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Abstract

Trans-acting expression quantitative trait loci (trans-eQTLs) account for ≥ 70% expression heritability and could
therefore facilitate uncovering mechanisms underlying the origination of complex diseases. Identifying trans-eQTLs is
challenging because of small effect sizes, tissue specificity, and a severe multiple-testing burden. Tejaas predicts
trans-eQTLs by performing L2-regularized “reverse” multiple regression of each SNP on all genes, aggregating
evidence from many small trans-effects while being unaffected by the strong expression correlations. Combined with
a novel unsupervised k-nearest neighbor method to remove confounders, Tejaas predicts 18851 unique trans-eQTLs
across 49 tissues from GTEx. They are enriched in open chromatin, enhancers, and other regulatory regions. Many
overlap with disease-associated SNPs, pointing to tissue-specific transcriptional regulation mechanisms.

Introduction
The detection, prevention, and therapeutics of complex
diseases, such as atherosclerosis, Alzheimer’s disease, or
schizophrenia, can improve with better understanding of
the genetic pathways underlying these diseases. Over the
last decade, genome-wide association studies (GWASs)
have identified tens of thousands of bona fide genetic loci
associated with complex traits and diseases. However, it
remains unclear how most of the disease-associated vari-
ants exert their effects and influence disease risk. Over
90% of the GWAS variants are single-nucleotide poly-
morphisms (SNPs) in non-coding regions [1], potentially
regulating gene expression that influence disease risk.
Indeed, eQTL mapping has identified many genetic vari-
ants that affect gene expression. These have been mostly
limited to cis-eQTLs, which modulate the expression of
proximal genes (usually within ±1 Mbp), while little is
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known about trans-eQTLs, which modulate distal genes
or those residing on different chromosomes.
The discovery of trans-eQTLs is critical to advance our

understanding of causative disease pathways because they
account for a large proportion of the heritability of gene
expression. Several recent studies converge on an estimate
of 60%-90% genetic variance in gene expression con-
tributed by trans-eQTLs and only 10–40% by cis-eQTLs
(see Table 1 in [2] for an overview). The recently pro-
posed omnigenic model of complex traits highlights the
importance of trans-regulated networks in understanding
causative disease pathways [2, 3]. According to this model,
most of the genetic variance is driven by weak trans effects
of peripheral genes on a set of core genes, which in turn
affect the risk to develop the disease.
However, in contrast to cis-eQTLs, trans-eQTLs are

notoriously difficult to discover. Standard eQTL meth-
ods perform simple regression of each gene on all SNPs.
Such methods have been routinely and successfully used
for predicting cis-eQTLs, where the number of associa-
tion tests is limited to SNPs in the vicinity of each gene.
However, for trans-eQTLs, testing all genes against all
SNPs imposes a hefty multiple testing burden. The major
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impediment, however, comes from the small effect sizes
of trans-eQTLs on individual genes. Moreover, combining
signals across multiple tissues is hindered by the tissue-
specificity of trans-eQTLs. Suchmethods would therefore
require enormous sample sizes—more than onemillion by
some estimates [4]—to reliably identify trans-eQTLs, and
it will take years to develop such resources.
Several alternative strategies have been proposed to

discover trans-eQTL associations. The standard practice
is to search for trans-eQTLs among restricted sets to
reduce the multiple testing burden, for instance among
trait-associated SNPs [5] or among SNPs with significant
cis-associations [6]. A few methods have been developed
to find trans-eQTLs using distinctive biological signa-
tures. For example, GNetLMM [7] implicitly assumes that
a trans-eQTL targets a trans-eGene via an intermediate
cis-eGene. Their method tests for association between the
SNP and the candidate gene using a linear mixed model,
while conditioning on another set of genes that affect
the candidate gene but are uncorrelated to the cis-eGene.
Another method [8] used tensor decomposition to suc-
cinctly encode the behavior of coregulated gene networks
with latent components that represent the major modes
of variation in gene expression across patients and tis-
sues, testing for association between SNPs and the latent
components. A class of methods using mediation analysis
try to identify the genetic control points or cis-mediators
of gene co-expression networks [9–11]. These methods
regress the candidate trans-eGene on the cis-eGene (not
on the SNP) by adaptively selecting for potential con-
founding variables using the SNP as an “instrumental vari-
able.” More recently, a method for imputing gene expres-
sion was used to learn and predict each gene’s expression
from its cis-eQTLs, and then the observed gene expres-
sions were tested for association with the predicted gene
expressions to find trans-eGenes [12].

Trans-eQTLs are believed to affect the expression of a
proximal diffusible factor such as a transcription, RNA-
binding or signaling factor, chromatin modifier, or possi-
bly a non-coding RNA, which in turn directly or indirectly
affects the expression of the trans genes [13]. It is there-
fore expected that trans-eQTLs affect tens or hundreds of
target genes in trans. Many examples in humans (see, e.g.,
[14, 15]) and strong evidence in yeast [16] support this
hypothesis. If this information could be used effectively
to discover trans-eQTLs, it might easily compensate their
weaker effect sizes and multiple testing burden.
We expect the target genes to have more significant

p values for association with their trans-eQTL than
expected by chance. Brynedal et al. [17] presented a
method (CPMA) that tests whether the distribution of
regression p values for association of the candidate SNP
with each gene expression level has an excess of low p val-
ues arising from the association of the target genes with
the SNP. However, the p values inherit the strong corre-
lation from their gene expressions. Therefore, if one gene
has a p value near zero by chance, many strongly corre-
lated genes will also have very low p values. This makes it
difficult to decide if an enrichment of p values near zero
is due to trans genes or due to chance, diminishing the
power of the method significantly.
Here, we circumvent the problem by reversing the direc-

tion of regression (Fig. 1). Instead of regressing each
expression level on the SNP’s minor allele count, we per-
form multiple regression of the SNP on all genes jointly.
In this way, no matter how strong the correlations, they
do not negatively impact the test for association between
gene expressions and SNP. This approach brings two
decisive advantages: First, the information from each and
every target gene is accumulated while automatically tak-
ing their redundancy through correlations into account.
Therefore, the more target genes a SNP has, the more

Fig. 1 Forward and reverse regression for trans-eQTL discovery. Trans-eQTLs affect multiple genes simultaneously by exerting a cis-effect on a
diffusible trans-acting factor such as a transcription factor (TF) (left). In forward regression (FR), we perform univariate regression of the expression
level of each gene individually on the candidate SNP’s genotype (= centered minor allele frequency) and estimate whether the distribution of
resulting association p values is enriched near zero. In reverse regression (Tejaas), we perform L2-regularized multiple regression of the candidate
SNP’s genotype jointly on all gene expression levels. Crucially, reverse regression is not negatively affected by correlations between gene expression
levels
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sensitive reverse regression will be, even when individual
effect sizes are much below the significance level for indi-
vidual gene-SNP association tests. Second, the multiple
testing burden is reduced in comparison to single SNP-
gene tests because association is tested for all genes at
once.
We developed an open-source software Tejaas in

