content by cer-
tifying provenance. This AMP framework uses an auditable ledger governed
by a consortium of media providers to register publisher-signed media man-
ifests. The presented framework enables authenticity communication to the
end-users after verification. The reviewers agreed that the media authen-
ticity problem is very topical and extremely important. While there have
been prior similar attempts to do this, the reviewers were very happy with
the details presented about the AMP framework describing the complexities
of the implementation while acknowledging the limitations. The reviewers
also agree that this is the first work that focused on streaming media. De-
tails about using this framework for HTTP Adaptive Streaming is presented
clearly with some experimental results on scalability. The reviewers expect
that the AMP framework will be extended with additional research by the
multimedia community for additional watermarking and other cryptographic
technical protection measures to ensure the authenticity.

Public review written by
Viswanathan (Vishy) Swaminathan
Adobe, USA

ACM MMSys 2021
108

AMP: Authentication of Media via Provenance

Paul England, Henrique S. Malvar, Eric Horvitz, Jack W. Stokes, Cédric Fournet, Rebecca
Burke-Aguero, Amaury Chamayou, Sylvan Clebsch, Manuel Costa, John Deutscher, Shabnam Erfani,
Matt Gaylor, Andrew Jenks, Kevin Kane, Elissa M. Redmiles, Alex Shamis, Isha Sharma, John C.

Simmons, Sam Wenker, Anika Zaman
Microsoft
USA and UK

ABSTRACT

Advances in graphics and machine learning have led to the general
availability of easy-to-use tools for modifying and synthesizing
media. The proliferation of these tools threatens to cast doubt on
the veracity of all media. One approach to thwarting the flow of
fake media is to detect modified or synthesized media through
machine learning methods. While detection may help in the short
term, we believe that it is destined to fail as the quality of fake
media generation continues to improve. Soon, neither humans nor
algorithms will be able to reliably distinguish fake versus real con-
tent. Thus, pipelines for assuring the source and integrity of media
will be required—and increasingly relied upon. We present AMP,
a system that ensures the authentication of media via certifying
provenance. AMP creates one or more publisher-signed manifests
for a media instance uploaded by a content provider. These mani-
fests are stored in a database allowing fast lookup from applications
such as browsers. For reference, the manifests are also registered
and signed by a permissioned ledger, implemented using the Confi-
dential Consortium Framework (CCF). CCF employs both software
and hardware techniques to ensure the integrity and transparency
of all registered manifests. AMP, through its use of CCF, enables a
consortium of media providers to govern the service while making
all its operations auditable. The authenticity of the media can be
communicated to the user via visual elements in the browser, in-
dicating that an AMP manifest has been successfully located and
verified.

CCS CONCEPTS

« Security and privacy — Authentication.

KEYWORDS

media security, media authentication, provenance, deepfakes

ACM Reference Format:

Paul England, Henrique S. Malvar, Eric Horvitz, Jack W. Stokes, Cédric Four-
net, Rebecca Burke-Aguero, Amaury Chamayou, Sylvan Clebsch, Manuel
Costa, John Deutscher, Shabnam Erfani, Matt Gaylor, Andrew Jenks, Kevin
Kane, Elissa M. Redmiles, Alex Shamis, Isha Sharma, John C. Simmons,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8434-6/21/09...$15.00
https://doi.org/10.1145/3458305.3459599

109

Sam Wenker, Anika Zaman. 2021. AMP: Authentication of Media via Prove-
nance. In 12th ACM Multimedia Systems Conference (MMSys *21) (MMSys
21), September 28-October 1, 2021, Istanbul, Turkey. ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/3458305.3459599

1 INTRODUCTION

Advances in graphics and machine learning have enabled the cre-
ation and distribution of easy-to-use tools for synthesizing fake
media [36]. These tools enable non-expert users to modify or syn-
thesize audiovisual media that looks convincingly real. Although
subtle artifacts may be detected in some cases by experts or by
statistical classifiers developed with machine learning, we expect
that the march of technical progress will soon make it impossible to
distinguish fake media from real. Tools for media synthesis, coupled
with wide-scale distribution of social media, threaten to cause harm
to individuals, institutions, and nations. More generally, widespread
distribution of fake media has the potential to undermine society’s
trust in all media. With the rise of fake media, what can be done to
protect the veracity of media and provide a pathway to trust?

We are pursuing an answer by providing users with reliable
information about the source and authenticity of a media object,
through a verifiable and trustworthy media authentication service.
That should allow the consumer to rely on the reputation of the
media producer to make informed decisions about the media’s
trustworthiness. For example, a media company or publisher can
attest that it published a work in accordance with their editorial
standards, or content captured at a certain location and time by
cameras in the hands of a trusted reporting team.

The simplest building block for proving provenance is to sign
the media object digitally. However, the variety of mechanisms
for media distribution, with many of them modifying the media
files or streams, means that maintaining digital signatures is dif-
ficult. Additional challenges are also involved. For example, in a
typical redistribution scenario, media content is re-encoded by a
content distribution network (CDN). Such re-encodings are needed
to address variations in channel bandwidth, rendering device reso-
lution, and other constraints. To preserve provenance information,
certificates must be tracked and re-inserted for each transformation.

We present a practical system named AMP (for authentication
of media via provenance) aimed at providing robust verification of
provenance while supporting a wide variety of production and dis-
tribution scenarios at internet scale. The AMP effort brings together
expertise in security and media, leveraging advances in cryptogra-
phy, watermarking, and recently released cloud security and ledger
services.

https://doi.org/10.1145/3458305.3459599
https://doi.org/10.1145/3458305.3459599

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

Threats to the integrity of sources include the use of a range of
techniques, from simple modifications of timing to more sophisti-
cated uses of graphics and generative models, for manipulating or
synthesizing audiovisual content that is perceived by consumers as
capturing actual events.

Approaches to securing media from a reputable provider to its
consumption include (1) strong authentication and (2) fragile wa-
termarking or fingerprinting. A complementary approach involves
(3) the detection of manipulation or synthesis via machine-learned
techniques. In AMP, we focus on securing media based on the joint
use of (1) and (2), to assess the identity of the media provider.

The AMP system consists of four main modules including the
AMP Service, the Media Provenance Ledger, the Manifest Database,
and the AMP Authoring Tools. AMP authenticates media using a dig-
itally signed data structure called a manifest, and the AMP Service
allows content providers to upload their media manifests to AMP.
Manifests are registered in the Media Provenance Ledger, which
is a public distributed ledger based on the Confidential Consor-
tium Framework (CCF) [24, 25]. CCF is an efficient, open-source
framework that can be used to implement permissioned blockchains.
Manifests can be distributed together with media contents, whereas
the ledger ensures integrity and auditability of the full history of
media publishing operations. In addition, manifests are indexed by
media fragments in a Manifest Database for fast querying. Once a
manifest or group of manifests has been uploaded, media players
can then use the AMP Service to validate the authenticity of the
corresponding media contents, even if the content is distributed
without its manifest. A set of tools allows content providers to
interact with the AMP Service when the content is published. In ad-
dition to the service and tools, media players (browsers, smartphone
applications, etc.) need to be extended to check and display prove-
nance information. We have conducted a separate mixed-method
study of the user experience for a media provenance system such
as AMP [33]. The study provides evidence that provenance would
be very helpful to combat the fake media distribution problem for
end users.

Enabling large-scale media provenance requires the cooperation
of multiple participants, including content producers, publishers,
and technology providers. We have formed the Project Origin [30]
coalition between Microsoft and three media publishers (BBC, CBC
and New York Times) to assert media provenance based on the
AMP system. In addition, we recently co-founded the Coalition for
Content Provenance and Authenticity (C2PA) [7] aimed at creat-
ing a broadly adopted standard for media provenance verification,
leveraging key methods from AMP. In this paper, we make the
following novel contributions: 1) We describe an end-to-end solu-
tion for media producers to provide provenance information for
each media item produced. In particular, the system is designed for
streaming video including adaptive bit-rate streaming. 2) We de-
scribe how these videos can be distributed via CDNs or social media
platforms while maintaining the required provenance information.
We allow for certificate verification even when the distribution path
is unknown, such as unknown CDNs or mild edits. 3) We propose
a detached manifest that can be used for detecting provenance in
the near-term with existing media standards, and an embedded
manifest specification that can be used with future standards. 4) We

110

England, et al.

Players, Viewers, and Web Pages Media Publisher, CDN, ISP,
(Browser, Photo Tool, etc.) Social Media Platform

1 —

AMP Client AMP Authoring
Software and Browser Extension Tools
Y Clem Y
Backend
Manifest AMP Authoring
Database Manifest Tools
Trust Execution Media Provenance
Environment Ledger AMP Service

Figure 1: High-level overview of the AMP system components
(shaded boxes).

show how the use of novel ledger techniques can scale to handle the
majority of media items produced for distribution on the internet.

