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Abstract
The neural processing of speech leads to specific patterns in

the brain which can be measured as, e.g., EEG signals. When
properly aligned with the speech input and averaged over many
tokens, the Event Related Potential (ERP) signal is able to
differentiate specific contrasts between speech signals. Well-
known effects relate to the difference between expected and
unexpected words, in particular in the N400, while effects in
N100 and P200 are related to attention and acoustic onset ef-
fects. Most EEG studies deal with the amplitude of EEG signals
over time, sidestepping the effect of phase and phase synchro-
nization. This paper investigates the relation between phase in
the EEG signals measured in an auditory lexical decision task
by Dutch participants listening to full and reduced English word
forms. We show that phase synchronization takes place across
stimulus conditions, and that the so-called circular variance is
narrowly related to the type of contrast between stimuli.
Index Terms: phase synchronization, EEG, lexical decision,
circular variance, phase locking value

1. Introduction
EEG signals and Event Related Potentials (ERP) derived from
EEG signals are widely used in psycholinguistics. EEG/ERPs
are assumed to provide a rich source of information about the
online processing of stimuli unfolding over time. However, the
neurophysiological source(s) of EEG signals are still not well
understood [1, 2]. EEG activity related to a stimulus may be
(a) invoked, i.e., super-imposed upon and independent of the
ongoing electrical activity in the brain, (b) induced, i.e., EEG
changes are caused by phase (de-)synchronization, or (c) a com-
bination of the two. The conventional interpretation that links
the structure in ERPs and their timing to underlying cogni-
tive processes is most straightforward when EEG signals cor-
responds to induced activity [2].

Also, different cognitive processes may be related to differ-
ent frequency bands of EEG signals. According to [3], acoustic-
phonetic processing is related to phase synchronization in the
theta band (4-8 Hz, the modulation frequency band most im-
portant for speech intelligibility [4]). Decision processes are
related to frequencies below 4 Hz [5], while semantic process-
ing is mainly related to power in the alpha band (812 Hz) [6].
Apart from the frequency band, EEG signals reveal different ef-
fects in different time windows. For instance, the early N100
component (occurring around 100 ms after spoken word onset)
and the P200 component are associated with early acoustic pro-
cessing, attention, and working memory activation. The time
window ranging from approximately 200 to 400 ms after word
onset, may show whether targets are congruent or incongruent
to primes (first exposure), especially over posterior electrode
sites [7, 8]. Friedrich et al. [7] linked these match/mismatch
effects to the P350, a positive component peaking around 350

ms after word onset associated with lexical identification. The
reduction of this P350 component in the match condition was
interpreted as facilitated lexical identification.

In later time windows (ranging from approximately 400 to
1000 ms after word onset), the N400 is a frequently observed
ERP component in different language-related tasks (see [9] for
a comprehensive review of the discussions about the interpre-
tations of the results of independent experiments). In lexical
priming paradigms, the N400 is reduced (i.e., less negative am-
plitudes were found) for targets that better match their primes
(e.g.,[10]). In [11] and [8] the N400 was sensitive to a match in
word stress (although the polarity of the effects was not com-
patible with the expected direction from the N400 literature for
all experiments).

This paper is a first step towards a procedure for process-
ing and statistically analyzing EEG signals that will allow us
to combine effects in ERPs, as well as phase synchronization
and power in several frequency bands. To make it possible to
compare and integrate results obtained with different represen-
tations, we aim at signal processing techniques that yield time
signals, comparable to ERPs. In addition, we aim to develop
processing methods that are maximally transparent, so that they
can be used by other researchers without the need to rely on
complex tool boxes. For this paper we use a set of EEG signals
recorded in a complex experiment on auditory lexical decision
in a second language [12, 13]. The design of that experiment
had three nested factors. The first factor relates to the posi-
tion of an unstressed syllable in a multi-syllabic word: it can be
before ’pre-stress’ or after ’post-stress’ the syllable with word
stress. The second factor has the levels ’cognate’ and ’control’,
while the third factor has the levels ’fully articulated’ or ’re-
duced’. Results of an analysis of reaction times and error rates
[13] show that there are complex interactions between the three
main factors. It appears that, especially for the reduced stimuli,
there is a large difference between the pre-stress and post-stress
conditions.