Python/C++ that implements a complete pipeline for
identifying trans-eQTL SNPs and their target genes from
genotype and RNA-Seq expression data. It uses a novel,
nonlinear, nonparametric and unsupervised K-nearest
neighbor clustering to correct for unknown confounder
variables. Predicted trans-eQTLs are ranked by p values
and possible target genes are reported with their single
SNP-gene association p values. Note that in the remainder
of the manuscript, “predicted trans-eQTLs” refers to both
true and false associations identified as trans-eQTL SNPs.
We applied Tejaas to the Genotype Tissue Expression

(GTEx) dataset and predicted 18851 unique trans-eQTLs
in 49 tissues with a p value threshold for genome-wide
significance of p < 5 × 10−8, which corresponds to false
discovery rates below 5%. These putative trans-eQTLs
are significantly enriched in various functional genomic
signatures such as chromatin accessibility, functional his-
tone marks, and reporter assay annotations and are also
enriched among GWAS SNPs associated to various com-
plex traits.

Results
Methods overview
Tejaas (Trans-EQTLs by Joint Association AnalysiS) com-
putes the Reverse Regression RR-score q rev to discover
and rank trans-eQTLs, making use of the expectation that
each trans-eQTL has multiple target genes. To our knowl-
edge, only one othermethodmakes use of it, the “forward”
regression method CPMA by Brynedal et al. [17]. In order
to compare Tejaas with CPMA, we implemented our own
version of Forward Regression (FR) within Tejaas, as there
is no publicly available software for CPMA. We used
MatrixEQTL [18] as representative of all methods using
single SNP-gene regression.
The FR-score qfwd and the RR-score q rev are summa-

rized in Fig. 1. For details, see Online Methods and Addi-
tional file 1: Section S1 and S2. The FR score evaluates the
distribution of the p values for the pairwise linear associa-
tion of a candidate SNPwith each of theG gene expression
levels. SNPs without trans-effect should have uniformly
distributed p-values, while we expect trans-eQTLs to have
a distribution that is enriched near zero, contributed by
their target genes.
Reverse Regression (RR) performs a multiple linear

regression using expression levels of all genes to explain
the genotype of a candidate SNP. Let x denote the vector of
centered minor allele counts of a SNP for N samples and

Y be the G × N matrix of preprocessed expression levels
forG genes. Analogous to a common practice of modeling
binary GWAS traits using linear instead of logistic regres-
sion for ease of computation [19], we model x using linear
regression,

p (x | Y) ∝ N
(
x | βTY, Iσ 2

)
(1)

where β is the vector of regression coefficients. Generally,
the number of explanatory variables (genes) is much larger
than the number of samples (G � N) in currently avail-
able eQTL data sets. To avoid overfitting, we introduce a
normal prior on β , with mean 0 and variance γ 2,

p(β) = N
(
β | 0, γ 2) . (2)

This L2 regularization pushes the effect size of non-target
genes towards zero. We calculated the significance of the
trans-eQTL model (β �= 0) compared to the null model
(β = 0) using Bayes theorem to obtain

ln
(
P (β �= 0 | x,Y)

P (β = 0 | x,Y)

)
= 1

2
xTWx + const (3)

with

W := 1
σ 2Y

T
(
YYT + σ 2

γ 2 IG

)−1
Y . (4)

We therefore defined the RR-score as q rev := xTWx.
The null distribution of q rev is different for every SNP

and can be obtained by randomly permuting the sam-
ple labels of the genotype multiple times. Although it
is computationally infeasible to obtain the null distribu-
tion empirically for each SNP independently, we were
able to analytically calculate the expectation and vari-
ance of q rev under this permuted null model (Additional
file 1: Appendix 1). Assuming that the null distribution is
Gaussian, which holds well in practice (Additional file 1:
Figure S1 and Section S2.6), we calculate a p value to get
the significance of any observed q rev.
The assumption of normality of the RR-score null dis-

tribution breaks down when standard confounder cor-
rection methods are used (Additional file 1: Figure S2,
Section S2.6 and Section S3.1). Therefore, we developed a
novel, non-parametric, non-linear confounder correction
using k-nearest neighbors, which we call KNN correc-
tion (Additional file 1: section 3.2). The KNN correction
does not require the confounders to be known but effi-
ciently corrects for both hidden and known confounders
(Additional file 1: Section S5.4, Figures S4, S5 and S14).
Tejaas is a fast and efficiently MPI-parallelized software

(Additional file 1: Figure S3) written in Python and C++.
It is open-source and released under GNU General Public
License v3 (Availability of Data and Materials).
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Simulation studies
We applied Tejaas reverse regression, FR, and MatrixE-
QTL on semi-synthetic datasets to compare their per-
formance in well-defined settings. The simulations also
allowed us to find optimum values for the number of
nearest neighbors K and the effect size variance γ 2.
For simulations, we followed the strategy of Hore et al.

[8] (Online Methods and Additional file 1: Section S4).
Briefly, for each simulation with 12 639 SNPs and 12 639
genes, we randomly selected 800 SNPs as cis-eQTLs, out
of which 30 were also trans-eQTLs. The cis target genes of
the trans-eQTLs were considered as transcription factors
(TFs) and regulated multiple target genes downstream.
Some strategies were different from the work of Hore et
al. to make the simulations more realistic. First, we sam-
pled the genotype directly from real data. Second, we
used the covariance matrix of real gene expression as
the background noise for the synthetic gene expression.
Third, we included the first three genotype principal com-
ponents as confounders to mimic population substruc-
ture. The simulation parameters were chosen to reflect a
conservative estimate of our expectations in reality (Addi-
tional file 1: Figure S6 and Section S4.1.3).
Ranking performance is often summarized using the

area under the ROC curve (AUC), the curve of true pos-
itive rate (fraction of true positives with respect to all
positives) versus false positive rate (fraction of false pos-
itives with respect to all negatives) for all thresholds.
However, for prediction tasks where the number of neg-
atives is much larger than the number of positives, as in
trans eQTL discovery, most part of the ROC curve cor-
responds to such a high FDR (false discovery rate/type I
error rate) that it is irrelevant. For example, if there are
10 times more negatives than positives, at FPR = 0.1, the
number of false positives is equal to the total number
of positives and hence the FDR is at least 0.5. To alle-
viate this deficiency, we use the partial area under the
ROC curve (pAUC) up to FPR = 0.1. An ideal predictor
will obtain pAUC = 0.1 (Additional file 1: Figure S7 and
Section S4.2).
Figure 2a shows how the pAUC is affected by three