2 AMP SYSTEM OVERVIEW

We provide an overview in this section of the core AMP concepts
and how they are composed to form an end-to-end media authenti-
cation and verification system. We also specify the threat model.
Figure 1 illustrates how the AMP components are integrated into a
production, distribution, and rendering pipeline. A content provider
uses the AMP Authoring Tools to create signed manifests and regis-
ter them as part of publication, so that they can be authenticated
by the AMP Service. The manifests can either be created locally
by the publisher if they do not want to upload the media to the
backend or alternatively in the AMP Service itself. Other organi-
zations such as a CDN, social media platform, or Internet service
provider (ISP) can similarly record transformations that they apply
to the content provider’s original media content, using the AMP
Authoring Tools. The AMP Service records the resulting publication
metadata in a manifest, signed by the provider (or the transformer),
and stored in a Manifest Database (DB) for fast verification. One
or more cryptographic hashes of the media content are also stored
in a verifiable ledger, called the Media Provenance Ledger, using
CCF. Finally, consumer applications such as browsers, web sites,
or media players use AMP manifests and libraries for verifying
(i.e., authenticating) that a media item indicated as coming from a
content provider has been previously registered in the AMP Service
by that provider.

2.1 AMP System Components

AMP Manifest. The manifest is the central data structure in AMP.
The manifest authenticates media objects (including various cryp-
tographic hashes of their encodings) and binds them to metadata
provided by their publisher. Manifests support simple media ob-
jects, streaming media, progressive download, and adaptive bitrate
streaming. A manifest can also record the attribution of derived
works through “back-pointers” to one or more source objects, as
well as descriptions of how the original works were transformed.

AMP: Authentication of Media via Provenance

AMP includes two different sets of modules, one for a near-
term solution and another for a long-term solution. The near-term
modules indicate provenance using a detached manifest and can
work with today’s infrastructure. In addition, the long-term solution
uses an embedded manifest, which is included in the media stream
itself, but it will ultimately require extensions to browser standards.
Media Provenance Ledger. Manifests are recorded on a CCF
blockchain. CCF operates the ledger (i.e., blockchain) of published
works, which is essentially a list of manifests, relying on trusted
hardware and providing high availability via the Raft [29] consen-
sus protocol. Our implementation of CCF supports the registration
of new manifests and issues signed manifest receipts. These receipts
complement the producer’s signatures; they enable any media con-
sumers to independently verify that the media they receive has
been published with the corresponding metadata. CCF natively
supports online querying and validation of transactions along with
their endorsing certificates.

Manifest Database. In the longer-term, we expect manifests to be
distributed with the media objects themselves so that their prove-
nance can be verified locally. To support a gradual transition, and
to withstand the distribution of media without their associated
manifests (e.g., media streamed from YouTube), AMP maintains an
indexed manifest database, so that clients can retrieve manifests
given media excerpts.

AMP Service. The AMP Service exposes the Manifest Database and
the Media Provenance Ledger to client application through a set of
REST APIs.

AMP Tools and Libraries. We also provide a set of tools and
libraries for interacting with the AMP Service. The tools cover: (a)
the creation, signing, and ingestion of content/manifests into the
AMP system, (b) querying the AMP system for media authentication
information and checking that media objects are intact, and (c) AMP
service governance (adding/removing members and users, etc.).
Fragile Watermarking. In many cases, the media will be trans-
formed without registering a manifest that records the transfor-
mation. To facilitate the retrieval of any manifest for the original
media object, the publisher can insert a watermark using the AMP
Watermark Tool, which carries a unique manifest identifier that
can be used to retrieve the original contents and metadata, or to
compare them with the transformed media.

User Experience Components. To provide a good user experi-
ence, AMP includes three components including two variants of
a browser extension, two demonstration web pages, and a modi-
fied Chromium browser capable of displaying a new variant of an
HTML video element.

Implementation. AMP has been implemented to run on Windows
and Linux (Ubuntu LTS 18.04). The Media Provenance Ledger has
been developed and tested on Ubuntu 18.04, the version of Linux
currently supported by the CCF framework.

The core AMP components are primarily implemented in C#
using .NET Core 3.1 so that the system will run on Linux, MacOS
and Windows. The browser extension is implemented in JavaScript
and HTML. CCF is primarily written in C++ although it allows
applications to be written in C++ and JavaScript. The audio water-
marking code is implemented in C. This implementation enables
efficient porting to many different processing environments.

111

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

2.2 AMP Threat Model

AMP assumes that the computing infrastructures of legitimate
content providers, redistributors, and consumers are secure, and
that the AMP web service is not compromised. For the ledger, this
assumes only that the trusted execution environment (e.g., SGX)
and framework (CCF) are not compromised. AMP further assumes
that the SHA-256 hash algorithm is collision resistant and that its
X.509-based digital signature algorithms are secure.

3 AMP MANIFESTS

An AMP manifest is a data structure that cryptographically authen-
ticates media objects and their associated metadata. Manifests are
registered on the Media Provenance Ledger (Section 6), optionally
distributed by media providers and distributors, and recorded in
a complementary Manifest Database (Section 8). The purpose of
manifests is to allow media player clients to quickly and easily
verify the publisher (and possibly the distributor) of a media object.
The values stored in the manifest data structure are generated by
the content provider as it publishes the media object.

AMP supports two types of manifests: static and streaming. A
static manifest handles a simple media object (e.g. JPEG) or a col-
lection of objects with different encodings (facsimiles), while a
streaming manifest contains an array of cryptographic hashes cor-
responding to “chunks” of the associated media. For example, a
chunk might correspond to one or more seconds of video or audio.

AMP manifests can be used to authenticate original source mate-
rial, or their transformation from one format to another. Note that
checking whether a transformation is faithful is not discussed here.

AMP manifests are signed by publishers, CDNs, etc. The cryp-

tographic hash of a manifest is called its AMP manifest ID (Mani-
festID). It serves as a unique identifier and a commitment for the
manifest. ManifestIDs are also digitally signed by content producers
or distributors, and recorded on the ledger. AMP uses X.509-based
algorithms for all digital signatures and SHA-256 for all crypto-
graphic hashes.
Static Manifests. Table 1 lists some of the fields included in man-
ifests. The complete set of data structures can be found in the
extended version of this work [10]. The publisher assigns a Medi-
aID to identify a particular media object. In addition, the MedialD
is encoded into the media object as a watermark and may also be
inserted into the media’s metadata.

The EncodingInformation field contains a string which indicates
the media type (e.g., “JPEG”, “MP4”). This field helps to guard against
the media’s cryptographic hashes being wrongly interpreted.

AMP manifests can also authenticate media objects that are
derived from other media objects by means of “back pointers” to
one or more source manifests. These “transformation manifests”
can be used by publishers or CDNs to record transcoding and re-
compressions of source material. Transformation manifests can
also be used to record the original media objects that were edited
together to make a composite derived work.

The OriginManifestID field includes one or more ManifestIDs
that describe the source media used to create a derived work. If
a media object is a simple transcoding of another media object,
this will be a single element array. If a media object is created
from several source objects (e.g., a news video created from several

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

original media objects) then additional ManifestIDs can be recorded
in the array. Note that OriginManifestID[] is not authoritative on
its own: it should be trusted only if the ManifestID that describes
the transform is signed by a trusted party.

The AMP manifest includes a Copyright field which can be used
to provide the copyright string associated with the media object.
This field provides a simple and legally enforceable way of limiting
fake or misleading manifests. Allowed strings may also be dictated
in the AMP terms of service.

In the simplest case (e.g., a picture or a text file), the manifest
contains the cryptographic hash of the image or text and its as-
sociated metadata in the ObjectHash array field. Optionally, the
publisher can create and authenticate more than one encoding of a
media object to optimize for client screen resolutions or network
conditions. We call these alternate representations facsimiles.
Streaming Manifests. AMP authenticates media objects with dig-
ital signatures. It is straightforward to do this with text and im-
ages: we simply generate the cryptographic hash and then sign
picture.jpg or doc.html. Streaming media is more challenging be-
cause (a) an application should not have to wait to download the
entire file before it can check the signature, (b) streaming services
support changing the stream resolution to match network con-
straints (adaptive bitrate streaming), (c) some transport layers are
lossy, and (d) users can often navigate back and forth in streams.
These issues imply that AMP must authenticate much smaller re-
gions (i.e., “chunks”) in the stream.

All of the fields for the streaming manifest match those in the
static manifest in Table 1 with the exception of the final field. While
a static manifest contains one or more cryptographic hashes of
an image or text document in the ObjectHash field, a streaming
manifest contains a ChunkDigest which includes an ordered array
of chunk-hashes.

Clients must be able to quickly determine where individual
chunks start and end in order to be able to calculate the crypto-
graphic hashes of the chunks and compare these against the entries
in an AMP manifest. Unfortunately, different media formats and
network delivery mechanisms require different chunking strategies.