2. Method
The phase of a frequency component of a wide-band signal can
be obtained in various ways. Perhaps the most straightforward
is using the complex Fourier Transform, but in most situations
we are not interested in the phase of a single frequency. Yet,
phase only makes sense in narrow frequency bands. One way of
decomposing a wide-band signal into narrow frequency bands
is by using a filter bank. We used that approach by building
band pass filters that span the theta range (4 - 8 Hz) and the
alpha range (8 - 12 Hz). The phase pattern of the output of the
band pass filters was obtained from the analytic signal sa(t) of
the EEG signal s(t) by computing

sa(t) = F−1(F(s).2U) = s+ iy (1)
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Figure 1: The effect of high pass filtering on the shape of ERPs.
Top panel: High pass cut-off frequency 0.1 Hz; bottom panel:
cut-off frequency 4 Hz.

where F is the Fourier transform, U the unit step function, and
y the Hilbert transform of s.

Another way of obtaining the phase pattern of frequency
components of a wide band signal is by using a wavelet trans-
form [14, 15]. The wavelet transform can be interpreted as ap-
plying a bank of Finite Impulse Response filters with different
center frequencies. To separate amplitude and phase, complex-
valued Morlet wavelets can be used. Morlet wavelets are ob-
tained by multiplying a function fω(t) = ei2πωt with a Gaus-
sian envelope. The number of periods in the complex exponen-
tial is fixed. As a consequence, the duration of the wavelets
becomes shorter as the frequency ω increases.

2.1. Power versus phase synchronization

The long-term average spectrum of EEG signals shows a 1/f
shape. As a consequence, the average of EEG signals time-
aligned at the start of a stimulus, which is how ERPs are con-
structed, will be dominated by the very low frequencies. The ef-
fect is demonstrated in Fig. 1. The upper panel shows the ERPs
for the four conditions in the pre-stress condition obtained from
the full-band signals. The lower panel shows the correspond-
ing results for signals that were high-pass filtered with a cut-off
frequency of 4 Hz. It can be seen that ERP components that
come later than approximately 250 ms have disappeared in the
high pass filtered version. This confirms the finding in [3] that
the N100/P200 complex is due to phase synchronization in the
theta band.

2.2. Phase synchronization

In our analysis of the phase synchronization, the phase locking
value (PLV) plays a central role ([16]). PLV is computed as fol-
lows: Let x1(t) and x2(t) be two different EEG signals of equal
length. In our analysis pairs of EEG signals are chosen from the
same electrode, but different epochs, in the same condition or
from conditions to be contrasted. Given these two real-valued
signals, we compute their so-called relative phase ∆φ1,2(t):

Figure 2: Phase synchronization visible between 100 ms and
400 ms after word onset. Word onset is at t = 0.

∆φ1,2(t) = arg
z1(t)z2(t)

|z1(t)z2(t)| (2)

in which z1 and z2 denote the complex signals that are derived
from x1 and x2 via the Hilbert transform, |z| denotes the norm
of z, and z denotes the complex conjugate of z. For each t,
∆φ(t) is a real number. This step produces a real signal of the
same length as x1(t) and x2(t)1.

∆φ denotes the local phase difference (in radians), i.e. all
values modulo 2π are indistinguishable. Fig. 2 shows ∆φ(t)
as a function of time t after phase unwrapping (unwrap() in
Matlab) for 150 pairs of EEG signals, in which the two input
signals x1 and x2 are averages of 20 EEG traces randomly cho-
sen from two contrasting conditions. The horizontal axis shows
time in ms; word onset is at t = 0; the vertical axis shows
the phase. At around t = 100, the relative phases appear to
pass over ’bridges’ that are 2π spaced apart vertically – these
’bridges’ actually represent the same bridge. This bridging ef-
fect is a phase synchronization between groups of EEG signals.
The synchronization emerges around 100 ms after word onset
and fades away again at around 400 ms after onset.