confounder correction methods: (1) without any con-
founder correction (none), (2) the de facto standard
method using residuals after linear regression with known
confounders (CCLM), and (3) the K-nearest-neighbor
correction (KNN). For Tejaas, we set γ = 0.2 (Additional
file 1: Figure S8) and K = 30 (Additional file 1: Figures S9
and S10) empirically. To avoid false discovery of cis-eQTLs
as trans-eQTLs, we masked all cis genes within ±1 Mb
of each candidate SNP for Tejaas and Forward Regression
(Additional file 1: Section S2.10).
The best combination of method and confounder cor-

rection is Tejaas with KNN correction (Fig. 2a). CCLM
is effective for MatrixEQTL, but it does not work in

combination with Tejaas because it renders the null q rev
distribution non-Gaussian and thereby leads to wrong
p values (Additional file 1: Figure S2, Section S2.6 and
Section S3.1). For FR and MatrixEQTL, CCLM works
much better than KNN because we provided it with the
known confounders, whereas KNN did not and can not
use these. Unlike in simulations, we do not have exact
knowledge of most of the confounders in real data. Hence,
it is encouraging that the KNN correction works well even
without knowledge of the confounders.
In Fig. 2b, we analyzed the methods’ performance

depending on (1) the number of target genes of the TF
linked to the trans-eQTL and (2) the effect size of the TF
on the target genes. For the sensitivity (true positive rate)
of the ranking of trans-eQTLs by each method in each
simulation, see Additional file 1: Figure S12. For Matrix-
EQTL and FR, we chose the CCLM correction and for
Tejaas, the KNN correction. Surprisingly, FR has slightly
lower pAUC thanMatrixEQTL throughout. The pAUC of
Tejaas is at least twofold higher than the next best method
under all conditions, although it does not use the known
confounders. At mean effect size 0.2, the pAUC is up
to 5 times higher than that of MatrixEQTL. The higher
pAUC of Tejaas than other methods is persistent when
varying the number of confounders and the effect size of
confounders (Additional file 1: Figure S11).
We also compared the performance of Tejaas, FR, and

MatrixEQTL to predict the target genes of trans-eQTLs
(Fig. 2c and Additional file 1: Figure S13). For Tejaas and
FR, trans-eQTLs were first preselected using a p value
cutoff, and then the target genes were ranked by their
SNP-gene association p values. Each true positive is a
correctly predicted pair of trans-eQTL SNP and target
gene; each false positive is a wrongly predicted pair. The
marked improvement by Tejaas to identify target genes
demonstrates that, by pre-selecting trans-eQTL SNP can-
didates, many false positive SNP-gene pairs are discarded.

Genotype Tissue Expression trans-eQTL analysis
We applied Tejaas to data from the Genotype Tissue
Expression (GTEx) project [20–22]. The GTEx project
aims to provide insights into mechanisms of gene regu-
lation by collecting RNA-Seq gene expression measure-
ments from 54 tissues in hundreds of human donors, of
which we used 49 tissues that have≥ 70 samples with both
genotype and expression measurements.
We downloaded GTEx v8 data (Availability of Data and

Materials), converted the gene expression read counts
obtained from phASER to standardized TPMs (Tran-
scripts per Millions), and used the KNN correction with
30 nearest neighbors to remove confounders (Additional
file 1: Section S5). Using a small hold-out test set for
adipose subcutaneous tissue, we obtained γ = 0.1.
We noticed that in four tissues, this choice led to non-
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Fig. 2 Sensitivity for trans-eQTL discovery on simulated data. We compared the performance of Tejaas reverse regression, forward regression (FR)
(similar to CPMA) and MatrixEQTL, by computing the partial area under the ROC curve (pAUC) up to a false positive rate (FPR) of 0.1. A perfect
method has pAUC = 0.1 and a random one 0.005. pAUCs are averaged over 20 simulations. a pAUC for different confounder correction methods: no
correction (none), correction using linear regression of known confounders (CCLM) on inverse normal transformed gene expression, and our
k-nearest neighbors correction with K = 30 (KNN). The gray dotted line corresponds to the random expectation (pAUC = 0.005). b pAUC for different
numbers of target genes for the cis transcription factor (TF) mediating the trans-eQTL (from top to bottom) and different mean effect sizes of the TF
on the target genes (from left to right). c pAUC for predicting correct SNP-gene pairs (target gene discovery) by the different methods. SNP-gene
pairs were ranked by their association p-values. For Tejaas and FR, trans-eQTLs were preselected using a cutoff on their trans-eQTL p-value (legend),
while MatrixEQTL does not provide any such preselection. Gray dotted line as in a. One simulation setting with mean TF effect size of 0.4 and 100
target genes (see Figure S11 for other simulation settings)

Gaussian distributions of q rev on null SNPs. A systematic
analysis of the non-Gaussianity led to a choice of γ =
0.006 for these remaining four tissues (Additional file 1:
Figure S15 and Section S5.5). For each candidate SNP, we
removed all cis genes within ±1 Mbp to avoid detecting
the relatively stronger cis-eQTL signals and thereby inflat-
ing q rev (Additional file 1: Figure S17). All SNPs with a
genome-wide significant RR-score p value (p ≤ 5 × 10−8)
were reported as trans-eQTLs. To reduce redundancy, we
pruned the list by retaining only the trans-eQTLs with
lowest p values in each independent LD region defined by
SNPs with r2 > 0.5.
The LD-pruned lists contain 16 929 unique lead trans-

eQTLs in non-brain GTEx tissues and 1 922 in brain
tissues (Fig. 3a). For comparison, the latest analysis by the
GTEx consortium on the same data yielded 142 trans-
eQTLs across 49 tissues analyzed at 5% false discovery
rate (FDR), of which 41 were observed in testis [6]. To
get a rough estimate of our FDRs at the cutoff p value of

5 × 10−8, we note that the expectation value of the num-
ber of false positive predictions for 8×106 tested SNPs per
tissue is about 0.4, and even less after LD-pruning. Hence,
for a tissue with T predicted trans-eQTLs below the cut-
off p value, the FDR should be roughly ≤ 0.4/T . It follows
that 47 out of 49 tissues have FDRs at cutoff below 5%with
many much below that.
The trans-eQTLs are tissue-specific, with 70% occur-

