Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Bayesian Markov models improve the prediction of binding motifs beyond first order

MPG-Autoren
/persons/resource/persons221408

Ge,  W.
Research Group of Computational Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons206913

Meier,  M.
Research Group of Computational Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons203339

Roth,  C.
Research Group of Computational Biology, MPI for Biophysical Chemistry, Max Planck Society;

/persons/resource/persons128572

Söding,  J.
Research Group of Computational Biology, MPI for Biophysical Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

3346732.pdf
(Verlagsversion), 3MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Ge, W., Meier, M., Roth, C., & Söding, J. (2021). Bayesian Markov models improve the prediction of binding motifs beyond first order. NAR: Genomics and Bioinformatics, 3(2): lquab026. doi:10.1093/nargab/lqab026.


Zitierlink: https://hdl.handle.net/21.11116/0000-0009-5D6F-4
Zusammenfassung
Transcription factors (TFs) regulate gene expression by binding to specific DNA motifs. Accurate models for predicting binding affinities are crucial for quantitatively understanding of transcriptional regulation. Motifs are commonly described by position weight matrices, which assume that each position contributes independently to the binding energy. Models that can learn dependencies between positions, for instance, induced by DNA structure preferences, have yielded markedly improved predictions for most TFs on in vivo data. However, they are more prone to overfit the data and to learn patterns merely correlated with rather than directly involved in TF binding. We present an improved, faster version of our Bayesian Markov model software, BaMMmotif2. We tested it with state-of-the-art motif discovery tools on a large collection of ChIP-seq and HT-SELEX datasets. BaMMmotif2 models of fifth-order achieved a median false-discovery-rate-averaged recall 13.6% and 12.2% higher than the next best tool on 427 ChIP-seq datasets and 164 HT-SELEX datasets, respectively, while being 8 to 1000 times faster. BaMMmotif2 models showed no signs of overtraining in cross-cell line and cross-platform tests, with similar improvements on the next-best tool. These results demonstrate that dependencies beyond first order clearly improve binding models for most TFs.