A Perturbative Approach to Multireference Equation-Of-Motion Coupled Cluster

Supplementary Material

Marvin H. Lechner,^{a)} Róbert Izsák,^{a,b)} Marcel Nooijen^{c)} and Frank Neese^{a)}

a) Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany

 b) Department of Chemistry and Biochemistry, Middlebury College, 276 Bicentennial Way, Middlebury, VT 05753, USA

c) Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada

1 Explicit Equations for all Perturbative Amplitudes

In this section, we give explicit expressions for the amplitudes used in MR-EOMPT theory that were not fully described in the main article.

In the first similarity transformation of \hat{H} with the cluster operator \hat{T} , the t_{ab}^{ti} amplitudes are computed with the results of the EKT-IP calculation,

$$t_{ab}^{it} = \sum_{\tilde{v}} c_{i\tilde{v}}^{\mathrm{IP}} \frac{(\tilde{v}a \mid ib)}{\epsilon_{\tilde{v}}^{\mathrm{IP}} + \epsilon_i - (\epsilon_a + \epsilon_b)},$$
(1)

and the transformed integral being defined as

$$(\tilde{v}a \mid ib) = \sum_{t} c_{t\tilde{v}}^{\mathrm{IP}}(ta \mid ib).$$
⁽²⁾

The \hat{X} and \hat{D} operators describe the spin-flip and spectator excitations, respectively. Hence, their estimates are effectively identical. They require both the EKT-EA and -IP results,

$$x_{au}^{ii} = d_{au}^{ii} = \sum_{\tilde{v}\tilde{w}} c_{i\tilde{v}}^{IP} c_{u\tilde{w}}^{EA} \frac{(\tilde{v}a \mid i\tilde{w})}{\epsilon_{\tilde{v}}^{IP} + \epsilon_i - (\epsilon_a + \epsilon_{\tilde{w}}^{EA})},$$
(3)

And the transformed integrals are defined as

$$(\tilde{v}a \mid i\tilde{w}) = \sum_{u} c_{t\tilde{v}}^{IP} c_{u\tilde{w}}^{EA} (ta \mid iu).$$
(4)

2 Total Energies for the Diatomic Systems

Table 1: Tota	l energies f	for all the	states of th	e diatomic	test systems	$(E_{\rm h}).$
---------------	--------------	-------------	--------------	------------	--------------	----------------

					MR-EOM		
	State	ICE-FCI	CASSCF	NEVPT2	-PT	-CC	
СН	$^{2}\Pi$	-38.341204	-38.262875	-38.324470	-38.333238	-38.340435	
	$^{2}\Delta$	-38.229473	-38.148534	-38.213131	-38.222298	-38.228601	
	$2\Sigma^{-}$	-38.216293	-38.141776	-38.200474	-38.209134	-38.216941	
	$^{2}\Sigma^{+}$	-38.188757	-38.111817	-38.170641	-38.177167	-38.182974	
CN	$^{2}\Sigma^{+}$	-92.411165	-92.256484	-92.387161	-92.397334	-92.406678	
	$^{2}\Pi$	-92.357545	-92.199593	-92.332711	-92.341581	-92.352792	
	$2 \ ^2\Sigma^+$	-92.299721	-92.142378	-92.274137	-92.283921	-92.294449	
CO	$^{1}\Sigma^{+}$	-112.956081	-112.757326	-112.928519	-112.938722	-112.948687	
	$^{1}\Pi$	-112.633516	-112.417543	-112.603116	-112.615749	-112.630480	
	$^{1}\Sigma^{-}$	-112.577475	-112.373032	-112.547200	-112.557868	-112.570080	
	$^{1}\Delta$	-112.573236	-112.371343	-112.543189	-112.553937	-112.566753	
	Π^{2}	-112.723349	-112.517232	-112.694774	-112.706374	-112.718998	
	$^{3}\Sigma^{+}$	-112.639166	-112.436013	-112.608350	-112.616281	-112.627272	
	$^{3}\Delta$	-112.605164	-112.401214	-112.574667	-112.583921	-112.595651	
	$^{3}\Sigma^{-}$	-112.587212	-112.386993	-112.556752	-112.566144	-112.578439	
$\mathrm{CO}^{\scriptscriptstyle +}$	$^{2}\Sigma^{+}$	-112.457861	-112.306248	-112.435987	-112.454541	-112.454541	
	$^{2}\Pi$	-112.326110	-112.165787	-112.302484	-112.322395	-112.322395	
	$2 \ ^2\Sigma^+$	-112.243498	-112.080508	-112.218682	-112.239518	-112.239518	
N_2	$^{1}\Sigma^{+}$	-109.180593	-108.987865	-109.152424	-109.164935	-109.178091	
	$^{1}\Pi$	-108.826143	-108.617307	-108.795425	-108.808434	-108.821585	
	$^{1}\Sigma^{-}$	-108.797986	-108.588103	-108.766897	-108.781815	-108.795314	
	$^{1}\Delta$	-108.783765	-108.576669	-108.752244	-108.765952	-108.779008	
	$^{3}\Sigma^{+}$	-108.888730	-108.690236	-108.858394	-108.869729	-108.883982	
	$^{3}\Pi$	-108.877161	-108.666838	-108.847484	-108.858646	-108.870944	
	$^{3}\Delta$	-108.840258	-108.635921	-108.809593	-108.822670	-108.836396	
	$^{3}\Sigma^{-}$	-108.811041	-108.610542	-108.779487	-108.791419	-108.804613	
O_2	$^{1}\Delta$	-149.813573	-149.540200	-149.776548	-149.791507	-149.809050	
	$^{1}\Sigma^{+}$	-149.789449	-149.520996	-149.752842	-149.766966	-149.785038	
	$^{3}\Sigma^{+}$	-149.852988	-149.575157	-149.814595	-149.829455	-149.846299	
	$^{3}\Delta$	-149.619889	-149.349011	-149.581360	-149.596704	-149.615225	
OH	$^{2}\Pi$	-75.492499	-75.344410	-75.471198	-75.479295	-75.490188	
	$^{2}\Sigma^{+}$	-75.334985	-75.174579	-75.312906	-75.322854	-75.335956	