ring in single tissues (Fig. 3b). The number of trans-
eQTLs discovered increases roughly exponentially with
the number of samples (Fig. 3c) for N > 250, point-
ing to the importance of sample size to discover more
trans-eQTLs. Interestingly, about a fifth of trans-eQTLs
in each tissue are also significant cis-eQTLs (Fig. 3d). The
effects on the target genes could plausibly be mediated
by these cis-eGenes. The quantile-quantile plots for two
representative tissues demonstrate the enrichment in sig-
nificant Tejaas p values, while the negative controls show
the expected uniform distribution of p values (Fig. 3e)
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Fig. 3 Tejaas identifies many thousands of putative trans-eQTLs in GTEx data. In each of the 49 GTEx tissues, we applied the KNN confounder
correction and calculated genome-wide reverse regression p values with Tejaas. Cis genes within ± 1Mb of the candidate SNP were excluded from
the regression. From the genome-wide significant SNPs (p < 5×10−8), we selected the strongest in each LD region as lead trans-eQTLs, removing
other SNPs in strong LD (r2 ≥ 0.5) with the lead SNP. a Number of lead trans-eQTLs discovered per tissue, on a logarithmic scale. For GTEx tissue
abbreviations, see Additional file 1: Appendix 2. The dotted line indicates the cutoff used for choosing tissues for enrichment analysis. b Proportion
of trans-eQTLs discovered in a given number of tissues (excluding brain tissues). Seventy percent of the lead trans-eQTLs are not in strong LD with
any lead trans-eQTL from another tissue. c Number of lead trans-eQTLs discovered in a tissue (log scale) versus the number of samples for that tissue
(tissue colors as in a). d About a fifth of the trans-eQTLs have detectable cis-effects. Number of lead trans-eQTLs versus the number of discovered
lead trans-eQTLs that also happen to be cis-eQTLs in GTEx consortium analysis [6]. Tissue colors as in a, radii scale with sample sizes (legend). (see
Fig. 4a for corresponding enrichments.) e Representative examples of quantile-quantile plots for artery aorta (ARTAORT) and EBV-transformed
lymphocytes (LCL) with their negative controls (dashed), obtained by randomly permuting the sample IDs of genotypes. f Representative examples
trans-eQTL maps for ARTAORT and LCL, with genomic positions of trans-eQTLs (x-axis) against the genomic positions of their target genes (y-axis).
The diagonal band (blue) corresponds to cis-eQTLs

and no significant association in the respective Manhat-
tan plots (Additional file 1: Figure S23), confirming the
correctness of the p values reported by Tejaas. The maps
of trans-eQTLs and their target genes (Fig. 3f ) illustrate
similar patterns as observed earlier in yeast [16].

Functional enrichment analyses of trans-eQTLs
Given the known difficulties to replicate and validate
trans-eQTLs [5, 23] and the lack of RNA-Seq datasets
with coverage of tissues other than whole blood, we tested
the validity of our results by analyzing the enrichment



Banerjee et al. Genome Biology          (2021) 22:142 Page 7 of 16

of the predicted trans-eQTLs in functionally annotated
genomic regions. One would expect only true eQTLs to
be enriched in these regions. The functional enrichment
measurements were compared to a set of randomly cho-
sen SNPs from the GTEx genotypes (Additional file 1:
Section S5.6). The trans-eQTLs were discovered exclud-
ing all genes in the vicinity of that SNP, and therefore, it
is unlikely to observe functional enrichments driven by
falsely discovered cis-eQTLs.
In Fig. 4, we show the functional enrichment of tissues

which had more than 64 trans-eQTLs, as indicated by

the dotted line in Fig. 3a. This mostly includes non-brain
tissues. With low number of trans-eQTLs, enrichment
analyses would be statistically unreliable, as for example,
observed when comparing all the brain tissues (Additional
file 1: Figure S22).
DNase I hypersensitive sites (DHSs) mark accessible

regions of the chromatin and could indicate regulatory
or biochemical activity, such as promoters, enhancers,
or actively transcribed regions. Predicted trans-eQTLs
occur more often than expected by chance within the
DHS regions measured and aggregated across 125 cell and

Fig. 4 Lead trans-eQTLs are enriched in open chromatin and regulatory regions. a Log2 enrichments (x-axis) within accessible chromatin regions
from [24]. The significance is denoted by * for p ≤0.05, ** for p ≤0.01, and *** for p ≤0.001. The GTEx tissues are ordered by the number of lead
trans-eQTLs. For tissue abbreviations, see Additional file 1: Appendix 2. b, Log2 enrichments near known eQTLs and reporter assay QTLs (raQTLs)
[25]. Cis-TF: enrichment to occur within ±100 kbp from transcription factors reported in [26]; Cis-eQTL: enrichment among cis-eQTLs SNPs reported
in the GTEx v8 analysis [6]; raQTL: enrichment in raQTL regions showing enhancer-like activity in K562 or HepG2 cells [25]. Heatmap colors encode
log2 enrichment, circular marks signify p < 0.01. The area of the colored circles on x-axis labels indicates the log number of lead trans-eQTL
associations identified. Left plot: mean log2 enrichment across all tissues. c Log2 enrichments within tissue-specific regulatory regions. Only tissues
that could be matched to the corresponding tissue annotation in the Roadmap Epigenomics Project [27] and had at least 10 trans-eQTLs are shown.
Enhancers and bivalently marked regions show clear enrichments for most tissues. d Types of transcripts affected in cis by the lead trans-eQTLs.
Only tissues with at least 10 cis-affected transcripts (numbers on top) are shown
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tissue types [24], with significant positive DHS enrich-
ment (p ≤ 0.05) in 30 out of 34 tissues and a p value
≤ 0.01 in 26 tissues (Fig. 4a). Using data available in the
GTEx Portal, we also found enrichment across a range
of annotated regulatory elements such as enhancers and
transcription binding sites (Additional file 1: Figure S16).
The enrichment in open chromatin and annotated reg-
ulatory regions suggest that the predicted trans-eQTLs
possess regulatory activity more often than expected by
chance.
Trans-eQTLs may also act via cis-eQTLs, where the

cis-eGene (for example, some known TF) regulates other
distant genes. Indeed, we observed a significant enrich-
ment of trans-eQTLs being also cis-eQTLs [6] in the same
tissue (Fig. 4b). The cis-eGenes of the novel trans-eQTLs
have a higher proportion of protein-coding genes than the
background distribution of all GTEx cis-eGenes (orange,
Fig. 4d). Although the cis-affected genes are not enriched
in TFs (gold, Fig. 4d), the trans-eQTLs are enriched prox-
imal (≤ 100Kb) to TFs (first line in Fig. 4b).
In Fig. 4b, we show the enrichment of the trans-

eQTLs being also reporter assay QTLs (raQTLs) for two
cell types, K562 and HepG2 [25]. Reporter assay QTLs
(raQTLs) are SNPs that affect the activity of promoter or
enhancer elements. K562 is an erythroleukemia cell line
with strong similarities to whole blood tissue and HepG2
cells are derived from hepatocellular carcinoma with sim-
ilarities to liver tissue. The trans-eQTLs fromwhole blood
and liver are strongly enriched (p < 0.01), suggesting
that at least some trans-eQTLs act via altering the activ-
ity of putative regulatory elements in a cell type-specific
manner.
With the high sensitivity to discover trans-eQTL by