In one case, the AMP system supports file offset-based chunking,
which works well for HTTP GET-based streaming (which is most
common on today’s Internet). Lossy broadcast streaming requires
different chunking strategies, such as I-frame-to-I-frame chunks
for an MPEG stream. Practically, streaming players process a cryp-
tographic hash of a chunk every few seconds. In most scenarios,
consecutive chunks delivered to the client will map to consecutive
chunk-hashes in a single manifest. However, if a server is dynam-
ically switching streams, then more than one manifest may be
needed to authenticate a stream.

AMP also supports adaptive bitrate streaming protocols such
as DASH and HLS. Adaptive bitrate streaming requires several
different encodings of a media object, optimized for different net-
work conditions and client capabilities. Adaptive bitrate streams
are supported in AMP either by publishing several manifests au-
thenticating the different encodings, or by using a single manifest
that authenticates multiple facsimiles.

Detached and Embedded Manifests. Initially, before encoding
standards can be modified, manifests will be stored separately from

112

England, et al.

ManifestContainer

ManifestCore Facsimilelnformation

Publisherinfc

_v| FacsimileDescriptor

FacsimileinfoDigest | | |, | FacsimileDescriptor

FacsimilelnfoDigest .. 3
~|—|»| FacsimileDescriptor

FacsimileInfoDigest

PublisherAttestation ‘

LedgerAttestation

Figure 2: A simplified illustration of a ManifestCore and
related data structures. Many fields and some data structures
are omitted for clarity.

the media itself; we refer to them as “detached manifests”. Long-
term, we hope that “embedded manifests” will be contained within
the media’s metadata and be transported within the media stream
itself. We have implemented two versions of AMP utilizing both
detached manifests and embedded manifests.

4 MANIFEST DETAILS

This section provides additional details about the full manifest
which is depicted in Figure 2. A manifest is actually a container
(ManifestContainer) and includes a core manifest called the Man-
ifestCore, a FacssimileInformation to describe facsimiles of the
original media object, and two structures which provide support-
ing evidence of the publisher (PublisherAttestation) and the ledger
(LedgerAttestation). Before describing the manifest details, we next
provide an overview of how to use a manifest.

Using Manifests. Manifests can be created by publishers, redis-
tributors (CDNSs, ISPs), social media platforms, recording devices,
etc. and manifests are signed by the entity that created them. Man-
ifests can also be countersigned by cloud services: for example,
the CCF cloud service produces a signed receipt to acknowledge
that a Media Manifest has been recorded on a ledger. Manifests are
conventionally JSON or CBOR encoded and can be translated back
and forth from JSON to CBOR as needed. For ease of development,
the manifest authoring tools sign both the CBOR representation
(using a COSE signature) and the JSON representation (using a
JWT signature). The ManifestID is the hash of the CBOR-encoded
manifest. Manifests can be delivered to clients as metadata with the
actual media objects. However, since the ecosystem for delivering
media is complex, we expect that it will take time for this delivery
infrastructure to be widespread. Considering this, AMP provides
a Manifest Database that clients can use to search for a manifest
for a work. There are several ways to query the Manifest Database,

AMP: Authentication of Media via Provenance

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

l Field [Manifest Type [Description
MediaID Static/Streaming | Publisher-assigned identifier for the media object.
MasterCopyLocator | Static/Streaming | URI of a stable, publisher provided location service or a generic URL redirector service.
EncodingInformation | Static/Streaming | String describing the media type (e.g., “JPEG”, “MP4”).
OriginManifestID(] Static/Streaming | One or more ManifestIDs that describe the source media used to create a derived work.
Copyright Static/Streaming | Copyright string associated with the media object.
ObjectHash([] Static Cryptographic hash of the associated simple media object (or collection of related media
objects).
ChunkDigest Streaming An ordered array of chunk-hashes starting from the beginning of the work.

Table 1: Key manifest fields.

including querying by ManifestID, querying by the hash of the
entire work, or an array of hashes of chunks of the work.
Authenticating Works. Each manifest authenticates either pre-
cisely one work, or several facsimiles of a work. There are no
technical restrictions on what constitutes a facsimile, but the inten-
tion is that facsimiles support the very common scenario in which
web sites, CDNG, etc. prepare a family of media objects (images,
video, audio) that are optimized for different devices and network
conditions, but all of which represent the same content — just not
the same exact bits.

Manifests broadly contain two classes of data: metadata and
media bindings. Metadata is publisher-assigned data, such as a
publisher name and a title for the work. Media bindings describe
the facsimiles: for example, cryptographic digests of the media, or
subsets/chunks of the media and media type information. These
fields are described in more detail in the following sections.
Metadata. Most metadata is contained in the structures Publish-
erInfo and WorkInfo, with the option to include facsimile-specific
information in the FacsimileDescriptor structure. This design in-
tentionally limits the metadata that is defined in this structure,
and still less is mandatory. A minimal set of metadata would be
the name of the publisher and the name of the work. If additional
metadata needs to be attached, then it can be expressed in the Oth-
erClaims data structures. The manifest supports an array of Other-
Claims structures to be included in PublisherInfo (claims about the
publisher), WorkInfo (claims about the work), FacsimileDescriptor
(claims about the facsimile), and SourceWork (describing how a
source work was transformed to produce a derived work). Other-
Claims allows two sorts of claims to be associated with the manifest.
Claim-sets can be embedded directly into the manifest, or a URI
(or other descriptor) can be used to associate claims outside the
manifest. In the case of external claims, OtherData allows the op-
tion that the manifest can cryptographically commit to the external
claims by including the hash of the external data in the OtherClaims
structure. OtherClaims contains a string type descriptor. We define
a few standard descriptors such as “XMP”, “EIDR”, “SCHEMA”, and
then use a DNS-style namespace to allow extensions.

Media Bindings. Authentication using an Object Digest. All fac-
similes are authenticated by hashing the entirety of the data that
constitutes the facsimile: the hash of the entire file (e.g., PDF, JPG,
MP4, OGV). Some commonly used multimedia standards allow mul-
tiple streams to be packaged in a single object. In some cases, it still
makes sense to authenticate the entire container file or stream. In

113

other cases, a subset of the underlying media file is authenticated.
One important example of this is when the manifest is packaged
in the media file itself - for example, when the manifest is embed-
ded in an ISO/MPEG container. In all cases, the manifest directly
or indirectly specifies exactly what parts of the media object are
hashed.

Authentication using Chunking. Most modern media players
download and buffer a few seconds of media and then start play-
ing almost immediately, so authenticating a media object based
on the hash of the whole file is inappropriate. To support progres-
sive/streaming playback of media, the system supports streaming
authentication using a collection of the hashes of “chunks” of the
media object. Different media delivery schemes demand different
chunking schemes. Two chunking schemes are currently supported:
file-offset-based chunking and a Merkle-tree based scheme for MP4-
containerized video. Each facsimile can be authenticated using more
than one chunking scheme to allow a single work to be delivered
in multiple ways.

File-Offset-Based Chunking. The most common media rendering
technology on the web today is the HTML5 video element. The
simplest way of using an HTMLS5 video player is to configure the
video element to fetch video data from a URL. In this case, the video
element performs a sequence of HTTP partial-GET operations to
fetch the video data. File-offset-based chunking can be used to do
progressive authentication in this case: the manifest contains an
array of hashes of (say) 256KB chunks of the underlying video file,
and the video player or browser calculates video-stream hashes
and checks that they match a manifest. File-offset-based hashing
can also work with Adaptive Bitrate (ABR) Streaming in some cir-
cumstances. ABR on the web is enabled by video player logic (often
a JavaScript library running in the web page) fetching audio and
video data from a collection of files encoded at different bandwidths.
File-offset-based chunking still works in this case: each of the un-
derlying video files is chunked, hashed, and encoded in the manifest.
The SimpleChunkList data structure is used to represent encoded
file-offset-based chunking. SimpleChunkLists contain an array of
hashes and the size of the underlying chunks. The size of each
chunk is recorded in the manifest, but we additionally define some
standard lengths to enable chunk-hashes to be calculated by clients
when they do not yet have a valid manifest. The final chunk in a
file may be less than the chunk size.

MP4-Container Hashing and Merkle Tree Authentication. The MP4
ISO/IEC container format is a widely used standard for encoding

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

MOOF+ MOOF+ MOOF+ MOOF+ MOOF+ MOOF+ MOOF+
MDAT MDAT MDAT MDAT MDAT MDAT MDAT

Figure 3: Merkle Hash Tree formed over multimedia data.
The “leaves” of the hash tree are the hashes of the media
samples, and each row in the hash tree is formed from the
hash of the concatenation of the two hashes in the lower
layer. The top-hash is called the root of the hash tree. If
the number of samples is not a power of two, the leaves of
the “missing” samples at the end of the file are null, and are
processed according to the rules in this section.

any sort of media object in a file or stream. MP4 defines “box” types
for holding multimedia data and metadata. For our purposes, the
following box types are important: MOOV - Basic stream metadata:
one per container, MDAT - Video or audio data: typically, a few
seconds, and MOOF - Describes the samples in the subsequent
MDAT. The simplest fragmented MP4 container contains {MOOV
[MOOF, MDAT] +}, but most containers have additional boxes. MP4-
Container-chunking defines a chunk as a subset of the MOOF data
that defines the sample, together with the corresponding video data:
i.e., the MDAT. Chunk hashes defined in this way can be embedded
in a ManifestCore using the MerkleTreeAuthenticator, which is
described next.