Considered as a set of real numbers, the mean, standard de-
viation and variance of ∆φ(t) do not make any sense. However,
the narrowing effect of the bridge can be quantified by showing
that the circular variance [17] decreases substantially between
100 ms and 400 ms. To that end, each point on a relative phase
graph is mapped on the complex unit circle {|z| = 1} in the
complex plane C, by2 x 7→ eix. For each t, its expectation is
the phase locking value PLV:

PLVm,n(t) = Eei·∆φm,n(t) (3)

Equation 3 maps a distribution of real numbers (the values of
the ∆φ functions at time t) via the mapping exp(i∆φ(t)) to
PLV(t) (a complex number within the unit circle, dependent on
t). Via the equality

∫ inf

− inf

cos(x) exp

(
−1

2

x2

σ2

)
dx = exp(

−σ2

2
) (4)

1A similar expression can be used to derive the relative phase of two
signals using wavelet transforms.

2here, i =
√
−1.
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if follows that the norm |PLV(t)| of PLV(t) is related to the
so-called circular variance σ2

c (t) of the values ∆φ(t), via

σ2
c (t) = −2 · log(|PLV(t)|) (5)

There is a direct relation between this σ2
c and the value of k in

the von Mises distribution, one of the distributions that plays a
role in circular statistics (k = 1/σ2

c ) [17, 18].

3. Experiment
3.1. Materials

The data for this paper come from an experiment in which na-
tive speakers of Dutch made lexical decisions on spoken En-
glish words. The experiment was designed to investigate three
main factors: (1) presence/absence of a strongly reduced sylla-
ble, (2) the position of the reduced syllable before or after the
syllable carrying primary stress, (3) the cognate status of the
target words (for details, see [12, 13]).

Forty advanced learners of English (mean age = 20.9 years,
SD = 2.2) participated. They were highly proficient in English
as evidenced by their scores on the LexTALE proficiency task
(mean = .83, SD = .37) [19]. Participants had to decide as
quickly and accurately as possible whether the aurally presented
stimulus was a real English word. For several different reasons
the data of 11 participants were discarded for the EEG signal
analysis, which leaves us with 29 participants.

An experiment consisted of 900 stimuli, half of which were
existing words. The target items in the pre-stress condition were
68 Dutch-English cognate items and 68 English non-cognate
items; in the post-stress there were 46 cognates and controls.
An item was considered a cognate if it had the same meaning
in English and Dutch and the Levenshtein distance (not consid-
ering word stress) between the Dutch and the English pronun-
ciations was < 5 (mean 3.71 for the post-stress stimuli and 3.3
for the pre-stress stimuli). The cognates and non-cognates had
similar log subtitle word frequencies (SUBTLWF [20]; mean
log frequency for cognates and non-cognates in the post-stress
task: 4.94 and 4.45, respectively. The filler items were 44 disyl-
labic, 48 trisyllabic and 22 foursyllabic real words with varying
position of word stress. The pseudo words were generated by
means of Wuggy [21].

The stimuli were recorded by a male native speaker of
British English following the same procedure as in [12]. The
duration of the schwa was manually measured with the speech
analysis software package Praat [22]. Schwa was absent in all
reduced forms and had an average duration of 68 ms in the full
forms.

3.2. EEG recordings

EEG data were collected from 59 AgAg CI electrodes posi-
tioned according to the 1020 standard system. Bipolar horizon-
tal and vertical electrooculograms (EOG) were recorded for oc-
ular artifact rejection. The left mastoid served as the reference
electrode and an additional electrode was placed on participants
right mastoid for re-referencing offline. Electrode impedances
were kept below 5 kΩ. The EEG was recorded continuously
with a band-pass filter of 0.02100 Hz and digitized with a sam-
pling frequency of 1000 Hz.

3.3. EEG data analysis

We first re-referenced the EEG data offline to the average of the
left and right mastoids, and filtered the data with a 0.135 Hz

band-pass filter. We then segmented the data into epochs from
-2 s to 2 s relative to the onset of the words. We removed a
small number of epochs because of large artifacts. In this paper
we only analyze the EEG signals pertaining to the target stim-
uli. The main goal is to see to what extent phase coherence in
several frequency bands can distinguish the eight sets of target
stimuli.