Tejaas, it becomes possible to describe and disentangle
tissue-specific enrichments. Using chromatin state pre-
dictions from a set of tissues from the Roadmap Epige-
nomics Project [27], we show that the trans-eQTLs are
enriched in enhancer, bivalent, and repressed polycomb
regions of their matched tissues (Fig. 4c). As expected,
they are depleted in the inaccessible heterochromatin
regions for most of the tissues.
We checked for possible confounding due to population

substructure and cross-mappable genes (by ambiguously
mapped reads). Some of the trans-eQTLs have quite dif-
ferent allele frequencies between GTEx subpopulations
(Additional file 1: Figure S20). After adapting our null
background to match the distribution of allele frequency
differences (between subpopulations) of the predicted
trans-eQTLs, the enrichments in DHS and GWAS are
not significantly affected (Additional file 1: Figure S21).
Saha et al. [28] had earlier raised the concern of false trans
signals from ambiguously mapped reads. With cross-
mappability filter, thousands of genes are removed from
the expression data, which necessitates re-estimating the

prior γ (Additional file 1: Table S1, Figure S18 and
Section S5.9). We found similar enrichment in DHS
and cis-eQTLs even after masking all possible cross-
mappable genes for each tested SNP (Additional file 1:
Figure S19).

Association with complex diseases
We investigated the overlap between trans-eQTLs discov-
ered by Tejaas and GWAS variants to search for trans-
regulatory mechanisms that affect complex diseases. First,
we checked for every tissue, whether more trans-eQTLs
overlap with GWAS catalog SNPs [29] than expected by
chance. Out of the 28 tissues that have more than 100
lead trans-eQTLs, 27 tissues showed positive enrichment
in the GWAS catalog SNPs (Fig. 5a). Twenty-one tis-
sues had an enrichment p value p ≤ 0.05, 20 had p ≤
0.01, and 15 had p ≤ 0.001. The GWAS catalog SNPs
overlapping the trans-eQTLs are associated with a wide
range of traits, many of which are not related to complex
diseases.
To focus on associations with complex diseases, we

used the imputed GWAS summary statistics of 87 com-
plex diseases compiled by Barbeira et al. [30]. After
filtering for significant GWAS SNPs among the GTEx
genotype, there were 86 traits which were broadly clas-
sified into 11 disease categories. We found that the pre-
dicted trans-eQTLs from specific tissues are enriched
among SNPs associated with various disease categories,
as shown in Fig. 5b. The enrichment of predicted trans-
eQTLs increases as we decrease the p value threshold for
the GWAS-associated SNPs. Despite the much greater
challenges to predict trans-eQTLs than to predict cis-
eQTLs, the enrichments of the predicted trans-eQTLs are
in a similar range to the enrichment of cis-eQTLs for
the most enriched tissues. In contrast to the cis-eQTLs,
the trans-eQTL enrichments indicate tissue specificity of
trans-eQTLs within each of the disease categories. Sev-
eral tissue–disease category associations are suggestive of
a physiological link. For example, trans-eQTLs discovered
in heart atrial appendage (HRTAA) and transformed lym-
phocytes (LCL) are enriched among SNPs associated with
cardiometabolic disease. Other suggestive tissue–disease
category associations are thyroid gland with endocrine
diseases, breast tissue with breast cancer, skeletal mus-
cle (MSCSK) with skeletal system diseases, visceral adi-
pose (ADPVSC) tissue with allergy, and adrenal glands
(ADRNLG) with anthropometric traits. All tissue–disease
category associations with significant enrichment (p ≤
0.05) for trans-eQTLs at a nominal GWAS cutoff of
p ≤ 1 × 10−6 are listed in Additional file 1: Table S2.
Some associations could hint at interesting, unknown
roles of certain tissues in specific diseases, for instance
transverse colon (CLNTRN) anthropometric traits, or
whole blood (WHLBLD) with psychiatric-neurologic
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Fig. 5 Trans-eQTLs are enriched among GWAS risk SNPs for complex diseases. a Trans-eQTLs are enriched with SNPs from the GWAS Catalog.
Significance is denoted by * for p ≤0.05, ** for p ≤0.01, and *** for p ≤0.001. b Enrichment of cis-eQTLs (left panel) identified by GTEx consortium
and enrichment of trans-eQTLs (right panel) identified by Tejaas for 11 disease categories compiled from 86 GWAS of complex diseases [30] (tissue
colors as in Fig. 3a). The enrichment generally increases with decreasing p value cutoff (x-axis) for the GWAS-associated SNPs. Only those tissues with
significant enrichment (p ≤0.05) at a cutoff of p = 1 ×10−6 are shown in the plot. While cis-eQTLs are enriched for the majority of tissues,
enrichment of trans-eQTLs in any disease category is tissue-specific, and the top two tissues with maximum enrichments are noted in the legends

diseases. Further insight can be obtained from the disease-
specific enrichment for each tissue in Additional file 1:
Figure S23, such as stomach (STMACH) trans-eQTLs
enriched in SNPs associated with Crohn’s disease or

thyroid trans-eQTLs enriched in SNPs associated with
hypothyroidism.
To investigate possible implications and mechanisms

of the trans-eQTL associations identified by Tejaas, we
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focused on trans-eQTLs found in tissues that are sugges-
tive of a physiological relation to their associated GWAS
traits. For each of them, we examined their top 20 target
genes.
SNP rs60977503 (chr2:217006659), predicted to be a

trans-eQTL in breast tissue, overlaps with a GWAS hit
in estrogen receptor-negative breast cancer. Among the
top 20 predicted target genes of rs60977503, we found
four genes associated with breast cancer. These include
FAM183A, which is upregulated in breast cancer cells in
response toNotch signaling [31];MUC4, expressed in 95%
of breast carcinomas [32]; HSPB6, which is downregulated
in breast cancer [33, 34]; and CCL28, which promotes
breast cancer proliferation, tumor growth and metastasis
[35].
Similarly, SNP rs4538604, predicted as a trans-eQTL in

stomach, resides in the inflammatory bowel disease (IBD)
5 locus that has also been associated with Crohn’s disease
[36]. Some of its cis-genes have been linked to the disease,
such as RAPGEF6, implicated in recovery after mucosal
injury [37] and SLC22A5 [38]. Among the top predicted
trans target genes of rs4538604 is the receptor for the
chemotactic and inflammatory peptide anaphylatoxin C5a
(C5AR1). It has been found to be differentially expressed
in ulcerative colitis patients [39] and IBD patients that
respond to Anti-TNFα [40]. The trans-targets RPS21 and
ZNF773 are also associated with colorectal cancer [41,
42]. At least seven other GWAS hits associated with
Crohn’s disease overlap with trans-eQTLs, four in small
intestine and two more in spleen tissue [43], highlighting
the potential relevance of our predictions.
As a third example, rs12040085 is a predicted trans-

eQTL in adipose visceral tissue in the 1p33 locus. This
region is a GWAS locus related to body mass index
(BMI) and body fat percentage. Eight of the top 20 pre-
dicted trans target gene of rs12040085 are directly asso-
ciated with BMI, obesity, and body height. Four of them,
CDIN1 (chr15), LINGO1 (chr15), LINC01184 (chr5), and
LOC105369911 (chr12), lie within reported GWAS loci
related to BMI, body height, and obesity and are located
on different chromosomes from rs12040085 [44–47]. The
target genes TRDMT1, ZNF418, NAT1, and CDC7 have
been experimentally associated through their expression
levels or through knockouts, or are used as biomarkers, for
waist circumference, BMI, obesity, or insulin resistance
[48–52].
These examples point to the important role that trans-

eQTLs could play in complex diseases. It will of course
require larger analysis and more automated methods to
integrate multiple data sources for finemapping and ana-
lyzing all predicted candidates. All our results and scripts
used in this study are made public to facilitate further
analyses.