Merkle Tree Authentication. Typical chunk sizes for fragmented
MP4 are a few seconds long, so the chunk hash data can be quite
large. If the authentication data is encoded as a simple array, then
the array of chunk hashes must be available in its entirety be-
fore authentication can begin. The MerkleTreeAuthenticator is an
alternative representation of the chunk-hashes that allows authen-
tication to begin when only a subset of the authentication data is
available. This is achieved by encoding part of the authentication
data in the manifest, and additional “evidence” in the media stream
itself. Together, these allow a player to check that a media chunk
is consistent with a manifest. This form of authentication is sup-
ported by encoding the authentication data as a Merkle hash tree. A
Merkle Tree, depicted in Figure 3, is a binary tree of hashes, where
the leaves of the tree are the digests of the [MOOF MDAT] samples,
and each row in the tree is the hash of the data or hashes in the
row beneath.

The Merkle Tree authenticator is encoded in two parts, which are
typically distributed separately. The actual Media Manifest contains
one row of hashes from the tree: for example, the D2,0 and D2,1
digests in Figure 3. This would be sufficient to authenticate the

114

England, et al.

video data as long as the player can read and hash all of the data
leading up to D2,0 or D2,1, but (in this example) the player would
have to read, chunk, and hash half of the file before authentication
could begin. To avoid the need for excessive read-ahead, the media
can be distributed with the relevant missing parts of the tree, so that
the player can validate that a particular chunk hash is consistent
with the manifest. For example in Figure 3, to prove that the first
sample is consistent with D2,0 the evidence would be D0,1 and D1,2
because these hash values can be used to form the missing parts of
the tree.

The tree is formed as follows. The depth of the tree is determined
by the number of chunks in the file. In general, the number of leaf
hashes is not a power of two. In such cases, the tree depth is
calculated by rounding up the number of leaf hashes to the next
power of two. For example, if there are 5 chunks, then this rounds
up to 8, which leads to a tree depth of 4, including the leaves of the
tree. The general rules for forming the tree (in both the power-of-
two and non-power of two cases) are as follows:

(1) The leaf hashes are formed from the hash of the chunk data.
(2) The “hash” of non-present chunk is termed null.

To form intermediate node hashes in the tree:

(1) If both inputs are non-null, then output = Hash (LHS|RHS)
(2) If one input (RHS) is null, then output is the other input
(LHS)

(3) If both inputs are null, then output = null

The MerkleTreeAuthenticator data structure encodes one row of
the hash tree in the Media Manifest, omitting null values. Encoding
of the evidence hashes is described in the next section.

Encoding Evidence in an MP4 Container. The evidence that allows

a player to determine that a chunk is consistent with an associated
manifest is encoded in an MP4 box using standard BMFF extension
mechanisms and is included as a peer of the MOOF box in the
chunk.
Adaptive Bitrate Streaming. MPEG-DASH and Microsoft Smooth
Streaming are adaptive bitrate streaming formats that allow a client
player to select between different encodings of the same video
object. Stream selection can happen when playing starts but, if
network conditions change, it can also happen during playback.
These streaming standards are usually enabled by creating a set
of underlying compressed media files and dynamically assembling
them into HLS or DASH objects with CMAF (MP4) chunks. The in-
dividual files are encoded using different bandwidths/compression
ratios, and, for each bit rate, the original video is usually split into
shorter files to allow client players to switch bandwidths every few
seconds.

Adaptive streaming is supported by a set of ManifestCore struc-
tures by treating each of the separately encoded constituent files as
a facsimile. In some cases, this might be a Transformation Manifest
with a back-pointer to the manifest for an original high-definition
file that was used to create the ABR streams, and in other cases
the ABR streams will all be authenticated using a simple (non-
transformation) manifest.

Transformation Manifests. Transformation Manifests are used to
authenticate works that are transformed from other works. Trans-
formation Manifests can be authored by the same publisher that
created the original work, authored by an entity operating on behalf

AMP: Authentication of Media via Provenance

of another entity (e.g. a CDN), or created by a completely unrelated
entity, tool, or person.! Such manifests allow an entity to apply a
transformation to a work, establish the original work as its source,
and make a signed claim this transformation does not alter the
meaning of the content of the original work. The manifest does not
itself prove this assertion automatically but provides an auditable
trail through which the assertion could be challenged. How such a
challenge would be resolved is beyond the scope of this work; the
manifest only ensures the transforming entity is accountable for
the transformed works it releases.

Transformation Manifests differ from original work manifests

in that they specify the ManifestID of the source work or works
used to create the derived work, and also include the nature of the
transformation applied. The primary initial scenario enabled by
Transformation Manifests is re-encoding of a media object after
the original manifest is created. However, we have allowed for
future extensibility to express more complex sorts of derivation
such as editing and media object composition. Such an extension
of Transformation Manifests may allow for the meaning of the
original work to be altered, but in a specific and documented way
they assert what is acceptable and that the transformation does
not alter the meaning of the transformed content. For example, a
derivative work in the form of a news report might use a clip of a
newsworthy event, and the producing entity could both assert the
originality of its own content and make a claim that the clip of the
event being described is unaltered, or itself transformed in some
acceptable way, such as transcoded, or decorated with the entity’s
chyron or watermark.
Distributing Manifests and Manifest Containers. A simplified
representation of a ManifestCore and related data structures in illus-
trated in Figure 2. The central data structure that cryptographically
authenticates media is called the ManifestCore. A ManifestCore di-
rectly contains some data items, and cryptographic commitment to
external data structures that may be distributed with the manifest
or by other means. The ManifestCore uses commitments/hashes
rather than embedding the data structure directly when the supple-
mental data is not always required. For example, the facsimile media
authentication information is encoded in one or more external Fac-
simileDescriptors. This allows a media object to be distributed with
only the FacsimileDescriptors that are relevant. For example, if a
video object is encoded in WEBM and MP4, and each is encoded
in 5 different bit rates and resolutions, this is 10 facsimiles. If a
player is just playing one of these streams, then only the appropri-
ate FacsimileDescriptor needs to be available to authenticate the
stream.

In addition, there are a wide range of media metadata formats,
and there is a wide range of data that a publisher might want to
associate with a work; some of which the publisher might not
want to distribute. The publisher can cryptographically commit to
supplemental data by including the hash of the external data in the
manifest.

The consequence of this is that a ManifestCore always needs ad-
ditional data structures before it can be used to authenticate media.
The ManifestContainer data structure is an envelope that allows a
ManifestCore to be distributed with supplemental data structures

I Trust assessments when several parties are involved are not discussed here.

115

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

that allow a work to be authenticated. Note that the ManifestCore
cannot be modified after it is created because the MediaID would
change, and signatures would break. However, ManifestContainers
(each of which contains a ManifestCore) can be freely created with
just the data needed for the intended purpose. ManifestContainers
can also contain signature blocks and certificates from the publisher
(PublisherAttestation and LedgerAttestation).

Signing Manifests. Manifests are typically signed by the origina-
tor (publisher, redistributor, social media platform, etc.) and may
be countersigned by distributed ledger services. Manifest signa-
tures are performed over the hash of a canonical representation
of the manifest. JSON and CBOR representations are used by dif-
ferent parts of the system, so the manifest is signed twice: once
to produce a JWT signature block (JSON) and once to produce a
COSE signature block (CBOR). A PublisherAttestation optionally
allows the signer certificate or certificate chain to be bundled in
the ManifestContainer.

Canonicalization. ManifestIDs and signatures are over JSON or
CBOR canonical encodings. JSON canonicalization follows the IEFT
JCS draft. CBOR canonicalization follows RFC7049. COSE signa-
tures follow RFC8152.

5 PROVENANCE BINDING

Authenticating that media has not been altered since the manifest
was signed demonstrates the media’s integrity, but tying the signer
to an identity known and trusted by the consumer is what provides
provenance, and allows the consumer’s trust in that producer to be
extended to the media. We have deployed a public key infrastruc-
ture (PKI) of X.509 certificates [9] governed and administered by
the coalition or some other trusted organization to provide a root of
trust for establishing identity. The coalition is then trusted to verify
the identity of media producing organizations and individuals, and
to issue credentials from its Certificate Authority (CA) to those or-
ganizations and individuals that can be used to sign manifests and
authenticate to the AMP Service. We expect that this responsibility
will be delegated to Certificate Authorities, who already provide
these services for the authentication of secure web sites. They will
perform due diligence in establishing the identity of media pro-
ducer applicants for credentials under contractual obligations to
the coalition. The hierarchical nature of a certificate-based identity
system allows a single parent credential to be issued to the organi-
zation, which can then issue subordinate credentials for individuals
or organizational units. The exact structure of the subtree of the
PKI for a particular organization is beyond the scope of this design,
as this custom-tailoring will be done to suit the specific needs and
structure of each media producer.