3.4. Computation of phase synchronization

The phase φ(t) of the EEG signals was computed, using the
analytic signal and the wavelet approaches. In the analytic sig-
nal approach we designed band pass 4th order Butterworth fil-
ters (the effective order is double, because we used forward-
backward filtering to make sure that the filters have zero phase)
with pass bands between 4 Hz and 8 Hz (theta band), and be-
tween 8 Hz and 12 Hz (lower alpha band). We applied wavelet
decomposition with complex Morlet wavelets with center fre-
quencies of 6 Hz and 10 Hz (i.e., in the middle of the pass
bands of the Butterworth filters). Here, we limit ourselves to
an analysis of the central electrodes, AFz, Fz, FCz, Cz, CPz, Pz,
POz.

It appears that the expectation operator in eq. (3) is essen-
tial. The relative phase of pairs of individual EEG signals is
impossible to interpret. Therefore, we used the following pro-
cedure for obtaining PLTm,n(t): We started by collecting the
EEG signals of all 29 participants per condition in one set. From
that set, we created 40 disjoint subsets of 15 signals, which were
then averaged. These 40 average signals take the role of (m,n)
in eq. (3). We calculated circular variances for all (40 · 39)/2
combinations within each condition. We also calculated circu-
lar variances for (m,n) taken from (8 ·7)/2 pairs of conditions,
and computed the PLVs of those randomly formed signal pairs.
This procedure was repeated for each of the EEG sensors of
interest, and for each of the frequency bands of interest. The
procedure was performed for the phase estimates obtained with
the Hilbert transform and with the wavelet transform. All sub-
sequent results were very similar for the Hilbert and wavelet
transforms; therefore, here we only deal with the results of the
Hilbert transform approach.

3.5. Computation of the power in frequency bands

We estimated the instantaneous power of the EEG signals in the
theta and alpha bands by taking the absolute value of the Hilbert
transform.3 To make it possible to analyze the power data in the
same way as the phase synchronization data, we followed the
same procedure: we created 40 random sets of EEG signals,
of which we computed the Hilbert transform. This yields 40
instantaneous power traces for each of the eight conditions.

4. Regression analyses
To investigate to what extent the circular variance (vc) as a func-
tion over time can be explained in terms of three main fac-
tors (full/reduced, prestress/poststress, cognate/control), a re-
gression model was applied with vc as dependent variable. The
best model (also smallest AIC) is shown in Table 1.

This model is based on 2,690,240 data points, covering the
time interval 100-300 ms after word onset. The average circu-
lar variance (denoted ’ave’, averaged over all tokens) and the
frequency band (on intercept: the theta band (4-8 kHz)) were

3This is reminiscent of the definition of instantaneous power as the
product of voltage and current in AC circuits.
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Table 1: The regression model predicting the circular variance
in terms of stimulus contrasts. The model is trained on 100-
300ms after word onset.

model = lm(cv ˜ band + ave + STR + CS +
FR + STR:CS + CS:FR + STR:FR)

Estim SE t value p
(Int) -1.601 0.013 -122.01 < 2e-16 ***
band8-12 3.270 0.002 1346.28 < 2e-16 ***
ave 1.000 0.004 271.26 < 2e-16 ***
STR 0.035 0.008 -4.47 7.3e-06 ***
CS 0.076 0.008 -9.63 < 2e-16 ***
FR 0.022 0.008 2.82 0.00479 **
STR:CS 0.126 0.006 19.67 < 2e-16 ***
CS:FR -0.012 0.006 -1.91 0.05561 .
STR:FR -0.055 0.006 -8.55 < 2e-16 ***

Adjusted R-squared: 0.7374
F-statistic: 2.359e+05 on 8 and 671991 DF
p-value: < 2.2e-16

control predictors. Predictors of interest denote contrasts be-
tween conditions: STR = 0 (on intercept) refers to the same
stress condition, while STR = 1 corresponds to opposing con-
ditions (prestress vs. poststress). Similarly: CS = 0: same
cognate status, CS = 1: different cognate status, and FR refers
to full vs. reduced. The β’s of STR, CS and FR are signifi-
cantly positive, indicating that the circular variance is signifi-
cantly increased compared to intercept condition when stimuli
are compared which indicates a lower phase synchronization
(i.e., a lower von Mises k). The positive β for band8-12
means that the phase synchronization in the alpha band –as
expected– is much lower than in the theta band. The interac-
tions are all significant, meaning that the contributions do not
linearly add if these condition contrasts occur in combination.
Since the model is already quite complex (including condition
contrasts as predictors), this model is based on site Cz only.