Discussion
Most applications of regression follow the assumed direc-
tion of cause and effect. The effect is used as the response
variable and the potential causes are the covariates. Here,
we propose to turn the direction around, using gene
expression levels (the effects) as covariates and the SNP
(the potential cause) as response. This reverse regression
approach allows us to aggregate their explanatory sig-
nal from hundreds of gene expression levels while being
unaffected by their strong correlations.
We created a fast, parallelized, open-source software

and showed its power using semi-synthetic data. With
its combination of reverse regression and KNN correc-
tion, Tejaas is more powerful than other existing methods
to predict trans-eQTLs. We combined reverse regression
with a method for SNP-gene association testing to iden-
tify the target genes of a discovered trans-eQTL because
the L2 regularization does not encourage sparsity and
therefore is not suited for selecting the most informative
covariates.
The new KNN correction is a simple but efficient

method for removing confounders. It can correct out non-
linear confounding effects; therefore, it should work even
if those effects are not well approximated by linear, addi-
tive models. It also does not require the confounders to
be known. For future eQTL pipelines, it could prove to
be very useful when applied after correcting the known
confounders with linear methods.
We applied Tejaas on the GTEx dataset and predicted

thousands of trans-eQTLs at genome-wide significance.
To our knowledge, these results represent the first system-
atic large-scale identification of trans-eQTL associations
in the GTEx dataset. Simple regression of SNP-gene pairs
could not have discovered those trans-eQTLs because of
their low effect sizes. Forward regression, on the other
hand, is impeded by the strong correlated noise of the
gene expression levels [17].
The large number of observed trans-eQTLs allowed us

to obtain statistically significant enrichments for them in
regions characterized as functional or regulatory accord-
ing to various independent experimental genome-wide
procedures. So far, most studies have identified too few
trans-eQTLs for such an analysis. Large-scale meta-
analysis projects had inherent selection biases which did
not allow for enrichment analyses. For example, the meta-
analysis of 31 684 individuals on whole blood by the
eQTLGen consortium [5], which predicted 3 853 trans-
eQTLs, tested only GWAS-associated SNPs for trans-
effects. Consequently, the discovered trans-eQTLs inher-
ited the enrichments of the GWAS-associated SNPs.
One major source of false trans-eQTL predictions could

be population substructure. False associations between
SNPs and gene expression levels can arise if both of them
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are influenced by subpopulation membership, for exam-
ple via life style or via epistatic effects with the genetic
background. We would expect such false positive trans-
eQTLs to show up in several tissues. The observation that
70% of the predicted trans-eQTLs are tissue-specific and
only ∼ 5% are found simultaneously in 5 or more tissues
(Fig. 3b) indicates that false positives do not make up a
large part of our predictions. Some of the trans-eQTLs
have quite different allele frequencies between popula-
tions, but subsequent analyses using matched null back-
ground showed significant DHS enrichment and GWAS
enrichment (Additional file 1: Figure S21). This suggests
weak, if any, confounding by population substructure in
our approach.
The aggregation of weak signals from many covariates

in Tejaas is reminiscent of the burden test [53] and the
sequence kernel association test (SKAT) [54, 55], which
were developed for finding rare genetic variants associ-
ated with a trait. Whereas burden and SKAT ask whether
to reject the null hypothesis β = 0, Tejaas uses Bayesian
model comparison of the null model β = 0 with the alter-
native model β �= 0 (Eq. (3)) while integrating out the
unknown effect strengths β . For γ → 0, Tejaas’ test statis-
tic (q rev) tends towards the unweighted SKAT statistic
(Additional file 1: Section S2.7). However, Tejaas predic-
tions were clearly better for larger γ values (Additional
file 1: Figure S8b).
There are several limitations to our method. First, the

normality assumption of the null model depends on the
choice of the prior γ in Eq. (2). As expected, a high value
of γ (> 0.2) could lead to overfitting, whereas a low
value (e.g. γ < 0.001) can severely reduce the sensitiv-
ity to discover trans-eQTLs. γ has to be set depending
on the input gene expression using the simple procedure
described in Additional file 1: Section S2.8. As discussed,
four out of 49 tissues in GTEx required a different set-
ting of γ from the rest. Second, the input gene expression
cannot be corrected for confounders using the standard
approach of regressing the known confounders or hid-
den PEER factors [56] (Additional file 1: Section S3.1).
Third, Tejaas was developed to aggregate weak effects
across many target genes to detect trans-eQTLs, and it
may not pick up strong, single SNP-gene associations like
standard trans-mapping methods. Therefore, Tejaas and
standard trans-mappingmethods are complementary, and
we expect rather low overlaps between trans-eQTLs pre-
dicted by these two approaches. However, the weak trans-
effects predicted by Tejaas might be detected by standard
trans-mapping when using a sufficiently large sample size,
for example, the eQTLGen whole blood meta-analysis
with 31 684 individuals [5]. Only 0.96% of the eQTL-
Gen trans-eQTLs overlap with the putative trans-eQTLs
predicted by Tejaas on GTEx data (enrichment p value
≈ 3 × 10−9 compared to random overlap; Additional

file 1: Appendix 3). This could in part be due to the
complementary nature of the analyses and in part by the
prediction of false positive associations. Finally, although
we report the Benjamini-Hochberg adjusted p values for
the target genes of the trans-eQTLs, they suffer from two
drawbacks: (1) since we select the candidate trans-eQTL
SNPs based on their association with gene expression lev-
els (double dipping) [57], the p values of the SNP-gene
pairs are not uniformly distributed under the null model
any more. Therefore, the FDR adjustment can result in
too optimistic values. (2) The i.i.d. assumption for the p
values is not correct due to correlation among the gene
expression levels, leading to correlated p values and mis-
calibrated FDR adjustments. Hence, the adjusted p values
can only serve to rank target genes for any given trans-
eQTL, but they are neither directly comparable with stan-
dard trans-mapping FDR-adjusted p values nor between
different trans-eQTLs.
Tejaas is to our knowledge the first method whose sen-