Initially the root(s) of this PKI will be operated by the coalition
and disconnected from the roots of trust currently used for the web
PKI. Certificates used by participants will be given Extended Key
Usage (EKU) extensions authorizing them for particular purposes.
We have identified five uses and therefore five EKUs to use in this
PKI: 1) server authentication, used by the AMP Service to authen-
ticate itself to clients, 2) client authentication, used by clients to
authenticate themselves to the AMP Service, 3) manifest signing,
which will be used by producers to sign manifests, 4) time stamping,
which will be used by the AMP Service and ledgers to attest to the

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

AMP Alliance

[

Transnational
Press Syndicate

[—I—\

Western
Broadcasting
Company

I—I—\

TPS UK TPS USA WBC North WBC South

l I I lllll

‘ Alice ‘ Bob ‘ ‘Charles ‘ Dee ‘ Ellen

Frank George Heather

Figure 4: Example Public Key Infrastructure

publication time of a manifest, and 5) ledger registration, which
will be used by ledgers to countersign manifests and attest they
have been registered on that manifest. Server authentication, client
authentication, and time stamping already have standard EKUs
defined by the standard, and AMP uses those. Manifest signing
and ledger registration EKUs are new purposes for which perma-
nent, unique EKUs have not yet been allocated. We expect some
certificates will be issued with multiple purposes: for example, the
signer of a manifest will frequently be the client who registers it
with the AMP Service, and so may use the same certificate for both
purposes. Whether or not to combine these purposes in a single
certificate becomes a governance decision for the coalition and
media-producing entities, and the structure of our PKI allows for
both possibilities.

One possible structure for such a PKI is given in Figure 4. A
single root operated by the coalition sits at the top, and issues inter-
mediate CA credentials to each participating organization: in this
example, the Transnational Press Syndicate (TPS) and the Western
Broadcasting Company (WBC). These organizations each in turn
issue further credentials to units of their organization: UK and USA
bureaus in the case of TPS, and North and South bureaus in the case
of WBC. Below each of these intermediates are individuals, but they
are enclosed in a dotted-line box because, as described above, these
are optional: An organization may wish to issue signing credentials
to individuals, in which case the organizational unit credentials
are also intermediate CAs. Alternatively, organizations may wish
to maintain centralized publication pipelines, ingest media from
individuals through a mechanism external to AMP, and sign as
part of this process. In this case, the organizational unit credentials
themselves are leaf certificates.

6 MEDIA PROVENANCE LEDGER

AMP implements an instance of CCF [26] to build a ledger-based
application that securely logs the cryptographic hash and copyright
string of every manifest. Any application built with CCF is designed
to be administered by a group of consortium members via CCF’s
governance features. Additionally, AMP utilizes signed receipts as
standalone proof that manifests have been registered at a given
index in the ledger.

CCF exposes to its users a key-value store. This key-value store
provides a simple abstraction of keys being a cryptographic hash

116

England, et al.

of a manifest (i.e., ManifestID), with the value being a signature
computed by the publisher over a concatenation of the ManifestID
and the copyright string (i.e., Copyright in Table 1). Once written,
these key-value pairs are stored in a Merkle tree, and the Merkle
tree is replicated and stored on persistent storage. To issue receipts,
and to ensure that any tampering of the ledger can be detected,
CCF maintains private keys for the service, and frequently uses
them to sign the Merkle root of the whole ledger contents.

One of the core features that AMP utilizes from CCF is its uni-
versally verifiable receipts. The receipt for a given request validates
the query, its response, and, more importantly, it certifies that its
execution was recorded on the ledger. The key proposition of a
receipt is that it is possible for anyone to cryptographically vali-
date that the signature of the manifest’s cryptographic hash and
the copyright string were successfully recorded, based on just the
manifest, the receipt, and the public key of the CCF service [24]
without needing to contact the CCF service.

Our AMP system is designed to be run in a cloud datacenter.
In a real-world implementation we expect and have designed the
service to be run by an operator (such as Azure). CCF’s utilization
of trusted execution environments allows for the AMP ledger to
be run in a public cloud while maintaining its security, even if
the cloud provider or operator gets compromised. Manifests are
recorded on a public blockchain using CCF. CCF operates the pub-
lic ledger (i.e., blockchain) of published works, essentially a list of
manifests, relying on a distributed network of replicas running on
trusted hardware and synchronized using Practical Byzantine Fault
Tolerance (PBFT) [8] or Raft [29]. CCF supports the registration of
new manifests and issues signed manifest receipts. These receipts
complement the producer’s signatures; they enable any media con-
sumers to independently verify that the work they receive has been
published with the corresponding metadata. CCF also supports
online querying and validation of ledger transactions and their
endorsing certificates, as well as the transparent governance of the
service by a consortium of media producers.

Governance. CCF provides a flexible governance model. This al-
lows for AMP to define the governance by writing scripts in script-
ing languages such as JavaScript [16]. These scripts specify rules
for actions such as adding new members, adding or removing users,
adding and removing nodes from the system, user access control,
etc. The specifics of the governance model will be defined as part
of the media consortium that controls AMP, and these rules will
evolve with time by modifying the governance scripts.

Trust and Integrity. CCF is designed to support two different
types of consensus algorithms including Crash Fault Tolerance
(CFT) and Byzantine Fault Tolerance (BFT). The CFT variant that
CCF supports is a modified version of Raft [29], and the variant of
BFT implemented by CCF is a modified version of Practical Byzan-
tine Fault Tolerance (PBFT) [8]. CCF leverages trusted execution
environments (TEEs) and specifically Intel’s SGX. In CFT mode,
both confidentiality and integrity relies on every TEE provisioned
to run the service. Hence, the ledger is secure as long as Intel’s
SGX is not compromised. In BFT mode, confidentiality still relies on
every TEE, whereas integrity (and progress) relies on less than s
of the TEEs that run the service being comprised. Hence, the ledger
can withstand f + 1 active compromises out of 3f + 1 TEEs. This

AMP: Authentication of Media via Provenance

stronger guarantee can be leveraged by provisioning independently-
managed TEEs, e.g., TEEs hosted in different data centers. Critically,
both of these consensus protocols offer finality. This property states
that, once a transaction has been committed and a receipt has been
issued for it, it cannot be reverted.

7 FRAGILE WATERMARKING

We use watermarking to modify the media content in an impercep-
tible way. Faint noise-like patterns are inserted within the media
content at production, and they can be read back at rendering.
We tune the watermarking parameters such data media editing
that preserves reasonably high fidelity preserves the detectability
of watermarks, whereas heavier editing such as partial content
replacement or fake media insertions [14, 19]) will render the wa-
termarking indetectable. Hence the term fragile watermarking.

We propose the use of fragile watermarking techniques using a
spread-spectrum approach [22], which adds low-level pseudoran-
dom noise patterns within the media payload, be it video, audio, or
images. The added noise is low enough (comparable to the small
distortions due to the compression formats) and can be embedded
in such a way that makes it imperceptible to human eyes and ears.

For each type of media and application scenario, we can design
watermarking parameters that influence the thresholds on allowed
changes, so that various kinds of minor modifications are considered
as benign editing. In addition, we use keyless watermarking for
AMP which simplifies system design and makes watermarking
detection open, so it can be performed by any entity in the media
distribution path.
Watermark Payload and Insertion. Table 2 describes the water-
mark payload, which is inserted into the media item and contains
the following fields: a media object ID (MedialD), a publisher URI
(MasterCopyLocator), and a signature over these two fields (Wa-
termarkPayloadSignature). AMP does not provide a centralized
database containing the MasterCopyLocator and MedialD. Instead
after decoding, the client extracts the payload and submits the
MedialD to the publisher using via MasterCopyLocator. Both the
MedialD and the MasterCopyLocator are specified by the publisher.
The MasterCopyLocator is typically a URI for the publisher’s web
service which is used to locate the media by their unique MedialD.
The watermarking insertion process transforms a media object by
embedding a signed watermark before its publication.
Watermark Decoding. The client inputs a media object to the
Watermark Verification Module in the AMP libraries to extract the
watermark payload fields depicted in Table 2. The Watermark Verifi-
cation Module uses the MasterCopyLocator to obtain a signing cer-
tificate. Then, the Watermark Verification Module uses this signing
certificate to check the WatermarkPayloadSignature over the Medi-
alD and MasterCopyLocator. If this cryptographic step succeeds, it
finally returns the MediaID and the MasterCopyLocator back to the
client. Once the client has recovered the MasterCopyLocator and
the MedialD, it can then contact the publisher’s provenance service
to authenticate that the media is valid. Watermark extraction is
keyless: either it fails, or it returns the watermark payload.

To date, we have implemented an audio-only watermark which
can be applied to both audio streams and videos with audio tracks.
We leave image- and video-based watermarks as future research.