We also built lmermodels to investigate which differences
in EEG power can be modelled. Results are shown in Table 2.
Observe that this is a different type of model than the model
shown in Table 1: this model uses conditions as predictors of
interest, while the model in Table 1 estimates phase differences
in terms of condition contrasts. The power model has the pre-
dictors of interest postpre (0 = poststress, 1 = prestress), concog
(control = 0, cognate = 1) and redfull (reduced = 0, full = 1).
Significant effects could only be found in a short time interval
following stimulus onset. The contribution of the theta (’the’)
band (abbreviated ’bandthe’ in the table) differs significantly
from the alpha band. All three main predictors of interest are
significant. Also sites are significant, compared to the site AFz
on intercept. The model shown is the best one found: other
models with interactions between sites and stimulus conditions
did not converge.

5. Discussion and Conclusion
In this paper we investigate methods for processing EEG signals
that allow for easy comparisons between conventional ERPs
and representations of instantaneous power and phase synchro-
nization in specific frequency bands. The computation of in-
stantaneous power involves linear filtering (a familiar proce-
dure) in combination with Hilbert transforms. Software for

Table 2: Predicting power as a function of electrode and exper-
imental factors.

model = lm(power ˜ band + elec + ave +
postpre + concog + redfull + trial,
data=data2)

Estim Std.Err. t value p
(Interc) 2.2880 3.82e-02 59.80 < 2e-16
bandthe 0.5608 1.95e-03 287.34 < 2e-16
elecFz 0.1985 3.56e-03 55.70 < 2e-16
elecFCz 0.4706 3.56e-03 132.07 < 2e-16
elecCz -0.0225 3.86e-03 -5.83 5.3e-09
elecCPz 0.2799 3.56e-03 78.53 < 2e-16
elecPz 0.0382 3.56e-03 10.72 < 2e-16
elecPOz -0.1224 3.56e-03 -34.34 < 2e-16
ave 0.0115 3.84e-03 2.99 0.00274
postpre -0.2284 1.94e-03 -117.76 < 2e-16
concog -0.0093 1.94e-03 -4.77 1.7e-06
redfull 0.0532 1.90e-03 27.40 < 2e-16
trial -0.0002 1.66e-05 -9.36 < 2e-16

Adjusted R-squared: 0.1296
F-statistic: 1.173e+04 on 12 and 945,635 DF
p-value: < 2.2e-16

Hilbert transform is available in R, Python and Matlab.
Compared to EEG power, computing measures of phase

synchronization is, inevitably, much more complicated. For that
reason we included a detailed description of the followed pro-
cedures. Software for computing circular variance is available
in R, Python and Matlab.

We have shown that both the power of the EEG traces and
the phase locking value (PLV) between EEG traces provide
powerful information to separate auditory stimuli in terms of
prestress versus poststress, cognate versus control, and full ver-
sus reduced pronunciation. Remarkably, the PLV as applied in
this paper is powerful enough to detect phase synchronization
between EEG traces from different participants related to differ-
ent words with different characteristics. The degree of synchro-
nization, quantified as the circular variance over time, shows a
steep rise at around 100 ms, and decays about 300 ms later. The
most prominent characteristic of the circular variance over time
is the value of its minimum; the larger the difference between
trial conditions, the higher this minimum and so the lower the
von Mises k value, and so the smaller the phase synchronization
(Table 1). Table 2 showed that instantaneous power values also
critically depend on the frequency band and on the electrode
sites considered.

Further research is needed to see if there are phase effects
that are easier traceable using wavelet transforms [23, 24] than
with conventional band pass filters and Hilbert transforms. All
statistical analysis is based on the lme4 package in R. The
transparency of the processing techniques applied in this pa-
per can lay the basis for independent future experiments that
investigate the various interactions in greater detail.

The data used in this paper are collected in an ERC project
awarded to Mirjam Ernestus, Radboud University, Nijmegen.
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