sitivity for trans-eQTL discovery does not depend on the
presence of a cis effect, because cis genes are masked
before reverse regression. The trans-eQTLs are therefore
unbiased with respect to potential cis effects. We can
detect a significant cis effect for about a fifth of the pre-
dicted trans-eQTLs in most tissues, which is more than
expected by chance (p < 0.01 for most tissues, Fig. 4b).
However, if trans-eQTLs act via diffusible factors as is
generally believed, why do not all trans-eQTLs have a cis
effect? First, some diffusible factors might be as yet unan-
notated non-coding RNAs. Second, it is likely that we
cannot detect the cis effects for a good fraction of trans-
eQTLs because of low signal-to-noise ratios. Third, cis
and trans effects might not occur in the same tissue, and
fourth, the cis effects might have an influence on cellu-
lar or organismal decisions that amplify them enormously.
For example, some SNPs might influence the bias in cell
differentiation (such as B versus T cells), which impacts
cell type composition. Others influence the threshold for
switching on or off certain pathways such as for produc-
ing insulin. The consequences of such decisions would
strongly manifest themselves in the gene expression lev-
els as trans effects, while the cis effects would only be
present in a tiny number of cells that might even reside
in a different tissue. For example, the small number of
hematopoietic stem cells in the bone marrow would influ-
ence blood cell composition, and beta cells producing
insulin in the pancreas would influence gene expression in
the liver, muscle, and adipose tissues.
Robust identification of trans-eQTLs will help us to dis-

sect the interplay between genetic variation, expression
levels of genes and the risk for complex diseases. We will
need to further increase the number of samples in eQTL
datasets. In addition, we need statistical methods with
high sensitivity and accuracy to discover trans-eQTLs.
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We are working on a Bayesian approach for target gene
discovery that employs a sparsity-enforcing spike-and-
slab prior for the effect sizes, which has been previously
used with success in other contexts such as GWAS fine-
mapping [58, 59]. In summary, Tejaas represents a major
step towards this goal and predicts about two orders of
magnitude more trans-eQTLs on the GTEx v8 dataset
than the state of the art at < 5% false discovery rate. We
hope that Tejaas will help to realize the tremendous value
of the RNA-seq eQTL datasets that are already available
or in production.

Methods
Forward Regression
For each SNP, we calculated the p values of association
with all theG genes independently. Under the null hypoth-
esis that the SNP is not a trans-eQTL, these p values
will be independent and identically distributed (iid) with a
uniform probability density function,

p ∼ Unif (0, 1) . (5)

We sort the p values in increasing order; the kth smallest
value is called the kth order statistic and is denoted as p(k).
Then, p(k) will be a Beta-distributed random variable,

p(k) ∼ Beta (k,G + 1 − k) . (6)

and the expectation of ln(p(k)) will be

E
[
ln

(
p(k)

)] = ψ (k) − ψ (G + 1) (7)

where ψ denotes the digamma function. If the candidate
SNP is a trans-eQTL and there is an enrichment of p val-
ues near zero, then the cumulative sum of E

[
ln

(
p(k)

)] −
ln(p(k)) over k will increase monotonically, pass through
a maximum and then decrease to an asymptotic value of
zero. Hence, we defined the FR-score as,

qfwd = max
k

G∑
k=1

(
E

[
ln

(
p(k)

)] − ln
(
p(k)

))

= max
k

K∑
k=1

(
ψ(k) − ψ(G + 1) − ln p(k)

)
(8)

It would be sufficient to calculate the qfwd from only the
first K genes because the rest will not contribute to the
low p values. We obtained an empirical null distribution
for qfwd by permuting the columns of the real genotype
matrix—thereby removing any association with the gene
expression but retaining the correlation between the gene
expression levels. For each SNP, we calculated the p value
for qfwd from this empirical null.

Reverse regression
Let x be the genotype vector for a candidate SNP and Y
be the G × N matrix of gene expression levels for G genes
andN samples. Both x andY are centered and normalized.

We model x with a univariate normal distribution whose
mean depends linearly on the gene expression

P (x | Y,β) ∝ N
(
x | βTY, Iσ 2) . (9)

where β is the vector of regression coefficients. and σ 2 is
the variance of the candidate SNP. The number of sam-
ples N will usually be on the order of a hundred to a few
thousand, much smaller than the number of explanatory
variables G ≈ 20 000. Therefore, simple maximization
of the likelihood would lead to overtrained β . Hence we
define a normal prior on β ,

β ∼ N
(
β | 0, Iγ 2) . (10)

LetH1 be the trans-eQTL model which allows β �= 0 and
H0 be the null model for which β = 0. According to Bayes’
theorem,

P (H1 | x,Y)

= P (x | Y,H1)P (H1)

P (x | Y,H1)P (H1) + P (x | Y,H0)P (H0)

=
(
1 +

(
P (x | Y,H1)P (H1)

P (x | Y,H0)P (H0)

)−1
)−1

(11)

The probability for the model H1 is a monotonically
increasing function of the likelihood ratio,

P (x | Y,H1)

P (x | Y,H0)
=

∫
P (x,β | Y) dβ

P (x | Y,β = 0)

=
∫ P (x | Y,β)P(β)

P (x | Y,β = 0)
dβ

=
∫ 1(

2πγ 2)G/2 exp
(

βTYx
σ 2 − βT

2σ 2

(
YYT + σ 2

γ 2

)
β

)
dβ

= 1(
2πγ 2)G/2 |�|1/2

exp
(

1
2σ 2 x

TYT�−1Yx
)

, (12)

where we have defined � := YYT + (
σ 2/γ 2)

IG. The
integration was done using the technique of quadratic
complementation. Motivated by Eq. 12, we defined our
test statistic RR-score, denoted q rev, as

q rev = 1
σ 2 x

TYT�−1Yx = xTWx (13)

where

W := 1
σ 2Y

T
(
YYT + σ 2

γ 2 IG

)−1
Y . (14)

Null model
Given q rev for the candidate SNP, we would like to know
how significant this score is. We obtain the null model
qnullrev by permuting the elements of x. The distribution of
qnullrev will be different for every candidate SNP depending
on their minor allele frequency (MAF) and the variance
of the genotype (σ 2). We derived analytical expressions
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for the expectation value μq := 〈
qnullrev

〉
and variance

σ 2
q := Var

[
qnullrev

]
under the permutation null model for

any symmetric matrix W and any centered vector x (see
Additional file 1: Appendix 1). Our analytical calculations
of μq and σq match those obtained from the empirical
permutation of x (Additional file 1: Figure S1).We approx-
imate qnullrev by N

(
μq, σ 2

q

)
. Finally, the p value of q rev for

the candidate SNP is

p ≈ �

(q rev − μq
σq

)
, (15)

where �(z) denotes the cumulative normal distribution
for a random variable z.