117

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

l Field Description
MediaID Publisher-assigned identifier;
same as in Table 1.
MasterCopyLocator | Same as in Table 1.
Watermark Signature value over the MedialD
Payload and the MasterCopyLocator.
Signature

Table 2: Watermark payload.

8 MANIFEST DATABASE

Ideally in the future, all AMP manifests and ledger receipts will be
delivered as additional metadata with the media objects. Delivering
the receipt along with the media allows the client to quickly validate
that the media has been previously authenticated without contact-
ing the AMP Service. The widespread use of adding the manifest
and receipt to the metadata will most likely require adoption by
one or more browser standards. In the meantime, a client can use
the Manifest Database to map a media object or chunk to a suitable
manifest and receipt.

The AMP Manifest Database is implemented in Microsoft Azure
using MongoDB [27] and contains manifests and receipts. It is
exposed as a public service that lets clients obtain one or more AMP
manifests and receipts that authenticate a published or transcoded
media object. To perform this function efficiently, the Manifest
Database uses the following indexes: (a) the MedialD delivered via
the metadata or a watermark, and (b) the media ObjectHash or, in
the case of streaming media, the cryptographic hashes of all of the
contained chunks (ChunkDigest).

Media players can quickly and easily extract or calculate the
ObjectHash or a ChunkDigest from the media, and then use the
Manifest Database to find a matching manifest and the correspond-
ing receipt. To validate the legitimacy of any manifest that was
retrieved from the Manifest Database the following steps need to
occur:

(1) The contents of the manifest will be hashed by a predeter-
mined cryptographic hash function.

(2) The receipt will then be checked to ensure that it contains
the previously calculated hash.

(3) The validator will then validate that the receipt is endorsed
by the media provenance ledger via a signature over the
receipt by the private key of the CCF service.

These steps ensure the validity of the manifest returned by the
Manifest Database by proving it is produced and endorsed by the
media provenance ledger.

The Manifest Database can be centralized or distributed. Because
authoritative truth is stored in the ledger, the security requirements
for the Manifest Database are much less than for the ledger itself.
Note that AMP manifests do not address problems that arise from
more than one publisher signing the same original content — either
the same simple object or one or more ChunkDigests. Similarly, the
AMP Service does not stop a rogue CDN from claiming that one
media object is a faithful transformation of an original when in fact
it has been maliciously authored. We believe that these issues can be

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

addressed by a combination of client policies (e.g., only consider the
oldest manifest of a media object) and server-side terms-of-service.
Transformation Services. A Transformation Service takes one or
more media objects and creates a derived object. A CDN is a simple
example: CDNs can take a single media object and re-encodes it
into several derived objects with different compression parameters
to optimize for bandwidth and network losses. AMP manifests
support transformation services by allowing entities to indicate the
ManifestID of one or more source objects that were used to create
the derived object.

Note that a transformation manifest does not in itself guarantee
that a derived object is indeed a high-fidelity transformation of a
source object. It is entirely possible that the “purportedly derived”
object is unrelated to the stated original. Trust assessments should
involve the entity that signed the transformation manifest. In the
simple case, this might be the original publisher. For example, a
media publisher creates a master media object and a dozen copies
with different compression factors. A more complex example might
be a CDN acting on behalf of the media publisher.

Policies can be developed for transitive trust that work for com-

mon scenarios. These policies can be enforced with a combination of
client- and server-side rules, as well as server-side terms-of-service.
Other entities might create and sign transformation manifests. For
example, a third-party service might use heuristics to compare the
semantic content of two videos and create and sign transforma-
tion manifests for the videos that they determine are semantically
identical. Once more, AMP makes no trust assumptions: it is up to
clients to use trust policies that are appropriate for a given scenario.
In the case of streaming manifests, there is no requirement that
source-chunks map 1:1 to transformed chunks: chunks are “natural”
for each stream.
Manifest Revocation. As noted previously, CCF’s ledger is im-
mutable; once a manifest is stored on the CCF ledger, it cannot be
removed. Therefore when a publisher wants to revoke a manifest
from the ledger, it must insert a revocation object to the ledger. To
enable efficient queries, the Manifest Database deletes this manifest
in this case.

9 PERFORMANCE EVALUATION

Media Provenance Ledger. We first measure the time required to
insert a manifest’s relevant data into the Media Provenance Ledger.
In this test, we insert strings, which consist of an example 256-bit
cryptographic hash of a manifest (ManifestID) and a copyright
string, into the ledger. These data structures do not need to be
addressable in CCF since the fact that they are recorded in the ledger
is sufficient. To this end, we measure the maximum sustainable rate
at which a manifest’s data can be submitted.

Application. We built a C++ application that customizes the CCF
framework to produce a Media Provenance Ledger. The ledger appli-
cation is small and can be programmed in a few hundred lines of
C++ code. The following is an example of the data that the ledger
application stores: "method": "LOG_record", "params”: "id": 0, "msg":
"88c3ba2b25cef698d9ca6775b7fd5¢5e 8bbc246098a55ad51b8078834
c4add44 Copyright (c) CompanyName Corporation. All rights re-
served.”

118

England, et al.

Configuration 1 Throughput (tx/s) Avg. latency (ms)

1 node 34,316 105
3 nodes 31,828 154
5 nodes 30,763 159
7 nodes 30,013 164
Configuration 2 Throughput (tx/s) Avg. latency (ms)
1 node 34,316 105
3 nodes 32,415 244
5 nodes 31,617 245
7 nodes 30,500 248
Configuration 3 Throughput (tx/s) Avg. latency (ms)
1 node 57,433 80
3 nodes 52,798 131
5 nodes 52,308 132
7 nodes 49,237 140

Table 3: Media Provenance Ledger throughput and latency.

Experimental Setup. We ran the performance application in three
cluster configurations:

(1) Single Azure Region - Each computer is an Intel(R) Xeon(R)
E-2176G CPU @ 3.70GHz, and the application runs inside a
4 core virtual machine.

2 Geographically distributed Azure Regions - Each computer
is an Intel(R) Xeon(R) E-2176G CPU @ 3.70GHz, and the
application runs inside a 4 core virtual machine. The com-
puters are evenly distributed between the east USA and west
Europe Azure regions.

Controlled Environment - A cluster that is running in our own
datacenter. All computers are under the same 40G switch,
and each computer is an Intel(R) Xeon(R) E-2288G CPU @
3.70GHz which has 8 cores.

All of these VMs are running Ubuntu 18.04, and the results are
shown in Table 3. We expect that there will be up to 1 billion entries
added to the ledger every day, resulting in an expected load of
11,575 operations per second. We can conclude from these results
that the proposed implementation of the Media Provenance Ledger
can comfortably handle this load. Even with just a few nodes, we
can achieve latencies that are low enough to not interfere with
consumers’ experiences with media consumption.

We also evaluate the possibility of replacing CCF with alternative
blockchains. The results shown in Table 4 are either self reported
results or results from publications that ran workloads with a sim-
ilar access pattern to AMP. Additionally, for a fair comparison,
we built an AMP-CCF equivalent application using Hyperledger
fabric 2.2 [11], using the Go runtime. We ran it on Configuration
3 (Table 3) with 3 nodes, and this yielded a throughput of 1726
transactions/second (tx/s) with an average latency of 832 ms. These
systems do not provide a receipt similar to CCF. We estimate that
the system needs to support more than 11,000 transactions per sec-
ond, and we can see that none of the options presented in Table 4
are able to meet this requirement.

—
w
=

AMP: Authentication of Media via Provenance

System Throughput Avgerage
(tx/s) latency (ms)

Ethereum 15 3.6 x 10°

Blockchain [4, 6, 12, 28]

Quorum [5] 1,650 500

Hyperledger Fabric 2.1 [39] 3,534.2 8,490

AMP-CCF on Hyperledger 1,726 832

Fabric 2.2

Libra Blockchain [39] 561.7 53,450

Table 4: Throughput and latency measurements of other
proposed ledger technologies.

From this comparison we can see the value of AMP using CCF

as its backing storage mechanism. CCF provides independently-
verifiable receipts, and is able to exceed the throughput and latency
requirements of AMP.
AMP Service. To understand the performance of the AMP service,
we measure the time required to write and read a manifest from the
Manifest Database running on MongoDB in Azure. These measure-
ments are provided in Table 5 for four different YouTube videos
and show reasonable performance particularly for read operations.

Next, we estimate potential load requirements for the AMP Ser-
vice assuming the following parameters: 10,000 publishers using the
AMP Service, these active publishers upload 100, 10-minute original
video clips uploaded each day, the video is divided into 10 second
chunks (10 mins is 60 chunks) and each chunk is cryptographi-
cally hashed, and each original video is transformed into 99 (100-1)
variants by the CDN.

Using these parameters, this translates into: 365 million original
videos/year, 3.65 billion original and transformed videos/year, 22
billion original chunks/year, and 2.2 trillion total chunks/year.

Since the AMP Service is independent of the CCF nodes, we can
use large-scale VMs for implementing the index. If the index is a
32-byte cryptographic hash and 32 bytes of other data (manifest
Copyright field), the total index size for all known chunks is 1.4
TBytes. Azure offers VMs with enough memory and disk to hold the
index in a single instance, and therefore the index will not require
sharding.