3 Summary of Active Spaces

Table 2: Summary of the active spaces (all calculations) and reference states for the MR-EOMCC and MR-EOMPT calculations. In this condensed notation, "Mult. 4,2 Roots 1,2" would be interpreted as a single quartet and two doublet roots, for example.

	Active	Active			Project	
System	El.	Orb.	Mult.	Roots	singular?	Notes
Diatomic Systems						
СН	5	5	4,2	1,2	Yes	Full valence
CN	9	8	2	1	Yes	Full valence
СО	10	8	3	2	Yes	Full valence
CO^+	9	8	2	4	Yes	Full valence
N_2	10	8	3	1	Yes	Full valence
O_2	12	8	3	3	No	Full valence
OH	7	5	2	2	Yes	Full valence
Selected Systems from Thiel Benchmark						
Cyclopropene	4	3	3	2	No	
Ethene	2	2	3,1	1,2	No	pi-system
Butadiene	4	4	3	2	No	pi-system
Benzene	6	6	3,1	3,2	Yes	pi-system, Stol 8e-5
Pyrrole	6	5	3,1	2,1	Yes	pi-system, Stol 3e-5
				Example	Systems	
LiF	2	2	1	2	Yes	Li $2s + F p_z$
CH ₂ S/T			_			SA-CASSCF not possible b/c different
Splitting	6	6	3	1	Yes	geometries
CH ₂ S/1 Splitting	6	6	1	1	Ves	
SiH ₂ S/T	0	0	1	1	105	SA-CASSCF not possible b/c different
Splitting	6	6	3	1	Yes	geometries
SiH ₂ S/T						
Splitting	6	6	1	1	Yes	
Co	9	6	4	14	No	500/ weight on S states 500/ weight on
Cr	6	6	75	16	Ves	five roots for D state
CI	Comparison with LR is MRCCSD					
CH ₂	6	6	1	7	Yes	Full valence
Hexatriene	6	6	1	3	Yes	pi-system

4 Methylene

The geometry of this test system for comparison to the LR-ic-MRCC method has already been published in Refs. [1,2]. Note that the distances are given in Bohr radii a_0 , and not in Ångstrom. The basis set is a slightly augmented variant of the cc-pVDZ [3] basis, with an *s*-function added each to carbon and hydrogen with exponents of 0.015 and 0.025, respectively. For ORCA, the input is:

```
! cc-pVDZ Bohrs [...]
%basis
  AddGTO C
    s 1
    1 0.015 1.0
  end
  AddGTO H
    s 1
    1 0.025 1.0
  end
end
[... method settings ...]
* xyz 0 1
  С
        0.0
                 0.0
                              0.0
                 1.644403
 Н
        0.0
                              1.32213
        0.0
                -1.644403
  Н
                              1.32213
*
```

In total, this system has 8 electrons and 27 orbitals, which generally allows FCI calculations to be performed on single servers given a recent CPU and sufficient RAM.

5 References

- Henrik Koch, Ove Christiansen, Poul Jørgensen, and Jeppe Olsen, *Chem. Phys. Lett.* 244 (1-2), 75 (1995).
- [2] Pradipta Kumar Samanta, Debashis Mukherjee, Matthias Hanauer, and Andreas Köhn, J.
 Chem. Phys. 140 (13), 134108 (2014).
- [3] Thom H. Dunning, J. Chem. Phys. 90 (2), 1007 (1989).