KNN correction
Gene expression measurements are notorious for being
dominated by strong confounding effects and the subtle
effects of trans-eQTLs are at risk of being drowned out
by these strong systematic noise. For the KNN correction,
we assume that confounding effects dominate the gene
expression. If the samples are close to one another in the
expression space, we expect them to be affected by the
same confounders. Let yn and xn be the vectors of expres-
sion levels and genotypes respectively for the nth sample.
The contribution of confounding effects on yn can be cor-
rected by removing the average expression among the K
nearest neighbors of that sample:

yn ← yn − 1
K

∑

m∈NNK
n

ym (16)

xn ← xn − 1
K

∑

m∈NNK
n

xm . (17)

The nearest neighbors NNK
n is calculated from the

euclidean distances between the samples in a reduced
dimension gene expression space. We also remove geno-
type confounders (such as population substructure) which
might lead to similar gene expressions. KNN was shown
to be a useful approach for many learning tasks, and
since its naive form has a single parameter (K), overfit-
ting does not typically occur [60, 61]. The choice of K
should be such that it captures the locally varying effects
of the confounders. A very small value of K would not
be able to render the statistical noise, while a very large
value of K will start removing long-range trans-effects
(Additional file 1: Figure S10). KNN correction does not
require the knowledge of known covariates, it is unsu-
pervised and non-linear. Since KNN does not reduce the
rank of the gene expression matrix, it works well with
Tejaas.

Simulation method
Simulated data consisted of genotype and gene expression
for 450 individuals. After pre-filtering of the GTEx geno-
type, we randomly sampled 12 639 SNPs. We randomly
selected 800 SNPs to be cis-eQTLs. From these cis-eQTLs,
we selected a subset 30 SNPs to be trans-eQTLs.We simu-
lated the gene expression data for 12 639 genes, containing
non-genetic signals (background noise and confounding
factors) and genetic signals (cis and trans effects) follow-
ing the strategy of Hore et al. [8]. Each gene contained only
one SNP, equivalent to assuming that there is at most one
cis-eQTL per gene. Hore et al. used heteroscedastic back-
ground noise, but we created a correlated Gaussian noise
with a covariance matrix obtained from the gene expres-
sions in the artery aorta tissue of GTEx. We used the first
three principal components of the genotype along with 7
other hypothetical covariates to generate the confound-
ing effects. Each confounding factor was assumed to be
affecting a set of randomly chosen 6 320 genes with effect
sizes sampled from N (0, 1). The strength of cis-effects
were sampled from Gamma (4, 0.1) and the direction was
chosen randomly. For the trans-eQTLs, the strength of
cis-effect was constant (0.6). Additive combination of the
noise, the effect of confounding factors and the effect
of cis-eQTLs gives a temporary gene expression matrix,
on top of which the effects of trans-eQTLs were added.
The cis target gene of the trans-eQTLs is considered a
transcription factor (TF), which regulated multiple tar-
get genes downstream. This ensured that the trans-eQTLs
were indirectly associated with the target genes with prac-
tically low effect sizes. The effect sizes of the TF on the
target genes were sampled fromGamma (ψ trans, 0.02). We
performed simulations with 50, 100, and 150 target genes
and sampled the effect sizes of the TFs on the target genes
according to a Gamma distribution with mean effect size
between 0.1 and 0.4. More details about the simulations
can be found in Additional file 1: Section S4.

GTEx data and quality control
We analyzed 49 tissues with ≥ 70 samples with available
genotype and expression measurements from the GTEx
v8 project. We downloaded the genotype files and phased
RNA-seq read count expression matrix. The obtained
genotype was quality filtered by the GTEx consortium [6].
Genotype was split in chromosomes, variants with miss-
ing values were filtered out, and sex chromosomes were
removed. 8 048 655 variants with minor allele frequency
(MAF) ≥ 0.01 were retained for0 further analysis. We cal-
culated TPMs (Transcripts Per Million) from the phASER
expression matrix. We retained genes with expression val-
ues > 0.1 and more than 6 mapped reads in at least 20%
of the samples.
For finding target genes of the trans-eQTLs, we needed

the explicit covariate-corrected gene expression. We
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downloaded the covariate files from the GTEx portal
[62] and used the first 5 principal components of the
genotype, donor sex, WGS sequencing platform (HiSeq
2000 or HiSeq X), and WGS library construction proto-
col (PCR-based or PCR-free). Additionally, from pheno-
type files available in dbGaP, we included donor age and
post mortem interval in minutes (‘TRISCHD’) as covari-
ates. We inverse normal transformed the TPMs and used
CCLM to remove the effect of covariates.

LD pruning
We calculated LD between variants with PLINK using an
r2 > 0.5 within an 200 kbp sliding window.We pruned the
list of trans-eQTLs by retaining only those lowest p values
in each independent LD regions.

Functional enrichment
For every functional annotation, we sampled 5000 random
SNPs from the GTEx genotype. The fraction of random
annotated SNPs averaged over 50 replicates gives the
background frequency. The fraction of annotated trans-
eQTLs divided by the background frequency gives the
annotation enrichment. We used a binomial test to cal-
culate the p values for the enrichment ρ. If T is the
number of trans-eQTLs in the tissue, then the probability
of finding k annotated trans-eQTLs is,

P(x = k) = Binomial
(
T , k,

〈
fbg

〉)
. (18)

where
〈
fbg

〉
is the background frequency and P(x > k)

gives us the p value for the trans-eQTLs in that tissue to be
enriched in the corresponding feature. See also Additional
file 1: Section S5.6.

GWAS data
We used two libraries of GWAS-associated SNPs: (i)
GWAS catalog [63] and (ii) set of 87 complex trait GWAS
compiled by Barbeira et al. [30] (see Additional file 1:
Section S6.1). These studies were imputed and harmo-
nized to GTEx v8 variants with MAF ≥ 0.01 in European
samples.

GWAS enrichment
For the GWAS catalog, we calculated the enrichment
of lead trans-eQTLs by using the same procedure as
described above for the functional enrichment. We ran-
domly sampled 5000 SNPs from the GTEx genotype. The
fraction of random SNPs that overlap with the GWAS-
associated SNPs averaged over 300 replicates gives the
background frequency. The fraction of lead trans-eQTLs
that overlap with the GWAS-associated SNPs divided by
the background frequency gives the GWAS enrichment.
For the set of 87 complex trait GWAS, we also com-

pared the GWAS enrichment between cis-eQTLs and
trans-eQTLs. Here, we calculated GWAS enrichment as

the fraction of eQTLs (cis or trans) that overlap with
GWAS-associated SNPs compared to the fraction of all
tested SNPs that overlap with GWAS-associated SNPs
(Additional file 1: Fig. S24). Enrichment is calculated for
different p value cutoffs of the GWAS-associated SNPs
(x-axis on Fig. 5b). Cis-eQTLs were obtained from the
GTEx portal. For more details, see Additional file 1:
Section S6.2.
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