If the AMP Service exceeds these estimates, we can shard the in-

dex. Scaling through sharding is easy: the indices are cryptographic
hashes so they will be uniformly distributed. Therefore, we believe
that it will be practical to have the Manifest Database indexed on
chunk-hashes.
Audio Watermarking. AMP’s audio watermarking module inserts
a watermark into the frequency domain coefficients of the audio
signal. It is important to measure the distortion introduced by the
watermark, as we want it to be imperceptible. Table 5 measures
the Objective Difference Grade (ODG) [3] for the audio channel
of four different YouTube videos. The ODG ranges from 0 (no dis-
tortion) to -4 (high perceptual distortion). The mean and standard
deviation are computed for five different trials with 1000 random
bits of information inserted using 512 chips per information bit.
Preliminary experiments show that watermarking generates no
audible distortions.

119

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

10 COALITION AND STANDARDS

The proposed AMP media provenance certification and verification
system can only be successful if it becomes part of a widely adopted
industry standard. To this end, we collaborated on the creation
of Project Origin [30], a coalition with three international media
partners, including Microsoft, the British Broadcasting Corporation
(BBC), Canadian Broadcasting Corporation (CBC), and the New
York Times. Project Origin has now started to invite other media
publishers to join the coalition. To date, AMP has served as the
media technology platform for the Origin coalition. We have also
co-founded the Coalition for Content Provenance and Authenticity
(C2PA) [7]. The purpose of the C2PA is to form an open standard
based on the best ideas proposed by Project Origin, including those
in AMP, the Content Authenticity Initiative (CAI) [1], and other
members. We believe that the implementation of a reliable prove-
nance certification and verification system can be a significant step
in increasing trust in media. The methods also promise to benefit
the business models of all bona fide entities involved in the creation
and distribution of media.

11 DISCUSSIONS

We expect that it will take a number of years before manifests for
a large percentage of online media are stored in AMP. We believe
this content gap and inability to report on the authenticity of media
will be the biggest issue with adoption. An approach to providing
useful provenance services in the interim will be to design signaling
in the user-interface that informs consumers only when there is
valuable information to provide to them. At the point when most
media that is consumed does have authentication it would become
prudent to report that authentication for some media is missing. A
direction for future work is developing deeper understandings of
how provenance information should best be conveyed to consumers
to help them to evaluate content credibility [32, 38].

AMP does not address the detection of fake media. We believe
that the quality of fake media will rapidly improve and become
more pervasive. In the short term, algorithms for detecting fake
and manipulated media may be able to provide valuable signals
and filtering when incorporated into media processing pipelines. A
number of academic and industry efforts are currently underway to
improve the detection of deepfakes. We see this work as orthogonal
to the provenance solution proposed by AMP, and these detection
methods can also be included as part of the AMP service.

We have designed AMP to authenticate that a media item was
published by a known source. AMP is not a digital rights manage-
ment (DRM) system that is designed to enforce copyright of the
media content providers. Media provenance and AMP are about
verifying the producing entity, not verifying/tracking/authorizing
the consuming entity. While it is possible to use AMP in this way,
functionality such as self-verifiable receipts would work against
this, and this is a property we do not intend to change.

AMP has a number of different threat vectors. Some of these in-
clude: (1) exploiting SGX vulnerabilities, which have been reported
and mitigated in the past; (2) exploiting potential cryptographic
weaknesses, such as signing-key compromises or SHA-256 colli-
sions; (3) man-in-the-middle attacks, although AMP uses crypto-
graphic protocols designed to prevent them; (4) malware on the

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

England, et al.

YouTube ID Video Length (min:sec) DB Write (sec) DB Read (sec) ODG

XFmn9kmZAWU 43:36 47.79 + 4.67 0.3712 £ 0.0711 -0.74 + 0.0066
xn_8UQ1W6_c 30:16 16.51 = 0.35 0.3159 £ 0.0096 -1.51 + 0.0043
bF_nULoyi%0 37:32 19.28 £ 1.01 0.3253 £ 0.0197 -0.99 + 0.0039
iuX826AGXWU 28:50 6.38 £ 0.428 0.3110 £ 0.0073 -1.26 + 0.0026

Table 5: Write and read times for the Manifest Database and Objective difference grade (ODG) scores for audio watermarking

for four different YouTube videos of differing lengths.

media publishers’, CDNs’, and consumers’ systems; and (5) malware
in AMP’s web service.

12 RELATED WORK

Provenance Systems. Using provenance for the prevention of
deepfakes is a new and understudied area. One provenance-based
system that is closely related to AMP was proposed recently by
Hasan [12]. Like AMP, this system also employs blockchain. How-
ever, it is based on the Ethereum blockchain and smart contracts.
Since AMP utilizes CCEF, it is significantly more efficient, allowing
the speedup of manifest insertion and queries by several orders
of magnitude which is required for widespread deployment. In
addition to [12], two startups and an NGO (non-governmental or-
ganization) have proposed provenance-based systems including:
Amber, TruePic, and Witness.

Amber’s technology [2, 28] is most closely related to AMP. The
approach is aimed at camera manufacturers and adds a crypto-
graphic hash to the video at a user specified rate. It is important
to note that Amber’s technology seems to only target the offline
scenario and does not consider the streaming video case. Roderick
Hodgson, Amber’s cofounder, gave a talk on deepfakes at ACM
Multimedia 2020 [13] where he reviews deepfake generation meth-
ods, considers legitimate and illegitimate uses of synthetic media,
and provides an overview of detection and authentication. The talk
includes content which discuss hashing in time for authentication.
Specifically, they propose hashing based on invariant time windows
using a hash of hashes which they claim are invariant to prepend-
ing, postpending, and trimming. The talk also includes an overview
of their system. Amber signs the hashes with the device key, stores
the hashes in a trusted database, and stores a reference to the hash
in the file. Hodgson did not mention blockchain in the talk, but
an earlier article published February 2019 [28] indicated that these
hashes are stored on an Ethereum blockchain. Unlike AMP, the Am-
ber system contains no watermarking. The talk describes including
some metadata in the video file which sounds similar to AMP’s
embedded manifest, but since they did not provide any details, we
cannot determine how it compares to the embedded manifest which
is proposed in this paper. In addition, Amber does not propose a
detached manifest which is critical to media authentication in the
short term.

Similarly, Truepic [35] provides a photo and verification service
where the cryptographic signature is written to a blockchain al-
though they do not specify which type. Although Truepic’s service
originally focused on images, their web site now claims to sup-
port video though no supporting details are provided. Like Amber,

120

Truepic is a proprietary startup which provides few details on their
methodology.

Witness is a non-governmental organization which aims to help
ensure that human rights abuses can be documented in a verifiable
manner. Witness published the ProofMode Android application [17]
in 2017 which stores metadata about images and videos taken by
those seeking to provide evidence of human rights abuses. The
app includes a hash of the media and its metadata along with a
cryptographic signature that helps to ensure the chain of custody.
Provenance Partnerships. Several other partnerships have been
created to ensure the provenance of media. The New York Times
Company is working with IBM on the News Provenance Project [34]
(NPP). That collaboration had been targeting images but appears to
have ended. NPP also used the Hyperledger blockchain to provide a
provenance solution for the images. Another example is the Content
Authenticity Initiative (CAI) with Adobe, The New York Times
Company and Twitter [1]. CAl released a whitepaper [15] on their
technology in August 2020, but they focus on the content creation
workstream whereas AMP targets the media distribution pipeline.
Deepfake Detection. The detection of deepfakes is an alternate
method to provenance solutions and relies on the use of pattern
recognition methods to detect synthetically generated media. A
number of deepfake detection algorithms have been proposed in
the literature [18, 20, 21, 23, 31, 37].

13 CONCLUSION

We have proposed, designed, and built the AMP system to help
combat the problem of fake media. AMP allows trusted content
providers to use services to register and certify the media they pro-
duce, allowing applications such as a media player or a browser to
provide an indication to users that the source of the content they are
viewing has been verified. Thus, instead of attempting to detect fake
media, AMP focuses on certifying the source of the media. Beyond
the core security pipeline, human factors and design will play an
important role in the success of AMP. Inspired by the TLS lock icon,
we believe that applications such as browsers and media players
need to include Ul elements to alert users that the received content
can be traced back to its original source. For a provenance solution
such as AMP to be successful, it must be formally adopted by a
recognized standards body. We are working on the development
of such standards, based in part on the AMP system, within the
Coalition for Content Provenance and Authenticity (C2PA) effort.

REFERENCES

[1] Adobe. 2019. Introducing the Content Authenticity Initiative. https://theblog.
adobe.com/content-authenticity-initiative/.

https://theblog.adobe.com/content-authenticity-initiative/
https://theblog.adobe.com/content-authenticity-initiative/

AMP: Authentication of Media via Provenance

.
L)

=
S

[11]

[12

[13]

[14

[15]

ey
2

(18]
[19]

[20]

[21

[22]

[23]

[24

[25]
[26]

[27]
[28]
[29]
[30]

[31]

[32]

[33

Amber. 2019. Instilling Trust into Video. https://app.ambervideo.co/.

Michael Arnold. 2002. Subjective and objective quality evaluation of watermarked
audio tracks. In Second International Conference on Web Delivering of Music, 2002.
WEDELMUSIC 2002. Proceedings. IEEE, IEEE Computer Society, USA, 161-167.
Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath.
2019. Prism: Deconstructing the blockchain to approach physical limits. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. Association for Computing Machinery, New York, NY, USA, 585-602.
Arati Baliga, I Subhod, Pandurang Kamat, and Siddhartha Chatterjee. 2018. Per-
formance evaluation of the quorum blockchain platform. , 8 pages.

Blockchain. 2020. Ethereum transactions per second. https://blockchair.com/
ethereum/charts/transactions-per-second. Accessed: 2020-07-31.

C2PA. 2020. Coalition for Content Provenance and Authenticity. https://c2pa.
org/.

Miguel Castro and Barbara Liskov. 1999. Practical Byzantine fault tolerance. In
OSDI, Vol. 99. USENIX Association, USA, 173-186.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk. 2008.
RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. https://tools.ietf.org/html/rfc5280.

Paul England, Henrique S. Malvar, Eric Horvitz, Jack W. Stokes, Cédric Four-
net, Rebecca Burke-Aguero, Amaury Chamayou, Sylvan Clebsch, Manuel Costa,
John Deutscher, Shabnam Erfani, Matt Gaylor, Andrew Jenks, Kevin Kane,
Elissa Redmiles, Alex Shamis, Isha Sharma, John C. Simmons, Sam Wenker,
and Anika Zaman. 2020. AMP: Authentication of Media via Provenance.
arXiv:2001.07886 [cs.MM]

Hyperledger Fabric. 2020. A Blockchain Platform for the Enterprise —
hyperledger-fabricdocs master documentation. https://hyperledger-fabric.
readthedocs.io/en/release-2.2/. (Accessed on 04/01/2021).

Haya R. Hasan and Khaled Salah. 2019. Combating Deepfake Videos Using
Blockchain and Smart Contracts. In IEEE Access, Vol. 7. IEEE, USA, 41596-41606.
Roderick Hodgson. 2020. Preserving Video Truth: an Anti-Deepfakes Narrative.
https://www.youtube.com/watch?v=zR-V1nf-dTo0.
https://github.com/deepfakes. 2020. faceswap: FaceSwap is a tool that utilizes
deep learning to recognize and swap faces in pictures and videos. https://github.
com/deepfakes/faceswap/.

Content Authenticity Initiative. 2020. Creating the standard for digital content
provenance. https://contentauthenticity.org/.

javascript.com. 2021. ready to try JavaScript. https://www.javascript.com/.

Dia Kayyali. 2017. ProofMode - Verified Visuals Enabled! https://blog.witness.
org/2017/04/proofmode-helping-prove-human-rights-abuses-world/.

Pavel Korshunov and Sebastien Marcel. 2018. DeepFakes: a New Threat to Face
Recognition? Assessment and Detection.
Marek Kowalski. 2018. FaceSwap.
FaceSwap/.

Yuezun Li, Ming-Ching Chang, and Siwei Lyu. 2018. In Ictu Oculi: Exposing Al
Generated Fake Face Videos by Detecting Eye Blinking. In IEEE Workshop on
Information Forensics and Security (WIFS). IEEE Computer Society, USA, 1-7.
Yuezun Li and Siwei Lyu. 2019. Exposing DeepFake Videos By Detecting Face
Warping Artifacts. In Workshop on Media Forensics. IEEE, IEEE Computer Society,
USA.

H. S. Malvar and D. A. F. Florencio. 2003. Improved spread spectrum: a new
modulation technique for robust watermarking. IEEE Transactions on Signal
Processing 51, 4 (2003), 898-905.

Scott McCloskey and Michael Albright. 2018. Detecting GAN-generated Imagery
using Color Cues.

Microsoft. 2019. CCF: A Framework for Building Confidential Verifi-
able Replicated Services. https://github.com/microsoft/CCF/blob/master/CCF-
TECHNICAL-REPORT.pdf.

Microsoft. 2019. CCF documentation. https://microsoft.github.io/CCF/.
Microsoft. 2019. Confidential Consortium Framework. https://github.com/
Microsoft/CCF.

MongoDB. 2020. The database for modern applications. https://www.mongodb.
com/.

Lily Hay Newman. 2019. A New Tool Protects Videos from Deepfakes and
Tampering. https://www.wired.com/story/amber-authenticate-video-validation-
blockchain-tampering-deepfakes/.

Diego Ongaro and John K Ousterhout. 2014. In search of an understandable
consensus algorithm. In USENIX Annual Technical Conference (ATC).

Project Origin. 2020. Protecting Trusted Media. https://www.originproject.info/.
Andreas Rossler, Davide Cozzolino, Luisa Verdoliva, Christian Riess, Justus Thies,
and Matthias Nief3ner. 2019. FaceForensics++: Learning to Detect Manipulated
Facial Images. In ICCV 2019. IEEE Computer Society, USA, 1-11.

Julia Schwarz and Meredith Morris. 2011. Augmenting web pages and search
results to support credibility assessment. In Proceedings of the SIGCHI conference
on human factors in computing systems. Association for Computing Machinery,
New York, NY, USA, 1245-1254.

Imani N. Sherman, Elissa M. Redmiles, and Jack W. Stokes. 2020. Designing
Indicators to Combat Fake Media. arXiv:2010.00544 [cs.HC]

https://github.com/MarekKowalski/

121

[39

]

MMSys 21, September 28-October 1, 2021, Istanbul, Turkey

The New York Times. 2019. The News Provenance Project.
newsprovenanceproject.com/.

Truepic. 2019. Photo and video verification you can trust. https://truepic.com.
Luisa Verdoliva. 2020. Media Forensics and DeepFakes: An Overview. In IEEE
Journal of Selected Topics in Signal Processing, Vol. 14. IEEE, USA, 910-932.

Xin Yang, Yuezun Li, and Siwei Lyu. 2019. Exposing Deep Fakes Using Inconsis-
tent Head Poses. In IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE Computer Society, USA, 8261-8265.

Savvas Zannettou, Michael Sirivianos, Jeremy Blackburn, and Nicolas Kourtellis.
2019. The web of false information: Rumors, fake news, hoaxes, clickbait, and
various other shenanigans. Journal of Data and Information Quality (JDIQ) 11, 3
(2019), 1-37.

J. Zhang, J. Gao, Z. Wu, W. Yan, Q. Wo, Q. Li, and Z. Chen. 2019. Performance
Analysis of the Libra Blockchain: An Experimental Study. In 2019 2nd International
Conference on Hot Information-Centric Networking (HotICN). IEEE Computer
Society, USA, 77-83.

https://www.

https://app.ambervideo.co/
https://blockchair.com/ethereum/charts/transactions-per-second
https://blockchair.com/ethereum/charts/transactions-per-second
https://c2pa.org/
https://c2pa.org/
https://tools.ietf.org/html/rfc5280
https://arxiv.org/abs/2001.07886
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://hyperledger-fabric.readthedocs.io/en/release-2.2/
https://www.youtube.com/watch?v=zR-V1nf-dT0
https://github.com/deepfakes/faceswap/
https://github.com/deepfakes/faceswap/
https://contentauthenticity.org/
https://www.javascript.com/
https://blog.witness.org/2017/04/proofmode-helping-prove-human-rights-abuses-world/
https://blog.witness.org/2017/04/proofmode-helping-prove-human-rights-abuses-world/
https://github.com/MarekKowalski/FaceSwap/
https://github.com/MarekKowalski/FaceSwap/
https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-REPORT.pdf
https://github.com/microsoft/CCF/blob/master/CCF-TECHNICAL-REPORT.pdf
https://microsoft.github.io/CCF/
https://github.com/Microsoft/CCF
https://github.com/Microsoft/CCF
https://www.mongodb.com/
https://www.mongodb.com/
https://www.wired.com/story/amber-authenticate-video-validation-blockchain-tampering-deepfakes/
https://www.wired.com/story/amber-authenticate-video-validation-blockchain-tampering-deepfakes/
https://www.originproject.info/
https://arxiv.org/abs/2010.00544
https://www.newsprovenanceproject.com/
https://www.newsprovenanceproject.com/
https://truepic.com

	Abstract
	1 Introduction
	2 AMP System Overview
	2.1 AMP System Components
	2.2 AMP Threat Model

	3 AMP Manifests
	4 Manifest Details
	5 Provenance Binding
	6 Media Provenance Ledger
	7 Fragile Watermarking
	8 Manifest Database
	9 Performance Evaluation
	10 Coalition and Standards
	11 Discussions
	12 Related Work
	13 Conclusion
	References

